大数据分析与挖掘(课堂PPT)
大数据分析与挖掘培训ppt
AI与大数据挖掘的融合应用
深度学习
利用深度学习技术,对 大规模数据进行特征提 取和模式识别,提高数 据挖掘的精度和效率。
强化学习
结合强化学习技术,根 据环境反馈自动调整模 型参数,提高模型泛化 能力和鲁棒性。
多模态融合
将不同模态的数据进行 融合,如文本、图像、 视频等,挖掘多模态数 据的潜在价值。
进行全面评估。
欺诈检测
利用大数据技术,实时监测交易 行为,及时发现并阻止欺诈行为
。
风险评估
通过对历史数据和实时数据的分 析,对金融机构的风险状况进行
全面评估。
医疗健康
个性化医疗
通过大数据分析,为患者提供个性化的诊疗方案 和治疗建议。
疾病预测
利用大数据技术,对疾病的发生和发展趋势进行 预测,为预防和治疗提供参考。
数据收集
从各种来源收集大量数据。
数据转换
将数据从一种格式转换为另一 种格式,如从CSV转换为 JSON。
结果展示
将挖掘出的信息以图表、报告 等形式展示给用户。
02
大数据分析技术
数据预处理
01
02
03
数据清洗
去除重复、无效或错误数 据,保证数据质量。
数据转换
将数据从一种格式或结构 转换为另一种,以便于后 续分析。
数据聚合
对数据进行汇总、计算, 生成新的特征或指标。
分布式计算
分布式文件系统
Hadoop HDFS等,用于 存储大规模数据。
分布式计算框架
MapReduce、Spark等, 用于并行处理大规模数据 。
分布式数据库
HBase、Cassandra等, 用于存储和查询大规模数 据。
数据库技术
数据分析与数据挖掘ppt课件
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
(一) 数据仓库的定义与特点
4 数据挖掘与统计学
统计学与自然、经济、社会都有紧密的关系。 其法则和方法是概率论。 通过对全部对象(总体)进行调查,为制定计划
和决策提供依据。
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
统计学中应用于数据挖掘的内容
3 数据挖掘与OLAP的比较
OLAP:多维、多层次分析
OLAP的典型应用,通过商业活动变化的查询发现 的问题,经过追踪查询找出问题出现的原因,达到 辅助决策的作用。
数据挖掘:发现规律、预测未来
数据挖掘任务在于聚类(如神经网络聚类)、分类 (如决策树分类)、预测等。
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
数据挖掘(DM)技术能获取关联知识、时序知识、聚 类知识、分类知识等。
数据仓库(DW)、联机分析处理(OLAP)、数据挖 掘(DM)等结合,形成决策支持系统。
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
二 数据仓库基本原理与应用
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
大数据分析与挖掘教学大纲
《大数据分析与挖掘》课程教学大纲一,课程基本信息课程编号:课程名称:大数据分析与挖掘英文名称:课程学时: 四八课程学分:三开课单位:计算机科学与技术学院授课对象:计算机科学与技术专业,计算机大类专业开课学期:先修课程:二,课程目地数据挖掘是一门新兴地叉学科,涵盖了数据库,机器学,统计学,模式识别,工智能以及高能计算等技术。
开设本课程地目地,是使学生全面而深入地掌握数据挖掘地基本概念与原理,掌握常用地数据挖掘算法,了解数据挖掘地最新发展,前沿地数据挖掘研究领域,以及数据挖掘技术在不同学科地应用。
课程具体目地如下:课程目标1:能够设计并实现大数据台下地数据挖掘系统。
了解由工程问题,到建模,再到数据挖掘算法设计地问题求解思维模式。
具有将数据挖掘算法应用于具体工程地能力;课程目标2:掌握大数据预处理,关联规则,分类以及聚类技术,并能够在主流大数据台上实现;课程目标3:具备较强地学最新数据挖掘领域研究成果地能力;能够分析与评价现有研究成果地问题与不足,并能够提出自己独立见解地能力;课程目标4:能够撰写系统设计方案与阶段技术报告,能够组织与协调项目组地工作,与成员行流与沟通。
三,课程目地与毕业要求对应关系毕业要求毕业要求具体描述课程目地工程素质(一)具有工程意识与系统观;(二)具有运用工程基础与专业知识解决复杂工程问题地能力课程目地一个素质(1)具有自主学,终身学与跟踪前沿地意识与惯。
(2)具有批判精神,对待事物有独立见解。
课程目地三,四系统设计与实现能力(1)针对计算有关地复杂工程问题,能够综合运用所掌握地计算机类有关知识,方法与技术,行问题分析与模型表达。
课程目地一,二毕业要求毕业要求具体描述课程目地(2)能够领导或独立设计解决方案或满足特定需求地计算机硬件,软件或网络系统,并能够实现有关系统或组件。
系统分析与评价能力针对计算有关地复杂工程问题解决方案或系统,能够综合运用所掌握地计算机类有关知识,方法与技术,设计实验,行分析与评价,包含其对社会,健康,安全,法律以及文化地影响分析与评价,并能够提出持续改地意见与建议。
大数据分析方法精选ppt
注:部分研究问题已经明显定量化,部分则需要人工确定 量化标准
步骤6:运用数据分析方法产生结论
内容:套用各种数据方法产出结论
形式:数值、概率值、图表
分析软件和语言
SPSS、SAS、Matlab、smartPLS Python、R等等
分析方法:
常规统计方法:T检验、方差分析、相关分析、回归分析 、因子分析、时间序列分析、结构方程模型等,参考任 意一本统计学教材。
各种全新的配套手段:
存储(云);处理(并行); 保护(安全性);分析(数据挖掘、机器学习)
潜力无限 vs 言过其实? 创新为主 vs 传承为主?
引言
思考1:“大”数据,到底应该多大?
量级不严格、范围不严格
思考2:新方法,到底有多新?
大多数传承传统方式 新方法解决面窄
思考3:新结论,到底多有价值?
总结
总结
大数据和新方法只是新的资源和工具 挖掘数据价值的还是人
我们还会继续沿derstanding 大胆假设、小心求证 – Insight 实践产出理论、理论指导实践 – Prospect
Thanks
此课件下载可自行编辑修改,此课件供参考! 部分内容来源于网络,如有侵权请与我联系删除!感谢你的观看!
数据分析的具体流程
步骤1:建立对对象的整体认知
内容:对对象建立主观印象 意义:产生新问题;产生对问题的合理假设 着手点:
观察现状;例子:购物中心的消费习惯转变 观察数据;例子:消费数据分析暗示的消费群体变化 此外,闻者有心:例子:外卖数据暗示房价
步骤2:提出希望探索的宏观问题
内容:提出大目标 形式:“A对B的影响”、“A未来一年的销售额”
大数据挖掘工具培训课件(ppt 36张)
4.1 Mahout
Mahout在各平台支持的机器学习算法
算法 聚类算法 Canopy 单机 — deprecated MapReduce — deprecated Spark — —
《大数据》配套PPT课件
H2O — —
k-means 模糊k-means 流k-means 谱聚类 分类算法 逻辑回归 朴素贝叶斯 随机森林 隐马尔可夫模型 多层感知器 协同过滤算法 基于用户的协同过滤 基于物品的协同过滤 基于ALS的矩阵分解 基于ALS的矩阵分解(隐式 反馈) 加权矩阵分解 降维算法 奇异值分解 Lanczos
《大数据》配套PPT课件
调用Mahout API运行k-means聚类算法,指定Hadoop配置信息、输入数据、 初始聚类中心,迭代2次得到聚类结果
8 of 44
4.1 Mahout
基于多维输入数据运行k-means算法 60维数据样本
《大数据》配套PPT课件
600条60维趋势数据(600行60列)
2008年之前
发 展 历 史
Apache Lucene开源搜索引擎的子项目 实现Lucene框架中的聚类以及分类算法
吸纳协调过滤项目Taste成为独立子项目
2010年以后
成为Apache顶级项目 实现聚类、分类和协同过滤等机器学习算法 既可以单机运行也可在Hadoop平台上运行
驱象人
目标:机器学习平台,提供类似R的DSL以支持线性代数运算(如分布式向量计 算)、大数据统计等基本功能
MLlib
运行在Spark平台上专为在集群上并行运行而设计
内存中更快地实现多次迭代,适用于大规模数据集
离散型 分类 逻辑回归 支持向量机(SVM) 朴素贝叶斯 决策树 随机森林 梯度提升决策树 (GBT) 聚类 k-means 高斯混合 快速迭代聚类(PIC) 隐含狄利克雷分布(LDA) 二分k-means 流k-means
《大数据分析与挖掘》课程教学大纲.doc
《大数据分析与挖掘》课程教学大纲一、课程基本信息课程编号:课程名称:大数据分析与挖掘英文名称:课程学时: 48课程学分:3开课单位:计算机科学与技术学院授课对象:计算机科学与技术专业,计算机大类专业开课学期:先修课程:二、课程目标数据挖掘是一门新兴的交叉性学科,涵盖了数据库、机器学习、统计学、模式识别、人工智能以及高性能计算等技术。
开设本课程的目的,是使学生全面而深入地掌握数据挖掘的基本概念和原理,掌握常用的数据挖掘算法,了解数据挖掘的最新发展、前沿的数据挖掘研究领域、以及数据挖掘技术在不同学科中的应用。
课程具体目标如下:课程目标1:能够设计并实现大数据平台下的数据挖掘系统。
了解由工程问题,到建模、再到数据挖掘算法设计的问题求解思维模式。
具有将数据挖掘算法应用于具体工程的能力;课程目标2:掌握大数据预处理、关联规则、分类以及聚类技术,并能够在主流大数据平台上实现;课程目标3:具备较强的学习最新数据挖掘领域研究成果的能力;能够分析和评价现有研究成果的问题与不足,并能够提出自己独立见解的能力;课程目标4:能够撰写系统设计方案和阶段性技术报告,能够组织和协调项目组的工作,与成员进行交流与沟通。
三、课程目标与毕业要求对应关系四、课程目标与课程内容对应关系实验大纲:五、课程教学方法本课程教学将结合大班讲授、小班项目研讨、项目开发以及交流与答辩的形式。
大班讲授主要培养学生对各种核心技术的掌握。
小班项目研讨用来训练学生们沟通与交流的能力,同时提高对系统进行评价的能力。
通过指导学生实现课堂上讲授的算法,学会比较各个算法的性能差异,激发学生的研究和创新兴趣。
六、课程考核方法七、主要教材与参考书(黑体、小四、加粗、行距20磅)1.《大数据分析与挖掘》纲撰写人:石胜飞。
教育大数据ppt课件
个性化预警 数据可视化设置 预测的准确性较高
不够个性化 提供过量相同的干预 不提供诊断信息,难以提供有效的补救措施 普适性较低
应用学科有限,目前只有数学课程 只预警知识点的掌握情况
仅使用电子邮件预警不够及时准确
普适性较低
普适性较低 非技术人员不能够很好地解释决策和行 动所预测的结果
人事 设备 招生
教室环境
教学行为 情境状态
课堂互动 学生进出校 校园能耗
财…务...
家校沟通
…...
社会学习 …... …...
结构化、显 性化教育数 据为主
非结构化、
隐性化教育 数据为主
学习软件
图 1 教育大数据的“冰山模型”
教育大数据的作用
教育发展水平评估 教育资源均衡配置 教育舆情监测与剖析 数据驱动的教育决策 即时学习诊断与预警 学生的发展性评价 基于大数据的科学研究
认识教育大数据
大数据内涵需要拓展
大数据不仅是一种技术
大数据还是一种能力
大数据更是一种思维方式
大数据正在慢慢演 变为一种文化!
01
02 03
谈的比较多的领域大数据
电商大数据
交通大数据
金融大数据
工业大数据
BIG DATA
什么是教育大数据?
教育大数据,是指在整个教育活动过程中产 生的、根据教育需要采集到的、用于教育发展并 可创造巨大潜在价值的数据集合。
案例三 :困难学生餐饮预警
案例四 :学生发展预警
案例五 :校园安全预警
案例六 :美国马鞍峰社区学院个性化服务助理
全面记录学生在校期间各种信息,系统分析提 出 时间管理、课程选择等方面的个性化建议。
大数据与数据挖掘ppt课件
2020/4/13
.
20
数据
数据集的特点
➢ 数据的稀疏性 ➢ 数据的分布 ➢ 数据的覆盖范围 ➢…
数据挖掘的结果和数据集有很大的关联 挖掘之前需要了解数据
2020/4/13
.
21
数据
数据的相似性度量
➢ 度量的三个性质
▪ 非负性、对称性、三角不等式
➢ 各种评价相似性的方法
▪ 欧几里得距离、明考斯基距离、余弦相似度、皮尔森 相关系数
具体内容逐步调整
研讨是主要的授课方式
2020/4/13
.
11
Web数据管理和数据挖掘
本课程的教学目的
➢ 了解大规模WEB数据(包括HTML数据、XML等类型数据)的管理与 挖掘技术,及其在WEB领域中的应用,学会充分利用领域内的信息
课程内容
➢ 网络爬虫技术
▪ DNS解析、链接抽取、重复网页处理、…
朱扬勇等,《数据挖掘技术及其应用》 Pang-Ning Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining (影印版 ), 人民邮电出版社, 2006.1. Ian Witten, and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques (影印版, 第2版), 机械工业出版社, 2005.9. David Hand, H. Mannila, and P. Smyth. Principles of Data Mining, 机械工业出版 社, 2003.4. T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer-Verlag, 2001 Data and XML, Morgan Kaufman Publishers, 2000 6. KDD, VLDB, SIGMOD, ICDM, SDM, ICML等会议论文
大数据分析与挖掘ppt优质版(30张)
跨领域应用拓展
大数据将在更多领域得到应用拓展,如医疗、教育、金融等,推动这 些领域的数字化转型和创新发展。
ቤተ መጻሕፍቲ ባይዱ
02
数据分析基础
数据类型及来源
01
02
03
04
结构化数据
如关系型数据库中的表格数据 ,具有固定的数据结构和类型
建立大数据创新团队
组建专门的大数据创新团队,负责大数据技术的研发和创新应用 ,推动企业大数据战略的实施。
07
总结回顾与展望未来发展 趋势
本次课程重点内容回顾
大数据分析基本概念及技术应 用领域
数据预处理、特征提取与降维 技术
深度学习在大数据分析中的应 用与挑战
数据挖掘过程、算法分类及其 应用场景
经典机器学习算法原理及实践 案例
型、类别型等。
数据归一化
消除数据间的量纲差异 ,使数据具有可比性。
特征选择
选择与分析目标相关的 特征,去除无关特征。
数据可视化呈现
图表类型选择
根据数据类型和分析目标选择 合适的图表类型,如柱状图、
折线图、散点图等。
数据可视化工具
如Excel、Tableau、Power BI 等,可实现数据的快速可视化 呈现。
建立数据集成与共享机制,实现企业内部不同系统之间的数据互通和共
享,提高数据利用效率。
培养和引进优秀人才团队
制定人才培养计划
针对企业内部员工,制定大数据人才培养计划,通过培训、实践 等方式提升员工的大数据技能。
引进外部优秀人才
积极招聘具有大数据技能和经验的优秀人才,为企业的大数据战 略提供有力的人才保障。
数据分析和挖掘ppt课件
• 1、决策支持系统 • 2、数据分析和联机分析处理(OLAP) • 3、数据仓库工程 • 4、数据挖掘
14.05.2020
.
1
数据分析与挖掘的社会需求
数据库越来越大
数据挖掘
可怕的数据
有价值的知识
14.05.2020
.
2
数据分析与挖掘的社会需求
苦恼: 淹没在数据中 ; 不能制定合适的决策!
– 建立连续函数值模型,比如预测空缺值
14.05.2020
.
47
预测和分类的异同
• 相同点
– 两者都需要构建模型 – 都用模型来估计未知值
• 预测当中主要的估计方法是回归分析
– 线性回归和多元回归 – 非线性回归
• 不同点
– 分类法主要是用来预测类标号(分类属性值) – 预测法主要是用来估计连续值(量化属性值)
普遍存在 的计算模 型
25
数据挖掘与OLAP比较
(1)功能不同 数据挖掘DM的功能在于知识发现。如:数据挖掘DM中 的“分类”包括:贝叶斯分类、粗糙集分类、决策树分类等 ,是从数据中发现知识规则
而联机分析OLAP是一种自上而下、不断深入的分析工具: 用户提出问题或假设,OLAP负责从上至下深入地提取出 关于该问题的详细信息,并以可视化的方式呈现给用户。
用数据。
14.05.2020
.
27
数据挖掘与KDD
• 知识发现(KD) –输出的是规则
• 数据挖掘(DM) –输出的是模型
• 共同点 –两种方法输入的都是学习集(learning sets) –目的都是尽可能多的自动化数据挖掘过程 –数据挖掘过程并不能完全自动化,只能半自动化
大数据分析与挖掘培训课件(PPT30页)
分析与处理要求不断增加,数据处理的越及时,产生的价 值越大。
大数据分析与挖掘培训课件(PPT30页)
9
大数据分析与挖掘培训课件(PPT30页)
大数据基本特征的第五个V:Veracity 数据的不确定性
大数据分析与挖掘培训课件(PPT30页)
数据挖掘背后的 大数据思维
在数据挖掘的思想中,知识的学习是不需 要通过具体问题的专业知识建模。
这其实是模拟了人的原始学习过程 --- 比 如你要预测一个人跑100米要多久时间, 可以根据之前了解的他这样体型的人跑 100米用的多少时间做一个估计,而不会 使用牛顿定律来算。
大数据分析与挖掘培训课件(PPT30页)
13
大数据分析与挖掘培训课件(PPT30页)
数据挖掘:Data Mining 一般流程
大数据分析与挖掘培训课件(PPT30页)
14
大数据分析与挖掘培训课件(PPT30页)
数据挖掘:Data Mining 功能
➢关联规则 ➢分类与预测 ➢聚类分析 ➢…
大数据分析与挖掘培训课件(PPT30页)
15
大数据分析与挖掘培训课件(PPT30页)
数据挖掘:Data Mining 关联规则
大数据分析与挖掘培训课件(PPT30页)
16
大数据分析与挖掘培训课件(PPT30页)
关联规则:零售业应用
几十年来,大型零售商塔吉特收集了海量的数据,记 录了每一位经常光顾其各分店的顾客数据。
发现女客户会在怀孕四个月左右,大量购买无香味乳 液。由此挖掘出25项与怀孕高度相关的商品,制作“ 怀孕预测”指数。
大数据分析与挖掘培训课件(PPT30页)
大数据分析讲稿PPT
理论
THEOபைடு நூலகம்Y
技术
TECHNOLOGY
实践
UTILIZATION
01
人工智能将涉及到计算机科学、心理学、哲学和语言学等学科。
学习
可以说几乎是自然科学和社会科学的所有学科,其范围已远远超 出了计算机科学的范畴,人工智能与思维科学的关系是实践和理
02
思考
论的关系,人工智能是处于思维科学的技术应用层次,是它的一 个应用分支。
大数据的应用领域
教育学 天文学 金融学
情报学 电子政务 生活娱乐
公共服务 传媒业 总统选举
生物医学 气候学 图书馆学
商业智能 企业管理 市场营销
强大的执行力
备用
精准的营销能力
对项目的深刻理解
丰富的产品运营经验
领先的技术优势
过硬的开发能力
点击输入详细的内容文本,点击输入详细的内容文本,点击输入详细的内容文本,点击输入详细的内容文本,点击输入详细的内容文本,点击输入详细的内容文本,
云处理为大数据提供了弹性可拓展的基础设备, 是产生大数据的平台之一。自2013年开始, 大数据技术已开始和云计算技术紧密结合,预 计未来两者关系将更为密切。
数据科学和数据联盟的成立:未来,数据
科学将成为一门专门的学科,被越来越多的人 所认知。各大高校将设立专门的数据科学类专 业,也会催生一批与之相关的新的就业岗位。
01 02 03 04
大数据(BIG DATA)
指无法在一定时间范围内用常规软件工具进行捕捉、 管理和处理的数据集合,是需要新处理模式才能具 有更强的决策力、洞察发现力和流程优化能力的海 量、高增长率和多样化的信息资产。
对于“大数据”(Big data) 研究机构Gartner给出了这样
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
社交网络的分析和研究是一个交叉领域的学科
通常会利用社会学、心理学甚至是医学上的基本结 论和原理作为指导
通过人工智能领域中使用的机器学习、图论等算法 对社交网络中的群体行为和未来的趋势进行模拟和 预测。
.
24
大数据带给数据挖掘的…
➢ 神经网络在几十年前就有了
➢ 因为他们需要大量的“训练”
➢ 对早期研究者来说,想要获得不
➢ 企业应用大数据所带来的主要效果包括实现智能决 策、提升运营效率和改善风险管理。
.
3
我们身(1)
➢ 三十多年来,我国春运大军从1 亿多人次到36亿人次
➢ 春运的最热现象是逆向过年,即 老人们到孩子工作的地方过年。
除夕夜 哈尔滨迁徙地图
对大数据的初步认识(2) 大数据与交通拥堵
片、地理位置信息
③ 价值密度低:以视频为例,连续不间断监控过程中,可能 有用的数据仅仅有一两秒
④ 速度快:产生了大量的高速动态数据流,对数据流的实时 分析与处理要求不断增加,数据处理的越及时,产生的价 值越大。
.
9
大数据基本特征的第五个V:Veracity 数据的不确定性
数据挖掘:Data Mining
做法截然相反。无疑,这样的做法会比较快,当然,前提是有足够多 的数据支持。
在大数据时代,我们能够得益于一种新的思维方法—从大
量的数据中直接找到答案,即使不知道原因。
.
12
数据挖掘背后的 大数据思维
在数据挖掘的思想中,知识的学习是不需 要通过具体问题的专业知识建模。
这其实是模拟了人的原始学习过程 --- 比 如你要预测一个人跑100米要多久时间, 可以根据之前了解的他这样体型的人跑 100米用的多少时间做一个估计,而不会 使用牛顿定律来算。
概念
从大量数据中抽取出(隐含
的、有潜在用途的、未知的、 人们可以理解的)有价值的 信息和模式的过程。这些新 发现的规律、模式、信息和 概念具有潜在使用价值。
数据挖掘背后的 大数据思维
➢ 寻找特效药:
➢ 科学家们通常需要分析疾病产生的原因,寻找能够消除这些原因的物 质,然后合成新药。是一个非常漫长的过程,而且费用非常高。
➢ 有了大数据,寻找特效药的方法就和过去有所不同了。
➢ 斯坦福大学医学院发现,原来用于治疗心脏病的某种药物对治疗某种 胃病特别有效。
➢ 这种方法,实际上依靠的并非因果关系,而是一种强关联关系,即A 药对B病有效。至于为什么有效,接下来3年的研究工作实际上就是在 反过来寻找原因。
➢ 这种先有结果再反推原因的做法,和过去通过因果关系推导出结果的
错效果的最小量训练都远远超过
计算能力和能提供的数据的大小
➢ 团队通过在网络围棋对战平台上
最强人类对手,百万级的对弈落
子.去训练
25
数据挖掘:Data Mining 大数据管理与挖掘案例
随着我们通过电话、信用卡、电子商务、互联网和电子邮件留下更多 的生活痕迹,大数据不断增长的商业影响也在如下时刻表现出来:
你搜索飞往哈尔滨的航班,然后便看到网站上出现了当地宾馆的打 折信息
你光顾的商店在对顾客行为进行数据挖掘的基础上获取最大化的利 润
用算法预测人们购票需求,航空公司以不可预知的方式调整价格
智能手机的应用识别到你的位置,因此你收到附近餐厅的服务信息
➢ 根据2015年的统计数据,我国公民个人 信息泄露数量已经达到40亿条左右。
刚取了通知书就有助学金诈骗电话
刚买了房就有无数装修公司的电话……
大数据的基本特征
用4个V来总结:Volume、Variety、Value和Velocity
① 数据体量大:从 TB级别,跃升到 PB ② 数据多样性:多为非结构型数据,如网络日志、视频、图
.
20
数据挖掘:Data Mining 时间序列分析
时间序列预测即以时间序列所能反映的社会 经济现象的发展过程和规律性,进行引伸外 推,预测其发展趋势的方法,简单来说就是 从已知事件测定未知事件。
时间序列数据的趋势变动可分为以下四点: 趋势性、周期性、随机性、综合性 预测时一般设法过滤除去不规则变动,突出
推算出预产期后,就能抢先一步,将孕妇装、婴儿床 等折扣券寄给客户。
在接下来的几年中会根据婴儿的生长周期定期给这些 顾客推送相关产品,使这些客户形成长期的忠诚度。
.
17
数据挖掘:Data Mining 分类与预测
.
18
数据挖掘 分类与预测 金融创新产品设计
.
19
数据挖掘:Data Mining 时间序列分析
大数据分析与挖掘
.
大数据与数据挖掘
课程的背景 ……
.
2
中国数据发展调查报告 (2018年):
➢ 2017年中国大数据产业总体规模为4700亿元人民币, 同比增长30%;预计2018-2020年增速将保持在30%以 上。
➢ 大部分企业均已意识到数据分析对企业发展的重要 性。
✓ 近四成的企业已经应用了大数据。与2016年相比上升4.5% ✓ 金融等领域大数据应用增加趋势较为明显。
➢ 一卡通大量使用,乘客出行的海量数据
➢ 预埋传感器,收集车流量、客流量信息
➢ 卫星地图数据对道路交通情况进行分析
➢ 出租车提供实时数据,了解主要道路的路况
➢ 智能手机使用地图应用,分析出实时的道路交通拥堵状况、出行流
. 动趋势或特定区域的人员聚集程度
7
对大数据的初步认识(3) 大数据分析电信诈骗
反映趋势性和周期性变动。
.
21
数据挖掘:Data Mining 聚类分析
.
22
数据挖掘:Data Mining 社交网络、舆情分析…
.
23
社交网络的分析
社交网络中社区圈子的识别
社交网络中人物影响力的计算
信息在社交网络上的传播模型
虚假信息和机器人账号的识别
基于社交网络信息对股市、大选以及传染病的预测
.
13
数据挖掘:Data Mining 一般流程
数据挖掘:Data Mining 功能
➢关联规则 ➢分类与预测 ➢聚类分析
➢…
.
15
数据挖掘:Data Mining 关联规则
关联规则:零售业应用
几十年来,大型零售商塔吉特收集了海量的数据,记 录了每一位经常光顾其各分店的顾客数据。
发现女客户会在怀孕四个月左右,大量购买无香味乳 液。由此挖掘出25项与怀孕高度相关的商品,制作“ 怀孕预测”指数。