最全排列组合方法精选20种

合集下载

排列组合常见21种解题方法

排列组合常见21种解题方法

排列组合常见21种解题方法排列组合难题二十一种方法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。

教学目标:1.进一步理解和应用分步计数原理和分类计数原理。

2.掌握解决排列组合问题的常用策略,能运用解题策略解决简单的综合应用题,提高学生解决问题分析问题的能力。

3.学会应用数学思想和方法解决排列组合问题。

复巩固:1.分类计数原理(加法原理):完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,…,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+…+mn种不同的方法。

2.分步计数原理(乘法原理):完成一件事,需要分成n 个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×…×mn种不同的方法。

3.分类计数原理和分步计数原理的区别:分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件。

解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事。

2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素。

4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略。

一、特殊元素和特殊位置优先策略例1:由0、1、2、3、4、5可以组成多少个没有重复数字五位奇数。

解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置。

先排末位共有C(3,1)种方法,然后排首位共有C(4,1)种方法,最后排其它位置共有A(3,4)种方法,由分步计数原理得C(4,1)×C(3,1)×A(3,4)=288.位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法。

排列组合常见15种解题方法

排列组合常见15种解题方法

排列组合常用的十五种方法一.特殊元素和特殊位置优先策略例1.由0,1, 2, 3, 4, 5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有C;.〔I.然后排首位共有C:, 甲最后排其它位置共有& | | J由分步计数原理得C:C;A; = 288 C] A:C;练习题:1. 7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

由分步计数原理可得共有疋斎崙=480种不同的排法要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题•即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列.练习题:2.某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为_____________ 三•不相邻问题插空策略例3. 一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场, 则节目的出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有&种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种犹不同的方法,由分步计数原理,节目的不同顺序共有貳处____________ 种元素相离问题可先把没有位宜要求的元素进行排队再把不相邻元素插入中间和两练习题:3.某班新年联欢会原定的5个节目己排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 _______四•定序问题倍缩空位插入策略例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有种方法,其余的三个位置甲乙丙共有丄种坐法,则共有A;丽法。

(完整word版)排列组合的二十种解法(最全的排列组合方法总结),推荐文档

(完整word版)排列组合的二十种解法(最全的排列组合方法总结),推荐文档

教学目标1.进一步理解和应用分步计数原理和分类计数原理。

2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。

提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

排列组合常见21种解题方法剖析

排列组合常见21种解题方法剖析

排列组合难题二十一种方法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。

教学目标1.进一步理解和应用分步计数原理和分类计数原理。

2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。

提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12n N m m m =+++种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:12n N m m m =⨯⨯⨯种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有13C然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

(完整版)排列组合的二十种解法(最全的排列组合方法总结)

(完整版)排列组合的二十种解法(最全的排列组合方法总结)

教学目标1.进一步理解和应用分步计数原理和分类计数原理。

2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。

提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

排列组合20种常用方法

排列组合20种常用方法

排列组合20种常用方法
1. 列出所有可能的组合
2. 使用递归排列组合
3. 使用循环排列组合
4. 使用动态规划排列组合
5. 使用回溯法排列组合
6. 使用数学公式计算排列组合
7. 使用位运算排列组合
8. 使用逆序排列组合
9. 使用有序集合排列组合
10. 使用栈数据结构排列组合
11. 使用队列数据结构排列组合
12. 使用重复排列组合
13. 使用有限制条件的排列组合
14. 使用自定义函数进行排列组合计算
15. 使用字符串拆分和拼接进行排列组合
16. 使用二叉树进行排列组合
17. 使用堆进行排列组合
18. 使用图进行排列组合
19. 使用集合进行排列组合计算
20. 使用贪心算法进行排列组合。

(完整版)排列组合方法大全,推荐文档

(完整版)排列组合方法大全,推荐文档

排列组合方法归纳大全复习巩固1.分类计数原理(加法原理)完成一件事,有类办法,在第1类办法中有种不同的方法,在第2类办法中有种不同的方法,n 1m 2m …,在第类办法中有种不同的方法,那么完成这件事共有:n n m 12nN m m m =+++ 种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成个步骤,做第1步有种不同的方法,做第2步有种不同的方法,…,n 1m 2m 做第步有种不同的方法,那么完成这件事共有:n n m 12nN m m m =⨯⨯⨯ 种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

由分步计数原理可得共有种不同的排法522522480A A A =练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有种,第二步将4舞蹈插入第一步排好的6个元素中55A 间包含首尾两个空位共有种不同的方法,由分步计数原理,节目的不同顺序共有 种46A 5456A A目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30四.定序问题倍缩空位插入策略例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7373/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有种方法,其余的三个位置甲乙丙共有 147A 种坐法,则共有种方法。

1_排列组合20种模型方法归类--一轮复习热点题型归纳(解析版)

1_排列组合20种模型方法归类--一轮复习热点题型归纳(解析版)

排列组合20种模型方法归类1.目录【题型一】基础:相邻与不相邻【题型二】球放盒子:先分组后排列【题型三】平均分配:医生与护士型【题型四】特殊元素(位置)优先排【题型五】模型1:下电梯型【题型六】模型2:公交车模型【题型七】模型3:排课表【题型八】模型4:节假日值班【题型九】模型5:书架插书型(不改变顺序)【题型十】模型6:地图染色【题型十一】模型7:几何体染色【题型十二】模型8:相同元素【题型十三】模型9:停车位、空座位(相同元素)【题型十四】模型10:走路口(相同元素)【题型十五】模型11:上台阶(相同元素)【题型十六】模型12:“波浪数”型(高低站位)【题型十七】模型13:配对型【题型十八】模型14:电路图型【题型十九】模型15:机器人跳动型【题型二十】难点:多重限制与分类讨论真题再现模拟检测1.热点题型归纳题型一:基础:相邻与不相邻【典例分析】1阳春三月,草长莺飞;丝绦拂堤,尽飘香玉.三个家庭的3位妈妈带着3名女宝和2名男宝共8人踏春.在沿行一条小溪时,为了安全起见,他们排队前进,三位母亲互不相邻照顾孩子;3名女宝相邻且不排最前面也不排最后面;为了防止2名男宝打闹,2人不相邻,且不排最前面也不排最后面.则不同的排法种数共有()A.144种B.216种C.288种D.432种【答案】C【分析】利用捆绑法和插空法进行求解.【详解】第一步:先将3名母亲全排,共有A33种排法;第二步:将3名女宝“捆绑”在一起,共有A33种排法;第三步:将“捆绑”在一起的3名女宝作为一个元素,在第一步形成的2个空中选择1个插入,有A12种排法;第四步:首先将2名男宝之中的一人,插入第三步后相邻的两个妈妈中间,然后将另一个男宝插入由女宝与妈妈形成的2个空中的其中1个,共有C12C12种排法.∴不同的排法种数有:A33A33A12C12C12=288种.故选:C.方法归纳【提分秘籍】基本规律相邻和不相邻排列:(1)相邻问题采取“捆绑法”;(2)不相邻问题采取“插空法”;【变式演练】1三名男生和三名女生站成一排照相,男生甲与男生乙相邻,且三名女生中恰好有两名女生相邻,则不同的站法共有A.72种B.108种C.36种D.144种【答案】D【分析】根据题意,利用捆绑法和插空法,再利用分布乘法原理,即可求出结果.【详解】解:先将男生甲与男生乙“捆绑”,有A22种方法,再与另一个男生排列,则有A22种方法,三名女生任选两名“捆绑”,有A23种方法,再将两组女生插空,插入男生3个空位中,则有A23种方法,利用分步乘法原理,共有A22A22A23A23=144种.故选:D.2在某班进行的歌唱比赛中,共有5位选手参加,其中3位女生,2位男生.如果2位男生不能连着出场,且女生甲不能排在第一个,那么出场顺序的排法种数为A.30B.36C.60D.72【答案】C【分析】记事件A:2位男生连着出场,事件B:女生甲排在第一个,利用容斥原理可知所求出场顺序的排法种数为A55-n A∪B=A55-n A +n B -n A∩B,再利用排列组合可求出答案.【详解】记事件A:2位男生连着出场,即将2位男生捆绑,与其他3位女生形成4个元素,所以,事件A的排法种数为n A=A22A44=48,记事件B:女生甲排在第一个,即将甲排在第一个,其他四个任意排列,所以,事件B的排法种数为n B= A44=24,事件A∩B:女生甲排在第一位,且2位男生连着,那么只需考虑其他四个人,将2位男生与其他2个女生形成三个元素,所以,事件A∩B的排法种数为A22A33=12种,因此,出场顺序的排法种数A55-n A∪B=A55-n A +n B -n A∩B=120-48+24-12=60种,故选C.3现将5张连号的电影票分给甲乙等5个人,每人一张,且甲乙分得的电影票连号,则共有不同分法的种数为A.12B.24C.48D.60【答案】C【详解】先从四组两张连号票比如(1,2)(2,3)(3,4)(4,5)中取出一组,分给甲乙两人,共有C14A22=8种,其余的三张票随意分给剩余的三人,共有A33=6种方法,根据分步乘法原理可知,共有8×6=48种,故选C.题型二:球放盒子:先分组后排列【典例分析】1我市拟向新疆哈密地区的三所中学派出5名教师支教,要求每所中学至少派遣一名教师,则不同的派出方法有A.300种B.150种C.120种D.90种【答案】B【详解】分析:根据题意,先选后排.①先选,将5名教师分成三组,有两种方式,即1,1,3与1,2,2,注意去除重复部分;②后排,将分好的三组全排列,即可得到答案.详解:根据题意:分两步计算(1)将5名教师分成三组,有两种方式即1,1,3与1,2,2;①分成1,1,3三组的方法有C15C14A22=10②分成1,2,2三组的方法有C15C24A22=15一共有10+15=25种的分组方法;(2)将分好的三组全排列有A33=6种方法.则不同的派出方法有25×6=150种.故选B.点睛:对于排列组合混合问题,可先选出元素,再排列.方法归纳【提分秘籍】基本规律“球放盒子”类型,要讨论“用了几个盒子”,放了几个球。

排列组合方法

排列组合方法

排列组合方法1.相离问题插空法相离问题插空法主要用来解决2个或若干个不相邻元素的排列组合问题,是解决排列组合问题的常见方法之一。

它是指先把无位置要求,无条件限制的元素排列好,然后对有位置要求,受条件限制的元素进行整理,再将受条件限制的元素插入到已排列好的无条件限制元素的间隙或两端中。

解析:该题若轻易展开答疑较为麻烦,此时可以利用嗟乎问题插空法,可以并使问题迎刃而解。

先将原来的6个节目排序不好,这时中间和两端存有7个空位,然后用一个节目回去挂7个空位,存有a种方法;接着再用另一个节目回去挂8个空位,存有a种方法;将最后一个节目填入至9个空位中,存有a种方法,由乘法原理得:所有相同的嵌入方法aaa=种。

解析:先排好8辆车有a种方法,要求空位置连在一起,则在每2辆之间及其两端的9个空当中任选一个,将空位置插入其中有c种方法。

故共有ac种方法。

2.相连问题绑定法相邻问题捆绑法作为排列组合题最为常见的解法之一,就是在解决对于某几个元素相邻问题时,将相邻元素作为整体加以考虑,视为一个“大”元素参与排序,然后再单独对大元素内部各元素间的排列顺序进行一一分析排列。

解析:由于甲、乙两人必须陈小华在一起,故可以将甲、乙两人绑定出来做为一个整体展开考量,即将两人视作一人,再与其他四人展开全系列排序,则存有a种排法,甲、乙两人之间存有a种排法。

由分步计数原则所述,共aa=种相同排法。

解析:此题共6个球要分为5份,那么必有两个球在一起,所以从6球当中选择两球捆绑在一起的情况为c种,那么此时将捆绑的两球作为一个整体和另外4球进行全排列,则总的情况为ca=种。

故选b.3.多元问题分类法多元问题分类主要用解决元素较多,情况多种时的排列组合问题。

它是在弄清题意的基础上,按结果要求将其分成不相容的几类情况加以考虑,分别计数,最后一一相加,进行总计。

,解析:若子集a、b中没相同的元素,且都不是空集,则存有:(1)从5个元素中选出2个元素,有c=10种选法,小的给a集合,大的给b集合;(2)从5个元素中挑选出3个元素,存有c=10种选法,再分为1、2两组,较小元素的一组给a子集,很大元素的一组的给b子集,共计2×10=20种方法;(3)从5个元素中选出4个元素,有c=5种选法,再分成1、3;2、2;3、1两组,较小元素的一组给a集合,较大元素的一组的给b集合,共有3×5=15种方法;(4)从5个元素中挑选出5个元素,存有c=1种选法,再分为1、4;2、3;3、2;4、1两组,较小元素的一组给a子集,很大元素的一组的给b子集,共计4×1=4种方法;总计为:10+20+15+4=49种方法,故答案为d。

排列组合常见21种解题方法

排列组合常见21种解题方法

排列组合常见21种解题方法排列组合难题二十一种方法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。

教学目标1.进一步理解和应用分步计数原理和分类计数原理。

2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。

提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12n N m m m =+++种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:12n N m m m =⨯⨯⨯种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有13C然后排首位共有14C最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

高中数学排列组合二十一种方法

高中数学排列组合二十一种方法

一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有13C然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A = 二.相邻元素捆绑策例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

由分步计数原理可得共有522522480A A A =种不同的排法 三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种 四.定序问题倍缩空位插入策略例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7373/A A(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有47A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有47A 种方法。

练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法?510C五.重排问题求幂策略例5.把6名实习生分配到7个车间实习,共有多少种不同的分法解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原理共有67种不同的排法六.环排问题线排策略例6. 8人围桌而坐,共有多少种坐法?解:围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以固定一人44A 并从此位置把圆形展成直线其余7人共有(8-1)!种排法即7!H FD C AAB C D E AB E GH G F练习题:6颗颜色不同的钻石,可穿成几种钻石圈 120 七.多排问题直排策略例7.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法 解:8人排前后两排,相当于8人坐8把椅子,可以把椅子排成一排.个特殊元素有24A 种,再排后4个位置上的特殊元素丙有14A 种,其余的5人在5个位置上任意排列有55A 种,则共有215445A A A 种练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是 346八.排列组合混合问题先选后排策略例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.解:第一步从5个球中选出2个组成复合元共有25C 种方法.再把4个元素(包含一个复合元素)装入4个不同的盒内有44A 种方法,根据分步计数原理装球的方法共有2454C A九.小集团问题先整体后局部策略例9.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1,5在两个奇数之间,这样的五位数有多少个?解:把1,5,2,4当作一个小集团与3排队共有22A 种排法,再排小集团内部共有2222A A 种排法,由分步计数原理共有222222A A A 种排法.十.元素相同问题隔板策略 例10.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案? 解:因为10个名额没有差别,把它们排成一排。

最全排列组合方法精选20种

最全排列组合方法精选20种

最全排列组合⽅法精选20种教学⽬标1.进⼀步理解和应⽤分步计数原理和分类计数原理。

2.掌握解决排列组合问题的常⽤策略;能运⽤解题策略解决简单的综合应⽤题。

提⾼学⽣解决问题分析问题的能⼒3.学会应⽤数学思想和⽅法解决排列组合问题.复习巩固1.分类计数原理(加法原理)完成⼀件事,有n 类办法,在第1类办法中有1m 种不同的⽅法,在第2类办法中有2m 种不同的⽅法,…,在第n 类办法中有n m 种不同的⽅法,那么完成这件事共有:种不同的⽅法.2.分步计数原理(乘法原理)完成⼀件事,需要分成n 个步骤,做第1步有1m 种不同的⽅法,做第2步有2m 种不同的⽅法,…,做第n 步有n m 种不同的⽅法,那么完成这件事共有:种不同的⽅法.3.分类计数原理分步计数原理区别分类计数原理⽅法相互独⽴,任何⼀种⽅法都可以独⽴地完成这件事。

分步计数原理各步相互依存,每步中的⽅法完成事件的⼀个阶段,不能完成整个事件.解决排列组合综合性问题的⼀般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进⾏,确定分多少步及多少类。

3.确定每⼀步或每⼀类是排列问题(有序)还是组合(⽆序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握⼀些常⽤的解题策略⼀.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和⾸位有特殊要求,应该优先安排, 先排末位共有13C然后排⾸位共有14C 最后排其它位置共有34A 由分步计数原理得13434288C C A =练习题:7种不同的花种在排成⼀列的花盆⾥,若两种葵花不种在中间,也不种在两端的花盆⾥,问有多少不同的种法?⼆.相邻元素捆绑策略例2. 7⼈站成⼀排 ,其中甲⼄相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲⼄两元素捆绑成整体并看成⼀个复合元素,同时丙丁也看成⼀个复合元素,再与其它元素进⾏排列,同时对相邻元素内部进⾏⾃排。

排列组合20种模型方法归类--一轮复习热点题型归纳(学生版)

排列组合20种模型方法归类--一轮复习热点题型归纳(学生版)

排列组合20种模型方法归类1.目录【题型一】基础:相邻与不相邻【题型二】球放盒子:先分组后排列【题型三】平均分配:医生与护士型【题型四】特殊元素(位置)优先排【题型五】模型1:下电梯型【题型六】模型2:公交车模型【题型七】模型3:排课表【题型八】模型4:节假日值班【题型九】模型5:书架插书型(不改变顺序)【题型十】模型6:地图染色【题型十一】模型7:几何体染色【题型十二】模型8:相同元素【题型十三】模型9:停车位、空座位(相同元素)【题型十四】模型10:走路口(相同元素)【题型十五】模型11:上台阶(相同元素)【题型十六】模型12:“波浪数”型(高低站位)【题型十七】模型13:配对型【题型十八】模型14:电路图型【题型十九】模型15:机器人跳动型【题型二十】难点:多重限制与分类讨论真题再现模拟检测1.热点题型归纳题型一:基础:相邻与不相邻【典例分析】1阳春三月,草长莺飞;丝绦拂堤,尽飘香玉.三个家庭的3位妈妈带着3名女宝和2名男宝共8人踏春.在沿行一条小溪时,为了安全起见,他们排队前进,三位母亲互不相邻照顾孩子;3名女宝相邻且不排最前面也不排最后面;为了防止2名男宝打闹,2人不相邻,且不排最前面也不排最后面.则不同的排法种数共有()A.144种B.216种C.288种D.432种方法归纳【提分秘籍】基本规律相邻和不相邻排列:(1)相邻问题采取“捆绑法”;(2)不相邻问题采取“插空法”;【变式演练】1三名男生和三名女生站成一排照相,男生甲与男生乙相邻,且三名女生中恰好有两名女生相邻,则不同的站法共有A.72种B.108种C.36种D.144种2在某班进行的歌唱比赛中,共有5位选手参加,其中3位女生,2位男生.如果2位男生不能连着出场,且女生甲不能排在第一个,那么出场顺序的排法种数为A.30B.36C.60D.723现将5张连号的电影票分给甲乙等5个人,每人一张,且甲乙分得的电影票连号,则共有不同分法的种数为A.12B.24C.48D.60题型二:球放盒子:先分组后排列【典例分析】1我市拟向新疆哈密地区的三所中学派出5名教师支教,要求每所中学至少派遣一名教师,则不同的派出方法有A.300种B.150种C.120种D.90种方法归纳【提分秘籍】基本规律“球放盒子”类型,要讨论“用了几个盒子”,放了几个球。

排列组合的二十种解法(的排列组合方法总结)

排列组合的二十种解法(的排列组合方法总结)

解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了先排末位共有c 3 E亠 l=i?=r 位置□然后排首位共有c 4C 3教学目标1. 进一步理解和应用分步计数原理和分类计数原理。

2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。

题分析问题的能力3.学会应用数学思想和方法解决排列组合问题复习巩固1.分类计数原理(加法原理)完成一件事,有 n 类办法,在第1类办法中有 m j 种不同的方法,在第2同的方法,…,在第 n 类办法中有m n 种不同的方法,那么完成这件事共有:种不同的方法.2. 分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有m j 种不同的方法,做第 2 法,…,做第n 步有m n 种不同的方法,那么完成这件事共有:种不同的方法.3. 分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下1. 认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行 ,确定分多少步 及多少类。

3.确定每一步或每一类是排列问题 (有序)还是组合(无序)问题,元素总数是多少及取出多少个4. 解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略 例1.由0,123,4,5可以组成多少个没有重复数字五位奇数N m 1 m 2m n提高学生解决问类办法中有m 2种不N m 1 m 2m n步有m 2种不同的方A 3八 5 . 2. 2要求某几个元素必须排在一起的问题 ,可以用捆绑法来解决问题.即将需要相邻的元素合并练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20三.不相邻问题插空策略例3. 一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种解:分两步进行第一步排 2个相声和3个独唱共有A ;种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种A :不同的方法,由分步计数原理,节目的不同顺序共有A I A:元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两练习题:某班新年联欢会原定的 5个节目已排成节目单,开演前又增加了两个新节目.如果将这 两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30四.定序问题倍缩空位插入策略例人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:A ;/A ;最后排其它位置共有 A 3由分步计数原理得C4C 3A 3288位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位问有多少不同的种法二.相邻元素捆绑策略 例2. 7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

排列组合常见21种解题方法

排列组合常见21种解题方法

排列组合常见21种解题方法.排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。

教学目标:1.进一步理解和应用分步计数原理和分类计数原理。

2.掌握解决排列组合问题的常用策略,能运用解题策略解决简单的综合应用题。

提高学生解决问题分析问题的能力。

3.学会应用数学思想和方法解决排列组合问题。

复巩固:1.分类计数原理(加法原理):完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,…,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+…+mn种不同的方法。

2.分步计数原理(乘法原理):完成一件事,需要分成n 个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×…×mn种不同的方法。

3.分类计数原理和分步计数原理的区别:分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件。

解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事。

2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素。

4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略。

一。

特殊元素和特殊位置优先策略:例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数。

解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置。

先排末位共有C3^1种方法,然后排首位共有C4^1种方法,最后排其它位置共有A4^3种方法,根据分步计数原理得到答案为C4^1 × C3^1 × A4^3 = 288.入问题或空位法来解决。

(精心整理)排列组合21种方法

(精心整理)排列组合21种方法

高考数学轻松搞定排列组合难题二十一种方法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。

教学目标1.进一步理解和应用分步计数原理和分类计数原理。

2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。

提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题.复习巩固1.分类计数原理(加法原理)完成一件事,有n类办法,在第1类办法中有m种不同的方法,在1第2类办法中有m种不同的方法,…,在第n类办法中有n m种不同2种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n个步骤,做第1步有m种不同的方法,做1第2步有m种不同的方法,…,做第n步有n m种不同的方法,那么2完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,占了这两个位置. 先排末位共有13C然后排首位共有14C最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

排列组合方法技巧总汇

排列组合方法技巧总汇

总结排列组合题型一.直接法1.特殊元素法例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个(1)数字1不排在个位和千位(2)数字1不在个位,数字6不在千位。

分析:(1)个位和千位有5个数字可供选择25A ,其余2位有四个可供选择24A ,由乘法原理:25A 24A =240 2.特殊位置法(2)当1在千位时余下三位有35A =60,1不在千位时,千位有14A 种选法,个位有14A 种,余下的有24A ,共有14A 14A 24A =192所以总共有192+60=252 二. 间接法当直接法求解类别比较大时,应采用间接法。

如上例中(2)可用间接法2435462A A A +-=252例2 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三维书?分析:此例正面求解需考虑0与1卡片用与不用,且用此卡片又分使用0与使用1,类别较复杂,因而可使用间接计算:任取三张卡片可以组成不同的三位数333352A C ⨯⨯个,其中0在百位的有2242⨯C ⨯22A 个,这是不合题意的。

故共可组成不同的三位数333352A C ⨯⨯-2242⨯C ⨯22A =432(个) 三. 插空法 当需排元素中有不能相邻的元素时,宜用插空法。

例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法?分析:原有的8个节目中含有9个空档,插入一个节目后,空档变为10个,故有11019A A ⨯=100中插入方法。

四. 捆绑法 当需排元素中有必须相邻的元素时,宜用捆绑法。

例4 4名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种?分析:先将男生捆绑在一起看成一个大元素与女生全排列有44A 种排法,而男生之间又有44A 种排法,又乘法原理满足条件的排法有:44A ×44A =576练习1.四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的放法有 种(3324A C )2. 某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校人数较多,要安排连续参观2天,其余只参观一天,则植物园30天内不同的安排方法有(1928129A C ⋅)(注意连续参观2天,即需把30天种的连续两天捆绑看成一天作为一个整体来选有129C 其余的就是19所学校选28天进行排列)五. 阁板法 名额分配或相同物品的分配问题,适宜采阁板用法例5 某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共 种 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学目标1.进一步理解和应用分步计数原理和分类计数原理。

2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。

提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题.复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。

3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有13C然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

由分步计数原理可得共有522522480A A A =种不同的排法练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7373/A A(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有47A 种方法,其余的三个位置甲乙丙共有1种坐法,则共有47A 种方法。

思考:可以先让甲乙丙就坐吗?(插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 510C五.重排问题求幂策略例5.把6名实习生分配到7个车间实习,共有多少种不同的分法解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原理共有61. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为 42 2. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法87 六.环排问题线排策略例6. 8人围桌而坐,共有多少种坐法?解:围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以固定一人44A 并从此位置把圆形展成直线其余7人共有(8-1)!种排法即7!A B C D E AH G F练习题:6颗颜色不同的钻石,可穿成几种钻石圈 120 七.多排问题直排策略例7.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法解:8人排前后两排,相当于8人坐8把椅子,可以把椅子排成一排.个特殊元素有24A 种,再排后4个位置上的特殊元素丙有14A 种,其余的5人在5个位置上任意排列有55A 种,则共有215445A A A 种前 排练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是 346八.排列组合混合问题先选后排策略例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.解:第一步从5个球中选出2个组成复合元共有25C 种方法.再把4个元素(包含一个复合元素)装入4个不同的盒内有44A 种方法,根据分步计数原理装球的方法共有2454C A练习题:一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有 192 种九.小集团问题先整体后局部策略例9.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1,5在两个奇数之间,这样的五位数有多少个?解:把1,5,2,4当作一个小集团与3排队共有22A 种排法,再排小集团内部共有2222A A 种排法,由分步计数原理共有222222A A A 种排法.练习题:1.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行陈列,要求同一 品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为254254A A A 2. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有255255A A A 种十.元素相同问题隔板策略例10.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案?解:因为10个名额没有差别,把它们排成一排。

相邻名额之间形成9个空隙。

在9个空档中选6个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法共有69C 种分法。

二班三班六班七班练习题:1. 10个相同的球装5个盒中,每盒至少一有多少装法? 49C 2 .100x y z w +++=求这个方程组的自然数解的组数 3103C十一.正难则反总体淘汰策略例11.从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的取法有多少种?解:这问题中如果直接求不小于10的偶数很困难,可用总体淘汰法。

这十个数字中有5个偶数5个奇数,所取的三个数含有3个偶数的取法有35C ,只含有1个偶数的取法有1255C C ,和为偶数的取法共有123555C C C +。

再淘汰和小于10的偶数共9种,符合条件的取法共有1235559C C C +-练习题:我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的抽法有多少种?十二.平均分组问题除法策略例12. 6本不同的书平均分成3堆,每堆2本共有多少分法?解: 分三步取书得222642C C C 种方法,但这里出现重复计数的现象,不妨记6本书为ABCDEF ,若第一步取AB,第二步取CD,第三步取EF 该分法记为(AB,CD,EF),则222642C C C 中还有(AB,EF,CD),(CD,AB,EF),(CD,EF,AB)(EF,CD,AB),(EF,AB,CD)共有33A 种取法 ,而这些分法仅是(AB,CD,EF)一种分法,故共有22236423/C C C A 种分法。

练习题:1 将13个球队分成3组,一组5个队,其它两组4个队, 有多少分法?(544213842/C C C A ) 2.10名学生分成3组,其中一组4人, 另两组3人但正副班长不能分在同一组,有多少种不同的 分组方法 (1540)3.某校高二年级共有六个班级,现从外地转 入4名学生,要安排到该年级的两个班级且每班安 排2名,则不同的安排方案种数为______(22224262/90C C A A =)十三. 合理分类与分步策略例13.在一次演唱会上共10名演员,其中8人能能唱歌,5人会跳舞,现要演出一个2人唱歌2人伴舞的节目,有多少选派方法解:10演员中有5人只会唱歌,2人只会跳舞3人为全能演员。

选上唱歌人员为标准进行研究只会唱的5人中没有人选上唱歌人员共有2233C C 种,只会唱的5人中只有1人选上唱歌人员112534C C C 种,只会唱的5人中只有2人选上唱歌人员有2255C C 种,由分类计数原理共有22112223353455C C C C C C C ++种。

练习题:1.从4名男生和3名女生中选出4人参加某个座 谈会,若这4人中必须既有男生又有女生,则不同的选法共有342. 3成人2小孩乘船游玩,1号船最多乘3人, 2号船最多乘2人,3号船只能乘1人,他们任选2只船或3只船,但小孩不能单独乘一只船, 这3人共有多少乘船方法. (27) 本题还有如下分类标准:*以3个全能演员是否选上唱歌人员为标准 *以3个全能演员是否选上跳舞人员为标准 *以只会跳舞的2人是否选上跳舞人员为标准 都可经得到正确结果 十四.构造模型策略例14. 马路上有编号为1,2,3,4,5,6,7,8,9的九只路灯,现要关掉其中的3盏,但不能关掉相邻的2盏或3盏,也不能关掉两端的2盏,求满足条件的关灯方法有多少种? 解:把此问题当作一个排队模型在6盏亮灯的5个空隙中插入3个不亮的灯有35C 种十五.实际操作穷举策略例15.设有编号1,2,3,4,5的五个球和编号1,2,3,4,5的五个盒子,现将5个球投入这五个盒子内,要求每个盒子放一个球,并且恰好有两个球的编号与盒子的编号相同,有多少投法 解:从5个球中取出2个与盒子对号有25C 种还剩下3球3盒序号不能对应,利用实际操作法,如果剩下3,4,5号球, 3,4,5号盒3号球装4号盒时,则4,5号球有只有1种装法,同理3号球装5号盒时,4,5号球有也只有1种装法,由分步计数原理有252C 种号盒 5号盒练习题:1.同一寝室4人,每人写一张贺年卡集中起来,然后每人各拿一张别人的贺年卡,则四张贺年卡不同的分配方式有多少种? (9)2.给图中区域涂色,要求相邻区 域不同色,现有4种可选颜色,对于条件比较复杂的排列组合问题,不易用公式进行运算,往往利用穷举法或画出树状图会收到意想不到的结果十六. 分解与合成策略例16. 30030能被多少个不同的偶数整除分析:先把30030分解成质因数的乘积形式30030=2×3×5 × 7 ×11×13依题意可知偶因数必先取2,再从其余5个因数中任取若干个组成乘积,所有的偶因数为:1234555555C C C C C ++++练习:正方体的8个顶点可连成多少对异面直线解:我们先从8个顶点中任取4个顶点构成四体共有体共481258C -=,每个四面体有3对异面直线,正方体中的8个顶点可连成对异面直线十七.化归策略 例17. 25人排成5×5方阵,现从中选3人,要求3人不在同一行也不在同一列,不同的选法有多少种?解:将这个问题退化成9人排成3×3方阵,现从中选3人,要求3人不在同一行也不在同一列,有多少选法.这样每行必有1人从其中的一行中选取1人后,把这人所在的行列都划掉,如此继续下去.从3×3方队中选3人的方法有111321C C C 种。

相关文档
最新文档