锑掺杂量对ATO薄膜结构及光、电性能的影响

锑掺杂量对ATO薄膜结构及光、电性能的影响
锑掺杂量对ATO薄膜结构及光、电性能的影响

第三章 晶体结构缺陷

第三章晶体结构缺陷 【例3-1】写出MgO形成肖特基缺陷得反应方程式。 【解】MgO形成肖特基缺陷时,表面得Mg2+与O2-离子迁到表面新位置上,在晶体内部留下空位,用方程式表示为: 该方程式中得表面位置与新表面位置无本质区别,故可以从方程两边消掉,以零O(naught)代表无缺陷 状态,则肖特基缺陷方程式可简化为: 【例3-2】写出AgBr形成弗伦克尔缺陷得反应方程式。 【解】AgBr中半径小得Ag+离子进入晶格间隙,在其格点上留下空位,方程式为: 【提示】一般规律:当晶体中剩余空隙比较小,如NaCl型结构,容易形成肖特基缺陷;当晶体中剩余空隙比较大时,如萤石CaF2型结构等,容易产生弗伦克尔缺陷。 【例3-3】写出NaF加入YF3中得缺陷反应方程式。 【解】首先以正离子为基准,Na+离子占据Y3+位置,该位置带有2个单位负电荷,同时,引入得1个F-离子位于基质晶体中F-离子得位置上。按照位置关系,基质YF3中正负离子格点数之比为1/3,现在只引入了1个F-离子,所以还有2个F-离子位置空着。反应方程式为:可以验证该方程式符合上述3个原则。 再以负离子为基准,假设引入3个F-离子位于基质中得F-离子位置上,与此同时,引入了3个Na+离子。根据基质晶体中得位置关系,只能有1个Na+离子占据Y3+离子位置,其余2个Na+位于晶格间隙,方程式为: 此方程亦满足上述3个原则。当然,也可以写出其她形式得缺陷反应方程式,但上述2个方程所代表得

缺陷就是最可能出现得。 【例3-4】写出CaCl2加入KCl中得缺陷反应方程式。 【解】以正离子为基准,缺陷反应方程式为: 以负离子为基准,则缺陷反应方程式为: 这也就是2个典型得缺陷反应方程式,与后边将要介绍得固溶体类型相对应。 【提示】通过上述2个实例,可以得出2条基本规律: (1)低价正离子占据高价正离子位置时,该位置带有负电荷。为了保持电中性,会产生负离子空位或间隙正离子。 (2)高价正离子占据低价正离子位置时,该位置带有正电荷。为了保持电中性,会产生正离子空位或间隙负离子。 【例3-5】TiO2在还原气氛下失去部分氧,生成非化学计量化合物TiO2-x,写出缺陷反应方程式。 【解】非化学计量缺陷得形成与浓度取决于气氛性质及其分压大小,即在一定气氛性质与压力下到达平衡。该过程得缺陷反应可用 或 方程式表示,晶体中得氧以电中性得氧分子得形式从TiO2中逸出,同时在晶体中产生带正电荷得氧空位与与其符号相反得带负电荷得来保持电中性,方程两边总有效电荷都等于零。可以瞧成就是Ti4+被还原为Ti3+,三价Ti占据了四价Ti得位置,因而带一个单位有效负电荷。而二个Ti3+替代了二个

压电薄膜材料的性能与性能特点

压电薄膜材料的性能与性能特点 压电材料是实现机械能与电能相互转换的功能材料,它的发展有着十分悠久的历史。自19世纪80年代从CURIE 兄弟在石英晶体上发现了压电效应后,压电材料开始引起人们的广泛注意,随着研究深入,不断涌现出大量的压电材料,如压电功能陶瓷材料、压电薄膜、压电复合材料等。这些材料有着十分广泛的用途,在电、磁、声、光、热、湿、气、力等功能转换器件中发挥着重要的作用。 PVDF压电薄膜 PVDF压电薄膜即聚偏氟乙烯压电薄膜,在1969年,日本人发现了高分子材料聚偏氟乙烯(polyvinylidene fluoride polymer) 简称PVDF,具有极强的压电效应。 PVDF薄膜主要有二种晶型即α型和β型,α型晶体不具有压电性,但PVDF膜经滚延拉伸后,原来薄膜中的α型晶体变成β型晶体结构。拉伸极化后的PVDF 薄膜在承受一定方向的外力或变形时,材料的极化面就会产生一定的电荷,即压电效应。 与压电陶瓷和压电晶体相比,压电薄膜主要有以下优点: (1)质量轻,它的密度只有常用的压电陶瓷PZT的四分之一,粘贴在被测物体上对原结构几乎不产生影响,高弹性柔顺性,可以加工成特定形状可以与任意被测表面完全贴合,机械强度高,抗冲击; (2)高电压输出,在同样受力条件下,输出电压比压电陶瓷高10倍; (3)高介电强度,可以耐受强电场的作用(75V/um),此时大部分压电陶瓷已经退极化了; (4)声阻抗低,仅为压电陶瓷PZT的十分之一,与水、人体组织以及粘胶体相接近;(5)频响宽,从10-3Hz到109均能转换机电效应,而且振动模式单纯。 因此在力学中可以测量应力和应变,在振动中可以制作加速度计和振动模态传感器,在声学上可以制作声辐射模态传感器和超声换能器以及用在主动控制中,在机器人研究中可以

电主轴综述

高速电主轴技术 乔志敏 S1203027 摘要:通过阐述了高速电主轴的发展历程、高速电主轴的结构以及高速电主轴设计制造过程中的关键技术,分析了高精度、高转速电主轴对数控机床性能的影响。实践证明,采用高速加工技术可以解决机械产品制造中的诸多难题,能够获得特殊的加工精度和表面质量,高精度高转速电主轴功能部件,对提高数控机床的性能具有极大的影响。 关键词:高速电主轴;高精度;数控机床 Abstract: Based on the development of high-speed motorized spindle and the main str ucture of the motorized and the key technologies in the manufacturing process of high -speed motorized spindle, it analyzes the high precision, high speed electric spindle of influence on the performance of the numerical control machine. Practice has proved t hat high-speed processing technology can solve many problems in the manufacturing of mechanical products, and it can obtain special machining accuracy and surface qual ity. High precision and high speed motorized spindle features have a great impact on t he performance of CNC machine tools . Keywords: high-speed motorized spindle, high precision, CNC machine

透明导电薄膜用Sb掺杂SnO2光电特性研究[设计+开题+综述]

开题报告 电子信息科学与技术 透明导电薄膜用Sb掺杂SnO2光电特性研究 一、选题的背景与意义 近年来,随着科技的进一步发展,太阳能电池,高分辨率,大尺寸平面显示器,节能红外反射膜等广泛应用,对透明导电膜的需求越来越大。透明导电膜主要用于透明电极、屏幕显示、热反射镜、透明表面发热器、柔性发光器件、液晶显示器等领域。这就要求透明导电膜不但要有好的导电性,还要有优良的可见光透光性。根据材料的不同,透明导电膜可分为金属透明导电薄膜,氧化物透明导电膜、非氧化物透明导电薄膜及高分子透明导电薄膜。当前,氧化物及其复合氧化物薄膜的研究十分引人关注。本课题主要研究的是Sb掺杂SnO2(简称ATO)体系。 ATO主要成分的SnO2因其优良的光电性能而被广泛应用于透明导电、固态气体传感器及催化等领域。在透明导电膜中,SnO2因其优异的光电性能已被广泛应用,二氧化锡膜是较早获得商业应用的透明导电材料之一,SnO2是透明n 型宽禁带半导体材料,其Eg=3.6 eV(300 K),纯SnO2的电阻率通常较高,其载流子浓度由氧空位决定,在SnO2中掺入少量的Sb离子能大幅度降低SnO2的电阻率并保持良好的透光性。 而随着电子工业以及相关高新技术产业的高速发展,具有半导体特性金属氧化物导电粉末尤其是超细粉末(如掺杂锑的氧化锡)由于其独特的稳定性和广泛的应用领域而得到迅速发展。 ATO(锑掺杂的二氧化锡)是一类新型浅色透明导电粉,它利用锑掺杂取代锡形成缺陷固融体时形成的氧空位或电子作为载流电子导电的。ATO可做优良隔热粉、导电粉使用。其良好隔热性能,被广泛的应用于涂料、化纤、高分子膜等领域。此外作为导电材料,在分散性、耐活性、热塑性、耐磨性、安全性有着其他导电材料无法比拟的优势。被应用于光电显示器件、透明电极、太阳能电池、液晶显示、催化等方面。

高速电主轴及其结构

高速电主轴及其结构报告 姓名:周李念 学号: 班级:机自实验04班 重庆大学机械工程学院

高速电主轴及其结构 周李念 (重庆大学机械工程学院机自实验04班) 摘要:高速加工能显著地提高生产率、降低生产成本和提高产品加工质量,是制造业发展的重要趋势,也是一项非常有前景的先进制造技术。实现高速加工的首要条件是高质量的高速机床,而高速机床的核心部件是高速电主轴单元,它实现了机床的“零传动”,简化了结构,提高了机床的动态响应速度,是一种新型的机械结构形式,其性能好坏在很大程度上决定了整台机床的加工精度和生产效率。 关键词:高速加工;电主轴;结构设计 1 高速电主轴概述 高速电主轴最早是用于磨削机床加工,逐步发展到加工中心电主轴及其他各行业机床主轴.典型的磨削电主轴的结构如图1 所示,传统的主轴一般是通过传动带、齿轮来进行传动驱动,而电主轴的驱动是将异步电机直接装入主轴内部,通过驱动电源直接驱动主轴进行工作,以实现机床主轴系统的零传动,形成“直接传动主轴”.从而减少中间皮带或者齿轮机械传动等环节,实现了机械与电机一体的主轴单元.电主轴不但减少了中间环节存在的打滑、振动和噪音的因素,也加速了主轴在高速领域的快速发展,成为满足高速切削,实现高速加工的最佳方案,其高转速、高精度、高刚性、低噪音、低温升、结构紧凑、易于平衡、安装方便、传动效率高等优点,使它在超高速切削机床上得到广泛的应用[1]. . 1 转轴;2 前轴承组;3 定子部件;4 转子部件;5 后轴承组;6 进-出水孔;7 进油孔;8 接线座;9 出油孔 图1 电主轴结构简图 高速电主轴的优点: 高速电主轴取消了由电机驱动主轴旋转工作的中间变速和传动装置(如齿轮、皮带、联轴节等),因此高速电主轴具有如下优点: (1)主轴由内装式电机直接驱动,省去了中间传动环节,机械结构简单、紧凑, 噪声低,主轴振动小,回转精度高,快速响应性好,机械效率高; (2)电主轴系统减少了高精密齿轮等关键零件,消除了齿轮传动误差,运行时更加平稳; (3)采用交流变频调速和矢量控制技术,输出功率大,调速范围宽,功率—扭矩特性好,可在额定转速范围实现无级调速,以适应各种负载和工况变化的需要; (4)可实现精确的主轴定位,并实现很高的速度、加速度及定角度快速准停,动态精度和稳定性好,可满足高速切削和精密加工的需要; (5)大幅度缩短了加工时间,只有原来的约 1/4; (6)加工表面质量高,无需再进行打磨等表面处理工序;

纳米掺锑二氧化锡

纳米掺锑二氧化锡 简介: 掺锑二氧化锡(Antimony Doped Tin Oxide简称ATO)是?一种新型多功能材料.外观多为灰白色-蓝色粉体,具有耐高温、耐腐蚀、分散性好等特点。 掺锑二氧化锡(ATO,Antimony Doped Tin Oxide)是?一种N型半导体材料,具有浅色透明性和良好的导电性、耐候性及化学稳定性[1]。将纳米ATO均匀分散于水介质中,可制得水性纳米ATO浆料,并以其作为功能填料,以水性聚氨酯为成膜剂,可制备应用于玻璃表面的透明且具有隔热效果的隔热涂 在充分回收含锡阳极泥有价金属的基础上,采用从锡锑二次资源中直接提取的高纯氯锡酸铵和氯氧锑为原料,合成了性能优良的纳米级锑掺杂二氧化锡(ATO)粉。 纯SnO2是?一禁带宽达3.8 eV的绝缘体,当产生O空位或掺杂F、Sb等元素后,形成n型半导体。其中,Sb掺杂二氧化锡(ATO)粉体因其优良的电学和光学性能而在太阳能转化电池,智能窗,电致变色材料,抗静电塑料、涂料、纤维,显示器用防辐射抗静电涂层材料,红外吸收隔热材料,气敏元件,电极材料等方面得到了广泛的应用,是?一种新型的多功能导电材料。它与其他传统抗静电材料如石墨、表面活性剂、金属粉等相比,有着较大的优越性,如耐候性、耐磨性以及分散性,从而具有广阔的市场前景 应用领域: ATO(Antimony Doped Tin Oxide)可作优良隔热粉、导电粉(抗静电粉)使用。其良好隔热性能,被广泛的应用于涂料、化纤、高分子膜等领域。此外作为导电材料,在分散性、耐活性、热塑性、耐磨性、安全性上有着其他导电材料(如石墨、表面活性剂、金属粉等)无法比拟的优势。被应用于光电显示器件、透明电极、太阳能电池、液晶显示、催化等方面。 行业领导者: 上海那博化工科技有限公司于2012 年在上海市嘉定区建成,成为那博化工在中国的综合服务平台,并辐射至亚太区众多客户。那博化工致力于通过品牌、产品及服务,为涂料、塑料、造纸和特殊用品市场创造更好的、更令人满意的价值。 那博研发团队优势 从概念到商业化应用,那博的技术团队帮助客户快速实现产品的商业化应用。 ? 通过提升产品设计以改进性能 ? 更短的加工周期以提高生产力 ? 成本优势和出众的性能 ?领先的实验设备 消费者 作为精细化工行业的重要原料供应商,我们在纳米技术领域有着独到的见解。我们愿用专业的知识给您最中肯的建议,帮您选择最适合您的技术解决方案。 商业伙伴 我们的承诺是理解客户,提供卓越的产品、服务和整体价值,在满足您的独特需要的同时,为您的企业的快速成长贡献自己的绵薄之力。

电主轴的工作原理、典型结构及优点

电主轴的工作原理、典型结构及优点 打印引用发布时间:2010-04-25 电主轴是高速数控加工机床的“心脏部件”,本文介绍了电主轴的工作原理、典型结构,阐述了电主轴的关键技术,总结了其发展趋势. 1、概述 由于高速加工不但可以大幅度提高加工效率,而且还可以显著提高工件的加工质量,所以其应用领域非常广泛,特别是在航空航天、汽车和模具等制造业中。于是,具有高速加工能力的数控机床已成为市场新宠。目前,国内外各著名机床制造商在高速数控机床中广泛采用电主轴结构,特别是在复合加工机床、多轴联动、多面体加工机床和并联机床中。电主轴是高速数控加工机床的“心脏部件”,其性能指标直接决定机床的水平,它是机床实现高速加工的前提和基本条件。 2、电主轴的工作原理、典型结构及优点 2.1 电主轴的工作原理 电主轴就是直接将空心的电动机转子装在主轴上,定子通过冷却套固定在主轴箱体孔内,形成一个完整的主轴单元,通电后转子直接带动主轴运转。 2.2电主轴的典型结构 电主轴单元典型的结构布局方式是电机置于主轴前、后轴承之间(如图所示),其优点是主轴单元的轴向尺寸较短,主轴刚度大,功率大,较适合于大、中型高速数控机床;其不足是在封闭的主轴箱体内电机的自然散热条件差,温升比较高。 1主轴箱体 2冷却套 3冷却水进口 4定子 5转子 6套筒 7冷却水出口 8转轴 9反馈装置 10主轴前轴承 11主轴后轴承 2.3电主轴的优点 电主轴省去了带轮或齿轮传动,实现了机床的“零传动”,提高了传动效率。电主轴的刚性好、回转精度高、快速响应性好,能够实现极高的转速和加、减速度及定角度的快速准停(C轴控制),调速范围宽。 3、电主轴的关键技术 “电主轴”的概念不应简单理解为只是一根主轴套筒,而应该是一套组件,包括:定子、转子、轴承、高速变频装置、润滑装置、冷却装置等。因此电主轴是高速轴承技术、润滑技术、冷却技术、动平衡技术、精密制造与装配技术以及电机高速驱动等技术的综合运用。 3.1电主轴的高速轴承技术 实现电主轴高速化精密化的关键是高速精密轴承的应用。目前在高速精密电主轴中应用的轴承有精密滚动轴承、液体动静压轴承、气体静压轴承和磁悬浮轴承等,但主要是精密角接触陶瓷球轴承和精密圆柱滚子轴承。液体动静压轴承的标准化程度不高;气体静压轴承不适合于大功率场合;磁悬浮轴承由于控制系统复杂,价格昂贵,其实用性受到限制。

高速电主轴的内部结构说明

高速电主轴的内部结构说明 高速主轴单元主要有高速电主轴,气动主轴和水动主轴。其中高速电主轴最为常见,高速电主轴单元是高速加工机场中最为关键的部件之一。目前大多数电主轴结构都是把加工主轴与电机转轴做成一体,以实现零传动。同时电机外壳带有冷却系统,高速电主轴主要有带冷却系统的壳体,定子、转子、轴承等部分组成,工作时通过改变电流的频率来实现增减速度。由于高速电主轴要实现高速运转,以下几个零部件质量直接影响着高速电主轴的性能。 (1)转轴是高速电主轴的主要回转体。他的制造精度直接影响电主轴的最终精度。成品转轴的形位公差尺寸精度要求很高,转轴高速运转时,由偏心质量引起震动,严重影响其动态性能,必须对转轴进行严格动平衡测试。部分安装在转轴上的零件也应随转轴一起进行动平衡测试。 (2)高速电主轴的核心支撑部件是高速精密轴承。因为电主轴的最高转速取决于轴承的功能、大小、布置和润滑方法,所以这种轴承必须具有高速性能好、动负荷承载能力高、润滑性能好、发热量小等优点。近年来,相继开发了动静压轴承、陶瓷轴承、磁浮轴承。动静压轴承具有很高的刚度和阻尼,能大幅度提高加工效率、加工质量、延长寿命,降低加工成本;而且这种寿命为半无限长。磁浮主轴的高速性能好、精度高、容易实现诊断和在线监控。但这种主轴由于电磁测控系统复杂,价格十分昂贵,而且长期居高不下,至今未能得到广泛应用。目前市场上应用最广泛的就是陶瓷轴承,一般的角接触陶瓷轴承内外圈都是钢圈,滚动体是陶瓷材料。陶瓷具有密度小,刚度好,热膨胀系数小等优点。而且在理论计算和接触疲劳试验和压碎试验表明,混合式陶瓷轴承首先失效的是钢圈而不是陶瓷球。由于前面三种轴承理论寿命均为无穷大,特别是磁悬浮轴承还具有自动调节偏心等优点,在未来超高速机床市场上,随着技术的发展,磁悬浮轴承应是发展方向。而在一般的高速加工机床中,混合式陶瓷轴承或纯陶瓷轴承也将具有广泛的使用场合。 (3)润滑系统 采用良好的润滑系统对高速电主轴性能有着重要的影响。典型的润滑方法是采用油雾润滑或气油混合物润滑。前者主是把润滑油雾化在对轴承进行润滑,润滑油不可再回收,对空污染较严重。后者是直接把润滑油利用高压空气吹进轴承,润滑作用的同时还起到散热的作用。(end) 文章内容仅供参考() ()(2010-7-1) 本文由无锡汽车租赁https://www.360docs.net/doc/726819351.html, 奶茶店加盟https://www.360docs.net/doc/726819351.html, 联合整理发布

国内外高速电主轴技术的现状与发展趋势

高速电主轴技术的现状与发展趋势高速数控机床(CNC)是装备制造业的技术基础和发展方向之一,是装备制造业的战略性产业。高速数控机床的工作性能,首先取决于高速主轴的性能。数控机床高速电主轴单元影响加工系统的精度、稳定性及应用范围,其动力性能及稳定性对高速加工起着关键的作用。 1、高速电主轴对数控机床的发展以及金属切削技术的影响 对于数控机床模块化设计、简化机床结构、提高机床性能方面的作用: (1)简化结构,促进机床结构模块化 电主轴可以根据用途、结构、性能参数等特征形成标准化、系列化产品,供主机选用,从而促进机床结构模块化。 (2)降低机床成本,缩短机床研制周期 一方面,标准化、系列化的电主轴产品易于形成专业化、规模化生产,实现功能部件的低成本制造;另一方面,采用电主轴后,机床结构的简单化和模块化,也有利于降低机床成本。此外,还可以缩短机床研制周期,适应目前快速多变的市场趋势。 (3)改善机床性能,提高可靠性 采用电主轴结构的数控机床,由于结构简化,传动、连接环节减少,因此提高了机床的可靠性;技术成熟、功能完善、性能优良、质量可靠的电主轴功能部件使机床的性能更加完善,可靠性得以进一步提高。 (4)实现某些高档数控机床的特殊要求 有些高档数控机床,如并联运动机床、五面体加工中心、小孔和超小孔加工机床等,必须采用电主轴,方能满足完善的功能要求。 2、促进了高速切削技术在机械加工领域的广泛应用 电主轴系由内装式电机直接驱动,以满足高速切削对机床“高速度、高精度、高可靠性及小振动”的要求,与机床高速进给系统、高速刀具系统一起组成高速切削所需要的必备条件。电主轴技术与电机变频、闭环矢量控制、交流伺服控制等技术相结合,可以满足车削、铣削、镗削、钻削、磨削等金属切削加工的需要。采用高速加工技术可以解决机械产品制造中的诸多难题,取得特殊的加工精度和

塑料薄膜温室大棚结构特点-塑料薄膜温室大棚分类及性能

塑料薄膜温室大棚结构特点-塑料薄膜温室大棚分类及性能 塑料薄膜温室大棚是一种集各类大棚优势于一身的复合型大棚。塑料薄膜温室大棚外表覆盖塑料薄膜,不仅能充分的吸收阳光,更能起到很好的保温作用,使温室大棚内的作物有适宜的的温度能更好的生长。塑料薄膜温室大棚外表的塑料薄膜还具有保护作用。现在小编手上有塑料薄膜温室大棚的结构特点与分类及其性能的资料,接下来就和大家分享一下。 塑料薄膜温室大棚-简介 薄膜温室大棚的塑料薄膜由于价格低廉、使用方便,能较好地改善农作物生长发育条件、提高产量、改善品质,因而在国内外温室覆盖上得以迅速发展。 在目前,用于薄膜温室大棚的薄膜产品主要有PVC薄膜、PE薄膜和EVA薄膜。这三种是薄膜温室大棚中常用的覆盖材料。 我国农用薄膜温室大棚中塑料薄膜的总产量中,以PE薄膜占主导地位。PVC薄膜由于生产幅宽的限制和静电污染等缺点,其在薄膜温室大棚中的应用受到较大的局限。 塑料薄膜温室大棚-结构特点 ﹙1﹚结构简单由于覆盖材料的特点,塑料温室的承重结构、固膜系统、安装要求等相对简单。其承载结构采用热浸镀锌轻钢或普通钢结构,一般采用无檩体系的承重系统,纵向杆件作为系杆和连系梁使用,这样就大大简化了结构,减少了用钢量。当温室采用覆盖材料与屋面非机械性连接时,屋面仅承受重力荷载和正风压,而将风压传递至天沟和立柱也就大大优化了温室结构的受力。

﹙2﹚结构形式灵活多样由于塑料温室结构特点,加之在大型塑料温室的发展过程中,受地域、客户需求等因素影响较多,世界各国均以自己的标准为基础进行塑料温室的生产和推广。因此形成了大量不同形式、不同规格的塑料温室产品,如不同跨度、高度和屋面形状的圆拱形顶温室、双圆拱尖屋面温室、锯齿形温室、小圆拱多屋面温室等。正因为如此,迄今为止,很难对塑料温室的单体尺寸进行中总结和描述。 塑料薄膜温室大棚-分类及性能 ﹙1﹚锯齿形温室锯齿形温室根据屋面的造型,可分为3种型式,由于通风面积大,锯齿形温室的自然通风效果一般要比拱圆顶温室好,据测定,这种温室在外遮阳配合下,其自然通风效果基本能达到室内外温差 1~3℃。但这种温室天窗的密封效果往往较差,在我国夏季气温较高、冬季温度不很低的南方地区推广具有较好的经济效益,但在夏季燥热、冬季寒冷的地区不太适宜。﹙2﹚双层充气温室双层充气温室与传统的塑料薄膜温室除覆盖材料为双层充气膜外,其他几乎没有多大区别。由于采用了双层充气膜覆盖,温室的保温性能提高了30%以上,但同时温室的透光率也下降了10%左右。在我国光照充足而冬季气温较低的北方地区使用有较好的经济效益,但到长江以南使用,由于冬季光照不足,而气温又较高,双层充气的节能效果难以弥补由于透光不足而带来的损失,所以,一般不宜采用。 ﹙3﹚双层结构温室双层结构温室的目的也是为了取得双层充气温室的节能效果,但在结构处理上采

高速电主轴设计

高速电主轴设计 近10年随着高速加工技术的迅猛发展和日益广泛的应用,各工业部门,特别是航空航天、汽车工业、模具加工和摩托车工业等,对高速数控机床的需求量与日俱增。美、日、德、意和瑞士等工业发达国家已生产了多种商品化高速机床,下表列出了近几年在国际机床市场上出现的几种著名品牌的高速加工中 一般说来,高速机床都是数 控机床和精密机床,其传动 结构的最大特点是实现了机 床的“零传动”。从机床的主 传动系统来看,这种传动方 式取消了从主电动机到主轴 之间一切中间的机械传动环 节(如皮带、齿轮、离合器 等),实现了主电动机与机床 主轴的一体化。这种传动方式有以下优点:1、机械结构最为简单,传动惯量小,因而快速响应性好,能实现极高的速度、加(减)速度和定角度的快速准停(C轴控制)。 (a)无矢量控制(b)有矢量控制 图1 扭矩—功率特性

采用交流变频调速和矢量控制的电气驱动技术,输出功率大,调速范围宽。有比较理想的扭矩——功率特性(图1b),一次装夹既可实现粗加工又可进行高速精加工。实现了主轴部件的单元化,可独立做成标准化的功能部件,并由专业厂进行系列化生产。机床主机厂只需根据用户的不同要求进行选用,可很方便地组成各种性能的高速机床,符合现代机床设计模块化的发展方向。电主轴的机械结构虽然比较简单,但制造工艺的要求却非常严格。这种结构还带来一系列新的技术难题,诸如内置电动机的散热、高速主轴的动平衡、主轴支承及其润滑方式的合理设计等问题,必须妥善地得到解决,才能确保主轴稳定可靠的高速运转,实现高效精密加工。本文结合我校高速电主轴的研制实践,探讨铣镗类高速大功率电主轴设计与制造中的有关问题。1 电主轴的基本参数与结构布局电主轴的主要参数有:(1)主轴最高转速和恒功率转速范围:(2)主轴的额定功率和最大扭矩:(3)主轴前轴颈直径和前后轴承的跨距等。其中主轴最高转速、前轴颈直径和额定功率是基本参数。电主轴通常装备在高速加工中心上,在设计电主轴时要根据用户的工艺要求,采用典型零件统计分析的方法来确定这些参数。机床厂对同一尺寸规格的高速机床,一般会分两大类型,即“高速型”和“高刚度型”分别进行设计。前者主要用于航空、航天等工业加工轻合金、复合材料和铸铁等零件:后者主要用于模具制造、汽车工业中高强度钢或耐热合金等难加工材料和钢件的高效加工。在设计电主轴时,还要注意选择有较好扭矩———功率特性和有足够宽调速范围的变频电动机及 其控制模块。根据主 电动机和主轴轴承 相对位置的不同,高 速电主轴有两种布 局方式: 1.编码盘 2.电主轴壳体 3.冷却水套 4.电动机定子 5.油气喷嘴 6. 电动机转子7.阶梯过盈套8.平衡盘9.角接触陶瓷球轴承 图2 GD-2型电主轴

材料科学基础第三章答案

习题:第一章第二章第三章第四章第五章第六章第七章第八章第九章第十章第十一章答案:第一章第二章第三章第四章第五章第六章第七章第八章第九章第十章第十一章 3-2 略。 3-2试述位错的基本类型及其特点。 解:位错主要有两种:刃型位错和螺型位错。刃型位错特点:滑移方向与位错线垂直,符号⊥,有多余半片原子面。螺型位错特点:滑移方向与位错线平行,与位错线垂直的面不是平面,呈螺施状,称螺型位错。 3-3非化学计量化合物有何特点?为什么非化学计量化合物都是n型或p型半导体材料? 解:非化学计量化合物的特点:非化学计量化合物产生及缺陷浓度与气氛性质、压力有关;可以看作是高价化合物与低价化合物的固溶体;缺陷浓度与温度有关,这点可以从平衡常数看出;非化学计量化合物都是半导体。由于负离子缺位和间隙正离子使金属离子过剩产生金属离子过剩(n型)半导体,正离子缺位和间隙负离子使负离子过剩产生负离子过剩(p型)半导体。 3-4影响置换型固溶体和间隙型固溶体形成的因素有哪些? 解:影响形成置换型固溶体影响因素:(1)离子尺寸:15%规律:1.(R1-R2)/R1>15%不连续。 2.<15%连续。 3.>40%不能形成固熔体。(2)离子价:电价相同,形成连续固熔体。( 3)晶体结构因素:基质,杂质结构相同,形成连续固熔体。(4)场强因素。(5)电负性:差值小,形成固熔体。差值大形成化合物。 影响形成间隙型固溶体影响因素:(1)杂质质点大小:即添加的原子愈小,易形成固溶体,反之亦然。(2)晶体(基质)结构:离子尺寸是与晶体结构的关系密切相关的,在一定程度上来说,结构中间隙的大小起了决定性的作用。一般晶体中空隙愈大,结构愈疏松,易形成固溶体。(3)电价因素:外来杂质原子进人间隙时,必然引起晶体结构中电价的不平衡,这时可以通过生成空位,产生部分取代或离子的价态变化来保持电价平衡。 3-5试分析形成固溶体后对晶体性质的影响。 解:影响有:(1)稳定晶格,阻止某些晶型转变的发生;(2)活化晶格,形成固溶体后,晶格结构有一定畸变,处于高能量的活化状态,有利于进行化学反应;(3)固溶强化,溶质原子的溶入,使固溶体的强度、硬度升高;(4)形成固溶体后对材料物理性质的影响:固溶体的电学、热学、磁学等物理性质也随成分而连续变化,但一般都不是线性关系。固溶体的强度与硬度往往高于各组元,而塑性则较低, 3-6说明下列符号的含义:V Na,V Na',V Cl˙,(V Na'V Cl˙),Ca K˙,Ca Ca,Ca i˙˙解:钠原子空位;钠离子空位,带一个单位负电荷;氯离子空位,带一个单位正电荷;最邻近的Na+空位、Cl-空位形成的缔合中心;Ca2+占据K.位置,带一个单位正电荷;Ca原子位于Ca原子位置上;Ca2+处于晶格间隙位置。 3-7写出下列缺陷反应式:(l)NaCl溶入CaCl2中形成空位型固溶体;(2)CaCl2溶入NaCl中形成空位型固溶体;(3)NaCl形成肖特基缺陷;(4)Agl形成弗伦克尔缺陷(Ag+进入间隙)。

电阻选型:厚膜、薄膜电阻特性优缺点比较

电阻选型:厚膜、薄膜电阻特性优缺点比较 薄膜电阻由陶瓷基片上厚度为 50 ?至 250 ?的金属沉积层组成(采用真空或溅射工艺)。薄膜电阻单位面积阻值高于线绕电阻或 Bulk Metal?金属箔电阻,而且更为便宜。在需要高阻值而精度要求为中等水平时,薄膜电阻更为经济并节省空间。 它们具有最佳温度敏感沉积层厚度,但最佳薄膜厚度产生的电阻值严重限制了可能的电阻值范围。因此,采用各种沉积层厚度可以实现不同的电阻值范围。薄膜电阻的稳定性受温度上升的影响。薄膜电阻稳定性的老化过程因实现不同电阻值所需的薄膜厚度而不同,因此在整个电阻范围内是可变的。这种化学/机械老化还包括电阻合金的高温氧化。此外,改变最佳薄膜厚度还会严重影响 TCR。由于较薄的沉积层更容易氧化,因此高阻值薄膜电阻退化率非常高。

由于金属量少,薄膜电阻在潮湿的条件下极易自蚀。浸入封装过程中,水蒸汽会带入杂质,产生的化学腐蚀会在低压直流应用几小时内造成薄膜电阻开路。改变最佳薄膜厚度会严重影响 TCR。由于较薄的沉积层更容易氧化,因此高阻值薄膜电阻退化率非常高。 如前所述,受尺寸、体积和重量的影响,线绕电阻不可能采用晶片型。尽管精度低于线绕电阻,但由于具有更高的电阻密度(高阻值/小尺寸)且成本更低,厚膜电阻得到广泛使用。与薄膜电阻和金属箔电阻一样,厚膜电阻频响速度快,但在目前使用的电阻技术中,其噪声最高。虽然精度低于其他技术,但我们之所以在此讨论厚膜电阻技术,是由于其广泛应用于几乎每一种电路,包括高精密电路中精度要求不高的部分。 厚膜电阻依靠玻璃基体中粒子间的接触形成电阻。这些触点构成完整电阻,但工作中的热应变会中断接触。由于大部分情况下并联,厚膜电阻不会开路,但阻值会随着时间和温度持续增加。因此,与其他电阻技术相比,厚膜电阻稳定性差(时间、温度和功率)。 由于结构中成串的电荷运动,粒状结构还会使厚膜电阻产生很高的噪声。给定尺寸下,电阻值越高,金属成份越少,噪声越高,稳定性越差。厚膜电阻结构中的玻璃成分在电阻加工过程中形成玻璃相保护层,因此厚膜电阻的抗湿性高于薄膜电阻。 金属箔电阻 将具有已知和可控特性的特种金属箔片敷在特殊陶瓷基片上,形成热机平衡力对于电阻成型是十分重要的。然后,采用超精密工艺光刻电阻电路。这种工艺将低、长期稳定性、无感抗、无感应、低电容、快速热稳定性和低噪声等重要特性结合在一种电阻技术中。

高速电主轴

机械制造技术基础课题论文 论文题目:高速电主轴及结构

摘要 高速加工技术,作为现代制造加工技术的重要组成部分,由于其具有非常高的加工效率,同时更能保证加工零件的加工精度与加工质量,必然会成为未来金属切削加工的发展方向。而要实现高速加工,高速加工中心则是其必备的基础装备。高速电主轴作为高速加工中心的核心功能部件,其结构与性能的好坏直接决定了高速加工中心的整体工作性能。虽然高速电主轴的结构较为简单,但其制造所需要的要求极高。 本文先介绍高速电主轴的技术难点,就高速电主轴的主轴电机、动平衡、轴承、冷却方式和夹持方式进行了分析。重点分析了高速轴承在高速电主轴中的重要作用,然后对比了各种轴承和轴承的润滑和冷却方式。然后对高速电主轴在国内外现状进行分析,最后根据自己的理解,分析高速电主轴的发展方向。 关键词:高速电主轴,轴承,润滑,冷却,夹持机构

目录 1高速切削加工技术的应用及发展 (1) 2高速电主轴及其结构 (1) 3高速电主轴的关键技术 (2) 3.1.1主轴电机 (2) 3.2高速轴承 (3) 3.2.1轴承类型 (3) 3.2.2轴承整体布局 (3) 3.2.3轴承的布置 (4) 3.2.4轴承的预紧 (4) 3.2.5润滑方式 (5) 3.3电主轴动平衡技术 (5) 3.4冷却方式 (6) 3.5夹持系统 (6) 3.5.1HSK刀具夹持系统 (6) 3.5.2KM 刀具夹持系统 (7) 4高速电主轴的现状及展望 (8) 4.1高速电主轴现状 (8) 4.1.1国外高速电主轴现状 (8) 4.1.2国内高速电主轴现状 (8) 4.1.3国内外高速电主轴对比 (9) 4.2高速电主轴发展趋势 (9)

高速电主轴

高速电主轴- 介绍 高速电主轴是高速加工中心的核心部件。在模具自由曲面和复杂轮廓的加工中,常常采用2~12mm较小直径的立铣刀,而在加工铜或石墨材料的电火花加工用的电极时,要求很高的切削速度,因此,电主轴必须具有很高的转速。目前,加工中心的主轴转速大多在18000~42000r/min,瑞士Mikro的高速加工中心XSM400U/XSM600U其主轴转速已达54000r/min。而对于模具的微细铣削(铣刀直径一般采用0.1~2mm),则需要更高的转速。 横林精工-高速电主轴 如德国Kugler公司的五轴高精度铣床,其最高主轴转速达160000r/min(采用空气轴承),这样的高转速,当采用0.3mm直径的铣刀加工钢模时,就可达到150m/min的切削速度。目前,德国Fraunhofer生产技术研究所正在开发转速为300000r/min的空气轴承支撑的主轴。 加工模具时,总是采用很高的转速,而高转速产生的发热,以及切削时可能产生的振动是影响模具加工精度的重要因素。为保证高速电主轴工作的稳定性,在主轴上装有用来测量温度、位移和振动的传感器,以便对电机、轴承和主轴的温升、轴向位移和振动进行监控。由此为高速加工中心的数控系统提供修正数据,以修改主轴转速和进给速度,对加工参数进行优化。当主轴产生轴向位移,则可通过零点修正或轨迹修正来进行补偿。 高速电主轴- 高速电主轴购买需知 关于高速电主轴高速电主轴运转速度是通过变频器的驱动来实现的。您可以自己选用变频器,当然也可以将这项工作交由我们来为您代劳,我们将为您匹配好变频器的参数和主轴参数,减少您的麻烦。关于选型选购主轴时,请告知我们:你在我们网上所选用的主轴型号;或者告诉我们主轴的相关参数,比如:主轴工作电压、主轴的外径、主轴的功率、主轴的转速、主轴的轴端连接、主轴的冷却方式(水冷/自冷/风冷)等,我们将为您推荐最合适的产品。关于包装及运输方式您所选购的主轴将用高密度的泡沫箱及纸箱包装。主轴将在您款到的当日通过快递公司发出,(定制的主轴除外);快递不能到达地区,另行商议运输方式。关于保期新购主轴,轴承保半年,其余保一年。需要注意的是:人为因素(比如进粉、进液)不在保修范围。 高速电主轴- 高速电主轴常见故障的分析与排除 高速电主轴故障分析与排除 故障现象检查、调整与判断方法故障排除方法 主轴发热1)主轴轴承预紧力过大,造成主轴回转时摩擦过大,引起主轴温度急剧升高。可以通过重新调整主轴轴承预紧力加以排除。 (2)主轴轴承研伤或损坏,也会造成主轴回转时摩擦过大,引起主轴温度急剧升高。可以通过更换新轴承加以排除。 (3)主轴润滑油脏或有杂质,也会造成主轴回转时阻力过大,引起主轴温度升高。通过清洗主轴箱,重新换油加以排除。 (4)主轴轴承润滑油脂耗尽或润滑油脂过多,也会造成主轴回转时阻力、摩擦过大,引起主轴温度升高。通过重新涂抹润滑脂加以排除。 主轴强力切削时停转(1)主轴电动机与主轴连接的传动带过松,造成主轴传动转矩过小,

薄膜的缺陷

薄膜的组织结构是指它的结晶形态.分为四种类型;非晶态结构、多品结构、纤维结构和单晶结构。 (1)非晶态结构。 从原子排列情况来看它是一种近程有序结沟,只有少数原子排列是有秩序的,显示不出任何晶体的性质,这种结构称为非晶结构或玻璃态结构。形成非晶薄膜的工艺条件是降低吸附原子的表面扩散速率。可以通过降低基体温度、引入反应气体和掺杂的方法实现上述条件。 (2)多晶结构。 多晶结构薄膜是由若干尺寸大小不等的晶粒所组成。在薄膜形成过程中生成的小岛就具有晶体的特征(原子有规则的排列)。由众多小岛聚结形成的薄膜就是多晶薄膜。用真空蒸发法或阴极溅射法制成的薄膜,都是通过岛状结构生长起来的,所以必然产生许多晶粒间界,形成多晶结构。 (3)纤维结构。 纤维结构薄膜是晶粒具有择优取向的薄膜,根据取向方向、数量的不同分为单重纤维结构和双重纤维结构。前者是各晶粒只在一个力向上择优取向,后者则在两个方向上有择优取向。有时前者称为一维取向薄膜,后者称为二维取向薄膜。 沿C轴择优取向AlN膜的结构 在玻璃基体上的的A1N压电薄膜是纤维结构薄膜的典型代表。 生长在薄膜中晶粒的择优取向可发生在薄膜生长的各个阶段:初始成核阶段、小岛聚结阶段和最后阶段。若吸附原子在基体表面上有较高的扩散速率,晶粒的择优取向可发今年薄膜形成的初期阶段。在起始层中原了排列取决于基体表面、基体温度、晶体结构、原子半径和薄膜材料的熔点。如果吸附原于的表面扩散速率较小,初始膜层不会产生择优取向,当膜层层较厚时则形成强烈的对着蒸发源方向的取向。晶粒向蒸发源的倾斜程度依赖于基体温度、气相原于入射角度和沉积速率等。 (4)单晶结构。 单晶结构薄膜通常是用外延工艺制造的。外延生长的第一个基本条件是吸附原子必须有较高的表面扩散速率.所以基体温度和沉积速率就相当重要。在一定的蒸发速率条件下,大多数基体和薄膜之间都存在着发生外延生长的最低温度,即外延生长温度。第二个基本条件是基体与薄膜材料的结晶相溶性。第三个条件要求基体表面清洁、光滑和化学稳定性好。满足以上三个基本条件,才能制备结构完整的单晶薄膜。 薄膜的晶体结构 薄膜的晶体结构是指薄膜中各晶粒的晶型状况。晶体的主要特征是其中原了有规则的排列。

相关文档
最新文档