混煤燃烧特性研究

合集下载

配煤掺烧方式主要特点及燃煤适应性分析

配煤掺烧方式主要特点及燃煤适应性分析

配煤掺烧方式主要特点及燃煤适应性分析【摘要】目前,我国的发电企业对于自身的发电安全性和经济性有了更多的要求,为了能够对于发电的方式进行更多的优化,本文通过大量实例的研究,对于火电厂的配煤掺烧方式主要特点及燃煤适应性进行了研究。

对于发电中的炉锅运转和炉锅的特点进行简单的剖析,使得能够将配煤掺烧方式进行结合的研究,使得能够对于发电的方法有了更多合理的优化,对于燃煤的质量和适应性进行了进一步的讨论。

同时,根据不同的混烧煤的燃烧的特点,进行不同方式的配煤掺烧,对于不同的配煤掺烧的操作过程进行相关的注重要点进行讨论。

本文结合一定的实例,根据配煤掺烧方式主要特点及燃煤适应性的研究提出了在不同混合燃烧方式下可能产生的问题,并提出相应的措施。

【关键词】配煤掺烧;方式特点;燃煤适应性1 引言近年来,我国的煤炭价格一直都在进行价格的上涨,电厂为了对发电的成本进行一定的节约,对于燃煤进行了掺烧的方式,这种方式有效的降低了燃煤产电的成本,并且能够结合各种煤原料的特质进行发电生产,能够有效的增加我国的发电厂的利润。

但是在这种方式下,有的发电厂出现了对于混合的煤原料,只考虑到了降低成本,而将一些质量比较高的煤炭和质量比较低的煤炭进行了配煤掺烧,所以导致了炉煤的质量不能得到一定的保证,反而使得严重影响了正常的生产,所以这是一种极其不合理的掺烧方式,对于企业本身并没有多大的好处,反而会导致企业设备烧煤的效率有所下降,设备维护成本反而增加,得不偿失,所以企业应该在合理科学的了解了煤炭的种类质量和配煤掺烧的方法后,对于煤原料进行合理的配煤,最后才能收获到节约成本和增加收益的效果,不然也不利于环境的保护,和烧煤效果的良好好。

锅炉是在结合所针对的煤炭进行设计的,对于煤炭的燃烧没有很大的适应性,所以锅炉所烧的煤炭要与锅炉的各项参数进行一定范围的匹配才能进行一定安全性和有效性的燃烧,保证烧煤的经济性和节能性。

要将各种煤类进行合理的搭配进行烧制,才能很好的进行发电生产,以此来保证工作的效率,减少对环境的污染,对于企业的经济效益有一定的提高。

混煤掺混方式对其燃烧特性的影响研究

混煤掺混方式对其燃烧特性的影响研究

第25卷第2期电站系统工程V ol.25 No.2 2009年3月Power System Engineering 13 文章编号:1005-006X(2009)02-0013-03混煤掺混方式对其燃烧特性的影响研究*默会龙1刘亮1白晓玲2朱光明3王艳1高颖佳1(1.长沙理工大学,2.中国石油独山子石化热电厂,3.湖南省电力公司试验研究院)摘要:利用热重天平对燃烧性能相差较大的巩义金鼎煤和平煤天安煤及其混煤燃烧性能进行热重分析,对两种不同的掺混方式得到的混煤进行实验,分析了两种掺混方式下的混煤着火温度、燃尽温度,并对混煤的可燃性指数Cb、综合燃烧特性指数S、稳燃指数G 进行了对比。

结果表明:在相同升温速率、质量比的情况下,掺混磨制好的单煤粉获得混合煤粉的方式同掺混原煤后进行磨制获得混合煤粉的方式相比,其各项着火特性、燃烧特性都有改善。

关键词:掺混方式;燃烧特性;热重分析;混煤中图分类号:TK124 文献标识码:AStudy on Effect of Blended Coal Way on Blended Coal Combustion CharacteristicsMO Hui-long, LIU Liang, BAI Xiao-ling, et al.Abstract: Thermogravimetric tests of Gongyijinding and Pingmeitianan and the blended coal have been carried out. The influence of the variation of experimental curves on the ignition and combustion characteristics of the blended coal on the different blended way is discussed. Different ways of blend methods, which the one is blended the pulverized coal that obtained by grinded the single parent coals, the other is blended the two parent coals then to grinded them in order to obtain the blended coal, was described in this paper. The parameters of flammability index C b, combustion stabilized G, comprehensive discrimination index S were used to evaluate the different blended coal. The result shows that, under the same heating up rate and the same mass, the ignition characteristics and the combustion characteristics of the first method are better than the second method.Key words: blended coal way; combustion characteristics; thermogravimetric analysis; blended coal随着我国国民经济的快速发展,煤的消耗量日益增加,加上运输困难、煤矿分布不均等因素,许多电站锅炉有燃用混煤的倾向。

600MW超临界锅炉混煤燃烧试验研究

600MW超临界锅炉混煤燃烧试验研究

3 2种 煤 质 的 热 重 分 析
为 了解 2种煤 质 的基本 燃 烧 特性 , 在热 重 分 析
步发展提供参考和借鉴 。
试验 台上 对 2种煤 质 分 别 进行 了分 析 , 析 结 果 见 分
2 设备概况及煤质分析
该锅 炉是 三井 巴布科 克 能源 公 司生产 的 MB一 14 2 . 94— 4 7—5 159型 超 临 界 直 流 锅 炉 , 单 炉 7/ 6 为 膛 、 次再 热 、 衡通 风 、 天 布 置 、 一 平 露 固态排 渣 、 钢 全 构 架 、 悬 吊结 构 兀 形 锅 炉 。锅 炉燃 烧 方 式 为 前 、 全
幅度调整煤粉细度使煤粉颗粒变粗 , 同时要减弱燃 烧器二次风旋流强度使其接近直流气流。在这种工 况下 , 基本 可 以保证 燃烧 器 的安全 , 锅炉 效率 明显 但 降低 , 飞灰可燃物 的质量分数从掺烧前 的 3 %升 至 7 已不能满足经济运行 的要求 。因此 , %, 对该锅炉 来讲 , 采用炉 前预混 方式 掺烧 烟煤 比例 的上 限在 4 %左 右 , 好 控制 在 3 % 以下 。 0 最 0
() 3 采用炉前预混方式掺烧 4 %烟煤 , 0 需要对 锅 炉 进行 更大 幅度 的调 整 , 时调 整 的主 要 目的是 这 保证锅炉及 附属设备 的安全性 ( 特别是燃烧器的安
全性) 。试 验结 果 表 明 , 防止 燃 烧 器烧 损 , 须 大 为 必
前预混掺烧 3 %烟煤 、 0 炉前预混掺烧 4 %烟煤和分 0 磨单烧掺烧 5 %烟煤 。 0


5 采用分磨燃 烧方式掺烧
炉 前 预混 掺 烧 试 验结 束 后 , 开始 进 行 分 磨单 烧 烟 煤 试 验 。在 试 验 期 间 , 持 锅 炉 负 荷 大 于 9 % 保 0

准东煤粉燃烧特性研究

准东煤粉燃烧特性研究

准东煤粉燃烧特性研究摘要:由于准东煤中含有大量的碱金属,使其灰烬的熔化温度较低,在燃烧时极易产生污垢和焦炭,在恒温热重仪上对准东煤燃烧特性进行了研究,并探讨了温度和煤种比例对其燃烧特性的影响。

试验结果显示:在单煤的燃烧过程中,不同的煤种燃尽时间和燃烧速率存在着明显的差异,其中路茂通坎乡、永华金泰两个煤种之间的差别最大,路茂通坎乡的煤种更容易发生火灾,快速燃烧,快速燃尽;随着温度的上升,单煤的燃烧失重曲线向左偏移,且燃尽时间变短,燃烧速率上升,结果显示,温度的上升会加快煤粉的燃烧速度,并且在1000℃之后,增加温度对焦炭燃尽的促进效果更为明显;在混合燃烧时,加入高挥发性的煤,能够有效地提高煤粉在燃烧初期的着火特性,而高固定碳煤的掺烧会延长燃尽时间,因此会降低燃尽率;在准东煤中掺入混合煤,可以使其灰熔点升高,并对其熔化性能进行了明显的改善,这样就能减少或避免在煤的来源上,炉内受热表面的污染和结渣,保证锅炉安全、经济的运转。

关键词:准东煤;燃烧;特性分析引言准东煤田是中国已知最大全煤储量最大的一块。

准东梅粉在燃烧过程中具有燃点低以及燃烧率高等特点,与此同时还不会产生较高的污染排放物。

属于我国硫分低的煤种,具有高挥发性、低灰分和高热值,是一种很好的发电用煤。

但同时,准东煤灰的熔化温度很低,煤中的碱金属如钙、钠、钾的含量也很高,特别是Na2O的含量,大多都超过了5%,远远超出了当前我国典型烟煤乃至褐煤的含钠水平,在燃烧时易引起碱金属污染,结焦等问题。

1实验部分1.1样品实验选用准东煤田开采的文新佳业(WX)以及永华金泰(YH)等多个煤种。

通过对煤样进行研磨和过筛,筛选出100-120目的煤粉作为试验材料。

1.2实验系统及过程所述主要装置包括:用于提供精确恒温环境的智能化温度控制管式炉,其恒温区在管式炉的炉膛中部,长度为200毫米,最低温度为8000℃,最高温度为1700℃, 在对温度进行控制时,控制范围为5℃左右;采用烟气分析仪、微机等构成了数据采集与分析系统;耐高温支架,钢制船体,钢制轨道等。

火力发电企业混煤掺烧技术的研究及应用

火力发电企业混煤掺烧技术的研究及应用

火力发电企业混煤掺烧技术的研究及应用作者:饶红建来源:《科学与信息化》2020年第31期摘要火力发电企业除了承担社会责任外,盈利以及追求利润最大化仍然是其根本目标。

燃煤机组降低发电成本最直接的方法就是降低煤价,煤价的降低必然造成煤质的下降,从而引出一系列问题。

研究清楚掺配掺烧对机组安全和经济性的影响,制定切实合理掺配掺烧方案,对保证燃煤机组电厂长周期安全、经济、环保运行起着长远的战略作用。

关键词混煤掺烧;安全;经济1 混煤掺烧的目的及对机组运行经济性的影响(1)锅炉机组对燃煤的要求。

①燃烧的要求:为提高锅炉着火的稳定性、降低飞灰含碳量、提高锅炉效率进行掺配;②制粉的要求:为提高制粉系统出力,防止制粉系统自燃、爆炸进行掺配;③结渣的要求:为防止锅炉结渣、结焦、灭火进行掺配;④排放的要求:为满足环保要求进行掺配;⑤辅助的设备要求:为防止雨季及煤较湿堵煤进行掺配。

⑥机组已经建好,采购的煤不能满足锅炉机组要求,需要进行配煤。

⑦机组已经建好,到厂的煤不符合锅炉机组要求,需要进行配煤。

⑧设计、建设机组时,根据采购煤的状况,选定设计煤种进行配煤。

⑨根据机组最佳运行要求、最佳采购煤条件,进行经济配煤。

(2)燃煤对运行经济性的影响。

凡是燃煤与设计煤种相符的电厂,锅炉运行正常,生产稳定,技术经济指标比较好;而煤种不符合设计煤种时,带来种种问题:①锅炉出力下降,机组不能满发。

②锅炉效率降低,发电煤耗增加。

③煤种多变、煤质劣化,使电厂助燃油量增加。

④锅炉炉膛结渣,受热面超温,近半数的电厂不同程度的出现过类似问题。

⑤燃料费用和发电成本增加。

⑥完善改造工作量大,费用高。

为了解决因煤质引起的出力下降、投油多、结渣、超温、磨损等问题而进行的完善化改造。

2 混煤掺烧中出现的安全问题及原因分析(1)炉内结渣。

掺配煤最容易引起的问题就是炉内结渣的问题,主要由下三种原因造成:①掺烧强结渣性的煤。

②几种不结渣性的煤惨混合燃烧过程中形成低灰熔点的共熔体。

电厂锅炉混煤掺烧技术研究与实践

电厂锅炉混煤掺烧技术研究与实践

电厂锅炉混煤掺烧技术研究与实践当前时期,发电的形式多种多样,而在我国火力发电中锅炉混煤掺烧技术的应用最为广泛。

为了节省燃煤,许多火力发电厂进行发电的时候,燃料均不运用单一的燃煤,而是把各类不同煤炭种类进行混合燃烧。

这种混煤掺烧技术可以有效提升燃料的利用率,进而节约成本,提升火力发电厂的经济效益。

现简要分析电厂锅炉混煤掺烧技术与实践,力求为今后的相关工作提供可靠的参照。

标签:电厂锅炉混煤掺烧技术实践应用特性由于我国电煤供应的逐年下降,更多的火力发电厂进行发电过程中,无法使用设计煤种,有些电厂连校核煤种都无法使用。

在这样的大背景下,为了尽可能的确保火力发电厂运行的稳定性、经济性、安全性以及环保性,混煤掺烧技术获得了快速的应用和发展,已经变成了火力发电厂主要的发电方式[1]。

因此,对电厂锅炉混煤掺烧技术进行研究就变得非常重要,需提高重视程度。

一、电厂锅炉混煤掺烧特性1.可磨特性由于煤质之间存在很大的差异性,燃煤的可磨特性同样会存在差异。

部分煤质的可磨特性比较相似,而部分煤质的可磨特性相差较多。

若两类煤质可磨特性比较相似的煤炭进行混合,则两类煤极易有效的进行融合。

可若两类煤质的可磨特性差别比较严重的煤炭进行混合,则混合后的可磨特性与可磨特性较差的煤质相似。

和可磨特性较高的煤质对比,可磨特性较差的煤质粒径要粗一些,燃烧效率也就更低。

所以,若要使两类煤质充分燃烧殆尽,则需认真考虑可磨特性较差煤质的充分燃烧。

2.着火特性第一,对煤质进行加热的时候,锅炉内的温度会持续升高。

但温度提高的阶段会出现热分解反应。

在进行热分解过程中,煤质挥发成气体与煤膏。

基于实际情况来分析,热分解反应受到多种因素的作用,最具代表性的就是升温速度、温度以及阈能;第二,若煤质属于单一煤炭,则在燃烧过程中会发生一个失重速率高峰。

可若煤质属于混合类煤炭,则进行燃烧过程中会发生多于两个的失重速率高峰。

则表示混合煤质在燃烧的时候,可以保证其本身的着火特性。

混煤燃烧特性试验研究的开题报告

混煤燃烧特性试验研究的开题报告

混煤燃烧特性试验研究的开题报告【摘要】混煤燃烧是指将两种或多种不同种类的煤混合燃烧,其燃烧特性与单一种煤的燃烧特性具有明显的差异。

本文通过对混煤燃烧特性试验进行研究,旨在探究混煤燃烧的机理及其对环境的影响,并为相关工程应用提供依据。

【关键词】混煤燃烧;燃烧特性;污染物排放;环境影响一、研究背景及意义混煤燃烧是指将不同种类的煤混合燃烧,其燃烧特性与单一种煤的燃烧特性具有明显的差异。

由于混煤燃烧使得热值不稳定、挥发分和灰分的含量不同,导致燃烧过程中温度分布、氧气流量、燃料分布等参数难以控制,使得混煤燃烧的环境影响和排放物变化值得研究。

随着工业化进程的加速和能源问题的日益突出,混煤燃烧成为一种广泛存在的燃烧形式。

混煤燃烧的研究,可以为燃烧工程提供科学的方法和技术支持,从而更好地实现能源的高效利用。

此外,混煤燃烧排放的污染物也对环境带来一定的影响,因此对混煤燃烧的污染物排放及处理方法的研究,将有助于环境保护和可持续发展。

二、研究内容和方法本研究将对混煤燃烧的燃烧特性进行深入探究。

具体来说,研究工作主要包括以下几个方面:1. 混煤燃烧的基本情况分析:通过对国内外相关文献的综述,了解混煤燃烧的研究现状、发展趋势和存在问题,为后续实验研究提供依据。

2. 混煤燃烧的燃烧特性试验:选取不同比例的煤粉进行混合燃烧试验,测定燃烧过程中温度、烟气成分、排放物等指标,并对不同混煤比例的燃烧过程进行对比分析。

3. 混煤燃烧的影响因素分析:通过对实验数据的统计和分析,确定影响混煤燃烧燃烧特性的因素,并提出相应的控制策略。

4. 混煤燃烧的环境影响评价:通过测量混煤燃烧排放物质的成分、浓度等指标,对其环境影响进行评价,并提出相应的治理方案。

三、预期成果及其应用价值本研究拟通过对混煤燃烧特性试验的系统研究,探究混煤燃烧的机理及其对环境的影响,预计将取得以下成果:1. 混煤燃烧特性试验数据的积累,为混煤燃烧的控制及优化提供科学的理论基础和技术支持。

混煤燃烧特性的热重试验研究

混煤燃烧特性的热重试验研究
煤在着火后燃烧速率越高, 越容易形成较高 的燃烧温度, 燃烧越稳定, 在一定的停留时间内煤 燃尽程度也越高。在热天平试验中, 最大失重速率 反映了煤的燃烧速度。 图 6 曲线为煤样最大失重 速率随掺混比例的变化趋势, 由图可见无烟煤的 最大失重速率最大, 烟煤居中, 褐煤最小。
对于燃烧性能相差较大的无烟煤与烟煤或褐 煤掺混燃烧时, 最大失重速率有较大幅度的减小, 远小于单一煤种的最大失重速率, 在掺混比为
越好。H F 值随掺混比的变化规律示于图 11。
图 11 不同掺混比下煤样 H F 值变化曲线
由图 11 可以看出: 对于燃烧性能相差较大的 煤种掺混燃烧, 如无烟煤与烟煤或褐煤掺烧, 在以 燃烧无烟煤为主 (无烟煤占比例大于 50% ) 时, H F 指数随易燃煤比例的增加而增加, 说明煤样 在着火后燃烧速度下降, 不易形成较高的燃烧温 度, 燃尽性可能会下降, 甚至比无烟煤的燃尽性能 还差。
表 1 试验煤样的工业分析
水份 (M ) %
灰份V , ad)
%
固定碳 高位发热量
(F c, ad) (Q g r, ad)
%
M J kg
褐煤
5. 61 31. 52
38. 2
30. 28
21. 21
烟煤
2. 83 34. 66 30. 29 32. 67
19. 93
无烟煤 0. 78 26. 19 9. 42 63. 61 24. 84
笔者对 1 种烟煤、1 种无烟煤和 1 种褐煤的 混煤进行了热天平试验。 由于活化能是反应物分 子由初始稳定状态为活化分子所需吸收的能量, 因此煤的活化能比着火温度更能从本质上描述煤 的着火性能。 本文对不同掺混比下混煤的活化能 进行求解, 根据活化能及着火温度随掺混比的变 化规律, 对混煤的着火特性进行了分析; 此外, 根 据试验数据, 并考虑活化能的意义, 提出反映煤燃 烧速度的燃烧指数 H F , 并利用 H F 对混煤燃烧的 稳定性和燃尽性能进行了研究。

混煤燃烧特性及动力学分析

混煤燃烧特性及动力学分析

混煤燃烧特性及动力学分析邢相栋;张建良;任山;曹明明;焦克新【摘要】Non-isothermal combustion experiments of different additive amount of bituminous (0%, 20%, 40%, 60%, 80%, 100%) were conducted by synthesized thermogravimetry analyzer(STA409PC) from room temperature to 900 ℃ in air. The changes of combustion characteristic parameters of pulverized coals in different atmospheres are analyzed. The results show that DTG curves of coal combustion move to low temperature zones when the amount of bituminous increases. It indicates that both ignition and burn out temperature are lower, burn out time decreases, combustion characteristic index obviously increases, and combustion performance of blending coal are improved. The iso-conversional method involving Flynn-Wall-Ozawa(FWO) methods was used for the kinetic analysis of the main combustion process. The results indicated that when the additive amount of bituminous varied from 0 to 100%, the value of activation energy which would sharply reduce if the additive amount of bituminous was under 60% increased from 133. 94 kJ/mol to 78. 03 kJ/mol by using FWO method.%采用综合热分析仪(STA409PC),系统研究了分别配加0%,20%,40%,60%,80%,100%烟煤对无烟煤煤粉燃烧特性的影响.结果表明,随着烟煤配加量的增加,燃烧DTG曲线呈现双峰状向低温区移动,着火温度及燃尽温度降低,燃尽时间缩短,综合燃烧指数明显提高,燃烧特性得到改善;采用非等温模型Flynn-Wall-Ozawa(FWO)对主要燃烧过程进行动力学分析,当烟煤配加量从0%~100%时,煤粉燃烧活化能从133.94 kJ/mol降低到78.03 kJ/mol,且烟煤的配加量低于60%时,能够显著降低煤粉燃烧的活化能.【期刊名称】《煤炭转化》【年(卷),期】2012(035)003【总页数】5页(P43-47)【关键词】热重法;燃烧;混煤【作者】邢相栋;张建良;任山;曹明明;焦克新【作者单位】北京科技大学高效钢铁冶金国家重点实验室,100083北京;北京科技大学高效钢铁冶金国家重点实验室,100083北京;北京科技大学高效钢铁冶金国家重点实验室,100083北京;北京科技大学高效钢铁冶金国家重点实验室,100083北京;北京科技大学高效钢铁冶金国家重点实验室,100083北京【正文语种】中文【中图分类】TQ534;O643.12煤粉燃烧是高炉喷吹节能降耗的重要措施,也是燃煤电厂锅炉的主要燃烧方式,提高煤粉燃烧效率、改善其燃烧特性和减少有害气体排放是煤粉燃烧技术领域的关键研究课题.近年来,混煤燃烧(特别是烟煤与无烟煤混合)在世界范围内得到广泛应用.混煤复配时,若煤种比例选择适当,混合均匀,则能充分发挥各煤种的优越性,弥补单一煤种自身燃烧特性存在的缺陷,给生产的安全性和经济性带来良好的影响.实际运行表明:混煤的燃烧特性与单一煤种相比发生很大的变化,这是因为混煤的反应性发生了变化.关于混煤燃烧特性的研究已有许多报道[1,2],对于烟煤促进无烟煤的燃烧也已经普遍被接受,但对烟煤与无烟煤混合燃烧特性系统研究的内容并不多.本实验系统研究了混煤燃烧过程,主要以配加不同比例烟煤与无烟煤的混煤为研究对象,通过模式匹配的方法,初次以Flynn-Wall-Ozawa (FWO)模型为基础,采用综合热分析仪(STA409PC)研究了煤粉的燃烧特性,着重对燃烧反应的动力学参数活化能进行了研究.1.1 煤样分析实验所用烟煤及无烟煤样品为山东某钢铁企业提供,单煤种的煤质分析数据见表1. 由于煤粉水分(Mad)、灰分(Aad)、固定碳(FCad)和挥发分(Vad)含量具有线性加权性[3],因此可以通过计算得到混煤煤粉煤质分析数据(见表2).1.2 实验方法采用德国耐驰公司综合热分析仪(STA409PC)可获得试样的热重曲线(TG)和微熵热重曲线(DTG).主要技术数据如下:热天平精度1μg;最大试样量1000mg;温度范围为室温~1400℃;实验气氛为空气和氮气;升温速率范围0.1K/min~30.0K/min;样品粒度小于80目.实验过程中以无烟煤为基准,分别配加0%,20%,40%,60%,80%,100%的烟煤,按要求均匀混合后取样,在空气气氛下,从室温加热至900℃,观察热重曲线变化,分析煤粉的燃烧特性,确定过程的动力学参数.升温速率分别控制为5K /min,10K/min,20K/min,每次称取试样质量为(10±0.2)mg,为保证测量结果的准确性,同一实验条件下,实验重复3次.2.1 燃烧特征参数分析2.1.1 燃烧特征值的确定2.1.1.1 着火温度和燃尽温度本实验采用TG-DTG法[4]确定着火温度,即在DTG曲线上过第一个峰值点作垂线交TG曲线于A点,过A点作TG曲线的切线,与TG曲线上开始失重的平行线交于C点,C点对应的温度即为着火温度Ti,而燃尽温度Tf定义为试样失重占总失重98%时对应的温度.煤样从着火温度上升到燃尽温度所用的时间为燃尽时间.2.1.1.2 综合燃烧特性指数综合燃烧特性指数S全面反映了煤的着火与燃尽特性,S越大表明煤的燃烧特性越好[4],S定义如下:式中:(dw/dt)max为最大燃烧率,%/min;(dw/dt)mean为平均燃烧率,%/min;Ti为着火温度,℃;Tf为燃尽温度,℃.2.1.2 TG/DTG曲线分析升温速率为10K/min时,不同烟煤配加量对混煤煤粉燃烧特性影响的热失重曲线(TG)和失热重微分曲线(DTG)见图1,TG曲线表征的是样品质量随温度递减的变化曲线;DTG曲线表示样品瞬时失重速率随温度的变化曲线,其反映某一时刻样品发生失重的剧烈程度.在给定的工况条件下,煤粉的燃烧经历了几个不同的阶段,大致分为三个区域:首先是从室温到煤粉着火点Ti的干燥脱气阶段,这一阶段主要是水分的挥发和少量挥发分的析出,煤粉热重曲线的外形基本没有发生变化;第二阶段是煤粉燃烧的主要阶段,在该阶段,随着温度的升高,煤粉中固定碳和大量有机物挥发燃烧;第三阶段的温度区间是第二阶段的末端温度之后到900℃,煤粉只有少量质量损失.其中第二阶段的反应最为强烈,也是研究煤粉燃烧动力学的主要反应区域.煤粉燃烧是一个复杂的物理化学过程,本文描述的三个阶段只是粗略划分.从DTG曲线可知第二阶段的质量损失速率明显大于其他两个阶段. 表3为升温速率为10K/min时不同烟煤配加量(0%,20%,40%,60%,80%,100%)煤粉燃烧的特征参数.表3中Ti为煤粉着火点,℃;T1,T2分别为DTG曲线峰值对应的煤粉燃烧温度,℃;(dw/dt)1和(dw/dt)2分别为DTG曲线峰值对应的煤粉燃烧率,%/min;(dw/dt)max为煤粉最大燃烧率,%/min;Tmax为煤粉最大燃烧率对应的温度值,℃;Tf为煤粉燃烧终点温度,℃.随着烟煤配加量的增加,煤粉DTG曲线第一个峰值均向低温区移动.由表3可知,烟煤和无烟煤单独加热燃烧时,煤粉的DTG曲线呈现单一峰值,混合之后呈现双峰,且随着烟煤配加量的提高,前峰所指的燃烧速率逐渐变大,后峰逐渐变小,其中前峰主要体现烟煤燃烧过程,后峰体现无烟煤燃烧过程.煤粉最大燃烧率体现了煤粉中百分比占优势的煤种燃烧特点[3],同时,混合煤粉燃烧平均反应速率随着烟煤配加量的提高而逐渐增加.故高反应性烟煤的加入能够促进煤粉挥发分的析出,从而引起最大反应速率发生改变.2.1.3 烟煤配加量对煤粉燃烧特性的影响混合煤粉的着火温度和燃尽温度随烟煤配加量的变化关系见图2.由图2可以看出,随着烟煤配加量的增加,煤粉燃烧的着火温度和燃尽温度均有下降趋势.烟煤配加量对混合煤粉综合燃烧特性指数的影响见图3.由图3可以看出,烟煤的加入能够显著改善煤粉的燃烧性能,同时可以得出,烟煤对混合煤粉综合燃烧特性指数的影响并不是线性关系,配入量超过60%之后,影响程度明显增加.2.2 动力学分析2.2.1 燃烧动力学计算非等温、非均相燃烧反应过程中,样品热解速率或转化速率dα/dt与反应速率常数κ(T)和燃烧机理函数f(α)具有线性关系,其动力学方程为:式中:α为煤粉氧化分解过程的转化率,%;T为转化率等于α时所对应的温度,K;t为转化率等于α时的升温时间,s.κ(T)通常采用Arrhenius定律描述:式中:A为前置因子;E为活化能,kJ/mol;R为普适气体常数,其值为8.314J /(mol·K).f(α)描述为:式中:n为反应级数.定义热解转化率α为[5]:式中:mi,mt和m∞分别代表反应开始前、反应t时刻和反应结束时样品的重量. 将式(3)和式(4)代入方程(1)中,得到方程(6):升温速率:方程(6)变为:对式(8)进行积分并记为g(α):式中:T0为初始温度,K.本文采用非等温转化的方法,设计了一系列不同升温速率的实验,根据非等温模型Flynn-Wall-Ozawa(FWO)计算出燃烧过程动力学参数活化能.Flynn-Wall-Ozawa(FWO)模型基于以下方程[5,6]:该方程可以根据与1/T的线性关系,计算通过不同转化率时的燃烧转化活化能Eα.2.2.2 动力学参数分析以方程(10)为基础,利用lnβ与1/T之间的线性关系可以计算出不同燃烧率条件下的反应活化能Eα.本实验采用非等温转化的方法,分别选取5K/min,10K/min和20K/min三个不同的升温速率评价反应活化能和转化率α之间的关系.在一定烟煤配加量的条件下不同升温速率对煤粉燃烧的特征参数见表4.由表4可以看出,升温速率不仅影响煤粉挥发分的析出和燃烧,同时影响煤粉的燃烧速率.图4是以FWO模型为基础绘制计算确定煤粉燃烧活化能Eα的趋势图.[7]采用FWO的方法计算了转化率α在[0.2,0.8]的活化能(见表5).由表5可以看出,活化能Eα具有很好的线性相关系数,R2值在0.950 89~0.999 97之间,证明结果是可靠的.随着烟煤加入量的增加,活化能分别为133.94kJ/mol,122.22kJ/mol,97.52kJ/mol,85.11kJ/mol,85.04kJ/mol,78.03kJ/mol.混合煤粉燃烧活化能随着烟煤配入量的增加逐渐降低,这与混合煤粉中挥发分含量有关,混合煤粉中挥发分的含量见表2.混合煤粉挥发分含量增加,活化能逐渐降低,这主要是因为混合煤粉挥发分含量越高,相同温度条件下析出挥发分的量越多,挥发分浓度越高,挥发分分子间碰撞越剧烈,普通分子更容易转化为活化分子,煤粉氧化燃烧越容易.[8,9]烟煤的配加量低于60%时,能够显著降低煤粉燃烧的活化能.1)随着烟煤配加量的增加,煤粉燃烧DTG曲线向低温区发生移动,煤粉燃烧平均反应速率逐渐增加.2)随着烟煤配加量的增加,煤粉的着火温度和燃尽温度均降低,综合燃烧指数提高,煤粉的燃烧特性得到改善,这将有利于煤粉的燃烧和燃尽.3)挥发分对燃烧特性有较大影响,煤粉挥发分含量增加,煤粉活化能逐渐降低. 4)采用FWO方法计算燃烧过程活化能,得到活化能和烟煤配加量具有一定的数学关系,烟煤配加量低于60%时,能够显著降低煤粉燃烧的活化能.【相关文献】[1]刘亮,周臻,李录平.混煤燃烧反应动力学参数的实验研究[J].电站系统工程,2006,22(2):7-9.[2]秦瑾,何选明,刘瑞芝等.催化剂对劣质煤燃烧性能的影响[J].煤炭转化,2011,34(2):13-17.[3]张建良,张曦东,陈杉杉.利用热重法研究煤粉的燃烧[J].钢铁研究学报,2009,21(2):6-10.[4]唐强,王丽朋,闫云飞.富氧气氛下煤粉燃烧及动力学特性的实验研究[J].煤炭转化,2009,32(3):55-60.[5] Zou S P,Wu Y L,Yang M Det al.Pyrolysis Characteristics and Kinetics of the Marine Microalgae Dunaliella Tertiolecta Using Thermogravimetric Analyzer[J].Bioresour Technol,2010,101(1):359-365.[6] Boonchom B,Puttawong S.Thermodynamics and Kinetics of the Dehydration Reaction of FePO4·2H2O[J].Phys B,2010,405(9):2350-2355.[7] Seo Dong Kyun,Park Sang Sh in,Hwang Jungho et al.Study of the Pyrolysis of Biomass Using Thermogravimetric Analysis(TGA)and Concentration Measurements of the Evolved Species[J].Journal of Analytical and Applied Pyrolysis,2010,89(1):66-73.[8]张洪.矿物质对煤粉燃烧特性和反应动力学影响的研究[J].中国矿业大学学报,2009,38(3):455-456.[9]李梅,吕硕,焦向炜.内在矿物质对煤焦燃烧特性影响的实验研究[J].煤炭转化,2009,32(2):33-36.。

烟煤混煤综合燃烧特性试验研究

烟煤混煤综合燃烧特性试验研究

神华煤不同温度区域结渣特性表
表4
80%神华+20% 新高山混煤不同温度区域结渣特性表
1 360 红褐色,硬度高,表 面光滑,呈釉质型, 难刮下 结渣严重
表5
80%神华+20% 平朔混煤不同温度区域结渣特性表
1 350 1 300 黑褐色,粘结在一起, 灰褐色,粘结在一起,可刮下 质地较脆,强度差 结渣中等 结渣中等
ห้องสมุดไป่ตู้
摘 要: 对某电厂常用的 3 种烟煤及其混煤在 CRF 热态试验台上进行了试验研究,详细讨论了其燃尽、结渣和排放特性。 关键词: 混煤;燃尽;结渣;排放特性 中图分类号: TQ533 文献标识码:A
Experimental Study on Comprehensive Behavior of Combustion of Soft Blending Coals
收稿日期:2001-11-21 李永华(1968- ) ,男,博士。071003

CRF 试验台结构图
1.吊车 2.运煤皮带 3.吸铁器 4.碎煤器 5.碎煤斗 6.给煤机 7.给煤风机 8.磨煤机 9.消音器 10.空气加热器 11.过滤器 12.旋风分离器 13.布袋除尘器 14.防爆器 15.排粉机 16.排粉烟囱 17.绞龙 18.粉煤仓 19.螺旋给粉机 20.燃烧器 21.一次风机 22.一次风电加热器 23.二次风机 24.二次风电加 热器 25.炉膛 26.烟道 27.烟气冷却装置 28.烟气冷却风机 29.烟气再加热器 30.静电除尘器 31.灰斗 32.变压器 33.吸风机 34.烟囱
式中:Qr——试验炉输入热量,kJ/kg; Aad——空干基灰分; afh ——飞灰份额,%; alz——炉渣份额,%; cfh ——飞灰含碳量,%; clz——炉渣含碳量,%。 由式 (1) 计算的试验结果示于表 2。从表 2 中看 出,烟煤试验结果燃尽情况都不好,可能与煤种有关 系,但可进行烟煤的相互比较。由于这里没有单烧平 朔煤的可燃物数据,从以前的热天平分析知,平朔煤 燃尽比神华煤差。所以对于烟煤试验也可以得出这样 表3

混煤的特性及对燃烧的影响

混煤的特性及对燃烧的影响

混煤的煤质特性及对燃烧的影响这里写上自己的名字,单位名称,然后另起一行,写上名字的拼音,单位的英文Abstract:According to the current supply of coal fuel coal-fired power plants and operation process of the common characteristics of coal are analyzed, the evaluation indexes of mixed coal plant characteristics and main characteristics of mixed coal combustion influence of indicators.Key Words:Mixing coal,Characteristics of coal摘要:根据目前我国燃煤电厂燃料煤的供应状况及电厂运行过程中常用的煤质特性评价指标,分析了电厂混煤的相关特性及混煤主要特性指标变化对燃烧的影响。

关键词:混煤;煤质特性;随着国家经济的发展及电力体制改革,我国的电力行业已经逐步摆脱粗放型管理,运行机制也已经逐步由计划经济向市场经济发展。

厂网分开、竞价上网已经开始实施。

如何降低发电成本,提高机组效率,直接关系到发电企业的生存与发展。

根据目前国内的煤炭市场和电力需求情况,我国火电厂出现一些问题:①电装机容量增大,煤的耗量增加,一台300MW机组的锅炉的日耗煤量约达3000吨左右,因而很难保证燃烧单一煤种。

②煤炭资源集中在经济欠发达的中、西部地区,在经济发达、对电力需求大的东、南部地区煤炭资源则非常贫乏,北煤南运,煤的运输能力不足。

③近年的电慌、煤慌,造成很多电厂“饥不择食”,被迫烧一些劣质煤。

④许多电厂锅炉的实际燃煤与设计煤种不符,安全经济得不到保障,因而采用混煤燃烧,以便满足锅炉燃烧的要求。

1.1混煤燃烧特性从燃料特性来考虑,燃煤的主要性质根据锅炉需求大体可分为三个层次:第一层次是最基本的煤质指标,如碳含量C、氢含量H、挥发分V、灰分A、全水分M、发热、量Q、硫分S;第二层次指标是对燃料特性的重要补充,如可磨性HGI、着火温度ti粒度组成或煤粉细度、有害元素含量、煤灰熔融特性温度、煤灰粘度与结渣性;第三层次指标是对燃用煤质的专门了解,如密度、硬度、比热、导热系数和膨胀系数、热分析、燃烧特性、煤灰表面张力及沾污能力、灰渣强度及烧结温度等。

分解炉环境下混煤的燃尽特性研究

分解炉环境下混煤的燃尽特性研究

分解炉环境下混煤的燃尽特性研究混煤的定义是指由两种或多种不同煤种混合而成的煤。

混煤具有组分形态均匀、分煤性能稳定、成熟度高、有利于节能、减少排放等优点,使其成为现有可再生能源综合利用中推广应用比较广泛的煤种之一。

本文以《分解炉环境下混煤的燃尽特性研究》为研究主题,讨论以下几个方面:1.解炉环境下混煤的燃烧特性;2.氧对混煤的燃烧特性的影响;3.颗粒体系的燃尽特性;4.型混煤燃尽研究结果相关性分析。

第一部分解炉环境下混煤的燃烧特性分解炉环境下混煤的燃烧特性与其他煤类有较大差别,有许多影响因素。

混煤的燃烧特性主要受其组成煤类的影响,如含碳量、收缩碴片率、元素含量、发热量等。

此外,混煤的块度、混合比例以及热处理方式等也会影响其燃烧特性。

在分解炉环境下,混煤的气化过程包括气化碳、气化碳酸、气化CO2、气化CO、气化CO2和气化H2O等几个阶段。

其中,CO2的气化阶段对控制室温十分关键,CO2越多,室温也越高。

此外,混煤热效率和燃气流量也将影响室温。

第二部分氧对混煤的燃烧特性的影响增氧对于混煤的燃烧特性也会有一定的影响。

增氧可以改变混煤燃烧的温度和相对水蒸气压力,提高燃烧热效率和发热量,降低CO 含量,改善烟气质量。

但添加的氧量不合适,则会降低混煤的热效率,增加炉内的热量损失耗费大量的热量,降低炉内的温度,减缓气化碳的气化反应,影响混煤的燃烧特性。

第三部分粒体系的燃尽特性混煤颗粒体系影响混煤燃烧特性的主要因素之一是混煤颗粒体系的燃尽特性。

混煤颗粒体系的燃尽特性是由混煤的组成煤类、颗粒体系的块度、粗糙度、混合比例以及热处理等因素共同决定的。

一般而言,混煤与精煤相比,具有更高的粒度、更低的气化率和更低的固定碳排放量,可以有效降低排放烟尘污染物。

第四部分型混煤燃尽研究结果相关性分析在研究分解炉中混煤燃尽特性时,可以基于实验室研究结果,建立混煤燃尽模型,同时探讨不同组分煤、体系块度、混合比例的燃尽特性。

在进行统计分析时,可以使用卡方检验或整体模型检验等方法对实验结果归类并分析,并依据实验结果建立混煤燃尽的概率模型。

混煤掺烧对锅炉燃烧影响研究

混煤掺烧对锅炉燃烧影响研究

混煤掺烧对锅炉燃烧影响研究摘要:本文详细论述了不同煤种混煤的燃烧特性和结渣特性,阐述了混煤组分以及影响锅炉污染物排放量的各项因素,对比了炉前掺混掺烧与炉内掺混掺烧的优缺点。

关键词:混煤;配比优化;燃烧特性;结渣特性;污染物排放量0引言受煤炭价格持续走高影响,国内煤炭市场动力煤供应日趋紧张,为最大限度降低燃料成本,越来越多的电厂大比例掺烧部分价格低廉的非设计煤种,但在掺烧过程中,因混煤燃烧特性与设计煤种差距较大且难以测量,对锅炉的安全、环保运行影响较大。

混煤对燃煤锅炉的影响大致可分为以下几个方面:(1)影响锅炉的稳定燃烧;(2)影响锅炉的热效率;(3)影响锅炉污染物排放;(4)影响锅炉辅机运行。

为进一步探究不同煤质掺配后的燃烧特性,本文从混煤燃烧特性研究入手,结合国内电厂混煤掺烧出现的各类实际问题,介绍不同配煤掺烧技术应用。

1混煤燃烧特性混煤掺烧是根据锅炉燃烧对煤质的要求,将若干不同种类、不同性质的煤按照一定比例掺配后送入炉膛燃烧,原煤混合后实际的综合特性发生改变,已然成为一种新的煤种。

国内某600MW超临界机组进行配煤掺烧试验时,两种不同性质煤种炉外预混后锅炉飞灰可燃物升高1.5%,煤耗升高0.86g/kwh,可见相同原煤不同配比的混煤在炉内燃烧工况差别较大,工程中需研究不同配比混煤对锅炉燃烧特性影响量。

1.1混煤着火特性了解煤种着火特性对正确掌握启动点火过程和正确运行动态优化控制具有极其重要的作用。

根据相关文献,国内外学者大多通过检测煤燃烧过程的失重曲线来研究混煤的着火特性与燃烧特性。

试验中,为探究各掺烧原煤比例对混煤着火特性影响,主要考虑煤样质量、粒径分布、氧化气体成分、升温速率等因素,以着火温度作为着火特性指标[1]。

为更好的反应混煤着火特性,文献[2]采用可燃指数来进行对比分析,其计算公式如1-1所示:(1-1)式中:—开尔温标表示的着火温度,K;—最大失重速率,mg/min。

一般认为,着火性能相近两种煤质掺混,掺混后煤质着火性能与原煤质变化不大;着火性能相差较大的两种煤质掺混,掺混后煤质着火性能趋向于着火性能好的煤质。

300MW直流锅炉燃用神华混煤研究及应用

300MW直流锅炉燃用神华混煤研究及应用

1 前言 2005 年以来, 于经济的快速发展、 由 徽
料供应紧 燃料价格飞涨, 张, 发电成本不断上 升, 而且由 于黄埔电 洗锅炉机组对煤种适 厂直 应性不强, 随着燃料供应紧张、 来煤减 煤 少
场存煤呈一直偏低 , 威胁机组的正常供煤。所
气作为三次风从燃烧器上部分两层八个喷嘴
从前后墙送入炉膛。一二次风切圆 采用双切 圆 布置, 理论切圆直 径为m 1175 和4, 731。 三
的局面, 降低燃煤成本, 并确保新煤种能在锅
神华煤是一种高热值、高挥发份,低硫
(1)防止一次风管着火方 面: 一次风 温》230r- ,
加强对一次风压、煤粉浓度、风粉温度
的监视 .
份、 价格的优质 煤, 低 动力 在广东省已 有多家
神华煤有炉膛结焦, 积灰、 烧喷嘴的危险。 通
电 厂据用神 华煤。 但由于 其具有挥发份较 高, 灰熔点 特点, 快、 低的 着火 易结渣、 灰,徽用 3 问 积 题的 提出
锅炉技术措施, 燃用神华混娜 t 锅 安全 确保 JF 炉的 运行, 并在黄 埔电厂进行神华混煤燃烧试脸, 对姗用 神华混煤的 情况进行跟踪及 改进, 取
得了成功的Байду номын сангаас用。
关 健词:神华煤 结焦 配煤 姗烧 试验
中图 分类号: TQ1
文献 标识码: ^
文童编号:1672- 3791(2007)08(c卜0010- 02 在煤场存煤时, 结合煤船期、煤质和锅炉需
挥发 份Vad < 26%的要隶, 1: 1的比例将神 以 华煤与其它煤( 山西煤、淮南煤等)进行配煤。 检 查一次 。
(4)系 查方面: 统检 每小时对制粉系统, 一次风管、 喷燃器
5 燃用 神华混 应用 煤的

茂名热电厂#6炉掺烧越南无烟煤的试验研究

茂名热电厂#6炉掺烧越南无烟煤的试验研究

11掺烧 方式 . 应, 掺烧后将对应掺烧煤层的周界风关小, 并采用接近正梯形配风方 根据 # 5锅炉掺烧油页岩 的经验 ,综 合考虑到越南煤 的挥发分 式 , 尽量形成 对越南煤有利的燃烧环境 , 但越南无烟煤属于难燃尽的 低、 固定碳含 量高、 分 高以及 5炉 运行参 数的差异等综 合 因素 , 煤 种, 灰 掺烧后锅炉飞灰可燃物和炉渣可燃 物还是有 明显上升。 由参数 确 定了本次试验的掺烧方案。实际掺烧时可 以由 样 5炉 B磨煤机开 对比可以看 出, 炉膛温度对飞灰及炉渣可燃物 的影响 比较大 , 同样 在 0 负荷越 高炉膛温度越 高 , 飞灰及 始, 由神华动 力煤或俄 罗斯煤与越 南煤 1 1混合掺 烧 , : 观察煤粉 的 掺烧 2 %越 南煤不 同负荷情 况下 , 建议低 负荷工况下应适 当减 少越南煤的掺烧量 , 机 细度和着 火、 燃尽等情况 , 决定进一步的掺烧量 。 若煤粉细度和稳燃 、 炉渣可燃物越低 ,
茂名 热电厂 # 6炉掺烧越南无烟煤 的试验研究
李 小军 ( 茂名热电厂)
摘要 : 近年来 , 煤炭资源供应紧张 , 电站锅炉很难稳定 的燃用设计煤 化 , 燃煤 能否控制在正常范围。 种, 煤种多变 、 且偏离设计煤种对锅炉的安全运行 带来许 多新 问题 , 如燃烧稳 ⑤ 在掺烧越南煤时 ,锅炉结焦情 况变化 以及捞渣机运行情况 变 定性差 、 结焦 、 污染物排放升高等。 目前, 很多燃煤 电厂通过混煤掺烧来解决 化 。 这些 问题 。本 文根据 这一实际 , 结合茂名热 电厂 6 锅炉进行 混煤掺烧试验
掺烧 前后应进行热力试验以便于 分析掺烧对锅 炉热 力性能的影 响。 同时应根据测量掺烧前的煤粉细度 , 掺烧过程 中控制不同的煤粉 针对 撑 炉设计煤种 、 6 常用煤 种、 南煤进行基础性试验 分析研究 , 越 重点 细度运行工况, 并且相应工况下飞灰可燃物的情况 , 进行对 比分析煤 以神华动力煤或俄罗斯煤与越南煤之间的混煤 为研究对象 , 首先在实验室分 粉细度对燃尽情况 的影响。 根据掺烧后主 / 再蒸汽 温度 、 飞灰可燃物

电厂燃用混煤的技术经济探讨

电厂燃用混煤的技术经济探讨

电厂燃用混煤的技术经济探讨【摘要】电厂燃用混煤技术是一种将不同种类的煤混合燃烧的技术,可以提高燃烧效率、降低排放物的产生。

本文首先介绍混煤技术的原理和对电厂的影响,然后进行经济性分析,探讨其发展趋势和影响因素。

混煤技术在未来的发展前景广阔,可以有效提高电厂的能源利用效率,降低生产成本。

建议在未来研究中加强技术创新,并考虑不同影响因素的综合影响,以更好地推动混煤技术在电厂应用的发展。

混煤技术的探讨不仅有助于提高电厂的燃烧效率和环保水平,也对电力行业未来的可持续发展具有重要意义。

【关键词】混煤技术、电厂、技术经济、燃煤、发展趋势、影响因素、经济性分析、应用前景、建议与展望1. 引言1.1 背景介绍电厂燃用混煤技术是指在燃煤锅炉中添加一定比例的生物质颗粒燃料,如木屑、秸秆等,与煤混合燃烧。

混煤技术是一种可持续发展的燃烧方式,可以降低燃料的碳排放量,减少对环境的污染,提高能源利用率。

随着环境保护意识的提高和能源结构调整的不断推进,混煤技术在电厂中的应用正在逐渐受到重视。

传统的燃煤电厂由于煤炭资源的有限性和燃烧产生的大量污染物,面临着诸多困境和挑战。

而混煤技术的推广应用,可以有效减少燃煤锅炉的二氧化碳和硫氧化物排放,降低环境压力,提高电厂的清洁生产水平。

电厂燃用混煤技术具有重要的意义和巨大的潜力。

本文将对混煤技术的原理、对电厂的影响、经济性分析、发展趋势和影响因素等进行深入探讨,旨在进一步推动混煤技术在电厂领域的应用,促进电力行业的可持续发展。

1.2 研究意义通过对混煤技术的研究,可以为电厂的节能减排、环保和可持续发展提供技术支持和理论指导。

深入探讨混煤技术的原理和影响,可以帮助电厂进行科学合理的规划和决策,提高电厂的运行效率和降低环境风险。

研究混煤技术的经济性和发展趋势,对于推动电厂产业的转型升级,实现绿色、可持续发展具有重要的现实意义和深远的影响。

2. 正文2.1 混煤技术原理混煤技术原理是指在电厂中使用多种不同种类煤炭的混合燃烧技术。

混煤燃烧特性及动力学分析

混煤燃烧特性及动力学分析

过计 算得 到混 煤煤 粉煤 质 分析 数据 ( 表 2 . 见 )
1 2 实 验 方 法 .
c l l e e ut o ln igc a 【d a ua d rs l f e dn o l 】 c t s b a
Ad iiea o n / dtv m u t F C A V M
煤 种相 比发 生很 大 的 变 化 , 这是 因 为混 煤 的反 应 性
1 实 验 部 分
1 1 煤 样 分 析 .
实 验所 用 烟煤及 无 烟煤样 品为 山东某 钢铁 企业
发 生 了变化 . 于混 煤 燃 烧 特 性 的研 究 已有 许 多 报 关
提供 , 煤 种 的煤质 分析 数据 见表 1 单 .
得 到改 善 ; 用非等 温模 型 F y nwal z w ( wO) 采 ln — l O a a F — 对主要 燃烧 过 程进 行 动 力 学分析 , 当烟 煤 配
加 量从 0 ~1 0 时 , 0 煤粉 燃烧 活化 能从 1 3 9 J mo 降低 到 7 . 3k / l且 烟煤 的 配加 量低 3 . 4k / l 8 O J mo, 于 6 时 , 0 能够显著 降低 煤粉 燃 烧的 活化 能.
关 键 词 热 重 法 , 烧 , 煤 燃 混
中图分 类号
TQ5 4 O6 3 1 3 , 4. 2
0 引 言
煤粉 燃 烧 是 高炉 喷 吹 节 能 降耗 的重要 措 施 , 也
道L , 于烟 煤 促 进 无 烟 煤 的燃 烧 也 已 经 普 遍 被 l 对 ’ 接受 , 但对 烟 煤与 无 烟 煤 混合 燃 烧 特 性 系 统研 究 的 内容 并不 多. 本实 验 系统研究 了混煤燃 烧 过程 , 主要 以 配加不 同 比例 烟煤 与无 烟 煤 的 混 煤 为研 究 对 象 , 通 过 模 式 匹 配 的 方 法 , 次 以 F y nWa - zw 初 ln - l O a a l ( WO) 型为基础 , F 模 采用综 合 热分 析仪 ( T 0 P ) S A4 9 C

阐述混煤煤质特性及其对电厂运行的影响

阐述混煤煤质特性及其对电厂运行的影响

阐述混煤煤质特性及其对电厂运行的影响从当前电厂运行情况入手,分析燃煤电厂燃料煤使用实况,并对运行时煤质特性评价指标进行阐述,分析混煤特性以及混煤特性指标如果出现变化,会对电厂的运行产生何种影响。

标签:混煤;煤质特性;燃煤电厂;电厂运行引言近年来,我国经济不断发展,各行业对电力的需求也与日俱增。

在电力生产过程中,燃煤发电占据主要地位,我国大部分地区都存在电力供应紧张的情况,影响电力供应的主要因素就是煤炭供应问题。

部分电厂已经通过降低燃煤质量要求的方式来进行供电,但是煤质不达标会影响供电厂的正常运行。

电力需求的不断增加和紧张的煤炭资源供应形成鲜明对比,所以未来一段时间各地区电厂煤质差的问题依然会存在,为了将负面影响降到最低,保证供电厂经济正常发展,需要通过各种措施对其进行处理,而混煤就是比较常见的一种方式。

1 混煤特性1.1 发热量混煤的发热量应当具有加权特性,但是在实际工作中发现弹筒燃煤过程中会涉及到一些无机质反应热以及灰分等要素,这些因素会对理论上的加权计量产生影响,导致实际测量结果和理论结果存在偏差。

煤粉火焰当中不同煤灰颗粒的接触几率较小,所以发热量偏差数值小,可以默认为其存在加权特性。

1.2 元素混煤及其燃烧过程并不影响煤中可燃质的元素质量守恒,混煤元素分析的各成分含量具有加权特性,混煤的全硫分也可以由加权计算得到。

1.3 灰熔融温度以及灰成分除却煤灰中存在的SO3含量不稳定之外,其余成分在燃烧的过程中不会因为混煤或者是燃烧等问题导致其元素质量不守恒,所以灰成分存在加权特性。

通过总结近年来的实际工作经验发现,混煤灰熔融温度的非加权特性比较明显,因为在对灰熔融温度进行测量时,会产生一定的融化以及化学方面的反映,虽然这种反映表现在非加权特性方面,但是温度是会受到灰组成影响的[1],灰成分具有一定的加权特性,所以可以通过灰成分来预测各种混煤温度特性。

因为灰熔融温度的可靠性较差,所以即便得到灰熔融温度,在预测结渣时依然需要凭借专业工作人员的经验才能将结果更加精确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第25卷第18期中国电机工程学报V ol.25 No.18 Sep. 2005 2005年9月Proceedings of the CSEE ©2005 Chin.Soc.for Elec.Eng.文章编号:0258-8013(2005)18-0097-07 中图分类号:TK227 文献标识码:A 学科分类号:470·40混煤燃烧特性研究王春波1,李永华2,陈鸿伟1(1.华北电力大学能源与动力工程学院,河北省保定市071003;2.LTNT能源技术研究中心,瑞士苏黎世)STUDY ON COMBUSTION CHARACTERISTICS OF BLENDED COALSWANG Chun-bo 1, LI Yong-hua 2, CHEN Hong-wei 1(1. Department of Power Engineering, North China Electric Power University, Baoding 071003, Hebei Province, China; 2. Inst. f. Energietechnik/LTNT, ETH Zentrum/ML J14, CH-8092, Zurich/Switzerland)ABSTRACT: Power Plants in China have to burn blended coal instead of design coal,so it is necessary to investigate the combustion of blended coals. Using the test rig with a capacity of 640MJ/h with an absolute milling system and flue gas online analysis system, the characteristics of some blended coals, such as burning out, slagging and pollution were investigated. The ratio of coke and slag as a method to distinguish coal slagging characteristic was introduced. Some kinds of blending of coal have some effect on NO x but there is no obvious rule. The emission of SO x can be reduced to blend coal, especially for the low sulfur coal in this investigation.KEY WORDS:Blended coals; Combustion characteristic; Slag; NO x; SO x摘要:由于国内电厂大量燃用混煤,因此,从技术经济角度出发,对混煤燃烧特性进行研究具有很大的必要性。

文中利用一个具有在线烟气成分分析的640MJ/h热试验台,进行了几种混煤的燃尽、结渣和污染特性试验。

焦炭和渣的比例被引入以区分煤的结渣特性。

NO x的释放没有特别明显的规律,但研究中发现几种低硫煤混合后,SO x释放有所减少。

关键词:混煤;燃烧特性;结渣;NO x;SO x1 INTRODUCTIONBecause of decrease of washing coal, shortage of transport capability and the policy of bad coal combustion in power plant in China, power plant can基金项目:国家“九·五”重点科技攻关项目(96-A19-01-05)。

Key Project of the National Ninth-Five Year Research Programme of China(96-A19-01-05). not burn one coal and have to burn blended coals. According to the reports of power plant of Water and Electricity Ministry, blending ratio of power plant is 44% in 1982. In 1987, Harbin Whole Set Equipment Research Institute found that most of power plants are very difficult to burn design coal when they investigate the basic instance of 428 main power plants. At present, blended combustion is very common, even the design coal of some power plants are blended coals.However, the blended coal is not a simple mechanical process—only some kinds of coal were blended. Because the difference of fractional coal constitution and combustion characteristic, the combustion condition can not be satisfied at one time. This may be lead to combustion instability and low efficiency etc[1-8].In this paper, the burnout, slag and NO x, SO x emission of blended coals have been researched in a semi-industrial combustion facility. The blended coals are composed of four brown coals, namely Huolinhe coal, Yangcaogou coal, Fengguang coal and Meihe coal, which are often used by Shuangliao Power Plant.The characteristics of the four brown coals are shown in table 1. The blending ratio of blended coals is shown in table 2. The size of coal particles is limited to about R90=35%.98 中国电机工程学报第25卷表1煤的元素分析Tab.1 The characteristics of coalsCoalPropertiesHuolinhe Yangcaogou Fengguang Meihe V daf/% 48.53 46.31 60.83 49.25FC daf/% 51.47 53.69 39.17 50.75A d/% 27.82 25.28 56.23 24.1C d/% 52.30 54.01 29.26 55.51H d/% 3.07 4.84 2.65 4.30O d/% 15.42 14.53 10.88 12.88N d/% 0.82 0.80 0.79 1.46S d/% 0.57 0.53 0.19 1.75Q d,net/ (kJ/kg) 15919 12388 9249 19819表2混煤比例Tab.2 The blending ratioSingle coal ratio/%Blended coal No.Huolinhe Meihe Fengguang Yangcaogou 1# 80 20 0 02# 70 30 0 03# 80 0 20 04# 70 0 30 05# 80 0 0 206# 70 0 0 307# 60 20 10 108# 70 10 10 109# 0 40 30 302 EXPERIMENTThis investigation were done at Combustion Research Facility (CRF), which is introduced from Canada. It’s designed for a maximum coal feed rate of 20 kg/h medium sulfur coal at a firing rate of 640 MJ/h (as shown in figure 1). It has functions of advanced control system, on-line measurement and record of experimental result.The test rig consists of five parts, which are the combustion system, data acquisition and control system, compressing air and cooling system, the system of sampling and analysis of flue gas as well as milling system. The furnace is a refractory-lined cylindrical chamber, composed of four identical modules, the bottom three with cylindrical cooling jackets. The height is 3.6m, and the diameter is 0.3m. The furnace temperature is measured by platinum- rhodium thermocouple. The flue gas that leaving the furnace is continuously monitored by O2, NO x, CO2, CO and SO2 analyzers. The slag is got in the cooling drawer at the bottom of the furnace and the fly ash is sampled at the bottom of ESP. The coal feed rate is 20 kg/h.3 RESULTS AND DISCUSSION3.1 Burnout properties of brown-blended coalsIn this investigation, the slag is got in the water-cooling drawer at the bottom of the furnace, the fly ash is sampled at the bottom of ESP. The coke adhered to furnace wall. The coke is scratched from wall after test. Also, the loss of solid unburnout from the furnace is used to judge the burnout properties of blended coals. Generally, the loss of solid unburnout q l is calculated as follows32825()%100100fh fhad lz lzlr fh lza cA a cqQ c c=+−−(1) Where Q r is heat quantity input to the furnace, kJ/kg;A ad is the content on the air-dry basis; A fh is the quota of fly ash in the amount of fuel ash; A dz is the quota of ash forming the slag in the amount of fuel ash; C fh, C dz are respectively contents of combustible matter in fly ash and slag.The precondition, in which the equation is used, is a fh+a lz =1.When most of the coal ash forms the fly ash and slag, the quota of ash forming the coke in the amount of fuel ash is very little. So the existence of coke can be omitted. In this condition, the equation (1) can correctly describe the burnout property of coal. Additionally, it is difficult to get the quota of coke in the conditions of the real boilers in power plants. Therefore the equation (1) is often adopted when calculating the solid un-burnout loss of pulverized- coal combustion of the real boilers. But at the conditions of this experiments, the quota of coke is very large and varies from the range of 10.70~ 40.48%, so, the loss of solid un-burnout caused by the coke cannot be neglected. So the loss of solid un-burnout is defined as follows:32825()%100100100fh fh lj ljad lz lzlr fh lz lja c a cA a cqQ c c c =++−−−(2) Where a lj is the quota of the ash forming the coke in the amount of fuel ash; c lz is the content of combustible matter in the coke, %.The result according to the equation (2) is shown in table 3. Because of the ash quantity is very great,第18期王春波等:混煤燃烧特性研究99the single Fengguang coal combustion is not well. For the three single brown coals, the burn-off rate of Meihe coal is the highest and that of Yangcaogou coal is the lowest. For the blended coals, the burnout property of 2# (3M+7H) is better than that of 1# (2M+8H), and the burnout property of 6# (3Y+7H) is worse than that of 5#(2Y+8H). The burnont property of Yangcaogou coal is better than that of Fengguang coal, then the burnout property of 5# (8H+2Y) is better than that of 3# (8H+2F). So it can be found that when two types of coals are mixed, the higher percentage that good burnout coal accounts for, the better the burnout properties of blended coals is. F is the Fengguang coal, as shown in Fig. 1 and Fig.2.表3混煤的燃尽率Tab.3 Burn-off rate of blended coals Serial number Solid unburnout loss/% Blended Coals1 2.35 5#(8H+2Y)2 2.39 3#(8H+2F)3 2.54 2#(7H+3M)4 2.775 9#(4M+3F+3Y)5 3.47 Meihe6 4.09 4#(7H+3F)7 4.14 1#(8H+2M)8 4.17 7#(6H+2M+1F+1Y)9 4.83 Huolinhe10 5.23 6#(7H+3Y)11 6.45 8#(7H+1M+1F+1Y)12 10.24 Yangcaogou1—jig crane; 2—belt conveor; 3—magnet; 4—roller crusher; 5—crusher coel feed hopper; 6-variable sppe blow through feedel; 7—feed blower; 8—coal puvlverizer; 9—sliencer; 10—air heater; 11—filter; 12—cyclone; 13—pulse jet dust collector; 14—explosion barrier; 15—vortex-type vacuum pump;16—vent to atmosphere; 17—screw conveyor; 18—pulverized coal feed hopper; 19—volumetric screw feeder; 20—burner; 21—primary air blower; 22—primary air heater; 23—secondary air blower; 24—secondary air heater; 25—furnace chamber; 26—flue; 27—air-cooler heat exchangers; 28—blower;29—flue gas trace heater; 30—electrostatic precipitator(ESP); 31—flyash hopper; 32—transformer; 33—exhaust blower; 34—chimney图1 CRF试验台Fig. 1 CRF test rig3.2 Slagging of blended coalsSlagging is a complex physical and chemical process. It is not only related to the composition of coal ash, but also is influenced by the type of burners, the structure of furnace, the temperature level in furnace, the aerodynamic field of furnace and atmosphere in furnace. At present, there are some methods to predict and estimate the slagging of pulverized-coal combustion, such as ash fusion, ash composition and ash viscosity, but none of them is accurate enough to predict correctly in practice.On the basis of the test rig, the ratio of coke attached to the wall over the amount of slag on the bottom of the furnace were got. It is used as a parameter of slagging and used to evaluate the extent of slagging in furnace in this paper. The bigger the ratio is, the easier the slagging is. Table 4 showed the result of the ratio of coke to slagging. From table 4 it100 中国电机工程学报第25卷can be found, the tendency of slagging of Meihe coal and 5#(2Y8H) coal are obvious. However, there is no difference to the Huolinhe coal. It agrees with the slagging tendency in boilers of Shuangliao Power Plants on the whole. The ratio of coke to slagging is a reasonable discriminant parameter of slagging. From slagging characteristics of Meihe coal, 2# coal, Yangcaogou coal, 1# coal, 6# coal, Huolinhe coal, the results showed that the slagging characteristics of blended coals are among fractional coals. The slaggings characteristic of coal that slagging badly was changed by the blended coal that not easy slagging, so the slagging can be lightened.表4在炉底附着的焦炭和渣的比例Tab.4 The ratio of the coke attachedto furnace wall over the slag on bottom of furnaceSerial number Blended Coals Coke/slag1 9#(4M+3F+3Y) 2.922 Meihe 1.893 2#(7H+3M) 1.844 5#(8H+2Y) 1.445 Yangcaogou 1.276 7#(6H+2M+1F+1Y) 1.127 1#(8H+2M) 1.178 6#(7H+3Y) 1.119 3#(8H+2F) 0.9710 8#(7H+1M+1F+1Y) 0.9611 4#(7H+3F) 0.5312 Huolinhe 0.39According to table 4, the slagging property of 5#(2Y8H) coal is more serious than that of Huolinhe coal and Yangcaogou coal. It showed, when the blending of a coal that has high slagging potential with another coal with low slagging potential, the trouble of slagging get worse. The reason is that the eutectic phenomenon of ash composition makes the ash fusion of the mixed coal lower than that of any of the coals used in the blending. So, improper blending of coals will cause serious slagging. F is the Fengguang coal, as shown in Fig. 1 and Fig. 2.3.3 NO x emission3.3.1 Distribution of NO x concentration along the furnaceNO x is always the concern of coal combustion because it is harmful to environment[9-13]. However, there are few investigation done on blended coals at presert. The distribution of NO x concentration along the furnace fired with a single type of coal and blended coals shown in Fig. 2. It can be found, the concentration of NO x at the beginning of ignition is larger, and owing to the coke reduction at the burnout stage, the NO x concentration getting less. Furthermore, the distribution of NO x concentration of blended coals which has two peaks is different from that of single coal with only one peak. The reason is that when two types of coals are mixed, the sequence of volatile matter liberation of the two types of coals differs from each other and the volatile matter of the two types of coals interacts.1000 2000 3000residence time/msNO xlevel−6图2沿炉膛NO x浓度分布Fig2 The distribution of NO x concentrationalong the furnace3.3.2 Influence of the content of N on NO x emissionAs Fig.3 showed, with the content of N of coal increasing, the amount of NO x emission is increased. Because NO x emission during pulverized-coal combustion process is mainly produced by fuel NO x, under the same conditions, the increment of the content of N of coal contributes to the NO xproduction[14].the content of N of coal/%Noxconcentration−60.4 0.8 1.2 1.6图3 NO x与煤中含N量关系Fig. 3 NO x level with different content of N of coal 3.3.3 Influence of the fineness of coal on NO x emissionThe NO x concentration in the conditions of the different fineness of coal particles is showed in Fig.4. The fineness is that R90=22.5% and R 200=2.3%. The coarseness is that R 90=35% and R 200=4.1%. It showed第18期 王春波等: 混煤燃烧特性研究 101that when the fineness of coal particles is different, NO x concentration is different. With the fineness of coal increasing, NO x concentration increases. One reason is that the increment of the fineness of coal makes the liberation of N from coal easier; the other is that the increment of the fineness of coal makes the mixture of pulverized-coal with air better.Excess of oxygen/%N o x l e v e l −6图4 NO x 与氧量关系Fig.4 NO x level with excess of oxygen3.3.4 Influence of the oxygen on NO x emissionFig.5 showed the influence of the oxygen on NO x emission. It can be found the influence is obvious, more excess oxygen more NO x . The main reason is that the middle production NH I and HCN are easily transformed to N 2 in low oxygen condition. They will transform to NO x in high oxygen condition. So, the way of reducing excess oxygen is a good method to reduce NO x emission, even the unburned loss not beincreased.Excess of oxygen/% N o x l e v e l −6图5 NO x 与炉膛出口氧量关系 Fig.5 NO x level with different oxygen3.3.5 NO x emission of fractional coal and blended coalsTab.5 showed the NO x emission of fractional coal and blended coals when the excess air coefficient is 1.4. F is the Fengguang coal, as showed in Fig.1 and Fig.2. It showed that the NO x emission of 1# blended coals is higher. The NO x emission of 4# blended coals is the lowest. Although there are some relationships between fractional coal and blended coals, there areno obvious rules to NO x emission. Maybe the factors is complex, such as content of N of coal, excess oxygen, pulverized coal fineness.表5 几种煤与混煤NO x 释放量Tab.5 NO x emission of fractional coal and blended coalsSerial numberCoal NO x emission ×10−61 1# 6302 6# 6003 9# 5374 7# 5295 2# 5206 5# 5167 8# 5108 3# 487 9Huolinhe 463 10 Meihe 439 11 Yangcaogou290 124#2763.4 SO x emissionBecause of the action of the alkalescence oxide of ash, some sulfur oxide of flue gas will be reacted. So, it has a sulfur emission coefficient. This work adopts the concept as follows:K e =sulfur emission of flue gas/ the content of sulfur of coalThe influence of K e is the alkalescence oxide of ash mostly, such as Na 2O, K 2O, they are steady compounds, have not reaction to SOx. CaO, MgO, Al 2O 3 and Fe 2O 3 have sulfur retention effect. Especially, the sulfur reaction effect of CaO and MgO is the greatest. K e reflects the sulfur retention effect of alkalescence oxide of ash in a certain extent. Tab.6 showed the SO 2 emission of coals vs the excess oxygen is 1.4.From Tab.6, it can be found that the sulfur of the fractional coal is lower except Meihe coal. The reduction sulfur of all blended coals is less than 0.2%, and they are all low sulfur coal. So, the SO x emission is lower. The sulfur emission coefficient of fractional coal and blended coals is between 0.6 and 0.85. The SO 2 emission is reduced greatly when blended low sulfur coal Huolinhe with high sulfur coal Meihe. Such as 1# blended coals and 2# blended coals. The 1# blended coals (20%Meihe+80%Huolinhe) makes the SO 2 emission reduce from 1189×10−6 of single Meihe coal combustion to 510×10−6. In three fractional coals, the K e of Meihe coal is the largest,102 中国电机工程学报第25卷that of Yangcaogou is the least. In nine blended coals, the K e of 5# is the largest, then it is 9#, 6#, 8#, 2#, 1#, 7#, 4# and 3# in turn. The SO2emission of blended coals, the 9# is the largest, then it is 2#, 1#, 5#, 7#, 8#, 6#, 4# and 3# in turn. F is the Fengguang coal, as showed in Fig. 1 and Fig.2.表6几种煤与混煤SO2释放量Tab.6 SO2 emission of fractional coal and blended coals Coal [s]/% [s]Z/% K e[SO2](×10−6)Meihe 1.64 0.3486 0.82 1189Huolinhe 0.5 0.1315 0.70 376Yangcaogou 0.34 0.1183 0.67 291 1# 0.726 0.1749 0.68 5102# 0.839 0.1966 0.71 6003# 0.43 0.1215 0.47 2364# 0.39 0.1165 0.60 2905# 0.47 0.1289 0.94 4896# 0.44 0.1275 0.83 4207# 0.56 0.1686 0.73 4578# 0.68 0.1469 0.65 4769# 0.79 0.1994 0.92 819 The symbol: [S]—sulfur of coal, S ad, %; [S]c—reduction sulfur , [S]Z=[S]ad×4186/Q ad,net,; K e—SO2emission coefficient; [SO2]—concentration of SO2 in flue gas, 10−6.From Tab.6, we can find that the SO x emission of some blended coals that are composed of two single coal with different proportion is near fractional coal, such as 1# and 2# blended coals. The SO x emission is reduced with the reduction of the ratio of high sulfur coal. The SO x emission of some blended coals is higher than fractional coal, such as 5# and 6# blended coals. Many researchers of USA studied the SO x emission rule of blended coals, they considered that the SO x emission of blended coals is the linearity connection to fractional coal[15-16]. This paper considers that the SO x emission of blended coals has not better rule. The reason is complex. It must be carried through experimental study in factual application.4 CONCLUSIONIn this paper, the experimental research on the properties of burnout and slagging of blended coals and the emission characteristic has been done. The loss of solid unburnout q l is corrected and is used to judge the burnout properties of blended coals. It is considered that when two types of coals are mixed, the high percentge the coal which has the good burnout characteristic accounts for, the better the burnout properties of blended coals are.The ratio of the coke attached to the wall of furnace over the slag on the bottom of the furnace is presented as a discriminant parameter of slagging. It were found, when the coal that has high slagging blended with the coal that has low slagging potential, the condition of slagging will get worse.The characteristics of NO x emission of blended coals have been studied. The result is that with the increasing of oxygen and the content of N of coal and fineness of pulverized coal the amount of NO x emission increases.The characteristics of SO x emission of blended coals also have been studied. The result is that the SO x emission of blended coals has not better rule. It must be carried through experimental study in factual application.AcknowledgementThis research were subsidized by the Funds that Accelerates the Development of Science and Technology for Younger in Electric Power Industry (SPQKJ02-07) and PhD Fund 09310015 of North China Electric Power University.REFERENCES[1] Li Songge ng.Experimental study on the comprehensive behavior ofcombustion of brown-blending coals[C].Proceedings of 4thinter.symp. on coal combustion,Beijing,China,1999.[2] Research report of comprehensive rebuild of Yuanbaoshan PowerPlant No.3 boiler milling system[R].The State Engineering Technology Research Center of Combustion of Power Plant,1999.[3] Task report of comprehensive rebuild of Yuanbaoshan Power PlantNo.3 boiler milling system[R].The State Engineering Technology Research Center of Combustion of Power Plant,1999.[4] Application reports of comprehensive rebuild of Yuanbaoshan PowerPlant No.3 boiler milling system[R].The State Engineering Technology Research Center of Combustion of Power Plant,1999.[5] Li Yonghua.Study on the high efficiency and low pollutioncombustion characteristic of blending coals[D].Baoding:North China Electric Power University,2000.[6] Rimmer R,Hill D,Knutson D.Coal blend experience[C].Proc 3rdEPRI Conf.on the Effects of Coal Quality on Power Plants,San Diego.USA,1992:124-129.[7] 李永华,李松庚.褐煤及其混煤燃烧NO x生成的试验研究[J].中国电机工程学报,2001,21(8):34-36.Li Yonghua,Li Songgeng.Experimental study on the formation of第18期王春波等:混煤燃烧特性研究103NO x of brown and brown-blending coal combustion.Slagging [J].Proceedings of the CSEE,2001,21(8):34-36.[8] 李永华,陈鸿伟.800MW锅炉混煤燃烧数值模拟[J].中国电机工程学报,2002,22(6):101-104.Li Yonghua,Chen Hongwei.Numerical simulation of blending coals combustion of 800MW boiler[J].Proceedings of the CSEE,2002,22(6):101-104.[9] 李永华,陈鸿伟.煤粉燃烧排放特性数值模拟[J].中国电机工程学报,2003,23(3):166-169.Li Yonghua,Chen Hongwei.Numerical simulation on emission characteristics of pulverized coal cobbustion[J].Proceedings of the CSEE,2003,23(3):166-169.[10] 方立军,高正阳.低挥发分煤燃烧NO x排放特性的试验研究[J].中国电机工程学报,2003,23(8):211-214.Fang Lijun,Gao Zhengyang.Experimental study on performance of NO x emission for low Volatilization coals[J].Proceedings of the CSEE,2003,23(8):211-214.[11] 李凤瑞,陈耀如.一种既能保证煤粉燃烧器稳燃又能缓解炉膛结渣的方法[J].中国电机工程学报,2001,21(11):84-86.Li Fengrui,Chen Yaoru.A method assuring flame stability in coal- fired burner and weaking slagging[J].Proceedings of the CSEE,2001,21(11):84-86.[12] 周昊,朱洪波.大型四角切圆燃烧锅炉NOx排放特性的神经网络模拟[J].中国电机工程学报,2002,22(1):33-37Zhou Hao,Zhu Hongbo.An artificial neural network model on NOxemission property of high capacity tangentialiy firing boiler [J].Proceeding of the CSEE,2002,22(1):33-37.[13] 向军,熊友辉.PDF-ARRHENIUS方法模拟煤粉燃烧氮氧化物生成[J].中国电机工程学报,2002,22(6):156-160.Xiang Jun,Xiong Youhui.Using PDF-ARRHENING to simulate 3-Dimensionally NO x Formation during coal combustion [J].Proceedings of the CSEE,22(6):156-160.[14] Shinji Kambara,Bordword G R.Relation between function forms ofcoal nitrogen and NO x emissions from pulverized coal combustion [J].Fuel,1995,74(9):1551-1554.[15] Gunderson J R,Selle S J,Harding N S.Technological assessment forblending western and eastern coals for SO2 compliance[C].Proc 3rd EPRI Conf.on the Effects of Coal Quality on Power Plants.San Diego.California,USA,1992:113-118.[16] Baur P S.Control coal quality through blending[J].Power,1981,3(3):52-55.收稿日期:2005-03-03。

相关文档
最新文档