高中数学排列组合及概率的基本公式概念及应用
高中数学排列组合公式大全_高中数学排列组合重点知识.doc

高中数学排列组合公式大全_高中数学排列组合重点知识高中数学排列组合公式大全_高中数学排列组合重点知识高中数学排列组合公式大全1.排列及计算公式从n个不同元素中,任取m(m n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n 个不同元素中取出m(m n)个元素的所有排列的个数,叫做从n 个不同元素中取出m个元素的排列数,用符号p(n,m)表示.p(n,m)=n(n-1)(n-2) (n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n (n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m高中数学排列组合公式记忆口诀加法乘法两原理,贯穿始终的法则。
与序无关是组合,要求有序是排列。
两个公式两性质,两种思想和方法。
归纳出排列组合,应用问题须转化。
高一排列组合知识点

高一排列组合知识点排列组合是高中数学中的重要内容之一,它是组合数学的基础概念,也是解决许多实际问题的数学工具。
在高一阶段,排列组合的学习主要集中在基本的知识点上。
本文将为大家介绍高一阶段排列组合的基础知识点及其应用。
一、排列与组合的概念排列和组合是组合数学中的两个基本概念。
排列是指从一组元素中有序地选出若干个元素进行排列,排列中的元素不能重复使用;而组合则是从一组元素中无序地选出若干个元素进行组合,组合中的元素可以重复使用。
排列和组合的计算方法也有所不同,下面分别介绍。
二、排列的计算方法排列的计算方法有两种情况:有放回和无放回的排列。
1. 有放回的排列有放回的排列是指从一组元素中有序地选出若干个元素进行排列,并且选过的元素可以重新放回原来的组合中。
假设有n个元素,要选出k个元素进行排列,则有放回的排列数为n^k。
2. 无放回的排列无放回的排列是指从一组元素中有序地选出若干个元素进行排列,并且选过的元素不能重新放回原来的组合中。
假设有n个元素,要选出k个元素进行排列,则无放回的排列数为n!/(n-k)!,其中“!”表示阶乘。
三、组合的计算方法组合的计算方法也有两种情况:有放回和无放回的组合。
1. 有放回的组合有放回的组合是指从一组元素中无序地选出若干个元素进行组合,并且选过的元素可以重新放回原来的组合中。
假设有n个元素,要选出k个元素进行组合,则有放回的组合数为C(n+k-1, k),其中C表示组合数。
2. 无放回的组合无放回的组合是指从一组元素中无序地选出若干个元素进行组合,并且选过的元素不能重新放回原来的组合中。
假设有n个元素,要选出k个元素进行组合,则无放回的组合数为C(n, k)。
四、排列组合的应用排列组合不仅是一种数学工具,也是许多实际问题的解决方法。
在高一数学中,排列组合的应用主要包括以下几个方面:1. 判断有关事件发生顺序的概率问题。
排列可以用于计算事件发生的不同顺序,从而求解事件发生的概率。
高中数学排列组合相关公式3篇

高中数学排列组合相关公式第一篇:排列组合基本概念和公式排列和组合是数学中的重要概念,属于初中和高中数学中的基础知识。
这两个概念通常用于处理有关选择或安排事物的问题。
排列:从n个不同的元素中任选r个元素排成一列,称为从n个不同元素中选r个元素的排列。
排列的基本公式如下:An^r = n(n-1)(n-2) …… (n-r+1)其中An^r表示从n个不同的元素中任选r个元素排成一列的方案数。
例如,从5个不同的元素中任选3个元素排成一列,即为5选3的排列。
根据排列的基本公式,5选3的排列数为An^r=5×4×3=60。
组合:从n个不同的元素中任选r个元素,不考虑元素之间的顺序,称为从n个不同元素中选r个元素的组合。
组合的基本公式如下:Cn^r = n!/r!(n-r)!其中Cn^r表示从n个不同的元素中任选r个元素的组合方案数。
n!表示n的阶乘,即n×(n-1)×(n-2)×……×2×1。
例如,从5个不同的元素中任选3个元素的组合数,即为5选3的组合。
根据组合的基本公式,5选3的组合数为C5^3=5!/(3!2!)=10。
排列和组合的关系:排列和组合有很多类似的性质,但是也有不同点。
其中最重要的一点是:一个排列中,每个元素的位置不同,导致不同的排列。
而在一个组合中,元素之间是不考虑顺序的,所以如果元素相同,不同的顺序算作同一种组合。
第二篇:排列组合的应用排列组合在数学中有着广泛的应用,下面将介绍几个常见的例子。
1. 生日问题如果有23个人在一起,那么至少有两个人生日相同的概率是多少?将每一个人的生日当做一个元素,一共有365个不同的生日(不考虑闰年的情况)。
这时我们要求的其实是在这23个人中选取2个或2个以上有相同生日的概率,也就是不出现任何两个人生日相同的概率。
按照组合的计算方法,我们可以得到不出现任何两个人生日相同的概率为:P = C365^23/365^23 ≈ 0.493所以至少有两个人生日相同的概率为:1-P ≈ 0.5072. 球队比赛现在有5个球队进行比赛,每个球队需要和其他球队各打一场比赛,问总共需要打几场?我们可以将这个问题看作是5个不同的元素进行排列组合。
高中数学排列组合二项式概率统计知识点归纳及常考题型

“排列、组合、二项式、概率、统计”复习资料一、基础知识和方法梳理 (一)排列组合 1.计数两原理:分类计数原理:完成一件事情,有n 类方法,在第1类方法中又有m 1种不同的方式可以完成这件事情,在第2类方法中,又有m 2种方式,……第n 类方法中有m n 种方式可以完成,那么要完成这件事情的方法共有:n m m m N +++= 21分步计数原理:完成一件事情,需要分成n 步完成,在第1步中,有m 1种不同的方式可以完成这一步,在第2步中,有m 2种方式,……第n 步中,有m n 种方式可以完成这一步,那么要完成这件事情的方法共有:n m m m N ⨯⨯⨯= 21 2.排列:从n 个不同元素中取出m (m ≤n )个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列。
排列数)!(!)1()1(m n n m n n n A mn -=+--=3.组合:从n 个不同的元素中不重复选取m 个元素组成一组,与顺序无关; 组合公式:)!(!!!)1()1(m n m n m m n n n C mn -=+--=;组合数性质:m n n m n C C -=,mn m n m n C C C 11+-=+4.排列组合常用方法:分类讨论法:将0,1,2,3,4五个数字可以组成多少个无重复数字的五位偶数?间接法:100件产品含有5件次品,从中任取5件,则至少含有一件次品的取法有多少种? 捆绑、插空法:将3本语文书,3本数学书,2本英语书排成一排,数学书必须排在一起,英语书不能相邻,则有多少中排列方式?特殊元素特殊位置优先考虑法:例如,将0,1,2,3可以组成多少个无重复数字的四位数 分组法:将5个苹果分给甲、乙、丙三人,每人至少一个苹果,有多少种分配方案? 隔板法:例如,将10个相同的小球装入3个编号为1,2,3的盒子(每次要把10个球装完),要求每个盒子里球的个数不少盒子的编号数,这样的装法总数有多少种? 等可能性法:六个字母a 、r 、r 、r 、b 、c 排成一排,有多少种排列方式?(二)二项式定理1.二项式定理:nn n r r n r n n n n n n b C b a C b a C a C b a +++++=+-- 110)(,其中rn C 为第1+r 项的二项式系数,=-nb a )(2.通项公式:rr n r n r b a C T -+=1,),1,0(n r =3.二项式定理的性质: (1)对称性,二项式系数是关于2n对称 (2)增减性与最大值,当n 为偶数时,二项式系数最大项为第12+n项,最大值为2nn C当n 为奇数时,二项式系数最大项为第121+-n 项和第121++n 项,最大值为2121+-=n n n n C C (3)二项式系数之和nn n n n C C C 210=+++奇数项与偶数项的二项式系数之和相等131202-=++=++n n n n n C C C C(三)概率1.概率的定义:在大量重复进行同一试验时事件A 发生的频率nm总是接近于某个常数p ,这时就把这个常数叫做事件A 的概率,记做)(A P .2.事件的和A+B :表示事件A 和B 至少有一个发生; 事件的积A ×B :表示事件A 和B 同时发生B A B A B A B A ⋅=++=⋅,3.常见的几种类型的概率计算:(1)等可能事件:可预知的有限个结果,且每个结果出现的可能性相同 计算方法:nm A P =)( (2)互斥事件:在一次试验中,事件A 发生了,则事件B 一定不会发生,事件B 发生了,事件A 不可能发生互斥事件有一个发生的概率计算方法:)()()(B P A P B A P +=+, 特殊的,对立事件:1)()(=+A P A P(3)相互独立事件:在一次试验中,事件A 发生与否对事件B 发生的概率没有影响,同理,事件B 发生与否对事件A 发生的概率没有影响,若A 与B 是独立事件,则A 与B ,A 与B ,A 与B 都是独立事件 独立事件同时发生的概率的计算方法:)()()(B P A P B A P ⋅=⋅(4)n 次独立重复事件恰有k 次发生的概率:kn k k n n p p C k P --=)1()(4.关于两个事件常见的概率计算:(若21)(,)(p B P p A P ==)5.注意事项(1)等可能事件的概率中,基本事件数目的计算可以分化得细致一点或粗略一点,这样虽然形式上有所差别,结果往往是一样的,通常有这样一些不同考虑:“整体考虑或局部考虑” 、“元素可辨或不可辨” 、“元素放回或不放回” 、“元素有序或无序”.(2)重视几种概率类型的混合,注意概率加法、乘法的混合运算,适当注意概率类型的突破. (3)准确理解文字(生活)语言,如“至少”、“至多”、“都”、“不都”、“都不”、“恰有几个”、“有几个”,“只有第几次”、“第几次”,“直到第几次”等等,然后等价转化为数学(概率)语言,并注意表述规范.(四)统计1.离散型随机变量的定义:若随机试验的结果可以用一个变量表示,这个变量叫做随机变量。
高中数学排列组合概率统计

排列组合:1.排列及计算公式.排列及计算公式从n 个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列;从n 个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号用符号 p(n,m)表示. p(n,m)=n(n-1)(n-p(n,m)=n(n-1)(n-2)……(n 2)……(n 2)……(n-m+1)= n!/(n-m)!(-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式.组合及计算公式从n 个不同元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合;从n 个不同元素中取出m(m m(m≤n)≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数.用符号用符号 c(n,m) 表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式.其他排列与组合公式从n 个元素中取出r 个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n 个元素被分成k 类,每类的个数分别是n1,n2,...nk 这n 个元素的全排列数为个元素的全排列数为 n!/(n1!*n2!*...*nk!). k 类元素,每类的个数无限,从中取出m 个元素的组合数为c(m+k-1,m). 排列(Pnm(n 为下标,m 为上标))Pnm=n×(n-1)(n-m+1);Pnm=n !/(n-m )!(注:!是阶乘符号);Pnn (两个n 分别为上标和下标)分别为上标和下标) =n !;0!=1;Pn1(n 为下标1为上标)=n 组合(Cnm(n 为下标,m 为上标)) Cnm=Pnm/Pmm Cnm=Pnm/Pmm ;;Cnm=n Cnm=n!!/m /m!(!(!(n-m n-m n-m)!;)!;)!;Cnn Cnn Cnn(两个(两个n 分别为上标和下标)分别为上标和下标) =1 =1 =1 ;;Cn1Cn1((n 为下标1为上标)为上标)=n =n =n;;Cnm=Cnn-m排列定义 从n 个不同的元素中,取r 个不重复的元素,按次序排列,称为从n 个中取r 个的无重排列。
高中数学排列组合总结及例题解析

高中数学排列组合总结及例题解析内容总结:一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A mn -=+---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+(2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。
1. 公式: ()()()C A A n n n m m n m n m n mn m m m==--+=-11……!!!! 10=n C 规定:组合数性质:.2 nn n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,,①;②;③;④11112111212211r r r r r r r r r r r rr r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注:若12m m 1212m =m m +m n nn C C ==则或 四、二项式定理.1. ⑴二项式定理:n n n r r n r n n n n nn b a C b a C b a C b a C b a 01100)(+++++=+-- . 展开式具有以下特点:① 项数:共有1+n 项;② 系数:依次为组合数;,,,,,,210n n r n n n n C C C C C③ 每一项的次数是一样的,即为n 次,展开式依a 的降幕排列,b 的升幕排列展开.⑵二项展开式的通项.n b a )+(展开式中的第1+r 项为:),0(1Z r n r b aC T rr n r n r ∈≤≤=-+.⑶二项式系数的性质.①在二项展开式中与首未两项“等距离”的两项的二项式系数相等; ②二项展开式的中间项二项式系数.....最大. I. 当n是偶数时,中间项是第12+n项,它的二项式系数2nn C 最大; II. 当n 是奇数时,中间项为两项,即第21+n 项和第121++n 项,它们的二项式系数2121+-=n nn n C C 最大.③系数和:1314201022-=++=+++=+++n n n n n n n n n n n C C C C C C C C典例分类讲解:一、合理分类与准确分步法(利用计数原理)解含有约束条件的排列组合问题,应按元素性质进行分类,按事情发生的连续过程分步,保证每步独立,达到分类标准明确,分步层次清楚,不重不漏。
高中数学排列组合公式大全_高中数学排列组合重点知识

高中数学排列组合公式大全_高中数学排列组合重点知识1.排列及计算公式从n个不同元素中,任取mm≤n个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出mm≤n个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 pn,m表示.pn,m=nn-1n-2……n-m+1= n!/n-m!规定0!=1.2.组合及计算公式从n个不同元素中,任取mm≤n个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出mm≤n个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号cn,m 表示.cn,m=pn,m/m!=n!/n-m!*m!;cn,m=cn,n-m;3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=pn,r/r=n!/rn-r!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/n1!*n2!*...*nk!.k类元素,每类的个数无限,从中取出m个元素的组合数为cm+k-1,m.排列Pnmn为下标,m为上标Pnm=n×n-1....n-m+1;Pnm=n!/n-m!注:!是阶乘符号;Pnn两个n分别为上标和下标=n!;0!=1;Pn1n为下标1为上标=n组合Cnmn为下标,m为上标Cnm=Pnm/Pmm ;Cnm=n!/m!n-m!;Cnn两个n分别为上标和下标 =1 ;Cn1n为下标1为上标=n;Cnm=Cnn-m加法乘法两原理,贯穿始终的法则。
与序无关是组合,要求有序是排列。
两个公式两性质,两种思想和方法。
归纳出排列组合,应用问题须转化。
排列组合在一起,先选后排是常理。
特殊元素和位置,首先注意多考虑。
不重不漏多思考,捆绑插空是技巧。
排列组合恒等式,定义证明建模试。
关于二项式定理,中国杨辉三角形。
两条性质两公式,函数赋值变换式。
1.计数原理知识点①乘法原理:N=n1·n2·n3·…nM 分步②加法原理:N=n1+n2+n3+…+nM 分类2. 排列有序与组合无序Anm=nn-1n-2n-3…n-m+1=n!/n-m! Ann =n!Cnm = n!/n-m!m!Cnm= Cnn-m Cnm+Cnm+1= Cn+1m+1 k•k!=k+1!-k!3.排列组合混合题的解题原则:先选后排,先分再排排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素. 以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.捆绑法集团元素法,把某些必须在一起的元素视为一个整体考虑插空法解决相间问题间接法和去杂法等等在求解排列与组合应用问题时,应注意:1把具体问题转化或归结为排列或组合问题;2通过分析确定运用分类计数原理还是分步计数原理;3分析题目条件,避免“选取”时重复和遗漏;4列出式子计算和作答.经常运用的数学思想是:①分类讨论思想;②转化思想;③对称思想.4.二项式定理知识点:①a+bn=Cn0ax+Cn1an-1b1+ Cn2an-2b2+ Cn3an-3b3+…+ Cnran-rbr+…+ Cn n-1abn-1+ Cnnbn特别地:1+xn=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn②主要性质和主要结论:对称性Cnm=Cnn-m最大二项式系数在中间。
高中排列组合

高中排列组合
在高中数学中,排列组合是一个重要的概念。
排列指的是从一组元
素中取出若干个元素进行顺序安排的方式,而组合则是从一组元素
中取出若干个元素,不考虑顺序的方式。
在排列组合中,常见的问题包括求排列数、组合数、二项式定理等。
1. 排列数:
排列数指的是从n个元素中取出m个元素进行顺序安排的方式的数量,记作P(n, m)或者nPm。
其计算公式为:
P(n, m) = n! / (n-m)!
2. 组合数:
组合数指的是从n个元素中取出m个元素,不考虑顺序的方式的数量,记作C(n, m)或者nCm。
其计算公式为:
C(n, m) = n! / (m!(n-m)!)
3. 二项式定理:
二项式定理是排列组合的重要定理,它描述了二项式的展开公式。
其公式为:
(a + b)^n = C(n,0) * a^n * b^0 + C(n,1) * a^(n-1) * b^1 + ... + C(n,n) * a^0 * b^n
在高中数学中,排列组合常常用于解决问题,如求解概率、确定可能的情况数等。
熟练掌握排列组合的概念和计算方法,对于解决各类数学问题将有很大帮助。
高中数学排列组合习题及解析

排列组合问题在实际应用中是非常广泛的,并且在实际中的解题方法也是比较复杂的,下面就通过一些实例来总结实际应用中的解题技巧。
1。
排列的定义:从n个不同元素中,任取m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
2.组合的定义:从n个不同元素中,任取m个元素,并成一组,叫做从n个不同元素中取出m个元素的一个组合.3.排列数公式:4。
组合数公式:5.排列与组合的区别与联系:与顺序有关的为排列问题,与顺序无关的为组合问题。
例1 学校组织老师学生一起看电影,同一排电影票12张。
8个学生,4个老师,要求老师在学生中间,且老师互不相邻,共有多少种不同的坐法?分析此题涉及到的是不相邻问题,并且是对老师有特殊的要求,因此老师是特殊元素,在解决时就要特殊对待。
所涉及问题是排列问题。
解先排学生共有种排法,然后把老师插入学生之间的空档,共有7个空档可插,选其中的4个空档,共有种选法。
根据乘法原理,共有的不同坐法为种。
结论1 插入法:对于某两个元素或者几个元素要求不相邻的问题,可以用插入法。
即先排好没有限制条件的元素,然后将有限制条件的元素按要求插入排好元素的空档之中即可。
例2 、5个男生3个女生排成一排,3个女生要排在一起,有多少种不同的排法?分析此题涉及到的是排队问题,对于女生有特殊的限制,因此,女生是特殊元素,并且要求她们要相邻,因此可以将她们看成是一个元素来解决问题。
解因为女生要排在一起,所以可以将3个女生看成是一个人,与5个男生作全排列,有种排法,其中女生内部也有种排法,根据乘法原理,共有种不同的排法。
结论2 捆绑法:要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题。
即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也可以作排列。
例3 高二年级8个班,组织一个12个人的年级学生分会,每班要求至少1人,名额分配方案有多少种?分析此题若直接去考虑的话,就会比较复杂。
排列组合知识点

排列组合知识点排列组合是高中数学中的一个重要内容,它是指在一组元素中选取部分元素进行排列或组合的方式。
通过对元素的不同排列和组合,可以得到不同的结果,用于解决一些与选择、分配、摆放等问题有关的情景。
本文将以3000字详细介绍排列组合的基本概念、性质以及应用领域。
一、排列的基本概念和性质1. 排列的定义排列是指从一组元素中取出若干元素进行重新排列得到不同的序列。
这个序列的顺序是明确的,不同的排列方式得到的结果是不同的。
2. 排列的计算方法(1)全排列:从n个不同元素中取出m个元素进行排列,计算全排列的个数可以使用阶乘运算:P(n,m) = n!/(n-m)!(2)部分排列:从n个不同元素中取出m个元素进行排列,计算部分排列的个数可以使用阶乘运算:A(n,m)=n!/(n-m)!3. 排列的性质(1)排列具有顺序性:即不同的元素排列顺序不同时,得到的排列结果是不同的。
(2)排列的个数与元素个数有关:排列的个数与所选取的元素个数有关,当选取的元素个数与原集合中的元素个数相同时,排列的个数达到最大值。
(3)排列的个数与元素的重复性有关:当元素中存在重复元素时,排列的个数会减少。
二、组合的基本概念和性质1. 组合的定义组合是指从一组元素中取出若干元素进行组合,组合的结果不考虑元素的顺序。
2. 组合的计算方法从n个不同元素中取出m个元素进行组合,计算组合的个数可以使用组合数公式:C(n,m) = n!/[m!(n-m)!]3. 组合的性质(1)组合不考虑元素的顺序:组合的结果不受元素排列顺序的影响。
(2)组合的个数与元素的重复性有关:当元素中存在重复元素时,组合的个数会减少。
(3)组合的个数与元素个数有关:组合的个数受选取的元素个数和原集合的元素个数的影响。
三、排列组合的应用领域1. 概率统计排列组合在概率统计中具有重要的应用,用于计算事件的可能性。
例如,计算从一组数字中选取若干数字,得到某个特定数字的概率。
高中数学排列组合及概率的基本公式概念及应用

高中数学排列组合及概率的基本公式概念及应用一、排列组合的基本公式1.排列的基本公式:排列是从一组物体中选取一部分物体按照一定的顺序进行排列的方式。
对于n个不同的物体,如果选取其中的r个进行排列,那么排列的总数为P(n,r)=n!/(n-r)!,其中n!表示n的阶乘,即n!=n×(n-1)×(n-2)×...×2×12.组合的基本公式:组合是从一组物体中选取一部分物体,不考虑排列顺序的方式。
对于n个不同的物体,如果选取其中的r个进行组合,那么组合的总数为C(n,r)=n!/(r!×(n-r)!)。
1.排列的概念:排列是指从一组物体中选取若干个物体按照一定的顺序进行排列的方式。
在实际问题中,排列常常用于涉及位置、次序和顺序的计数问题。
应用举例:a.选取n个人中的r个人进行座位的排列问题。
b.选取n个数字中的r个数字进行排列组合的问题。
2.组合的概念:组合是指从一组物体中选取若干个物体,不考虑排列顺序的方式。
在实际问题中,组合常常用于涉及选择、挑选和组合的问题。
应用举例:a.随机抽取n张纸牌中的r张纸牌的组合问题。
b.从n个人中选取r个人进行团队的组合问题。
三、排列组合的应用1.定理应用:排列组合的概率问题中,常常可以利用排列组合的基本公式结合概率计算的定理来解决问题。
比如,使用乘法原理、加法原理、条件概率等定理来计算问题中所需的概率。
应用举例:a.在一副牌中,抽取连续的三张牌均为红桃的概率问题。
b.在一群人中,选取两个人的组合中至少有一名男性的概率问题。
2.实际问题应用:排列组合的概念和基本公式在实际问题中有着广泛的应用。
它们常常用于计数问题、组合问题、选择问题、排列问题等等。
应用举例:a.排队问题:计算n个人进行排队的方式有多少种。
b.选课问题:计算从n门课程中选择r门课程的组合有多少种。
总结起来,排列组合是高中数学中非常重要的概念和公式,可以用来解决许多实际问题。
第十三章排列组合与概率(高中数学竞赛标准教材)

第十三章排列组合与概率(高中数学竞赛标准教材)第十三章排列组合与概率一、基础知识.加法原理:做一件事有n类办法,在第1类办法中有1种不同的方法,在第2类办法中有2种不同的方法,……,在第n类办法中有n种不同的方法,那么完成这件事一共有N=1+2+…+n种不同的方法。
.乘法原理:做一件事,完成它需要分n个步骤,第1步有1种不同的方法,第2步有2种不同的方法,……,第n步有n种不同的方法,那么完成这件事共有N=1×2×…×n种不同的方法。
.排列与排列数:从n个不同元素中,任取个元素,按照一定顺序排成一列,叫做从n个不同元素中取出个元素的一个排列,从n个不同元素中取出个元素的所有排列个数,叫做从n个不同元素中取出个元素的排列数,用表示,=n…=,其中,n∈N,≤n,注:一般地=1,0!=1,=n!。
.N个不同元素的圆周排列数为=!。
.组合与组合数:一般地,从n个不同元素中,任取个元素并成一组,叫做从n个不同元素中取出个元素的一个组合,即从n个不同元素中不计顺序地取出个构成原集合的一个子集。
从n个不同元素中取出个元素的所有组合的个数,叫做从n个不同元素中取出个元素的组合数,用表示:.组合数的基本性质:;;;;;。
.定理1:不定方程x1+x2+…+xn=r的正整数解的个数为。
[证明]将r个相同的小球装入n个不同的盒子的装法构成的集合为A,不定方程x1+x2+…+xn=r的正整数解构成的集合为B,A的每个装法对应B的唯一一个解,因而构成映射,不同的装法对应的解也不同,因此为单射。
反之B中每一个解,将xi作为第i个盒子中球的个数,i=1,2,…,n,便得到A的一个装法,因此为满射,所以是一一映射,将r个小球从左到右排成一列,每种装法相当于从r-1个空格中选n-1个,将球分n份,共有种。
故定理得证。
推论1不定方程x1+x2+…+xn=r的非负整数解的个数为推论2从n个不同元素中任取个允许元素重复出现的组合叫做n个不同元素的可重组合,其组合数为.二项式定理:若n∈N+,则n=.其中第r+1项Tr+1=叫二项式系数。
排列组合的计算公式

排列组合的计算公式排列组合是高中数学中的一个重要概念,它涉及到许多实际问题的计算。
排列和组合的计算公式是学习排列组合的基础,下面详细介绍排列组合的计算公式及其应用。
一、排列的计算公式排列是一种从n个不同的元素中选出r个进行排成一个有序的序列的方法,用符号A(n,r)表示。
计算公式为:$A(n,r) = n(n-1)(n-2)\\cdots(n-r+1) = \\dfrac{n!}{(n-r)!}$其中n表示元素个数,r表示选取元素个数,n>r。
例如,从1, 2, 3, 4, 5中选取3个元素进行排列,可以有5×4×3种不同的排列方式,即A(5,3)=5×4×3=60种。
二、组合的计算公式组合是一种从n个不同的元素中选取r个元素的方式,不考虑元素的顺序,用符号C(n,r)表示。
计算公式为:$C(n,r) = \\dfrac{n!}{r!(n-r)!}$其中n表示元素个数,r表示选取元素个数,n≥r。
例如,从1, 2, 3, 4, 5中选取3个元素进行组合,不考虑元素的顺序,可以有C(5,3) = 5×4×3/(3×2×1) = 10种不同的组合方式。
三、排列与组合的关系排列和组合是有很大关系的。
排列中考虑元素的顺序,而组合不考虑元素的顺序。
由于元素的顺序的变化会导致不同的排列方式,因此排列的计算公式中是用乘法原理计算的。
而组合只考虑元素的选取,不考虑元素的顺序,因此组合的计算公式中需要用到除法原理。
如果要从n个不同的元素中选取r个元素进行排列,不考虑元素的顺序,就是从n个不同的元素中选取r个元素进行组合,注意这样排列的个数一共有C(n,r)种不同的组合方式。
如果再考虑元素的顺序,则排列的个数是A(n,r)=n×(n-1)×(n-2)×⋯×(n-r+1)=n!/(n-r)! 。
高中概率排列组合公式

高中概率排列组合公式在咱们高中数学里呀,概率排列组合公式那可是相当重要的一部分!就好像是一把神奇的钥匙,能打开很多复杂问题的大门。
先来说说排列公式。
排列呢,就是从 n 个不同元素中取出 m 个元素,按照一定的顺序排成一列。
排列数记作 A(n, m) ,公式就是 A(n, m) = n! / (n - m)! 。
这里的“!”表示阶乘,比如说 5! = 5 × 4 × 3 × 2 × 1 。
给大家举个例子吧。
比如说学校要从10 个学生中选3 个参加比赛,并且要排出先后顺序,那这就是一个排列问题。
按照排列公式,A(10, 3) = 10! / (10 - 3)! = 10 × 9 × 8 = 720 ,一共有 720 种不同的排法。
再说说组合公式。
组合就是从 n 个不同元素中取出 m 个元素组成一组,不考虑顺序。
组合数记作 C(n, m) ,公式是 C(n, m) = n! / [m! × (n - m)!] 。
还拿刚才选学生参加比赛的例子来说,如果不考虑先后顺序,只是选出 3 个人组成一个团队,那这就是组合问题。
C(10, 3) = 10! / [3! ×(10 - 3)!] = 120 ,这样就只有 120 种不同的组合方式。
我记得之前有一次,学校组织知识竞赛。
每个班要选出一组同学参加。
我们班在讨论人选的时候,就用到了这些公式。
大家一开始都很迷茫,不知道怎么选才能有更多的可能性。
我就给大家讲解了排列组合的公式和原理。
比如说,我们班有 20 个同学都很积极想参加,但是只能选 5 个。
如果考虑他们在比赛中的出场顺序,那就是排列问题。
如果只考虑选出这 5 个人,不考虑顺序,那就是组合问题。
大家经过一番讨论和计算,最后选出了最有可能在比赛中取得好成绩的 5 位同学。
通过这次活动,同学们对排列组合的理解更深刻了,也感受到了数学在实际生活中的应用。
高中数学排列组合公式排列组合计算公式

排列组合公式/排列组合计算公式排列 P------和顺序有关组合 C -------不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法. "排列"把5本书分给3个人,有几种分法 "组合"1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示.p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn (两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m2008-07-08 13:30公式P是指排列,从N个元素取R个进行排列。
高中数学概率与统计( 排列组合)

排列组合一 、分类、分步原理(一)分类原理:12n N m m m =+++.分类原理题型比较杂乱,须累积现象。
几种常见的现象有:1.开关现象:要根据开启或闭合开关的个数分类.2.数图形个数:根据图形是由几个单一图形组合而成进行分类求情况数. 3.球赛得分:根据胜或负场次进行分类. (二)分步原理:12n N m m m =⨯⨯⨯.两种典型现象: 1.涂颜色(1)平面图涂颜色:先涂接触区域最多的一块(2)立体图涂颜色:先涂具有同一顶点的几个平面,其他平面每步涂法分类列举. 2.映射按步骤用A 集合的每一个元素到B 集合里选一个元素,可以重复选.二 、排列、组合(一)常规题型求情况数1.直接法:先排(选)特殊元素,再排(选)一般元素。
捆绑法,插空法.2.间接法:先算总情况数,再排除不符合条件的情况数. (二)七种常考非常规现象1.小数量事件需要分类列举:凡不可使用公式且估计情况数较少,要分类一一列举 2.相同元素的排列:用组合数公式选出位置把相同元素放进去,不用排顺序 3.有序元素的排列:用组合数公式选出位置把有序元素放进去,不用排顺序 4.剩余元素分配:有互不相同的剩余元素需要分配时,用隔板法。
5.迈步与网格现象:要看一共走几步,把特殊的几步选出来,有几种选法就有几种情况. 6.立体几何与解析几何现象:多数用排除法求情况数 7.平均分组现象:先用分步原理选出每一组的元素,再除以因为平均分组算重复的倍数,平均分n 组,就除以nn A ,有几套平均分组就除几个xx A .(三)排列数,组合数公式运算的考察1.排列数公式mn A =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).注:规定1!0=. 2. 组合数公式m n C=m n mmA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤). 3. 组合数的两个性质(1)mn C =mn n C - ; (2) m n C +1-m n C =m n C 1+. 注:规定10=n C .4. 排列数与组合数的关系m mn nA m C =⋅! . 【题型体系】一、分类计数原理与分步计数原理 (一)选(排)人选(排)物1.某班级要从4名男生和2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方法有( )A.14 B.24 C.28 D.482.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共有( )A .24种B .18种C .12种D .6种3.从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同工作.若其中甲、乙两名支援者都不能从事翻译工作,则选派方案共有( )(A )280种 (B )240种 (C )180种 (D )96种 (二).染色1.用五种不同的颜色给图中的四个区域涂色,如果每一个涂一种颜色,相邻的区域不能同色,那么涂色的方法有__________种。
高中数学选修2-3基础知识归纳(排列组合、概率问题)

一.基本原理1.加法原理:做一件事有n类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列,所有排列的个数记为。
四.处理排列组合应用题1.①明确要完成的是一件什么事(审题)②有序还是无序③分步还是分类。
2.解排列、组合题的基本策略(1)两种思路:①直接法:②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。
这是解决排列组合应用题时一种常用的解题方法。
分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。
注意:分类不重复不遗漏。
即:每两类的交集为空集,所有各类的并集为全集。
(3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决。
在处理排列组合问题时,常常既要分类,又要分步。
其原则是先分类,后分步。
(4)两种途径:①元素分析法;②位置分析法。
3.排列应用题:(1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来;(2) 特殊元素优先考虑、特殊位置优先考虑;例1. 电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告,要求首尾必须播放公益广告,则共有种不同的播放方式(结果用数值表示).解:分二步:首尾必须播放公益广告的有种;中间4个为不同的商业广告有种,从而应当填=48. 从而应填48.例2. 6人排成一行,甲不排在最左端,乙不排在最右端,共有多少种排法?解一:间接法:即解二:(1)分类求解:按甲排与不排在最右端分类.(3)相邻问题:捆邦法:对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。
高中数学排列组合

高中数学排列组合
高中数学中关于排列组合的内容主要包括排列、组合以及
排列组合的应用。
1. 排列
排列是从一组元素中按照一定的顺序取出若干个元素,排
成一列,形成一个新的序列。
排列要区分顺序,即不同的
顺序就是不同的排列。
- 全排列:从n个元素中按照顺序取出m(m≤n)个元素
进行排列,称为从n个不同元素中取出m个元素的排列数,记作A(n, m)。
全排列的计算公式是A(n, m) = n! / (n-m)!
- 循环排列:将n个元素按照一定的顺序排列,使得前n-1个元素排列之后得到的结果与后n-1个元素排列之后得到
的结果一致,称为n个元素的循环排列。
2. 组合
组合是从一组元素中不考虑顺序地取出若干个元素,形成
一个新的组合。
组合不考虑元素的顺序,即不同的顺序被
看作是同一组合。
- 对于n个元素,取出m个元素的组合数称为从n个不同
元素中取出m个元素的组合数,记作C(n, m)。
组合数的
计算公式是C(n, m) = n! / (m! * (n-m)!)
3. 排列组合的应用
排列组合的应用广泛存在于概率统计、数学竞赛、密码学
等领域。
常见的应用有计算概率问题、计算组合型数列的
项数、计算排列型数列的项数、计算集合的子集数目等等。
需要注意的是,在解决实际问题时,需要灵活运用排列组
合的知识,并结合具体情况进行分析和求解。
高中数学排列与组合的知识点总结

高中数学排列与组合的知识点总结排列组合是组合学最基本的概念。
所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。
组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。
排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。
排列组合与古典概率论关系密切。
排列组合公式/排列组合计算公式排列P------和顺序有关组合C-------不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法."排列"把5本书分给3个人,有几种分法"组合"1.排列及计算公式从n个不同元素中,任取mm≤n个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出mm≤n个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号pn,m表示.pn,m=nn-1n-2……n-m+1=n!/n-m!规定0!=1.2.组合及计算公式从n个不同元素中,任取mm≤n个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出mm≤n个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号cn,m表示.cn,m=pn,m/m!=n!/n-m!*m!;cn,m=cn,n-m;3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=pn,r/r=n!/rn-r!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/n1!*n2!*...*nk!.k类元素,每类的个数无限,从中取出m个元素的组合数为cm+k-1,m.排列Pnmn为下标,m为上标Pnm=n×n-1....n-m+1;Pnm=n!/n-m!注:!是阶乘符号;Pnn两个n分别为上标和下标=n!;0!=1;Pn1n为下标1为上标=n组合Cnmn为下标,m为上标Cnm=Pnm/Pmm;Cnm=n!/m!n-m!;Cnn两个n分别为上标和下标=1;Cn1n为下标1为上标=n;Cnm=Cnn-m公式P是指排列,从N个元素取R个进行排列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学排列组合及概率的基本公式、概念及应用
1 分类计数原理(加法原理):12n N m m m =+++.
分步计数原理(乘法原理):12n N m m m =⨯⨯
⨯.
2 排列数公式 :m
n A =)1()1(+--m n n n =!
!)(m n n -.(n ,m ∈N *,且m n ≤).规定1!0=.
3 组合数公式:m
n
C =m n m m
A A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *
,m N ∈,且m n ≤).
组合数的两个性质:(1)m n C =m
n n
C - ;(2) m n C +1
-m n
C =m n C 1+.规定10
=n C .
4 二项式定理 n
n n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+--- 222110)( ; 二项展开式的通项公式r
r n r n r b a C T -+=1)210(n r ,,, =.
2012()()n n n f x ax b a a x a x a x =+=++++的展开式的系数关系:
012(1)n a a a a f ++++=; 012(1)(1)n n a a a a f -++
+-=-;0(0)a f =。
5 互斥事件A ,B 分别发生的概率的和:P(A +B)=P(A)+P(B). n 个互斥事件分别发生的概率的和:P(A 1+A 2+…+A n )=P(A 1)+P(A 2)+…+P(A n ).
6 独立事件A ,B 同时发生的概率:P(A ·B)= P(A)·P(B). n 个独立事件同时发生的概率:P(A 1· A 2·…· A n )=P(A 1)· P(A 2)·…· P(A n ).
7 n 次独立重复试验中某事件恰好发生k 次的概率:()(1).k k n k
n n P k C P P -=-
8 数学期望:1122n n E x P x P x P ξ=++++
数学期望的性质
(1)()()E a b aE b ξξ+=+. (2)若ξ~(,)B n p ,则E np ξ=. (3) 若ξ服从几何分布,且1
()(,)k P k g k p q p ξ-===,则1E p
ξ=
. 9方差:()()()2
2
2
1122n n D x E p x E p x E p ξξξξ=-⋅+-⋅+
+-⋅+
标准差:σξ=ξD . 方差的性质:
(1)()2D a b a D ξξ+=;
(2)若ξ~(,)B n p ,则(1)D np p ξ=-.
(3) 若ξ服从几何分布,且1()(,)k P k g k p q p ξ
-===,则2
q D p ξ=
. 方差与期望的关系:()2
2D E E ξξξ=-.
10正态分布密度函数:(
)()()2
2
26,,x f x x μ--
=
∈-∞+∞,
式中的实数μ,σ(σ>0)是参数,分别表示个体的平均数与标准差. 对于2
(,)N μσ,取值小于x 的概率:()x F x μσ-⎛⎫
=Φ
⎪⎝⎭
.
()()()12201x x P x x P x x x P <-<=<<
11 )(x f 在0x 处的导数(或变化率):
00000()()()lim
lim x x x x f x x f x y
f x y x x
=∆→∆→+∆-∆''
===∆∆. 瞬时速度:00()()
()lim lim
t t s s t t s t s t t t
υ∆→∆→∆+∆-'===∆∆. 瞬时加速度:00()()
()lim lim
t t v v t t v t a v t t t
∆→∆→∆+∆-'===∆∆. 12 函数)(x f y =在点0x 处的导数的几何意义:
函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率
)(0x f ',相应的切线方程是))((000x x x f y y -'=-.
13 几种常见函数的导数:
(1) 0='C (C 为常数).(2) 1
()()n n x nx
n Q -'=∈.(3) x x cos )(sin ='.
(4) x x sin )(cos -='. (5) x x 1
)(ln =';1(log )log a a x e x
'=.
(6) x x e e =')(; a a a x
x ln )(='.
14 导数的运算法则:
(1)'
'
'
()u v u v ±=±.(2)'
'
'
()uv u v uv =+.(3)''
'2
()(0)u u v uv v v v
-=≠. 15 判别)(0x f 是极大(小)值的方法:
当函数)(x f 在点0x 处连续时,
(1)如果在0x 附近的左侧0)(>'x f ,右侧0)(<'x f ,则)(0x f 是极大值; (2)如果在0x 附近的左侧0)(<'x f ,右侧0)(>'x f ,则)(0x f 是极小值. 16 复数的相等:,a bi c di a c b d +=+⇔==.(,,,a b c d R ∈)
17 复数z a bi =+的模(或绝对值)||z =||a bi +18 复平面上的两点间的距离公式:
12||d z z =-=(111z x y i =+,222z x y i =+).
19实系数一元二次方程的解
实系数一元二次方程20ax bx c ++=,
①若2
40b ac ∆=->,则1,2x =;
②若240b ac ∆=-=,则122b
x x a
==-;
③若240b ac ∆=-<,它在实数集R 内没有实数根;在复数集C 内有且仅有两个共轭
复数根2
40)x b ac =-<.
20解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合.
21解排列组合问题的规律是:相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;多元问题分类法;有序分配问题法;选取问题先排后排法;至多至少问题间接法,还记得什么时候用隔板法?
22排列数公式是: 组合数公式是: 排列数与组合数的关系是:m
n
m n C m P ⋅=!
组合数性质:
m
n
C
=
m n n
C
-
m n
C
+
1-m n C
=
m
n C
1
+ ∑=n
r r n
C
=n
2
1
1
21++++=++++r n r n r r r r r r C C C C C
二项式定理:
n
n n r r n r n n n n n n
n
n
b C b a C b a C b a C a C b a ++++++=+--- 222110
)(
二项展开式的通项公式:r
r
n r
n
r b
a
C T -+=1
)210(n r ,,, =
概率统计
23有关某一事件概率的求法:把所求的事件转化为等可能事件的概率(常常采用排列组合的知识),转化为若干个互斥事件中有一个发生的概率,利用对立事件的概率,转化为相互独立事件同时发生的概率,看作某一事件在n 次实验中恰有k 次发生的概率,但要注意公式的使用条件。
(1)若事件A 、B 为互斥事件,则P (A+B )=P (A )+P (B ) (2)若事件A 、B 为相互独立事件,则P (A ·B )=P (A )·P (B )
(3)若事件A 、B 为对立事件,则P (A )+P (B )=1一般地,()
()A P A p -=1 (4)如果在一次试验中某事件发生的概率是p,那么在n 次独立重复试验中这个事恰好发生
K 次的概率: ()()k
n k
k n n
p p C K P --=1
24抽样方法主要有:简单随机抽样(抽签法、随机样数表法)常常用于总体个数较少时,它的主要特征是从总体中逐个抽取;系统抽样,常常用于总体个数较多时,它的主要特征就是均衡成若干部分,每一部分只取一个;分层抽样,主要特征分层按比例抽样,主要使用于总体中有明显差异。
它们的共同特征是每个个体被抽到的概率相等。
25用总体估计样本的方法就是把样本的频率作为总体的概率。