第一章 遗传算法概述
《遗传算法简介》课件
评估新个 体的适应 度
保留适应 度较高的 新个体
重复以上 步骤,直 到达到预 定的迭代 次数或满 足停止条 件
达到预设的迭代 次数
找到最优解
达到预设的运行 时间
满足预设的误差 范围
PART FIVE
搜索效率高: 能够快速找到最优解ຫໍສະໝຸດ 适应性强:能 够适应复杂的
搜索空间
鲁棒性强:能 够处理噪声和
不确定性
群的多样性
起源:1960年代,由美国学者霍 兰德提出
应用:广泛应用于优化问题、机器 学习等领域
添加标题
添加标题
添加标题
添加标题
发展:1970年代,由美国学者戈 德堡等人进一步发展
现状:已成为人工智能领域的重要 算法之一
优化问题:如旅行商问题、背包问题等 机器学习:如分类、回归、聚类等 生物信息学:如基因序列分析、蛋白质结构预测等 工程设计:如天线设计、电路设计等 机器人控制:如路径规划、运动控制等 经济金融:如投资组合优化、风险评估等
锦标赛算法: 将个体分为 若干组,每 组进行比赛, 胜者进入下 一轮
结果:选择 出适应度较 高的个体进 行交叉操作
目的:产生新的个体 方法:选择两个父代个体,交换部分基因 特点:保持父代个体的优点,避免缺点 应用:广泛应用于优化问题、人工智能等领域
随机选择 个体进行 变异
改变个体 的基因值
产生新的 个体
,
汇报人:
CONTENTS
PART ONE
PART TWO
遗传算法是一 种优化算法, 通过模拟生物 进化过程来寻
找最优解
遗传算法包括 选择、交叉和 变异三个基本
操作
选择操作:根 据适应度函数 选择优秀的个
遗传算法
遗传算法一、遗传算法概述遗传算法(Genetic Algorithm,简称GA)是在20世纪60年代由美国密歇根大学John H.Holland教授及其学生首先提出来的。
它的基本思想是模拟生物和人类进化的方法求解复杂的优化问题,因而也称为模拟进化优化算法。
1遗传算法的生物学基础生物在自然界中的生存繁衍,显示了其对自然环境的优异自适应能力。
遗传算法就是这种生物行为过程的计算机模拟,遗传算法使得各种人工系统具有优良的自适应能力和优化能力。
遗传算法所借鉴的生物学基础就是生物的遗传和进化。
世间的生物从其亲代继承特性或性状,这种生命现象称为遗传(Heredity),研究这种生命现象的科学叫做遗传学(Genetics)。
按照孟德尔和摩根(G.Mendel,T.Morgan)的遗传学理论,遗传物质是作为一种指令密码封装在每个细胞中,并以基因的形式排列在染色体(Chromosome)上,每个基因有特殊的位置并控制生物的某些特性。
不同的基因组合产生的的个体对环境的适应性不一样,通过基因杂交和突变可以产生对环境适应性强的后代。
经过优胜劣汰的自然选择,适应值高的基因结构就得以保存下来,从而逐渐形成了经典的遗传学染色体理论,揭示了遗传和变异的基本规律。
现代遗传学则对基因的本质、功能、结构、突变和调控进行了深入探讨,开辟了遗传工程研究的新领域。
在一定的环境影响下,生物物种通过自然选择、基因交换和变异等过程进行繁殖生长,构成了生物的整个进化过程。
生物的遗传物质的主要载体是染色体,DNA是其中最主要的遗传物质,而基因又是控制生物性状的遗传物质的功能单位和结构单位。
复数个基因组成染色体,染色体中基因的位置称为基因座(locus),而基因所取的值则叫做等位基因(alleles)。
基因和基因座决定了染色体的特征,也决定了生物个体的性状。
此外,染色体有相应的两种表示模式,即基因型(genotype)和表现型(phenotype)。
所谓表现型是指生物个体所表现出来的性状,而基因型是指与表现型密切相关的基因组成。
遗传算法
遗传算法在人工智能领域具有重要的意义,它提供了一种模拟人类自然选择和遗传 学原理的优化搜索方法,为解决复杂问题提供了新的思路。
02
遗传算法基础概念
染色体与基因表示
染色体
在遗传算法中,染色体是用来表 示问题解决方案的一种编码方式 ,通常是一个字符串或数字数组
。
基因
基因是染色体的基本组成单位,表 示问题解决方案中的特定特征或参 数。
编码方式
根据问题的性质,可以选择二进制 编码、实数编码、排列编码等不同 的编码方式来表示染色体和基因。
适应度函数设计
适应度函数
用来评价染色体优劣的函数,通常根据问题的目标函数来设计。适 应度值较高的染色体在遗传过程中有更大的概率被保留和传承。
函数优化问题求解
求解非线性、非凸函数优化问题
遗传算法通过模拟生物进化过程,能够在复杂的搜索空间中找到全局最优解或近似最优解,特别 适用于求解非线性、非凸函数优化问题。
处理多峰值函数优化
遗传算法具有隐式并行性和全局搜索能力,能够同时搜索多个峰值,并找到全局最优解所在的区 域。
约束处理机制
针对约束优化问题,遗传算法可以通过罚函数法、修复法、解码法等机制处理约束条件,将约束 问题转化为无约束问题进行求解。
并行遗传算法
通过并行计算技术,将遗传算法的搜索过程分配到多个处理单元 上同时进行,显著提高了算法的运行速度和求解效率。
分布式遗传算法
在分布式系统中实现遗传算法,可以利用多台计算机的资源进行协 同优化,扩大了算法的搜索范围和应用领域。
云计算与遗传算法的结合
云计算平台为遗传算法提供了强大的计算能力和存储资源,使得处 理大规模优化问题成为可能。
遗传算法
1.1引言
生命科学--与工程科学的相互交叉、相互渗透和相互促进是近代科学技术发展的一个显著特点,而遗传算法的蓬勃发展正体现了科学发展的这一特征和趋势。
遗传算法(Genetic Algorithm-GA),是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,它是由美国Michigan大学的J.Holland教授于1 975年首先提出的[1]。J.Holland教授和他的研究小组围绕遗传算法进行研究的宗旨有两个,一是抽取和解释自然系统的自适应过程,二是设计具有自然系统机理的人工系统。毫无疑问,Holland教授的研究,无论对白然系统还是对人工系统都是十分有意义的。
生物的各项生命活动都有它的物质基础,生物的遗传与变异也是这样。根据现代细胞学和遗传学的研究得知,遗传物质的主要载体是染色体(chromsome),染色体主要是由DNA(脱氧核糖核酸)和蛋白质组成,其中DNA又是最主要的遗传物质。现代分子水平的遗传学的研究又进一步证明,基因(gene)是有遗传效应的片段,它储存着遗传信息,可以准确地复制,也能够发生突变,并可通过控制蛋白质的合成而控制生物的性状。生物体自身通过对基因的复制(reproduction)和交叉(crossover),即基因分离、基因自由组合和基因连锁互换的操作使其性状的遗传得到选择和控制。同时,通过基因重组、基因变异和染色体在结构和数目上的变异产生丰富多采的变异现象。需要指出的是,根据达尔文进化论,多种多样的生物之所以能够适应环境而得以生存进化,是和上述的遗传和变异生命现象分不开的。生物的遗传特性,使生物界的物种能够保持相对的稳定;生物的变异特性,使生物个体产生新的性状,以至于形成了新的物种,推动了生物的进化和发展。
1100|0 -> 11001
表1.2
遗传算法简介课件
机器学习
遗传算法可用于机器学 习中的参数优化。通过 优化模型参数,可以提 高机器学习算法的性能
。
生产调度
在生产调度领域,遗传 算法可以用于解决作业 调度、资源分配等问题 。通过演化调度方案, 可以实现生产资源的高
效利用。
路径规划
遗传算法在路径规划中 也有应用,如机器人路 径规划、物流配送路径 规划等。通过编码路径 信息,并利用遗传操作 进行优化,可以找到最
优的路径方案。
遗传算法的调优策略
选择合适的编码方式
针对具体问题,选择合适的编码方式(如二进制 编码、实数编码等)能够更好地表示问题的解, 提高遗传算法的性能。
选择适当的遗传操作
选择、交叉和变异等遗传操作是影响遗传算法性 能的关键因素。根据问题特性,选择合适的遗传 操作能够提高算法的收敛速度和寻优能力。
设计适应度函数
适应度函数用于评估个体优劣,设计合适的适应 度函数能够引导算法朝着优化目标演化。
控制种群规模和演化代数
种群规模和演化代数是影响遗传算法搜索空间和 搜索效率的重要因素。根据问题规模和计算资源 ,合理设置种群规模和演化代数能够在有限时间 内获得较好的优化结果。
05
总结与展望
遗传算法总结
Байду номын сангаас
编码原理
将问题的解表示为一种编码方式,如二进 制编码、实数编码等。编码后的个体组成 种群。
变异操作
模拟基因突变过程,对个体编码进行随机 改变,增加种群多样性。
适应度函数
用于评估个体优劣的函数,根据问题需求 设计。适应度高的个体有更大概率被选中 进行后续操作。
交叉操作
模拟生物繁殖过程中的基因交叉,通过两 个个体的编码进行交叉操作,生成新的个 体。
《遗传算法详解》课件
遗传算法具有全局搜索能力、对问题 依赖性小、可扩展性强、鲁棒性高等 特点。
遗传算法的基本思想
初始化
随机生成一组解作为初始种群。
适应度评估
根据问题的目标函数计算每个解 的适应度值。
选择操作
根据适应度值的大小,选择优秀 的解进行遗传操作。
迭代更新
重复以上过程,直到满足终止条 件。
变异操作
对某些基因进行变异,增加解的 多样性。
《遗传算法详解》 ppt课件
• 遗传算法概述 • 遗传算法的基本组成 • 遗传算法的实现流程 • 遗传算法的优化策略 • 遗传算法的改进方向 • 遗传算法的未来展望
目录
Part
01
遗传算法概述
定义与特点
定义
遗传算法是一种模拟生物进化过程的 优化算法,通过模拟基因遗传和变异 的过程来寻找最优解。
Part
05
遗传算法的改进方向
混合遗传算法的研究
混合遗传算法
结合多种优化算法的优点,提高遗传算法的全局搜索能力和收敛速 度。
混合遗传算法的原理
将遗传算法与其他优化算法(如梯度下降法、模拟退火算法等)相 结合,利用各自的优势,弥补各自的不足。
混合遗传算法的应用
在许多实际问题中,如函数优化、路径规划、机器学习等领域,混 合遗传算法都取得了良好的效果。
自适应交叉率
交叉率控制着种群中新个体的产生速度。自适应交叉率可以根据种群中个体的适应度差 异进行调整,使得适应度较高的个体有更低的交叉率,而适应度较低的个体有更高的交 叉率。这样可以提高算法的搜索效率。
自适应变异率
变异率决定了种群中新个体的产生速度。自适应变异率可以根据种群中个体的适应度进 行调整,使得适应度较高的个体有更低的变异率,而适应度较低的个体有更高的变异率
遗传算法 算法原理
遗传算法算法原理(原创实用版)目录1.遗传算法的概述2.遗传算法的原理3.遗传算法的应用正文一、遗传算法的概述遗传算法(Genetic Algorithm,简称 GA)是一种模拟自然界生物进化过程的优化算法。
其核心思想是基于自然选择、遗传和突变等生物学原理,通过群体中的个体在不断迭代中进行优胜劣汰,达到解决问题和优化目标的效果。
遗传算法在解决复杂问题、非线性问题和全局最优解问题等方面具有较强的优势,广泛应用于各个领域。
二、遗传算法的原理1.遗传操作遗传算法的基本操作包括选择、交叉和变异。
选择操作是根据适应度函数对当前群体中的个体进行评估,选择优秀个体进行繁殖。
交叉操作是将选中的优秀个体进行染色体互换,产生新的后代。
变异操作是在后代中随机选择某个位点进行变异,以一定的概率产生新的特性。
2.适应度函数适应度函数是遗传算法中的重要概念,用于评估每个个体的优劣程度。
适应度函数的取值范围为 [0, 1],其中 1 表示最优解,0 表示最劣解。
在遗传算法中,适应度函数的取值会直接影响到个体的选择和淘汰。
3.遗传算法的基本流程遗传算法的基本流程如下:(1)初始化种群:创建一个初始种群,包括多个随机生成的个体,每个个体表示一个解。
(2)评估适应度:计算种群中每个个体的适应度值。
(3)选择操作:根据适应度值对种群进行选择,选择一定数量的优秀个体进行繁殖。
(4)交叉操作:对选中的优秀个体进行染色体互换,生成新的后代。
(5)变异操作:在后代中随机选择某个位点进行变异,以一定的概率产生新的特性。
(6)更新种群:将新产生的后代替换掉原种群中一些适应度较低的个体,形成新的种群。
(7)重复步骤 2-6,直至满足停止条件。
三、遗传算法的应用遗传算法在许多领域都取得了显著的应用成果,如机器学习、控制系统、信号处理、图像处理、运筹学等。
遗传算法(精讲)
适应值
三、遗传算法的基本流程(1) 遗传算法的基本流程( )
基本步骤:
确定实际问题参数集 对参数进行编码 (1)选择编码策略,把参数集合X和域转换为相应编码空间S。 选择编码策略,把参数集合X和域转换为相应编码空间S (2)定义适应值函数f(x)。 定义适应值函数f(x)。 f(x) 初始化群体P(t) 定义遗传策略,包括选择群体大小、交叉、 (3)定义遗传策略,包括选择群体大小、交叉、变异方法以及确定交 叉概率Pc、变异概率Pm等遗传参数。 叉概率P 变异概率P 等遗传参数。 评价群体 随机初始化生成群体P(t) P(t)。 (4)随机初始化生成群体P(t)。 (5)计算群体中个体的适应值f(X)。 计算群体中个体的适应值f(X)。 f(X) 群体P(t+1) 满足停止准则? 按照遗传策略,运用选择、交叉和变异操作作用于群体, (6)按照遗传策略,运用选择、交叉和变异操作作用于群体,形成下 三个基本操作: 一代群体。 一代群体。 结束 群体P(t) 1、选择 判断群体性能是否满足某一指标,或者已完成预定跌代次数, (7)判断群体性能是否满足某一指标,或者已完成预定跌代次数,不 遗传操作 2、交叉 满足则返回第6 或者修改遗传算法再返回第6 满足则返回第6步,或者修改遗传算法再返回第6步。 3、变异 其他高级操作 标准遗传算法基本流程框图 7
2
一、遗传算法概述(2) 遗传算法概述(
基本思想 使用模拟生物和人类进化的方法求 解复杂的优化问题,因而也称为模拟 解复杂的优化问题, 进化优化算法。 进化优化算法。将择优与随机信息交 换结合在一起。在每一代中, 换结合在一起。在每一代中,使用上 一代中最好的, 一代中最好的,即最适应环境的位或 片段,形成新的人工生物集。 片段,形成新的人工生物集。
《遗传算法》课件
达到预设迭代次数
详细描述
当遗传算法达到预设的最大迭代次数时,算法终止。此时 需要根据适应度值或其他指标判断是否找到了满意解或近 似最优解。
总结词
达到预设精度
详细描述
当遗传算法的解的精度达到预设值时,算法终止。此时可 以认为找到了近似最优解。
总结词
满足收敛条件
详细描述
当遗传算法的解满足收敛条件时,算法终止。常见的收敛 条件包括个体的适应度值不再发生变化、最优解连续多代 保持不变等。
多目标优化
传统的遗传算法主要用于单目标优化问题。然而 ,实际应用中经常需要解决多目标优化问题。因 此,发展能够处理多目标优化问题的遗传算法也 是未来的一个重要研究方向。
适应性遗传算法
适应性遗传算法是指根据问题的特性自适应地调 整遗传算法的参数和操作,以提高搜索效率和精 度。例如,可以根据问题的复杂度和解的质量动 态调整交叉概率、变异概率等参数。
自适应调整是指根据个体的适应度值动态调整 适应度函数,以更好地引导遗传算法向更优解 的方向进化。
选择操作
总结词
基于适应度选择
详细描述
选择操作是根据个体的适应 度值进行选择,通常采用轮 盘赌、锦标赛等选择策略, 以保留适应度较高的个体。
总结词
多样性保护
详细描述
为了保持种群的多样性,选择操作可以采 用一些多样性保护策略,如精英保留策略 、小生境技术等。
梯度下降法是一种基于函数梯度的优化算法,与遗传算法结合使用可以加快搜索速度, 提高解的质量。
遗传算法的基本思想
初始化
随机生成一组解作为初始种群。
适应度评估
根据问题的目标函数计算每个解 的适应度值。
选择操作
根据适应度值的大小,选择适应 度较高的解进行遗传操作。
遗传算法原理及其应用PPT课件
目录
• 遗传算法概述 • 遗传算法的基本原理 • 遗传算法的实现步骤 • 遗传算法的应用案例 • 遗传算法的优缺点与改进方向
01
遗传算法概述
定义与特点
01
定义
遗传算法是一种模拟生物进化过程的优化算法, 通过模拟基因遗传和自然选择的过程来寻找最优
解。 02
特点
遗传算法具有全局搜索能力、隐含并行性、自适 应性、对初始条件要求不严格等优点。
排班问题
遗传算法可以用于解决排班问题,如航空公司的航班排班、医院的医 护人员排班等,以实现资源的高效利用和满足各种约束条件。
遗传算法的优缺点与改进方
05
向
优点
全局搜索能力
遗传算法采用生物进化中的遗传机制, 通过种群搜索的方式进行搜索,能够 跳出局部最优解,寻找全局最优解。
鲁棒性
遗传算法对初始解和参数选择不敏感, 能够在不同领域和问题中应用。
02 多峰值函数优化
遗传算法能够处理多峰值函数,即函数值在多个 点达到最大或最小值的情况,通过全局搜索找到 所有峰值。
03 噪声和异常值处理
遗传算法具有较强的鲁棒性,能够处理噪声和异 常值对优化结果的影响。
组合优化问题
1 2 3
旅行商问题
遗传算法可用于求解旅行商问题,即寻找一条最 短的旅行路线,使得一个推销员能够访问所有指 定的城市并返回出发城市。
交叉操作
单点交叉
在个体基因串中选择一个点作为交叉点,将该点前后的基因进行互换,形成新的 个体。
多点交叉
在个体基因串中选择多个点作为交叉点,将不同个体的对应基因进行互换,形成 新的个体。
变异操作
基因位变异
随机选择个体基因串中的某个基因位,对该 基因位进行取反操作或随机替换。
遗传算法详解ppt课件
A1’=01100 A2’=11001
一般的交叉操作过程:
图5-2 交叉操作
遗传算法的有效性主要来自于复制和交叉操作。复制虽然能够从旧种 群中选择出优秀者,但不能创造新的个体;交叉模拟生物进化过程中 的繁殖现象,通过两个个体的交换组合,来创造新的优良个体。
遗传算法在以下几个方面不同于传统优化 方法
① 遗传算法只对参数集的编码进行操作,而不是 参数集本身。
② 遗传算法的搜索始于解的一个种群,而不是单 个解,因而可以有效地防止搜索过程收敛于局部 最优解。
③ 遗传算法只使用适值函数,而不使用导数和其 它附属信息,从而对问题的依赖性小。
④ 遗传算法采用概率的、而不是确定的状态转移 规则,即具有随机操作算子。
表6-3列出了交叉操作之后的结果数据,从中可以看出交叉操作 的具体过程。首先,随机配对匹配集中的个体,将位串1、2配对,位
串3、4配对;然后,随机选取交叉点,设位串1、2的交叉点为k=4,
二者只交换最后一位,从而生成两个新的位串,即 串 串 1 2 : : 1 01 11 00 0 1 0 1 01 11 00 01 0 新 新 1 2串 串
图5–3
遗传算法的工作原理示意图
5.2 遗传算法应用中的一些基本问题
5.2.1 目标函数值到适值形式的映射
适值是非负的,任何情况下总希望越大越好;而目标 函数有正、有负、甚至可能是复数值;且目标函数和适值 间的关系也多种多样。如求最大值对应点时,目标函数和 适值变化方向相同;求最小值对应点时,变化方向恰好相 反;目标函数值越小的点,适值越大。因此,存在目标函 数值向适值映射的问题。
5.遗传算法
遗传算法概述
遗传算法概述1遗传算法概述遗传算法是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的自适应概率性随机化迭代搜索算法。
1975 年,美国Michigan 大学的J.H.Holland 教授在从事机器学习时注意到,学习不仅可以通过单个生物体的适应来完成,而且可以通过一个种群的许多进化适应来加以实现,Kenneth De Jong 将这种算法用来解决优化问题。
Holland 研究GA 是从设计和实现一种能应付变化的、不确定环境的鲁棒性好的自适应系统开始。
他认为这种系统的自适应是从所处的环境中随时得到反馈的函数关系,因而形成了我们今天称之为简单遗传算法的再生计划(Reproductive Plan)。
这种简单的GA 只是一类具有固定种群(Population)规模、个体用固定长度的基因链的抽象模型。
根据适应度(Fitness)来随机地选择双亲,并按交叉(Crossover)和变异(Mutation)算子来产生新的种群。
遗传算法的特点是它的算法中不包含待解决问题所持有的形态。
它是从改变基因的配置来实现问题的整体优化的,因而属于自下而上的优化方法。
类似于生物的进化过程,遗传算法处理的是变量集合的编码而非变量本身。
它直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。
遗传算法的这些特点已被人们广泛地应用于组合优化、机器学习、信号理、自适应控制和人工生命等领域。
它是现代有关智能计算中的关键技术之一。
2.进化计算进化计算[19](Evolutionary Computation,简记为EC)是自60 年代开始发展的一门新兴学科。
它是指以进化原理为仿真依据,按优胜劣汰的自然选择优化规律和方法,在计算机上解决科技领域中难以用传统优化方法解决的优化计算问题的算法和程序,因此有时也称之为进化算法(Evolutionary Algorithms,EA)。
第一章遗传算法
第一章 遗传算法第一节 遗传算法概述遗传算法的研究历史,从20世纪60年代末期到70年代初期主要由美国Michigan 大学的师生研究,随后的20余年,取得了巨大的发展,在计算机时代,使遗传算法受到广泛的重视。
遗传算法是模拟的生物进化,如选择,交叉,变异,局域或临域等。
假设对相当于自然界中的一群人的一个种群进行操作,第一步的选择是以现实世界中的优胜劣汰现象为背景的;第二步的重组交叉则相当于人类的结婚和生育;第三步的变异则与自然界中偶然发生的变异是一致的。
遗传算法为我们提供了和传统的搜索和优化方法不同的途径。
遗传算法具有自组织,自适应和自学习性,这样利用其可以解决复杂的非结构化的问题。
另外,遗传算法还具有本质的并行性。
遗传算法主要有三个基本操作:选择,交叉或基因重组和变异。
这些操作可以用不同的方法来实现。
参数编码,初始群体的设定,适应度函数的设计,遗传操作的设计,控制参数设定等5个要素组成了遗传算法的核心内容。
遗传算法是一种基于生物自然选择与遗传机理的随机搜索算法,与传统搜索算法不同,遗传算法从一组随机产生的称为“种群”的初始解开始搜索过程。
种群中的每个个体是问题的一个解,称为“染色体”。
染色体是一串符号,比如一个二进制字符串。
这些染色体在后续迭代中不断进化,称为遗传。
在每一代中用“适值”测量染色体的好坏,生成的下一代染色体称为后代。
后代是由前一代染色体通过交叉或者变异运算形成的。
在新一代形成过程中,根据适度的大小选择部分后代,淘汰部分后代。
从而保持种群大小是常数。
适值高的染色体被选中的概率较高,这样经过若干代之后,算法收敛于最好的染色体,它很可能就是问题的最优解或次优解。
遗传算法进化模式如图1所示,搜索空间中个体演变为最优个体,其在高度适应度上 的增殖概率是按时代递增的,图中表现个体的色彩浓度表示个体增殖的概率分布。
遗传算法的一般流程如图2所示:第一步 随机产生初始种群,个体数目一定,每个个体表示为染色体的基因编码; 第二步 计算个体的适应度,并判断是否符合优化准则,若符合,输出最佳个体及其代表的最优解,并结束计算;否则转向第3步;第三步 依据适应度选择再生个体,适应度高的个体被选中的概率高,适应度低的个世代图1 遗传算法进化模式示意图低 高个体搜索空间 适应度体可能被淘汰;第四步按照一定的交叉概率和交叉方法,生成新的个体;第五步按照一定的变异概率和变异方法,生成新的个体;第六步有交叉和变异产生新一代的种群,返回到第二步。
遗传算法第一章通俗易懂
遗传算法一、解析遗传算法(Genetic Algorithm)是一种启发式搜索算法,它收到生物进化过程的启发,通过模拟自然选择和遗传机制来寻找最优解,遗传算法将问题表示为一个染色体(个体)集合,并通过交叉和变异操作在种群中形成新的染色体。
通过一代代选择和遗传,最终找到具有高适应的解。
遗传算法是是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。
遗传算法首先依据某种方式(通常是随机)生成一组候选解,之后,候选解中的个体通过交叉和变异产生新的解群,再在这个解群中选取较优的个体产生新一代的候选解,重复此过程,直到满足某种收敛指标为止。
二、关键词学习遗传算法必须要了解的关键词:种群、个体、基因、交叉、变异、选择;2.1种群就是组候选解的集合,遗传算法正是通过种群的迭代进化,实现了最优解或者近似最优解.2.2个体一个个体对应一个解,也就是构成种群的基本单元。
在遗传算法中,需要把一个解构造成染色体(chromosome)的形式,如同在扇贝例子中,通过染色体来表示扇贝花纹图案,这个过程也被称为编码,而当算法结束时,需要把最优的染色体还原成最优解,这个过程称为解码。
2.3基因染色体是由基因组成的,所以把组成遗传算法染色体(个体)的基本部分称为基因,基因的选择可以多种多样,比如在扇贝例子中,我们用像素作为基因,但实际上扇贝例子的原文是用不同的三角形块作为基因,通过不同三角形块的叠加形成firefox图案。
在实际中遗传算法广泛用到的一种基因是0、1、比特。
0、1、比特基因形成的染色体是一个二进制串。
2.4交叉交叉是将两个父代个体的部分基因进行交换,从而形成两个新的个体。
最简单的交叉如同扇贝例子,在染色体上寻找一个点,然后进行相互交叉,这种交叉称为单点交叉;交叉类型分为:单点交叉(one-point crossover)多点交叉(大于等于2的点进行交叉)(multi-point crossover)均匀交叉(uniform crossover)洗牌交叉(shuffle crossover)2.5变异按照一定的概率将个体中的基因值用其它的基因值来替换,从而形成一个新的个体,如同自然界中生物的变异概率较小,在遗传算法中基因的变异概率也应该设置为较小。
第一章遗传算法
遗传算法—特点
• 缺点
– 首先,在变量多,取值范围大或无给定范围时, 收敛速度下降;
– 其次,可找到最优解附近,但无法精确确定最 优解位置;
– 最后,遗传算法的参数选择尚未有定量方法。 对遗传算法,还需要进一步研究其数学基础理 论;还需要在理论上证明它与其它优化技术的 优劣及原因;还需研究硬件化的遗传算法;以 及遗传算法的通用编程和形式等。
如此这样反复选代优胜劣汰就使得该种群一代又一代向着更优种群的方向进行直至种群品质达到某种预定的优化指标即得到了问题的最遗传算法流程图遗传算法算法描述遗传算法在应用中最关键的问题这本质是问题编码
人工智能 II
netic Algorithm)的概念最早是由 Bagley J.D在1967年提出的;而开始遗传算法的理论和方 法的系统性研究的是1975年,这一开创性工作是由 Michigan大学的J.H.Holland所实行.
• 变异概率Pm太小时难以产生新的基因结构, 太大使遗传算法成了单纯的随机搜索。一 般取Pm=0.01—0.2。
遗传算法—特点
• 优点
– 遗传算法从问题解的中集开始嫂索,而不是从 单个解开始;
– 遗传算法求解时使用特定问题的信息极少,容 易形成通用算法程序;
– 遗传算法有极强的容错能力 ; – 遗传算法中的选择、交叉和变异都是随机操作,
• 选择(selection)
选择是决定以一定的概率从种群中选取若干个 个体的操作。选择操作也叫复制(reproduction) 操作,根据个体的适应度函数值所度量的优劣 程序决定它在下一代是被淘汰还是被遗传。一 般地,适应度较大(优良)的个体有较大的存 在机会。而适应度较小(低劣)的个体存在的 机会也较小。
(完整)基本遗传算法
基本遗传算法Holland创建的遗传算法是一种概率搜索算法,它利用某种编码技术作用于称为染色体的数串,其基本思想是模拟由这些串组成的个体进化过程.该算法通过有组织的、然而是随机的信息交换,重新组合那些适应性好的串.在每一代中,利用上一代串结构中适应性好的位和段来生成一个新的串的群体;作为额外增添,偶尔也要在串结构中尝试用新的位和段来替代原来的部分。
遗传算法是一类随机优化算法,它可以有效地利用已有的信息处理来搜索那些有希望改善解质量的串.类似于自然进化,遗传算法通过作用于染色体上的基因,寻找好的染色体来求解问题.与自然界相似,遗传算法对待求解问题本身一无所知,它所需要的仅是对算法所产生的每个染色体进行评价,并基于适应度值来改变染色体,使适应性好的染色体比适应性差的染色体有更多的繁殖机会.第一章遗传算法的运行过程遗传算法模拟了自然选择和遗传中发生的复制、交叉和变异等现象,从任一初始种群(Population)出发,通过随机选择、交叉和变异操作,产生一群更适应环境的个体,使群体进化到搜索空间中越来越好的区域,这样一代一代地不断繁衍进化,最后收敛到一群最适应环境的个体(Individual),求得问题的最优解。
一.完整的遗传算法运算流程完整的遗传算法运算流程可以用图1来描述。
由图1可以看出,使用上述三种遗传算子(选择算子、交叉算子和变异算子)的遗传算法的主要运算过程如下:(1)编码:解空间中的解数据x,作为遗传算法的表现形式。
从表现型到基因型的映射称为编码.遗传算法在进行搜索之前先将解空间的解数据表示成遗传空间的基因型串结构数据,这些串结构数据的不同组合就构成了不同的点。
(2)初始群体的生成:随机产生N个初始串结构数据,每个串结构数据称为一个个体,N个个体构成了一个群体。
遗传算法以这N个串结构作为初始点开始迭代。
设置进化代数计数器t←0;设置最大进化代数T;随机生成M个个体作为初始群体P(0)。
(3)适应度值评价检测:适应度函数表明个体或解的优劣性。
第一章 遗传算法概述
第一章遗传算法概述遗传算法(Genetic Algorithm,简称GA)起源于对生物系统所进行的计算机模拟研究。
美国Michigan大学的Holland教授及其学生受到生物模拟技术的启发,创造出了一种基于生物遗传和进化机制的适合于复杂系统优化的自适应概率优化技术——遗传算法。
1967年,Holland的学生Bagley在其博士论文中首次提出了“遗传算法”一词,他发展了复制、交叉、变异、显性、倒位等遗传算子,在个体编码上使用双倍体的编码方法。
Holland教授用遗传算法的思想对自然和人工自适应系统进行了研究,提出了遗传算法的基本定理——模式定理(Schema Theorem),并于1975年出版了第一本系统论述遗传算法和人工自适应系统的专著《Adaptation in Natural Land Artificial Systems》。
80年代,Holland教授实现了第一个基于遗传算法的机器学习系统,开创了遗传算法的机器学习的新概念。
1975年,De Jong 基于遗传算法的思想在计算机上进行了大量的纯数值函数优化计算实验,树立了遗传算法的工作框架,得到了一些重要且具有指导意义的结论。
1989年,Goldberg出版了《Genetic Algorithm in Search,Optimization and Machine Learning》一书,系统地总结了遗传算法的主要研究成果,全面完整地论述了遗传算法的基本原理及其应用。
1991年,Davis出版了《Handbook of Genetic Algorithms》一书,介绍了遗传算法在科学计算、工程技术和社会经济中的大量实例。
1992年,Koza将遗传算法应用于计算机程序的优化设计及自动生成,提出了遗传编程(Genetic Programming,简称GP)的概念。
遗传算法被众多的使用者证明在控制系统的离线设计方面是有效的策略。
例如,Krishnakumar和Goldberg 以及Bramlette和Cusin已证明使用遗传优化方法在太空应用中导出优异的控制器结构比使用传统方法如LQR和Powell(鲍威尔) 的增音机设计所用的时间要少(功能评估)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章遗传算法概述遗传算法(Genetic Algorithm,简称GA)起源于对生物系统所进行的计算机模拟研究。
美国Michigan大学的Holland教授及其学生受到生物模拟技术的启发,创造出了一种基于生物遗传和进化机制的适合于复杂系统优化的自适应概率优化技术——遗传算法。
1967年,Holland的学生Bagley在其博士论文中首次提出了“遗传算法”一词,他发展了复制、交叉、变异、显性、倒位等遗传算子,在个体编码上使用双倍体的编码方法。
Holland教授用遗传算法的思想对自然和人工自适应系统进行了研究,提出了遗传算法的基本定理——模式定理(Schema Theorem),并于1975年出版了第一本系统论述遗传算法和人工自适应系统的专著《Adaptation in Natural Land Artificial Systems》。
80年代,Holland教授实现了第一个基于遗传算法的机器学习系统,开创了遗传算法的机器学习的新概念。
1975年,De Jong 基于遗传算法的思想在计算机上进行了大量的纯数值函数优化计算实验,树立了遗传算法的工作框架,得到了一些重要且具有指导意义的结论。
1989年,Goldberg出版了《Genetic Algorithm in Search,Optimization and Machine Learning》一书,系统地总结了遗传算法的主要研究成果,全面完整地论述了遗传算法的基本原理及其应用。
1991年,Davis出版了《Handbook of Genetic Algorithms》一书,介绍了遗传算法在科学计算、工程技术和社会经济中的大量实例。
1992年,Koza将遗传算法应用于计算机程序的优化设计及自动生成,提出了遗传编程(Genetic Programming,简称GP)的概念。
遗传算法被众多的使用者证明在控制系统的离线设计方面是有效的策略。
例如,Krishnakumar和Goldberg 以及Bramlette和Cusin已证明使用遗传优化方法在太空应用中导出优异的控制器结构比使用传统方法如LQR和Powell(鲍威尔) 的增音机设计所用的时间要少(功能评估)。
Porter和Mohamed展示了使用本质结构分派任务的多变量飞行控制系统的遗传设计方案。
与此同时,另一些人证明了遗传算法怎么能在控制器结构的选择中使用。
从遗传算法的整个发展过程来看,70年代是兴起阶段,80年代是发展阶段,90年代是高潮阶段。
遗传算法作为一种实用、高效、鲁棒性强的优化技术,发展极为迅速,已引起国内外学者的高度重视。
1.1 遗传算法概念生物的进化(Evolution)过程主要是通过染色体之间的交叉和变异来完成的。
基于对自然界中生物遗传与进化机理的模仿,针对不同的问题,很多学者设计了许多不同的编码方法来表示问题的可行解,开发出了许多种不同的编码方式来模仿不同环境下的生物遗传特性。
这样,由不同的编码(Coding)方法和不同的遗传算子就构成了各种不同的遗传算法。
什么是遗传算法?遗传算法是模仿自然界生物进化机制发展起来的随机全局搜索和优化方法,它借鉴了达尔文的进化论和孟德尔的遗传学说。
其本质是一种高效、并行、全局搜索的方法,它能在搜索过程中自动获取和积累有关搜索空间的知识,并自适应地控制搜索过程以求得最优解。
遗传算法操作使用适者生存的原则,在潜在的解决方案种群中逐次产生一个近似最优的方案。
在遗传算法的每一代,根据个体在问题域中的适应度值和从自然遗传学中借鉴来的再造方法进行个体选择,产生一个新的近似解。
这个过程导致种群中个体的进化,得到的新个体比原个体更能适应环境,就像自然界中的改造一样。
个体或当前近似解被编码为由字母组成的串,即染色体(Chromosome),使基因(Gene,染色体值) 能在(表现) 域决策变量上被惟一地描述。
尽管可以使用二进制、整数、实数等,但是在遗传算法表现型上最常用的是二进制字符串。
例如,一个问题具有两个变量X1和X2,它们的染色体结构能用图1.1所示的方法描述。
图1.1个体的染色体结构X1被编码为10位,X2被编码为15位。
位数的多少能够反应精确度水平或个体决策变量的范围,是一个不含人们试图解决问题的信息的染色体串。
这只是表现值的染色体编码,任何意义均可应用于表现型。
无论如何,就像下面的描述,搜索过程将在决策变量的编码中而不是它们自身中操作,当然除了在实值基因被使用的情况。
在决策变量域的染色体表现型已被编码,就可以估计种群的个体成员的特性或适应度。
通过特征目标函数来估计个体在问题域中的特性。
在自然世界中,这就是个体在现行环境中的生存能力。
因此,目标函数建立的基础是在整个繁殖过程中选择成对的个体进行交配。
在再生(复制) 期间,每个个体均被计算适应度值,它来自没有加工的原始特性度量,由目标函数给出。
这个值用来在选择中偏向更加适合的个体。
相对整个种群,适应度高的个体具有高的选中参加交配的概率,而适应度低的个体具有相对低的选中概率。
一旦个体计算了适应度值,个体能根据它们的相对适应度从种群中被选中并重组,产生下一代。
遗传算子直接操作染色体的特征(基因),使用一般情况下个体的基因代码,产生更适合的个体。
重组算子是运用在一对个体或一大组个体中交换基因信息。
最简单的重组算子是单点交叉。
考虑两个二进制父代串:A=1 0 0 1 0 1 1 0 和B=1 0 1 1 1 0 0 0如果一个整数位置I是随机地在1到串长L减1[1,L-1]之间选择,在这点后,两个个体间的基因进行交换,随后两个子代串产生。
例如,当交叉点I=5时,两个子代串产生如下:A'= 1 0 0 1 0 0 0 0和B'= 1 0 1 1 1 1 1 0。
交叉算子并不是必须在种群的所有串中执行。
当一对个体被选中培育下一代时,代替的是应用一个概率P x。
进一步的遗传算法称为变异,再次使用一个概率P m应用到新染色体上。
变异能根据一些概率准则引起个体基因表现型发生变化,在二进制表现型中,变异引起单个位的状态变化,即0变1,或者1变0。
例如,在A'中变异第四位,1变0,产生新串为 1 0 0 0 0 0 0 0。
变异通常被认为是一后台算子,以确保研究问题空间的特殊子空间的概率永不为零。
变异具有阻止局部最优收敛的作用。
在重组和变异后,如果需要,这些个体串随后被解码,目标函数评估,计算每个个体的适应度值,个体根据适应度被选择参加交配,并且这个过程继续直到产生子代。
在这种方法中,种群中个体的平均性能希望是提高的,好的个体被保存并且相互产生下一代,而适应度低的个体则消失。
当一些判定条件满足后,遗传算法则终止,例如,一定的遗传代数、种群的均差或当遇到搜索空间的特殊点。
1.2 遗传算法的特点遗传算法是一种借鉴生物界自然选择(Natural Selection)和自然遗传机制的随机搜索算法(Random searching algorithms)。
它与传统的算法不同,大多数古典的优化算法是基于一个单一的度量函数(评估函数)的梯度或较高次统计,以产生一个确定性的试验解序列;遗传算法不依赖于梯度信息,而是通过模拟自然进化过程来搜索最优解(Optimal Solution),它利用某种编码技术,作用于称为染色体的数字串,模拟由这些串组成的群体的进化过程。
遗传算法通过有组织地、随机地信息交换来重新组合那些适应性好的串,生成新的串的群体。
1.2.1 遗传算法的特点遗传算法具有如下特点:(1)对可行解表示的广泛性。
遗传算法的处理对象不是参数本身,而是针对那些通过参数集进行编码得到的基因个体。
此编码操作使得遗传算法可以直接对结构对象进行操作。
所谓结构对象,泛指集合、序列、矩阵、树、图、链和表等各种一维或二维甚至多维结构形式的对象。
这一特点使得遗传算法具有广泛的应用领域。
比如:①通过对连接矩阵的操作,遗传算法可用来对神经网络或自动机的结构或参数加以优化。
②通过对集合的操作,遗传算法可实现对规则集合和知识库的精炼而达到高质量的机器学习目的。
③通过对树结构的操作,用遗传算法可得到用于分类的最佳决策树。
④通过对任务序列的操作,遗传算法可用于任务规划,而通过对操作序列的处理,可自动构造顺序控制系统。
(2)群体搜索特性。
许多传统的搜索方法都是单点搜索,这种点对点的搜索方法,对于多峰分布的搜索空间常常会陷于局部的某个单峰的极值点。
相反,遗传算法是采用同时处理群体中多个个体的方法,即同时对搜索空间中的多个解进行评估。
这一特点使遗传算法具有较好的全局搜索性能,也使得遗传算法本身易于并行化。
(3)不需要辅助信息。
遗传算法只适应度函数的数值来评估基因个体,并在此基础上进行遗传操作。
更重要的是,遗传算法的适应度函数不仅不受连续可微的约束,而且其定义域可以任意设定。
对适应度函数的惟一要求是,编码必须与可行解空间对应,不能有死码。
由于限制条件的缩小,使得遗传算法的应用范围大大扩展。
(4)内在启发式随机搜索特性。
遗传算法不是采用确定性规则,而是采用概率的变迁规则来指导它的搜索方向。
概率仅仅是作为一种工具来引导其搜索过程朝着搜索空间的更优化的解区域移动。
虽然看起来它是一种盲目搜索方法,实际上它有明确的搜索方向,具有内在的并行搜索机制。
(5)遗传算法在搜索过程中不容易陷入局部最优,即使在所定义的适应度函数是不连续的、非规则的或有噪声的情况下,也能以很大的概率找到全局最优解。
(6)遗传算法采用自然进化机制来表现复杂的现象,能够快速可靠地解决非常困难的问题。
(7)遗传算法具有固有的并行性和并行计算的能力。
(8)遗传算法具有可扩展性,易于同别的技术混合。
重点注意的是,遗传算法对给定问题给出大量可能的解答并挑选最终的解答给用户。
要是一个特定问题并没有单个的解,例如Pareto最优解系列中,就像多目标优化和日程安排的案例中,遗传算法将尽可能地用于识别可同时替换的解。
1.2.2 遗传算法的不足之处遗传算法作为一种优化方法,它存在自身的局限性:(1)编码不规范及编码存在表示的不准确性。
(2)单一的遗传算法编码不能全面地将优化问题的约束表示出来。
考虑约束的一个方法就是对不可行解采用阈值,这样,计算的时间必然增加。
(3)遗传算法通常的效率比其它传统的优化方法低。
(4)遗传算法容易出现过早收敛。
(5)遗传算法对算法的精度、可信度、计算复杂性等方面,还没有有效的定量分析方法。
1.3遗传算法与传统方法的比较对于一个求函数最大值的优化问题(求函数最小值也类似) ,一般可描述为带约束条件的数学规划模型:⎪⎩⎪⎨⎧⊆∈U R R X t s X f ..)(max (1.1)式中,t n x x x X ],,,[21 =为决策变量,)(X f 为目标函数,U 为基本空间,R 是U 的一个子集。