考研生化酶PPT课件
合集下载
生物化学之酶ppt课件
非竞争性抑制剂
与酶活性中心以外的部位结合,改变酶的空间构象,使酶活性降低或 丧失,如磺胺类药物对二氢叶酸合成酶的抑制。
酶抑制剂的应用
医学领域
用于治疗疾病,如酶抑制剂作为抗病毒药 物、抗肿瘤药物和抗菌药物等。
生物工程领域
用于改造和优化生物催化剂的性能,提高 生物催化过程的效率和选择性。
农业领域
用于研发新型农药和除草剂,提高农作物 产量和品质。
来调节细胞内酶的含量。
酶抑制剂的分类与作用
不可逆抑制剂
与酶共价结合,使酶永久失活,如有机磷农药对乙酰胆碱酯酶的抑制 。
可逆抑制剂
与酶非共价结合,可通过物理或化学方法去除抑制剂而恢复酶活性, 包括竞争性抑制剂、非竞争性抑制剂和反竞争性抑制剂。
竞争性抑制剂
与底物竞争酶的活性中心,降低酶对底物的亲和力,如丙二酸对琥珀 酸脱氢酶的抑制。
环境领域
用于治理环境污染,如利用酶抑制剂降解 有毒有害物质。
04
酶在生物体内的代谢
酶与生物氧化
酶催化生物氧化反应
生物氧化是在生物体内进行的氧化反 应,酶作为生物催化剂能够加速这些 反应的进行。
酶与抗氧化系统
生物体内存在抗氧化系统以抵抗氧化 应激,酶如超氧化物歧化酶(SOD) 等在此系统中发挥重要作用。
酶的结构与功能
结构
酶分子通常具有复杂的四级结构,包括一级结构(氨基酸序列)、二级结构( α-螺旋、β-折叠等)、三级结构(整体折叠形态)和四级结构(亚基组成)。
功能
酶通过降低化学反应的活化能来加速反应速率,具有高效性、专一性和可调节 性等特点。此外,酶还能参与信号传导、物质运输和能量转换等生物过程。
酶抑制剂筛选方法
基于活性的筛选
与酶活性中心以外的部位结合,改变酶的空间构象,使酶活性降低或 丧失,如磺胺类药物对二氢叶酸合成酶的抑制。
酶抑制剂的应用
医学领域
用于治疗疾病,如酶抑制剂作为抗病毒药 物、抗肿瘤药物和抗菌药物等。
生物工程领域
用于改造和优化生物催化剂的性能,提高 生物催化过程的效率和选择性。
农业领域
用于研发新型农药和除草剂,提高农作物 产量和品质。
来调节细胞内酶的含量。
酶抑制剂的分类与作用
不可逆抑制剂
与酶共价结合,使酶永久失活,如有机磷农药对乙酰胆碱酯酶的抑制 。
可逆抑制剂
与酶非共价结合,可通过物理或化学方法去除抑制剂而恢复酶活性, 包括竞争性抑制剂、非竞争性抑制剂和反竞争性抑制剂。
竞争性抑制剂
与底物竞争酶的活性中心,降低酶对底物的亲和力,如丙二酸对琥珀 酸脱氢酶的抑制。
环境领域
用于治理环境污染,如利用酶抑制剂降解 有毒有害物质。
04
酶在生物体内的代谢
酶与生物氧化
酶催化生物氧化反应
生物氧化是在生物体内进行的氧化反 应,酶作为生物催化剂能够加速这些 反应的进行。
酶与抗氧化系统
生物体内存在抗氧化系统以抵抗氧化 应激,酶如超氧化物歧化酶(SOD) 等在此系统中发挥重要作用。
酶的结构与功能
结构
酶分子通常具有复杂的四级结构,包括一级结构(氨基酸序列)、二级结构( α-螺旋、β-折叠等)、三级结构(整体折叠形态)和四级结构(亚基组成)。
功能
酶通过降低化学反应的活化能来加速反应速率,具有高效性、专一性和可调节 性等特点。此外,酶还能参与信号传导、物质运输和能量转换等生物过程。
酶抑制剂筛选方法
基于活性的筛选
生物化学 第三章 酶(共65张PPT)
概念: 抑制剂和底物的结构相似,能与底物竞争酶的活性中心,从而阻碍酶底物复合物的形成,使酶的活性降低。
含多条肽链则为寡聚酶,如RNA聚合酶,由4种亚基构成五聚体。
(cofactor)
别构酶(allosteric enzyme):能发生别构效应的酶
9 D-葡萄糖6-磷酸酮醇异构酶 磷酸葡萄糖异构酶
esterase)活性中心丝氨酸残基上的羟基结合,使酶失活。
酶蛋白
酶的磷酸化与脱磷酸化
五、酶原激活
概念
酶原(zymogen):细胞合成酶蛋白时或者初分 泌时,不具有酶活性的形式
酶原 切除片段 酶
(–)
(+)
酶原激活
本质:一级结构的改变导致构象改变,激活。
胰蛋白酶原的激活过程
六、同工酶
同工酶(isoenzyme)是指催化相同的化学反应, 而酶蛋白的分子结构、理化性质乃至免疫学性质 不同的一组酶。
正协同效应(positive cooperativity) 后续亚基的构象改变增加其对别构效应剂
的亲和力,使效应剂与酶的结合越来越容易。
负协同效应(negative cooperativity) 后续亚基的构象改变降低酶对别构效应剂
的亲和力,使效应剂与酶的结合越来越难。
协同效应
正协同效应的底物浓度-反应速率曲线为S形曲线
/ 即: Vmax = k3 [Et]
Km 和 Vmax 的测定
双倒数作图法 Lineweaver-Burk作图
将米氏方程式两侧取倒数
1/v = Km/Vmax[S] + 1/Vmax = Km/Vmax •1/ [S] + 1/Vmax 以 1/v 对 1/[S] 作图, 得直线图
斜率为 Km/Vmax
含多条肽链则为寡聚酶,如RNA聚合酶,由4种亚基构成五聚体。
(cofactor)
别构酶(allosteric enzyme):能发生别构效应的酶
9 D-葡萄糖6-磷酸酮醇异构酶 磷酸葡萄糖异构酶
esterase)活性中心丝氨酸残基上的羟基结合,使酶失活。
酶蛋白
酶的磷酸化与脱磷酸化
五、酶原激活
概念
酶原(zymogen):细胞合成酶蛋白时或者初分 泌时,不具有酶活性的形式
酶原 切除片段 酶
(–)
(+)
酶原激活
本质:一级结构的改变导致构象改变,激活。
胰蛋白酶原的激活过程
六、同工酶
同工酶(isoenzyme)是指催化相同的化学反应, 而酶蛋白的分子结构、理化性质乃至免疫学性质 不同的一组酶。
正协同效应(positive cooperativity) 后续亚基的构象改变增加其对别构效应剂
的亲和力,使效应剂与酶的结合越来越容易。
负协同效应(negative cooperativity) 后续亚基的构象改变降低酶对别构效应剂
的亲和力,使效应剂与酶的结合越来越难。
协同效应
正协同效应的底物浓度-反应速率曲线为S形曲线
/ 即: Vmax = k3 [Et]
Km 和 Vmax 的测定
双倒数作图法 Lineweaver-Burk作图
将米氏方程式两侧取倒数
1/v = Km/Vmax[S] + 1/Vmax = Km/Vmax •1/ [S] + 1/Vmax 以 1/v 对 1/[S] 作图, 得直线图
斜率为 Km/Vmax
生化·第3章·酶ppt课件
Vmax[S] V=
Km+ [S]
V max 初 速 度 v
a
b 1 /2 V max
V≈Vmax
c
反应速率不再 增加,反应呈 零级反应
0 Km
[S ]
图 5-14 底 物 浓 度 对 酶 促 反 应 速 度 的 影 响
(二) Km和Vmax的意义
1.当反应速率为最大速率一半时,米氏方 程为:
当V =Vmax 时 2
酶:由活细胞合成的以蛋白质 为主的大分子生物催化剂。
大多数为蛋白质 少数为核酸 核酶(RNA)
脱氧核酶(DNA)
底物(S) 酶(E) 产物(P)
第一节 酶的分子结构与功能
单体酶:由一条肽链构成的酶(具有三级结 构)
寡聚酶:由多个相同或不同亚基以非共价键 相连的酶(具有四级结构)
多酶体系或多酶复合体:由几种不同功能的 一个团体 酶聚合形成的多酶复合物。
酶的必需基团在一级结构上可能相距 很远,但在空间结构上彼此靠近,组成 具有特定空间结构的区域,能与底物特 异结合并发挥催化作用,将底物转变为 产物的部位称为酶的活性中心 (active center)或活性部位。
A B
酶活性中心的示意图
活性中心内 结合基团 结合底物
必 需
必需基团
基
催化基团 催化底物
当底物浓度很低时([S]<<Km),分 母中的[S]可忽略不计,此时
Vmax[S] V=
Km+ [S]
Vmax[S] V=
Km
V max
初
c
反应速率与 速
b
[S]呈正比, 度
成一级反应 v
1/2V max
a
0 Km
酶(生物化学)PPT课件
详细描述
酶的活性中心是酶分子中具有特定空间结构的区域,能够与底物特异结合,并 通过催化反应将其转化为产物。活性中心的氨基酸残基通常是高度保守的,对 酶的催化活性至关重要。
酶的专一性
总结词
酶的专一性是指一种酶只能催化一种或一类化学反应的性质 。
详细描述
酶的专一性是酶的重要特性之一,它决定了酶在生物体内的 功能。一种酶通常只能催化一种或一类化学反应,这是因为 酶的活性中心具有特定的空间结构和化学环境,只能够与特 定的底物结合并催化相应的反应。
食品保鲜
酶可用于食品保鲜,如抑制果蔬 中酶的活性,延缓成熟和腐烂过 程;也可用于食品中农药残留的
降解。
功能性食品开发
酶可用于开发功能性食品,如通 过酶促反应生产低糖、低脂或高
纤维食品。
酶在环保领域的应用
有毒有害物质降解
酶可用于降解有毒有害物质,如重金属离子、有机溶剂和农药等, 降低其对环境和生物体的危害。
的诊断。
药物生产
酶可用于药物的生产和制造过程中, 如抗生素、激素和蛋白质药物等, 通过酶促反应提高生产效率和纯度。
生物治疗
酶在某些生物治疗过程中起到关键 作用,如基因疗法和细胞疗法中, 酶可促进特定基因的表达或改变细 胞代谢。
酶在食品工业中的应用
食品加工
酶在食品加工过程中起到重要作 用,如淀粉的改性、蛋白质的水 解和油脂的加工等,可改善食品 的口感、营养价值和加工性能。
计算机辅助设计
计算机辅助设计是一种利用计算 机模拟技术来预测和优化酶性能
的方法。
通过计算机模拟,可以预测酶的 催化机制、反应路径和动力学行
为,从而指导酶的优化设计。
计算机辅助设计与其他技术结合, 如量子化学计算和分子动力学模 拟,可进一步提高酶优化效率。
酶的活性中心是酶分子中具有特定空间结构的区域,能够与底物特异结合,并 通过催化反应将其转化为产物。活性中心的氨基酸残基通常是高度保守的,对 酶的催化活性至关重要。
酶的专一性
总结词
酶的专一性是指一种酶只能催化一种或一类化学反应的性质 。
详细描述
酶的专一性是酶的重要特性之一,它决定了酶在生物体内的 功能。一种酶通常只能催化一种或一类化学反应,这是因为 酶的活性中心具有特定的空间结构和化学环境,只能够与特 定的底物结合并催化相应的反应。
食品保鲜
酶可用于食品保鲜,如抑制果蔬 中酶的活性,延缓成熟和腐烂过 程;也可用于食品中农药残留的
降解。
功能性食品开发
酶可用于开发功能性食品,如通 过酶促反应生产低糖、低脂或高
纤维食品。
酶在环保领域的应用
有毒有害物质降解
酶可用于降解有毒有害物质,如重金属离子、有机溶剂和农药等, 降低其对环境和生物体的危害。
的诊断。
药物生产
酶可用于药物的生产和制造过程中, 如抗生素、激素和蛋白质药物等, 通过酶促反应提高生产效率和纯度。
生物治疗
酶在某些生物治疗过程中起到关键 作用,如基因疗法和细胞疗法中, 酶可促进特定基因的表达或改变细 胞代谢。
酶在食品工业中的应用
食品加工
酶在食品加工过程中起到重要作 用,如淀粉的改性、蛋白质的水 解和油脂的加工等,可改善食品 的口感、营养价值和加工性能。
计算机辅助设计
计算机辅助设计是一种利用计算 机模拟技术来预测和优化酶性能
的方法。
通过计算机模拟,可以预测酶的 催化机制、反应路径和动力学行
为,从而指导酶的优化设计。
计算机辅助设计与其他技术结合, 如量子化学计算和分子动力学模 拟,可进一步提高酶优化效率。
生化课件第三章酶
基侧链的化学基团中, 一些与酶活性密切相关 的化学基团。
目录
酶的活性中心(active center) 或称活性部位(active site),指必需基团
在空间结构上彼此靠近,组成具有特定空间 结构的区域,能与底物特异结合并将底物转 化为产物。
目录
➢ 活性中心内的必需基团
结合基团 (binding group) 与底物相结合
目录
酶的不同形式
单体酶(monomeric enzyme):仅具有三级结 构的酶。
寡聚酶(oligomeric enzyme):由多个相同或 不同亚基以非共价键连接组成的酶。
多酶体系(multienzyme system):由几种不同 功能的酶彼此聚合形成的多酶复合物。
多功能酶(multifunctional enzyme)或串联酶 (tandem enzyme):一些多酶体系在进化过程 中由于基因的融合,多种不同催化功能存在 于一条多肽链中,这类酶称为多功能酶。
目录
一、 酶的分子组成
单纯酶 (simple enzyme)
结合酶 (conjugated enzyme)
全酶 (holoenzyme)
蛋白质部分:酶蛋白 (apoenzyme)
辅助因子 (cofactor)
小分子有机化合物
金属离子 (2/3)
目录
*各部分在催化反应中的作用
酶蛋白决定反应的特异性 辅助因子决定反应的种类与性质
1/V
抑制剂↑ 无抑制剂
• 动力学特点:
Vmax 降 低 , 表 观Km不变。
1/[S]
目录
3. 反竞争性抑制
活化能(activation energy)。酶比一般催化剂更有 效地降低反应的活化能。
目录
酶的活性中心(active center) 或称活性部位(active site),指必需基团
在空间结构上彼此靠近,组成具有特定空间 结构的区域,能与底物特异结合并将底物转 化为产物。
目录
➢ 活性中心内的必需基团
结合基团 (binding group) 与底物相结合
目录
酶的不同形式
单体酶(monomeric enzyme):仅具有三级结 构的酶。
寡聚酶(oligomeric enzyme):由多个相同或 不同亚基以非共价键连接组成的酶。
多酶体系(multienzyme system):由几种不同 功能的酶彼此聚合形成的多酶复合物。
多功能酶(multifunctional enzyme)或串联酶 (tandem enzyme):一些多酶体系在进化过程 中由于基因的融合,多种不同催化功能存在 于一条多肽链中,这类酶称为多功能酶。
目录
一、 酶的分子组成
单纯酶 (simple enzyme)
结合酶 (conjugated enzyme)
全酶 (holoenzyme)
蛋白质部分:酶蛋白 (apoenzyme)
辅助因子 (cofactor)
小分子有机化合物
金属离子 (2/3)
目录
*各部分在催化反应中的作用
酶蛋白决定反应的特异性 辅助因子决定反应的种类与性质
1/V
抑制剂↑ 无抑制剂
• 动力学特点:
Vmax 降 低 , 表 观Km不变。
1/[S]
目录
3. 反竞争性抑制
活化能(activation energy)。酶比一般催化剂更有 效地降低反应的活化能。
生物化学7第三章酶PPT课件
率,但不改变反应的平衡点。
酶在生物体内参与多种代谢反应, 是维持生命活动不可或缺的物质。
酶的分类
根据酶的来源可分为动物酶、植物酶 和微生物酶。
根据酶的结构可分为单体酶、寡聚酶 和多聚酶等。
根据酶作用的性质可分为氧化还原酶、 水解酶、裂合酶、异构酶和转移酶等。
酶的结构与功能
酶的活性中心
酶的特定化学基团,与 底物结合并催化反应发
米氏方程是酶促反应动力学的核心理论之一,它能够帮助我 们了解酶促反应的特性,如酶的催化效率、底物亲和力等。
酶促反应速度的影响因素
底物浓度
最快。
酶浓度
酶浓度越高,反应速度越快。
温度
温度越高,酶促反应速度越快, 但温度过高可能导致酶失活。
抑制剂和激活剂
疏水催化
酶通过将底物分子包裹在活性 中心的疏水空腔中,降低溶剂 对反应的干扰,从而加速反应
。
03
酶促反应动力学
米氏方程
米氏方程是表示一个酶促反应的起始速度与底物浓度关系的方 程,其形式为v=Vmax[S]/(Km+[S]),其中v代表反应速度, Vmax代表最大反应速度,[S]代表底物浓度,Km代表米氏常数。
04
酶的抑制剂与激活剂
酶的抑制剂
01
02
03
04
不可逆性抑制剂
通过与酶的活性中心结合,永 久性地抑制酶的活性。
可逆性抑制剂
通过非共价键与酶结合,抑制 酶的活性,但可以在一定条件
下恢复酶的活性。
竞争性抑制剂
与底物竞争酶的活性中心,降 低酶与底物的亲和力,从而抑
制酶的活性。
非竞争性抑制剂
与酶的活性中心以外的位点结 合,影响酶与底物的结合,从
酶在生物体内参与多种代谢反应, 是维持生命活动不可或缺的物质。
酶的分类
根据酶的来源可分为动物酶、植物酶 和微生物酶。
根据酶的结构可分为单体酶、寡聚酶 和多聚酶等。
根据酶作用的性质可分为氧化还原酶、 水解酶、裂合酶、异构酶和转移酶等。
酶的结构与功能
酶的活性中心
酶的特定化学基团,与 底物结合并催化反应发
米氏方程是酶促反应动力学的核心理论之一,它能够帮助我 们了解酶促反应的特性,如酶的催化效率、底物亲和力等。
酶促反应速度的影响因素
底物浓度
最快。
酶浓度
酶浓度越高,反应速度越快。
温度
温度越高,酶促反应速度越快, 但温度过高可能导致酶失活。
抑制剂和激活剂
疏水催化
酶通过将底物分子包裹在活性 中心的疏水空腔中,降低溶剂 对反应的干扰,从而加速反应
。
03
酶促反应动力学
米氏方程
米氏方程是表示一个酶促反应的起始速度与底物浓度关系的方 程,其形式为v=Vmax[S]/(Km+[S]),其中v代表反应速度, Vmax代表最大反应速度,[S]代表底物浓度,Km代表米氏常数。
04
酶的抑制剂与激活剂
酶的抑制剂
01
02
03
04
不可逆性抑制剂
通过与酶的活性中心结合,永 久性地抑制酶的活性。
可逆性抑制剂
通过非共价键与酶结合,抑制 酶的活性,但可以在一定条件
下恢复酶的活性。
竞争性抑制剂
与底物竞争酶的活性中心,降 低酶与底物的亲和力,从而抑
制酶的活性。
非竞争性抑制剂
与酶的活性中心以外的位点结 合,影响酶与底物的结合,从
生物化学第二章酶ppt课件
叶酸和叶酸辅酶 ⑦ 酶原转变成酶的过程称为酶原的激活。
酶全催酶化 (ho作lo用en的zy中m维间e)产生=(酶络蛋素合白)B+物辅1学1因说又子 称叶酸,作为辅酶的是叶酸加氢的还原产 物四氢叶酸。 (3)抗体酶(abzyme):
(3)酶原和酶原的激活
根据其催化底物来命名;
H 维生素B6包括吡哆醇、吡哆醛和吡哆胺。
多数维生素维生素作为辅酶和辅基的组成成分,参与体内 的物质代谢。
维生素一般习惯分为脂溶性和水溶性两大类。其中脂溶性 维生素在体内可直接参与代谢的调节作用,而水溶性维生 素是通过转变成辅酶对代谢起调节作用。
某些小分子有机化合物与酶蛋白结合在一起并协同实施催 化作用,这类分子被称为辅酶(或辅基)。
(2)传递氢(递氢体):如 硫辛酸;
FMN/FAD、NAD/NADP、C0Q、
(3)传递酰基体:如 C0A、TPP、硫辛酸; (4)传递一碳基团:如 四氢叶酸;
(5)传递磷酸基:如 ATP,GTP;
(6)其它作用: 转氨基,如 VB6 ;传递CO2,如 生物素。
维生素和辅酶
维生素是机体维持正常生命活动所必不可少的一类小分子 有机物质。
OH OH
OHOHOH O
CH2CHCHCHCH2OPOCH2 O
N
N
NN
OH
CH3
CO
N
N
CH3
NH
NC
NH2
O
FMN
FAD
③ 泛酸和辅酶A(CoA)
维生素B3又称泛酸,是由,-二羟基---二甲 基丁酸和一分子-丙氨酸缩合而成。
CH3OH O
O
CH2 C CH C NH CH2 CH2 C COOH
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例如:
习惯名称:谷丙转氨酶 系统名称:丙氨酸:-酮戊二酸氨基转移酶 酶催化的反应: 谷氨酸 + 丙酮酸 -酮戊二酸 + 丙氨酸
17
二 、酶的分类
1, 水解酶 hydrolase
水解酶催化底物的加水分解反应。 主要包括淀粉酶、蛋白酶、核酸酶及脂酶等。 例如,脂肪酶(Lipase)催化的脂的水解反应:
反应的活化能,从而加速反应的进行。
6
三、酶催化作用特性
1. 高效性
酶的催化作用可使反应速度提高106 -1012倍。 例如:过氧化氢分解 2H2O2 2H2O + O2 用Fe+ 催化,效率为6*10-4 mol/mol.S,而
用过氧化氢酶催化,效率为6*106 mol/mol.S。 用-淀粉酶催化淀粉水解,1克结晶酶在65C
酶催化的生物化学反应,称为酶促反应 Enzymatic reaction。
在酶的催化下发生化学变化的物质,称为底物 substrate。
5
(二)、酶和一般催化剂的共性
1、用量少而催化效率高; 2、它能够改变化学反应的速度,但是不能
改变化学反应平衡。 3、酶能够稳定底物形成的过渡状态,降低
R C O O C H 2 C H 3H 2 O R C O O HC H 3 C H 2 O H
18
2.氧化-还原酶 Oxidoreductase
• 氧化-还原酶催化氧化-还原反应。 • 主要包括脱氢酶(dehydrogenase)和氧化酶
(Oxidase)。 • 如,乳酸(Lactate)脱氢酶催化乳酸的脱氢反应。
条件下可催化2吨淀粉水解。
7
2.专一性
酶的专一性 Specificity 又称为特异性,是指酶在催化生化反应时对底
物的选择性
酶的专一性包括 (1)结构专一性 绝对专一性 相对专一性 (2)立体异构专一性 光学异构专一性 几何异构专一性
8
酶作用专一性的机制
酶分子活性中心部位,一般都含有多个具有 催化活性的手性中心,这些手性中心对底物 分子构型取向起着诱导和定向的作用,使反 应可以按单一方向进行。
化合物的生理意义】 1959年 Sutherland cAMP的发现----→酶与激素的关系 1970年 Restriction enzyme的发现-----→基因工程
4
二、酶是生物催化剂
(一)、什么是酶? 酶是活细胞产生的一类具有催化功能的生
物分子,所以又称为生物催化剂 Biocatalysts 。 绝大多数的酶都是蛋白质。
酶能够区分对称分子中等价的潜手性基团。
9
(1)“三点结合”的催化理论
认为酶与底物的 结合处至少有三 个点,而且只有 一种情况是完全 结合的形式。只 有这种情况下, 不对称催化作用 才能实现。
10
(2)锁钥学说:
认为整个酶分子的天然构象是具有刚性结 构的,酶表面具有特定的形状。酶与底物 的结合如同一把钥匙对一把锁一样
15
2、国际系统命名法
系统名称包括底物名称ቤተ መጻሕፍቲ ባይዱ构型、反应性 质,最后加一个酶字。
例如:
习惯名称:谷丙转氨酶 系统名称:丙氨酸:-酮戊二酸氨基转移酶 酶催化的反应: 谷氨酸 + 丙酮酸 -酮戊二酸 + 丙氨酸
16
2、国际系统命名法
系统名称包括底物名称、构型、反应性 质,最后加一个酶字。
提液加入淀粉后能生成麦芽糖, 即麦芽抽提液中必定有能水 解淀粉的水溶性物质→ferment (酵素)】 1826 年 Mitscherlich 提 倡 水 溶 性 酵 素 为 " unorganized ferment " 1830 年 Kuhle开始使用Enzyme这一术语 1833 年 Payen & Persoz 从 麦 芽 抽 提 液 得 到 了 ferment, 称 diastase 【溶于水、稀酸, 但不溶于高浓度酒精, 即现在 的amylase】 1835 年 Berzelius提出ferment起的是催化作用
3
酶学研究史
1857年 Pasteur认为发酵分几个阶段进行, 每一步都有特定的酶参 与, 但酶只在活体细胞中才能起作用
1894年 Bertrand发现了水解酶以外的酶 1897年 Buchner兄弟以 "没有酵母的酒精发酵" 证明了酶可以离开
细胞起作用 1910年 Halden & Young 发现酶是蛋白质与耐热性低分子量化合物
(cofactor)的复合物, 提出蛋白质只是担体 1913年 米氏方程建立 1926年 Sumner得到了Urease的结晶【1~2年后, Northrop结晶化
了Pepsin, Trypsin等蛋白酶】结晶中测定不到cofactor 1929年 Warburg发现呼吸链诸酶中的血红素
【1935-1936年微生素与辅酶的关系的解明】 1929年 Sabbarow发现ATP【1939-1940年 F.Lipmann解明高能磷酸
5.某些酶催化活力与辅酶、辅基及 金属离子有关。
返1回4
第二节 酶的命名及分类
一 酶的命名
1、习惯命名法: 1、根据其催化底物来命名;如:淀粉酶 2、根据所催化反应的性质来命名;如:转氨酶。 3、结合上述两个原则来命名,如:谷丙转氨酶。 4、有时在这些命名基础上加上酶的来源或其它特
点。小牛小肠碱性磷酸酶。
C H 3 C H C O O H N A D + C H 3 C C O O H N A D HH +
11
(3)诱导契合学说
该学说认为酶表面并没有一种与底物互补 的固定形状,而只是由于底物的诱导才形 成了互补形状.
12
3.反应条件温和
酶促反应一般在pH 5-8 水溶液中进行, 反应温度范围为20-40C。
高温或其它苛刻的物理或化学条件,将 引起酶的失活。
13
4.酶活力可调节控制
如抑制剂调节、共价修饰调节、反馈 调节、酶原激活及激素控制等。
第八章 酶
◆第一节 ◆第二节 ◆第三节 ◆第四节 ◆第五节 ◆第六节
通论 酶的命名及分类 酶的结构及催化作用机制 酶促反应的速度和影响因素 几种重要的酶 酶工程简介
1
第八章 酶
2
第一节 通论
一、酶学研究的历史
1783 年 Spallamzan 发现鸟的胃液能消化肉 1814 年 Kirchhoff发现稀酸对淀粉的加水分解作用【麦芽抽
习惯名称:谷丙转氨酶 系统名称:丙氨酸:-酮戊二酸氨基转移酶 酶催化的反应: 谷氨酸 + 丙酮酸 -酮戊二酸 + 丙氨酸
17
二 、酶的分类
1, 水解酶 hydrolase
水解酶催化底物的加水分解反应。 主要包括淀粉酶、蛋白酶、核酸酶及脂酶等。 例如,脂肪酶(Lipase)催化的脂的水解反应:
反应的活化能,从而加速反应的进行。
6
三、酶催化作用特性
1. 高效性
酶的催化作用可使反应速度提高106 -1012倍。 例如:过氧化氢分解 2H2O2 2H2O + O2 用Fe+ 催化,效率为6*10-4 mol/mol.S,而
用过氧化氢酶催化,效率为6*106 mol/mol.S。 用-淀粉酶催化淀粉水解,1克结晶酶在65C
酶催化的生物化学反应,称为酶促反应 Enzymatic reaction。
在酶的催化下发生化学变化的物质,称为底物 substrate。
5
(二)、酶和一般催化剂的共性
1、用量少而催化效率高; 2、它能够改变化学反应的速度,但是不能
改变化学反应平衡。 3、酶能够稳定底物形成的过渡状态,降低
R C O O C H 2 C H 3H 2 O R C O O HC H 3 C H 2 O H
18
2.氧化-还原酶 Oxidoreductase
• 氧化-还原酶催化氧化-还原反应。 • 主要包括脱氢酶(dehydrogenase)和氧化酶
(Oxidase)。 • 如,乳酸(Lactate)脱氢酶催化乳酸的脱氢反应。
条件下可催化2吨淀粉水解。
7
2.专一性
酶的专一性 Specificity 又称为特异性,是指酶在催化生化反应时对底
物的选择性
酶的专一性包括 (1)结构专一性 绝对专一性 相对专一性 (2)立体异构专一性 光学异构专一性 几何异构专一性
8
酶作用专一性的机制
酶分子活性中心部位,一般都含有多个具有 催化活性的手性中心,这些手性中心对底物 分子构型取向起着诱导和定向的作用,使反 应可以按单一方向进行。
化合物的生理意义】 1959年 Sutherland cAMP的发现----→酶与激素的关系 1970年 Restriction enzyme的发现-----→基因工程
4
二、酶是生物催化剂
(一)、什么是酶? 酶是活细胞产生的一类具有催化功能的生
物分子,所以又称为生物催化剂 Biocatalysts 。 绝大多数的酶都是蛋白质。
酶能够区分对称分子中等价的潜手性基团。
9
(1)“三点结合”的催化理论
认为酶与底物的 结合处至少有三 个点,而且只有 一种情况是完全 结合的形式。只 有这种情况下, 不对称催化作用 才能实现。
10
(2)锁钥学说:
认为整个酶分子的天然构象是具有刚性结 构的,酶表面具有特定的形状。酶与底物 的结合如同一把钥匙对一把锁一样
15
2、国际系统命名法
系统名称包括底物名称ቤተ መጻሕፍቲ ባይዱ构型、反应性 质,最后加一个酶字。
例如:
习惯名称:谷丙转氨酶 系统名称:丙氨酸:-酮戊二酸氨基转移酶 酶催化的反应: 谷氨酸 + 丙酮酸 -酮戊二酸 + 丙氨酸
16
2、国际系统命名法
系统名称包括底物名称、构型、反应性 质,最后加一个酶字。
提液加入淀粉后能生成麦芽糖, 即麦芽抽提液中必定有能水 解淀粉的水溶性物质→ferment (酵素)】 1826 年 Mitscherlich 提 倡 水 溶 性 酵 素 为 " unorganized ferment " 1830 年 Kuhle开始使用Enzyme这一术语 1833 年 Payen & Persoz 从 麦 芽 抽 提 液 得 到 了 ferment, 称 diastase 【溶于水、稀酸, 但不溶于高浓度酒精, 即现在 的amylase】 1835 年 Berzelius提出ferment起的是催化作用
3
酶学研究史
1857年 Pasteur认为发酵分几个阶段进行, 每一步都有特定的酶参 与, 但酶只在活体细胞中才能起作用
1894年 Bertrand发现了水解酶以外的酶 1897年 Buchner兄弟以 "没有酵母的酒精发酵" 证明了酶可以离开
细胞起作用 1910年 Halden & Young 发现酶是蛋白质与耐热性低分子量化合物
(cofactor)的复合物, 提出蛋白质只是担体 1913年 米氏方程建立 1926年 Sumner得到了Urease的结晶【1~2年后, Northrop结晶化
了Pepsin, Trypsin等蛋白酶】结晶中测定不到cofactor 1929年 Warburg发现呼吸链诸酶中的血红素
【1935-1936年微生素与辅酶的关系的解明】 1929年 Sabbarow发现ATP【1939-1940年 F.Lipmann解明高能磷酸
5.某些酶催化活力与辅酶、辅基及 金属离子有关。
返1回4
第二节 酶的命名及分类
一 酶的命名
1、习惯命名法: 1、根据其催化底物来命名;如:淀粉酶 2、根据所催化反应的性质来命名;如:转氨酶。 3、结合上述两个原则来命名,如:谷丙转氨酶。 4、有时在这些命名基础上加上酶的来源或其它特
点。小牛小肠碱性磷酸酶。
C H 3 C H C O O H N A D + C H 3 C C O O H N A D HH +
11
(3)诱导契合学说
该学说认为酶表面并没有一种与底物互补 的固定形状,而只是由于底物的诱导才形 成了互补形状.
12
3.反应条件温和
酶促反应一般在pH 5-8 水溶液中进行, 反应温度范围为20-40C。
高温或其它苛刻的物理或化学条件,将 引起酶的失活。
13
4.酶活力可调节控制
如抑制剂调节、共价修饰调节、反馈 调节、酶原激活及激素控制等。
第八章 酶
◆第一节 ◆第二节 ◆第三节 ◆第四节 ◆第五节 ◆第六节
通论 酶的命名及分类 酶的结构及催化作用机制 酶促反应的速度和影响因素 几种重要的酶 酶工程简介
1
第八章 酶
2
第一节 通论
一、酶学研究的历史
1783 年 Spallamzan 发现鸟的胃液能消化肉 1814 年 Kirchhoff发现稀酸对淀粉的加水分解作用【麦芽抽