二、数字积分法插补

合集下载

中南大学《数控技术》课程作业(在线作业)二及参考答案

中南大学《数控技术》课程作业(在线作业)二及参考答案

(一) 单选题1.数字积分法插补圆弧时,若不采取任何措施,()。

(A) 进给速度正比于圆弧半径。

(B) 进给速度与圆弧半径无关,只取决于编程速度F值。

参考答案:(A)2.逐点比较插补法是()。

(A) 由软件实现(B) 由硬件实现(C) 由硬件或者软件实现参考答案:(C)3.数字积分法插补圆弧,()。

(A) 到终点时,都为0(B) 到终点时,不一定都为0参考答案:(B)4.逐点比较法插补圆弧时,起点(-3,-4),终点是,(-5,0),则总的步数是()。

(A) 12 (B) 6 (C) 2参考答案:(B)5.数字积分法插补直线时,若不采取任何改进措施,则()。

(A) 无论直线的长短,进给速度都一样,由编程的F值指定。

(B) 直线段越长,进给越快;直线段越短,进给越慢。

参考答案:(A)6.为保证刀具半径补偿计算的顺利进行,系统的刀补工作状态,始终存有至少()个程序段的信息?(A) 2 (B) 3 (C) 4参考答案:(B)7.数字积分插补法(DDA)是()。

(A) 可以插补空间、平面曲线(B) 不可以插补空间曲线,只能插补平面曲线(C) 不能插补平面曲线参考答案:(A)8.数字积分插补法(DDA),若不采取任何措施,()。

(A) 误差不超过1个脉冲当量(B) 误差不超过2个脉冲当量(C) 对于直线,误差不超过1个脉冲当量。

对于圆弧,误差不超过2个脉冲当量参考答案:(C)9.时间分割插补法是()。

(A) 软件插补算法(B) 硬件插补算法(C) 硬件或者软件插补算法参考答案:(A)10.逐点比较插补法()。

(A) 可以插补空间、平面曲线(B) 不可以插补空间曲线,只能插补部分平面曲线(C) 不能插补平面曲线参考答案:(B)11.逐点比较插补法,进给速度算是均匀的,因为对于同一编程速度,实际上加工时,()。

(A) 最大进给速度:最小进给速度=(B) 最大进给速度:最小进给速度=参考答案:(A)12.数字积分法插补直线,各个坐标方向累加器里的数,()。

数字积分法

数字积分法

101 +)001
110
101 +)110 ① 011
101 +) 011 ① 000
经过23 = 8次累加完成积分运算,因为有5次溢出,所以 积分值等于5。
(二)数字积分直线插补
如图:直线段OA,起点位于原点,终点为A(Xe,Ye),东电 沿X、Y坐标移动的速度为Vx、Vy,则动点沿X、Y坐 标移动的微小增量为:
Y
3
A( 5 , 3 )
2 1
O 1 2 34 5
X
插补计算过程如下
累加 次数 (Δt)
X积分器
Y积分器 终点
JVx JRx
溢出 ΔX
JVy
JRy
溢出 计数器 ΔY JE
0 101 000 011 000
000
备注 初始状态
1 101 101 011 011
111 第一次累加
2 101 010 1 011 110
(一)数字积分的基本原理
如图:从时刻t=0到t,函数Y=f(t)曲线所包围的面积可表
示为:S=∫ 0f(t)dt t
Y
若将0~t的时间划分成时间
间隔为Δt的有限区间,当Δt
Y=f(t)
足够小时,可得公式:
S=∫
tf0(t)dt
=
n-1 ∑ Yi Δt
i=0
Yo
即积分运算可用一系列微小
O
矩形面积累加求和来近似。
Δt
tT
若Δt取最小基本单位“1”,则上式可简化为:
n-1 S=∑ Yi (累加求和公式或矩形公式)
i=0
这种累加求和运算,即积分运算可用数字积分器来实现,
被积函数寄存器
存放Y值

数字积分圆弧第一二三四象限顺逆插补计算

数字积分圆弧第一二三四象限顺逆插补计算

数控技术课程设计说明书设计题目:数字积分法圆弧插补计软件设计指导老师:专业:机械设计制造及其自动化班级:机姓名:学号:目录一、课程设计题目 (1)二、课程设计的目的 (1)三、课程设计使用的主要仪器设备 (1)四、课程设计的任务题目描述和要求 (1)五、数字积分法插补原理 (2)5.1从几何角度来看积分运算 (2)5.2数字积分圆弧插补 (3)5.3数字积分法圆弧插补程序流程图 (5)5.4插补实例 (6)六、程序清单 (7)七、软件运行效果仿真 (18)八、课程小节 (21)九、参考文献 (22)一、课程设计题目数字积分法第一、二、三、四象限顺、逆圆插补计算二、课程设计的目的《数控原理与系统》是自动化(数控)专业的一门主要专业课程,安排课程设计的目的是通过课程设计方式使学生进一步掌握和消化数控原理基本内容,了解数控系统的组成,掌握系统控制原理和方法,通过设计与调试,掌握各种功能实的现方法,为今后从事数控领域的工作打下扎实的基础。

1)了解连续轨迹控制数控系统的组成原理。

2) 掌握数字积分法(DDA)插补的基本原理。

3)掌握数字积分法(DDA)插补的软件实现方法。

三、课程设计使用的主要仪器设备1、PC计算机一台2、数控机床实验装置一台3、支持软件若干(选用VB环境)四、课程设计的任务题目描述和要求数字积分法又称数字微分分析法DDA(Digital Differential Analyzer)。

数字积分法具有运算速度快、脉冲分配均匀、易于实现多坐标联动及描绘平面各种函数曲线的特点,应用比较广泛。

其缺点是速度调节不便,插补精度需要采取一定措施才能满足要求。

由于计算机有较强的计算功能和灵活性,采用软件插补时,上述缺点易于克服。

本次课程设计具体要求如下:(1)掌握数字积分插补法基本原理(2)设计出数字积分(DDA)插补法插补软件流程图(3)编写出算法程序清单算法描述(数字积分法算法在VB中的具体实现)(4)要求软件能够实现第一、二、三、四象限顺、逆圆插补计算(5)软件运行仿真效果插补结果要求能够以图形模式进行输出五、数字积分法插补原理数字积分法又称数字积分分析法DDA(Digital differential Analyzer),简称积分器,是在数字积分器的基础上建立起来的一种插补算法。

数字积分法

数字积分法

累加次数 m
JVX
JRX(∑xe) △x
(存xe )
0
1000(8)
0
0
1
2
JVY
JRY
△y
(存ye) (∑ye)
0110(6)
0
0
9.5 数控机床的插补原理
累加次数 m
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
JVX(存xe ) 1000
JRX(∑xe)
0 1000 0000 1000 0000 1000 0000 1000 0000 1000 0000 1000 0000 1000 0000 1000 0000
9.5 数控机床的插补原理
1. 概述 2. 逐点比较法 3. 数字积分法
9.5 数控机床的插补原理
3. 数字积分法 数字积分法又称数字微分分析器(Digital
Differential Analyzer,简称DDA),利用数字积分的 原理,计算刀具沿坐标轴的位移,使刀具沿所加工的 轨迹运动。 采用数字积分法进行插补的优点:
9.5 数控机床的插补原理
m必须是整数,所以k为小数。选取k时考虑△x、
△y≤1,保证坐标轴上每次分配的进给脉冲不超过1个
单位(一般为1个脉冲当量)。
xe
m
(kxe )t
i 1
m
mkxet
取△t=1
ye
(kye )t
i 1
mkyet
xe mkxe
ye
mk ye
x y
k xe k ye
△x
JVY(存ye) JRY(∑ye)
△y
0
0110
0
0

插补原理与刀具补偿原理

插补原理与刀具补偿原理

2
3 4 5
F1=-3 F2=-1 F3=1
F4=-2
∑=0
一、逐点比较法第一象限直线插补
2.硬件实现
一、逐点比较法第一象限直线插补
3.软件实现
二、逐点比较法第一象限圆弧插补
1.基本原理 在圆弧加工过程中,要描述刀具位置与被加工圆 弧之间的相对位置关系,可用动点到圆心的位置的距 离大小来反映
(1)偏差函数 任意加工点Pi(Xi,Yi),偏差函数Fi可表示为
(累加形式)
其中,m为累加次数(容量)取为整数,m=0〜2N-1,共2N 次(N为累加器位数)。 令△t =1,mK =1,则K =1/m=1/2N。
m Xe X Xe N i 1 2 m Ye Y Ye N i 1 2



(2)结论:直线插补从始点走向终点的过程,可以看作是各坐标轴每经过一 个单位时间间隔,分别以增量kxe(xe / 2N )及k (ye / 2N )同时累加的过程。 累加的结果为:
E (Xe、Ye)
B(Xb,Yb) Cቤተ መጻሕፍቲ ባይዱXc,Yc) o X
则取函数F=YXe -XYe来判别插补点和直线的偏差,且F 被称为偏差函数。 所以,任意动点I的判别方程 Fi为: Fi=YiXe -XiYe 若 Fi=0,则动点恰好在直线上; Fi>0,动点在直线上方; Y Fi< 0,动点在直线下方。 A(Xa,Ya)
DDA直线插补:以Xe/2N 、ye/2N (二进制小数,形式上即Xe、
ye
)作为被积函数,同时进行积分(累加),N为累加器的位数, 当累加值大于2N -1时,便发生溢出,而余数仍存放在累加器中。 积分值=溢出脉冲数代表的值+余数 当两个积分累加器根据插补时钟脉冲同步累加时,用这些溢出 脉冲数(最终X坐标Xe个脉冲、Y坐标ye个脉冲)分别控制相应坐标 轴的运动,加工出要求的直线。 (3)终点判别 累加次数、即插补循环数是否等于2N可作为DDA法直线插补判 别终点的依据。

数字积分法插补原理

数字积分法插补原理
数字积分法插补原理
本单元学习目标
掌握数字积分法插补基本原理 掌握数字积分直线插补运算过程、特点及其应用 掌握数字积分圆弧插补运算过程、特点及其应用 理解改进数字积分插补质量的措施
3单元 数字积分法插补原理
一 基本原理
数字积分法又称数字积分分析法DDA(Digital differential Analyzer), 简称积分器,是在数字积分器的基础上建立起来的一种插补算法。具 有逻辑能力强的特点,可实现一次、两次甚至高次曲线插补,易于实 现多坐标联动。只需输入不多的几个数据,就能加工圆弧等形状较为 复杂的轮廓曲线。直线插补时脉冲较均匀。并具有运算速度快,应用 广泛等特点。
过程中,被积函数值必须由累加器的溢出来修改。圆弧插补x
轴累加器初值存入轴起点坐标 y 0 ,y轴累加器初值存入x轴起
点坐标 x 0 。
3单元 数字积分法插补原理
四 改进DDA插补质量的措施
3单元 数字积分法插补原理
四 改进DDA插补质量的措施
3单元 数字积分法插补原理
3单元 数字积分法插补原理 掌握数字积分圆弧插补运算过程、特点及其应用
右图为直线的插补框图它由两个数字积分器组成每个坐标轴的积分器由累加器和被积函数寄存器组成被积函数寄存器存放终点坐标值每经过一个时间间隔t将被积函数值向各自的累加器中累加当累加结果超出寄存器容量时就溢出一个脉冲若寄存器位数为n经过2次累加后每个坐标轴的溢出脉冲总数就等于该坐标的被积函数值从而控制刀具到达终点
可得圆的参数方程为 xrcots
y r sin t
对t 微分得、方向上的速度分量为
vx
dxrsint dt
y
vy
dy dt
rcost
x
用累加器来近似积分为 n

数控课程设计(数字积分法第二象限直线插补程序)

数控课程设计(数字积分法第二象限直线插补程序)

数字积分法第二象限直线插补程序设计数字积分法是利用数字积分的方法,计算刀具沿各坐标轴的位移,使得刀具沿着所加工的轮廓曲线运动利用数字积分原理构成的插补装置称为数字积分器,又称数字微分分析器(Digital Differential Analyzer),简称DDA。

数字积分器插补的最大优点在于容易实现多坐标轴的联动插补、能够描述空间直线及平面各种函数曲线等。

因此,数字积分法插补在轮廓数控系统中得到广泛的应用。

具体设计内容如以下:……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………目录一、课程设计目的 (1)二、课程设计题目描述和要求 (1)三、课程设计报告内容 (1)数字积分法直线插补的基本原理 (2)从几何角度来看积分运算 (2)数字积分法在轮廓插补中的具体应用(数字积分法直线插补)3 插补终点判别的具体实现 (4)插补器的组成 (5)数字积分法稳速控制 (5)提高插补精度的措施 (6)减少误差的方法 (6)数字积分法直线插补框图 (7)数字积分法直线(第二象限)插补程序流程图 (7)四结论 (8)五结束语 (8)参考书目 (10)附录数字积分法直线插补程序清单(第二象限) (11)一、课程设计目的1)了解连续轨迹控制数控系统的组成原理。

数字积分插补法的直线插补误差

数字积分插补法的直线插补误差

数字积分插补法的直线插补误差数字积分插补法是现代数控技术中的重要方法之一。

具体来说,它是通过对给定的曲线信息进行处理,得到一系列机床控制指令,在保证加工精度和效率的同时,实现曲线的准确加工。

然而,在数字积分插补法中,由于其数值计算的本质和机床的机械特性,直线插补误差是无法避免的。

本文将探讨数字积分插补法的直线插补误差,包括其成因、影响因素、解决方法等内容,旨在为制造业相关从业者提供一定的参考和指导。

1.直线插补误差的成因直线插补误差是数字积分插补法中常见的问题之一,其主要成因包括以下几个方面:1)数值计算误差:数字积分插补法是通过对给定的曲线信息进行插值得到指令进行控制,其中涉及到大量的数值计算。

由于计算机计算精度等方面的局限性,数值计算的精度和误差会影响到插补结果的准确性。

2)机床动态特性:机床本身具有一定的刚度、质量以及振动等动态特性,这些特性会导致机床加工时出现一定的误差。

尤其在高速运动和高精度加工时,机床的动态特性和误差更加明显。

3)刀具和工件特性:刀具和工件的特性直接影响到机床加工的准确性,例如刀具磨损、工件变形等都会导致加工误差的发生。

2.直线插补误差的影响因素直线插补误差的大小与许多因素有关,主要包括以下几点:1)直线段的长度和方向:直线段的长度和方向决定了机床加工时所需的时间和加工路线,从而影响插补的起始和终止点以及运动轨迹。

2)机床加工速度和精度:机床加工速度和精度直接决定了加工的渐进过程和目标精度。

对于运动速度和加工精度要求高的工件,直线插补误差影响更大。

3)刀具磨损和工件变形:刀具磨损和工件变形会导致机床加工的实际轮廓和理论轮廓不一致,从而影响插补结果的准确性。

4)数值计算方法和误差分析:数值计算方法和误差分析技术对插补结果的精度和准确性影响很大。

3.直线插补误差的解决方法针对直线插补误差的影响因素,我们可以采取一些解决方法来尽可能地减小误差,这些方法包括以下几个方面:1)数值计算方法的改进:通过提高计算精度和准确度等方式改进数值计算方法,可以减小误差。

数控机床其它插补方法介绍

数控机床其它插补方法介绍
2、时间分割插补法
时间分割插补法是典型的数据插补方法。
3、扩展DDA数据采样插补法
扩展DDA算法是在数字积分原理的基础上发展起来的。
课堂总结
1、数字积分插补法及直线插补算法;
2、数据采样插补法的相关知识。
15
5分
3、例题
设有一直线OA,起点为原点O,终点A坐标为(8,10),累加器和寄存器的位数为4位,其最大容量为24=16。试用数字积分法进行插补计算并画出走步轨迹图。
4、习题
(1)设有一直线OA,起点为原点O,终点A坐标为(7,11),累加器和寄存器的位数为4位,其最大容量为24=16。试用数字积分法进行插补计算并画出走步轨迹图。
设加工第一象限逆圆AB,已知起点A(8,0),终点B(0,8)。试进行插补计算并画出走步轨迹图。
讲授新课
一、数字积分插补法
主要采用图解法、讨论法、引导法和演示法。
1、概述
数字积分法又称数字微分分析法(DDA),是在数字积分器的基础上建立起来的一种插补法。
数字积分法具有运算速度快、脉冲分配均匀、易实现多坐标联动等优点。
学生练习习题,巩固所学的知识
6分
10分Biblioteka 8分20分教与学互动设计
教师活动内容
学生活动内容
时间
6、例题
设加工第一象限逆圆弧,其圆心在圆点,起点A坐标为(6,0),终点B(0,6),累加器为三位,试用数字积分法插补计算,并画出走步轨迹图。
二、数据采样插补法
主要采用讲解法、引导法和归纳法。
1、概述
数据采样插补用小段直线来逼近给定轨迹,插补输出的是下一个插补周期内各轴要运动的距离,不需要每走一个脉冲当量插补一次,可达到很高的进给速度。
教案

简述数字积分法进行插补运算的基本原理

简述数字积分法进行插补运算的基本原理

5 2・
பைடு நூலகம்
科技论 坛
筒述 数字积分 法进 行插 补运算 的基 本原理
杨方 明 王 昊
( 河北农业大 学机 电工程 学院, 河北 保定 0 7 1 0 0 0 )
摘 要: 数 字积分法 , 也称 D D A法 , 它是建 立在数 字积分 器基础上 的一种插补 算法 , 可 实现 多坐标联动 与空 间曲线的插补 , 在数控 系统 中得到广泛的应用。主要描述数 字积分法的基本原理 , 为初学者提供原理方 法的基本认 知理 解。 关键词 : 数 字积 分 法 ; 累加 ; 直线插补 ; 圆弧 插 补 S
结 束 语 总 的来说 , 数字积分法就是用累加的方法实现积分 的过 程。主 要 由被积 函数寄存器 与累加 器完成运算 , 运算过程 中 , 累加 、 溢出、
f=l
h. △ £
进给 、 终 点判别循环进行 , 直到插补结束。
参 考 文 献
取△ l 后 , 上 式 变 为f : z k
1 数字 积 分 法基 本 原 理 数字积分法类似微积 分的基本 思想 , 即无 限细分 与无 限求 和的 y ∑ y 思想 。 如图 1 所示 , 求 函数 y - f ( t ) 在 区间[ t o , t 0 的定积分 , 转换为几何关 矗 系就是求 函数在该区间内与 t 轴所 围成的面积
△t= '
由上式可得 l 口 I l ,A y=k y 。 ,A x=l 口 c 。 为使每次的进给脉冲不多于一个脉冲 , 必须满足 A y <l ,△ x <1 ,
即 k y 叠《I ,k x l< l 。而 y ・ 、x ・ 的值受寄存器容量限制 ,
若 寄存器为 N位寄存器 , 则其最大值为 2 N—l 。

第三章 插补原理及控制方法

第三章  插补原理及控制方法

昆明学院戴丽玲
12
3-1 逐点比较法插补
6)四个象限直线的插补 第二、三、四象限的 直线插补,其逐点比较法 直线插补原理与第一象限 直线相同,只是注意在处 理时计算公式
+Y F≽0
F x y x i e i iy e
中的各坐标值取做绝对值 即可。
-X
F<0
F<0
+X
F≽0 -Y
图3.6 四象限直线插补
2019/2/14
昆明学院戴丽玲
23
3-2 数字积分法插补
数字积分法又称数字微分分析法( DDA ,Digital Differential Analyzer),数字积分法具有运算速度快,脉 冲分配均匀的特点,易于实现多坐标的联动及描绘平面各 种函数曲线。 一、数字积分法的数学原理 Y 如右图,函数在 [t0 , tn ]的定积分,即 为函数在该区间的面积: Yi-1 Yi Y=f(t)
终点判别
Σ=4+4=8 Σ=8-1=7 Σ=7-1=6 Σ=5 Σ=4 Σ=3 Σ=2 Σ=1 Σ=0
F0=0 F1<0 F2<0 F3<0 F4>0 F5<0 F6>0 F7>0
-x +y +y +y -x +y -x -x
2
3 4 5 6
F1=F0-2x0+1 =0-2*4+1=-7 F2=F1+2y1+1 =-7+2*0+1=-6 F3=F2+2y2+1=-3 F4=F3+2y3+1=2 F5=F4-2x4+1=-3 F6=F5+2y5+1=4 F7=F6-2x6+1=1 F8=F7-2x7+1=0

二、数字积分法插补

二、数字积分法插补

O ∆t
t T
若∆t取最小基本单位“1”,则上式可简化为: n-1 S=∑ Yi
i=0
(累加求和公式或矩形公式)
这种累加求和运算,即积分运算可用数字积分器来实现, 被积函数寄存器 ∆t 存放Y值
+ ∆Y
累加器(余数寄存器)
若求曲线与坐标轴所包围的面积,求解过程如下: 被积函数寄存器用以存放Y值,每当∆t 出现一次,被积函 数寄存器中的Y值就与累加器中的数值相加一次,并将 累加结果存于累加器中,如果累加器的容量为一个单 位面积,则在累加过程中,每超过一个单位面积,累 加器就有溢出。当累加次数达到累加器的容量时,所 产生的溢出总数就是要求的总面积,即积分值。 被积函数寄存器 ∆t 存放Y值
110 110 110 110 110 110 110 110
000 110 100 1 010 1 000 1 110 100 1 010 1 1
000 初始状态 111 第一次累加 110 JRy有进位, ∆Y溢出 101 JRy有进位, ∆Y溢出 100 ∆X,∆Y同时溢出 011 ∆X,∆Y同时无溢出 ∆Y溢出 010 ∆Y溢出 001 000
1
010 001
无溢出 1 000 ∆X∆Y同时溢出
,Y到终点停止迭代
∆X溢出修正Xi
插补计算过程如下:
累加 次数 (∆t) Y终 X积分器 X终 Y积分器 JVx JRy 溢出 点计 Jvy JRx 溢出 点计 数器 (Yi) ∆X 数器 (Xi) ∆Y
备注
∆X溢出修正Xi
12 101 001 1 001 010 001 13 101 110 001 001 14 101 011 1 000 001 000
二、数字积分法插补

插补与刀补计算原理

插补与刀补计算原理

Xi|、坐标|Yi|、总步数Σ=+|Ye-Ys|在内存中均占用三个字节,
并且F采用补码形式,其余数据采用绝对值或正数,地址分配 情况如表3-6所示。
14603C
表3-6 第Ⅰ象限逆圆插补参数地址分配表
14603C
(三)插补实例
例3-4设将要加工的零件轮廓为第Ⅰ象限逆圆,如图3-9所示, 圆心在坐标原点,起点为S(4,3),终点为E(0,5),试用逐点比
4。该圆弧插补运算过程如表3-11所示,插补轨迹如图3-25的折
线所示。
14603C
表3-11 DDA圆弧插补运算过程
14603C
四、数字积分法插补的象限处理
表3-12 DDA法插补不同象限直线和圆弧情况
14603C
五、提高数字积分法插补质量的措施
(一)合成进给速度 (二)进给速度均匀化的措施
14603C
(三)插补实例
例3-6设有第Ⅰ象限逆圆弧,如图3-25所示,起点为S(4,0),终 点为E(0,4),且寄存器位数N=3。试用DDA法对该圆弧进行插
补,并画出插补轨迹。
解 插补开始时,被积函数寄存器初值分别为 JVX=Ys=0,J
VY=Xs=4,终点判别寄存器JΣX=|Xe-Xs|=4,JΣY=|Ye-Ys|=
图3-17 合成进给速度 与轴速度的关系
14603C
四、逐点比较法合成进给速度
图3-18 合成进给速度变化曲线
14603C
第三节 数字积分法 一、数字积分法基本原理 二、数字积分法直线插补
三、数字积分法圆弧插补
四、数字积分法插补的象限处理 五、提高数字积分法插补质量的措施
14603C
一、数字积分法基本原理
→NR2→NR3→NR4→NR1→…;顺圆过象限的转换顺序是:SR1→

7.数字积分法圆弧插补

7.数字积分法圆弧插补
t
X函数寄存器JVX
Y函数寄存器JVY
与门
Y
X累加器JRX
与门
X
Y累加器JRY
图5-23 第一象限顺圆弧插补器
机电工程学院
DDA圆弧插补与直线插补的主要区别为:
(1)圆弧插补中被积函数寄存器寄存的坐标值与对应坐标轴积分 器的关系恰好相反。 (2)圆弧插补中被积函数是变量,直线插补的被积函数是常数。 (3)圆弧插补终点判别需采用两个终点计数器。对于直线插补,
圆弧插补时要求刀具沿圆弧切线作等速运动设圆弧上某一点pxy的速度为v则在两个坐标方向的分速度为vxvy根据图中几何关系有如下关系式
7.数字积分法圆弧插补
第一象限顺圆如右图,圆弧的圆心在坐标原点O,起点为A(Xa,Ya), 终点为B(Xb,Yb)。圆弧插补时,要求刀具沿圆弧切线作等速运动,设圆 弧上某一点P(X,Y)的速度为 V,则在两个坐标方向的分速度为Vx,Vy, 根据图中几何关系,有如下关系式:
V Vx Vy k RY X
对于时间增量而言,在X,Y坐标
轴的位移增量分别为:
X Vxt kYt
Y Vyt kXt
由于第一象限顺圆对应Y坐标值逐渐
减小,所以式(3-21)中表达式中取负号,
图5-22 DDA圆弧插补
即Vx,Vy均取绝对两个积分器来实现圆弧插补,如下图所示。
如果寄存器位数为n,无论直线长短都需迭代2n次到达终点。
有缘学习更多+谓ygd3076或关注桃报:奉献教育(店铺)
机电工程学院

差补原理及控制方法

差补原理及控制方法

第 三
如右图,函数在[t0 , tn ]的定 积分,即为函数在该区间
章 的面积:
2020年2月28日星期五
Yi-1 Yi
Y=f(t)
插 补
O t0 t1 t2
ti-1 ti
tn t
原 如果从t=0开始,取自变量 理 t的一系列等间隔值为△t, 及 当△t足够小时,可得
如果取△t=1,即一个脉冲 当量δ,则

L1,L4 +X
Fm+1= Fm-ye
L1,L2
+Y
Fm+1= Fm+xe
制 L2,L3 -X
L3,L4 -Y


7
数 3-1 逐点比较法插补

技第

一 象
第限
三直
章线
插 补 原 理
及 控
插 补 程 序 框 图



2020年2月28日星期五 8
数 3-1 逐点比较法插补
2020年2月28日星期五

章Y
插 补 原 理
及O 控 制 方

插 补 步 骤
X
2020年2月28日星期五
插补开始 偏差判别 坐标进给 偏差计算
N 终点判别
Y 插补结束
3
数 3-1 逐点比较法插补
2020年2月28日星期五

技 一、逐点比较法直线插补
➢偏差判别函数
术Y
当M在OA上,即F=0时;

三 章
插 补
M(Xi,Yi)
2N-1


19
数 3-2 数字积分法插补

技 若要满足

数控机床插补计算

数控机床插补计算

新点的偏差为
2.终点判别的方法
一种方法是设置两个减法计数器,在计数器中 分别存入终点坐标值,各坐标方向每进给一步时,就 在相应的计数器中减去1,直到两个计数器中的数都 减为零时,停止插补,到达终点。
另一种方法是设置一个终点计数器,计数器中 存入两坐标进给的步数总和,当x或y坐标进给时均 减1,当减到零时,停止插补,到达终点。
四个象限圆弧插补计算
与直线插补相似,计算用 坐标的绝对值进行,进给方向 另做处理。从图看出SRl、NR2、 SR3、NR4的插补运动趋势都是 使X轴坐标绝对值增加、y轴坐 标绝对值减小。NRl、SR2、 NR3、SR4插补运动趋势都是使 X轴坐标绝对值减小、y轴坐标 绝对值增加。
(二)圆弧插补计算举例 设加工第一象限逆圆AB,已知起点A(4,0),终 点B(o,4)。试进行插补计算并画出走步轨迹。
2.2.2 刀具半径补偿 1.刀具半径补偿概念
刀具半径补偿功能是指改变刀具中心运动轨迹的功能。如图 所示,用铣刀铣工件轮廓时,刀具中心应始终偏离工件表面一个 刀具半径的距离,编程人员则以工件的轮廓表面尺寸进行编程。 当刀具半径确定之后,可以将刀具半径的实测值输入刀具半 径补偿存储器,存储起来,加工时可根据需要用G41或G42进行调 用。G41和G42分别为左刀补和右刀补。如图所示。
2.2
刀具补偿原理
数控系统对刀具的控制是以刀架参考点为基准的,但零件加 工是用刀尖点进行的,所以需要在刀架参考点和刀尖点之间进 行位置偏置(补偿)。
2.1.2
刀具长度补偿
以数控车床为例,P为刀尖,Q为刀架参考点,设刀尖圆 弧半径为零。利用测量装置测出刀尖点相对于刀架参考点的 坐标(xpq ,ypq ),存入刀补内存表中。 编程时以刀尖点P(XP,ZP) 来编程,刀架参考点坐标 Q(Xq,Zq)由下式求出 Xq=XP- xpq P(XP,ZP) xpq Q Zq=ZP- Zpq 刀具长度补偿由G43、G44及 zpq H代码指定。

关于数字积分插补算法的理解

关于数字积分插补算法的理解

关于数字积分插补算法的理解作者:郝娟肖定国周世圆贾玉平来源:《科教导刊》2012年第30期摘要数字积分插补算法是在数字积分器的基础上建立起来的一种插补算法,易于实现多坐标联动,在数控系统中得到广泛应用。

多数教材在讲述该算法时,在推导了用累加和表示积分值的过程后,没有进一步解释算法中各参数的物理含义,学生理解起来有困难。

本文基于数字积分法的原理,详细阐述了算法中各参数的物理含义,并以数字积分直线插补算法为例做了进一步分析,便于学生掌握该算法的本质。

关键词数字积分插补算法数控系统物理含义中图分类号:TG659 文献标识码:A0 引言插补算法是影响数控系统性能的重要因素,是数控技术课程的核心内容,数字积分插补算法又称数字微分分析法——DDA(Digital Differential Analyzer),是在数字积分器的基础上建立起来的一种插补算法。

它的优点是脉冲分配均匀,易于实现多坐标联动,容易实现二次曲线、高次曲线和空间直线的插补,在数控系统中得到广泛应用。

一般教材都结合函数积分原理讲述该插补算法原理,即将函数 = ()在到区间的积分,近似视为曲线下许多小矩形面积之和。

一般还要假设为单位时间和累加器容量为单位面积而将上述公式变为:若累加过程中超过一个单位面积就产生一个溢出脉冲,则累加过程所产生的溢出脉冲总数就等于所求的积分值。

上述公式从数学角度容易理解,但是用“1”替代的依据是什么,对应的是否发生相应变化,的物理含义是什么,多数教材并没有进一步论述,这种内容上的模糊影响了学生对算法本质的理解。

1 数字积分插补算法的物理含义数控插补算法的本质是将基本数控轨迹分解为数控运动所需的最小位移量,而位移正是速度的积分。

因此,公式(1)中函数 = ()的物理含义应该是某个坐标轴的速度函数,下面对其做进一步说明。

假设某数控系统要加工的平面任意曲线,在及坐标轴的速度分量如图1(a)和(b)所示,该曲线的数字积分插补算法工作过程是每个脉冲源到来时,对各运动轴的速度分量进行积分以确定相应坐标轴的位移量,当位移量超出一个脉冲当量时相应轴就溢出一个进给脉冲。

数字积分插补法直线插补

数字积分插补法直线插补

数控原理与系统课程设计课题名称:数字积分插补法直线插补专业:班级:姓名:指导老师:数控原理与系统课程设计任务书班级姓名学号课程设计的目的1)了解连续轨迹控制数控系统的组成原理。

2) 掌握数字积分插补的基本原理。

3)掌握数字积分插补的软件实现方法。

二、课程设计的任务数字积分法又称数字微分分析法DDA(Digital Differential Analyzer)。

数字积分法具有运算速度快、脉冲分配均匀、易于实现多坐标联动及描绘平面各种函数曲线的特点,应用比较广泛。

其缺点是速度调节不便,插补精度需要采取一定措施才能满足要求。

由于计算机有较强的计算功能和灵活性,采用软件插补时,上述缺点易于克服。

本次课程设计具体要求如下:1)数字积分插补法基本原理2)数字积分插补法插补软件流程图3)算法描述(逐点比较法算法在VB中的具体实现)4)编写算法程序清单5)软件运行仿真效果二、课程设计报告要求1)按课程设计任务5点要求为标题,编写课程设计报告,最后加一点:此次课程设计小结(包括设计过程中所碰到的问题、解决办法以及有关设计体会等)。

2)字数在3000字左右。

3)仿真软件一份。

三、学生分组学 生 姓 名数控原理与系统课程设计说明书一、数字积分法直线插补的基本原理数字积分法是利用数字积分的方法,计算刀具沿各坐标轴的位移,使得刀具沿着所加工的轮廓曲线运动利用数字积分原理构成的插补装置称为数字积分器,又称数字微分分析器(Digital Differential Analyzer ),简称DDA 。

数字积分器插补的最大优点在于容易实现多坐标轴的联动插补、能够描述空间直线及平面各种函数曲线等。

因此,数字积分法插补在轮廓数控系统中得到广泛的应用。

从几何角度来看,积分运算就是求出函数Y = f (t )曲线与横轴所围成的面积,从t =t 0到t n 时刻,函数Y= f (t )的积分值可表述为⎰⎰==n n tt t t dt )t (Ydt S 00f如果进一步将t ∈[t 0,t n ]的时间区划分为若干个等间隔Δt 的小区间,当Δt 足够小时,函数Y 的积分可用下式近似表示t Y Ydt S n i i tt n ∆∑⎰-=≈=1在几何上就是用一系列的小矩形面积之和来近似表示函数f (t )以下的积分面积。

第四章 插补原理与速度控制

第四章 插补原理与速度控制

n=6=N完
四象限直线插补
A2(-Xe,Ye)
A1(Xe,Ye)
A3(-Xe,-Ye) 直线插补各象限偏差符号和相应的进给方向
A4(Xe,-Ye)
(二)圆弧插补(第一象限顺圆插补)
1、偏差判别函数 2、偏差计算与进给方向 3、终点判别 4、举例
1、偏差判别函数



用P(x,y)表示某 一时刻刀具的位 置,则偏差函数 为: F=x2+y2-R2 F>0 在圆外 F<0 在圆内 F=0 在圆上
X11= X10=7 Y11= Y10+1=8
n=11<N
X12 =X11 -1=6 n=12=N Y12 = Y11=8 到达终 点
Y 8 6
B(6,8)
4
2
2
4
6
8
10
四个象限圆弧插补
F>0
F>0 F>0 F<0 F<0 F<0 F<0
F>0
F<0
F>0 F<0 F>0
F<0
F<0
F>0 F>0
+X +X,+Y +X
20-16=4 24-16=8 18-16=2 20-16=4
+X,+Y +X
+X,+Y +X +X,+Y +X +X,+Y
22-16=6 16-16=0
20-16=4 24-16=8 18-16=2 22-16=6 16-16=0
19-16=3
18-16=2
17-16=1
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档