二次根式知识点总结和习题
二次根式知识点总结及练习题大全
二次根式知识点总结及练习题大全1.二次根式:式子(≥0)叫做二次根式。
2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质:(1)()2= (≥0);(2)5.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.=·(a≥0,b≥0);(b≥0,a>0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】(2)、平方法当时,①如果,则;②如果,则。
例1、比较与的大小。
例2、比较与的大小。
(3)、分母有理化法通过分母有理化,利用分子的大小来比较。
例3、比较与的大小。
(4)、分子有理化法通过分子有理化,利用分母的大小来比较。
例4、比较与的大小。
(5)、倒数法例5、比较与的大小。
(6)、媒介传递法适当选择介于两个数之间的媒介值,利用传递性进行比较。
例6、比较与的大小。
(7)、作差比较法在对两数比较大小时,经常运用如下性质:①;②例7、比较与的大小。
(8)、求商比较法它运用如下性质:当a>0,b>0时,则:①;②例8、比较与的大小。
二次根式的概念和性质1.判断题(对的打“∨”,错的打“×”)(1)()2=- ();(2)=- ()(3)(-)2=- ();(4)(2)2=2×=1 ()2.下面的计算中,错误..的是()A.=±0.03 B.±=±0.07C.=0.15 D.-=-0.133.下列各式中一定成立的是()A.=+=3+4=7 B.=-C.(-)2= D.=1-=4.()2-=________; 5.+(-)2=________.6.[-]·-6;7.数a在数轴上的位置如图所示,化简:-│1-a│=_______.8.计算:+=_______.9.--()2 10、-|-|11.+ 12.+ 13.二次根式的乘除练习题1、填空:(1)二次根式的乘法法则用式子表示为__________(2)二次根式的除法法则用式子表示为__________(3)把分母中的___化去,叫做分母有理化. 将式子分母有理化后等于_________ (4)成立的条件是_________(5)成立的条件是_________(6)(6)成立的条件是_________(7)化简:(8)计算:1.下列运算正确的是()A.()2=-5 B.(-)2=-5 C.-=5 D.=5a -2-12102.下面的计算中,正确的是( )A .=0.1;B .-=-0.03;C .±=±13;D .=-43.下列命题中,错误..的是( ) A .如果=5,则x=5;B .若a (a ≥0)为有理数,则是它的算术平方根C .化简的结果是-3D .在直角三角形中,若两条直角边分别是,2,那么斜边长为54.计算+|-11|-,正确的结果是( )A .-11B .11C .22D .-225.(-)2-+=________; 6.=________.7.-(2)2=__________.8.比较大小6______7.(填“>”,“=”,“<”号)9.数a 在数轴上的位置如图所示,化简:│-a-1│-2=________.10.=________.11.计算:+++…+=______.12.如果+│b-2│=0,求以a 、b 为边长的等腰三角形的周长.1、判断题:下列运算是否正确.( )(1)( )(2)( )(3)( )(4)( )(5)( )(6)( )(7)( )(8)1、运用乘法分配律进行简单的根式运算.例1 计算 (1) (2)(1) (2)(3)2、比较两个实数的大小.例2 比较下列两个数的大小(1)与(2)与1、与2、与3、与4、与3、二次根式的乘除混合运算.(1)(2)(1)(2)4、运用分母有理化进行计算.例3 化简分析:当分母里二次根式的被开方数都相差1时,如果分母有理化后则变为1或-1,就可将原式变为不含分母的二次根式.思考题:计算二次根式的加减1.若与是同类二次根式,则a=_______,b=_______.2.在,,,中能与进行加减合并的根式有_________.3.计算: +=_________.4.已知长方形的长和宽分别为,,则它的周长是________.5.在实数范围内分解因式:a2-4=_________.6. +与+大小关系是_________.7.下列根式中与其他三个不同类的是()A. B. C. D.8.下列各组二次根式中,可以进行加减合并的一组是()A.与 B.与 C.与2 D.18与9.下列根式合并过程正确的是()A.2--=2 B.a+b=a+bC.5+=a+ D. -=10.计算: ++-的值是()A. +5 B. +8 C.6+ D.12+11.若5+=6,则y值为()A. B.1 C.2 D.312.一个等腰三角形的两边分别为2,3,则这个三角形的周长为()A.3+4 B.6+2C.6+4 D.3+4或6+213.计算:(1)2+3 (2)5+-7(3)++-+ (4)+6a-3a214.如果△ABC的三边a=7,b=4,c=2,求周长P.巩固练习1. 下列根式中,与是同类二次根式的是()A. B. C. D.2. 下面说法正确的是()A. 被开方数相同的二次根式一定是同类二次根式B.与是同类二次根式C.与不是同类二次根式D. 同类二次根式是根指数为2的根式3. 与不是同类二次根式的是()A. B. C. D.4. 下列根式中,是最简二次根式的是()A. B. C. D.★5. 若,则化简的结果是()A. B. C. 3 D. -3★6. 若的整数部分为,小数部分为,则的值是()A. B. C. 1 D. 37. 下列式子中正确的是()A. B.C. D.8. 在中,与是同类二次根式的是。
二次根式知识点及典型例题(含答案)
4、不会比较根式的大小5、不会利用二次根式的非负性6、对最简二次根式的条件掌握不牢八、经典例题例1、求下列各数的平方根与算术平方根( )A.36B.81121 C.2-(5) D.41【答案】A.2=36±(6)∴36的平方根为6±,即6± ∴36的算术平方根为6,即B.2981=11121±()∴81121的平方根为911±,即911±∴81121的算术平方根为911,即911 C.25=25±()∴2-(5)的平方根为5±,即5± ∴2-(5)的算术平方根为5,即D.()241=41±∴41的平方根为 ∴41【解析】一个正数的平方根有两个,它们互为相反数,解答本题注意解题步骤的规范书写,不是完全平方数的正数,它的平方根只能用含有根号的形式表示.练习1、计算:(1 (2)【答案】(1)211=121(2)20.9=0.810.9±表示121的算术平方根,表示0.81的平方根,、的意义是解答本题的关键例2、如果一个正数的平方根为3a-5和2a-10,求这个正数【答案】由题意得,3a-5+2a-10=0得a=3∴3a-5=4∴这个数为24=16【解析】一个正数的平方根有两个,它们互为相反数,而互为相反数的两个数相加为0,故(3a-5)+(2a-10)=0.求出a后,可知3a-5与2a-10的值,在考虑哪个正数的平方根是3a-5,2a-10的值即可。
练习1、x为何值时,下列各式有意义。
【答案】解:A.10x-≥,即1x≥有意义B.10x-≥且0x≥,即01x≤≤有意义C.10x+>,即1x>-D.230x+≥,即x都有意义【解析】a≥例3、【答案】解252736<<<<即56<<的整数部分是5【解析】处在哪两个完全平方数之间.例4、:x y【答案】解:33y-1和互为相反数3y-1∴和1-2x互为相反数3y-1+1-2x=0∴:=3:2x y∴互为相反数,则a和b互为相反数,所以本题中3y-1与1-2x 互为相反数例5、实数0.5的算术平方根等于().D.1 2【答案】C【解析】理解算术平方根的意义,把二次根式化成最简形式是解答本题的关键.例6、的算术平方根是()A. 4±B. 4C. 2±D. 2【答案】D【解析】4的算术平方根,4的算术平方根为2.例7、根据下列运算正确的是()3=2 C. (x+2y)2=x2+2xy+4y2 D. A.x6+x2=x3 B.√−8√18−√8=√2【答案】解:A、本选项不能合并,错误;3=-2,本选项错误;B、√-8C、((x+2y)2=x2+2xy+4y2,本选项错误;D、√18-√8=3√2-2√2=√2,本选项正确.故选D【解析】此题考查了完全平方公式,合并同类项,以及负指数幂,幂的乘方,熟练掌握公式及法则是解本题的关键.例8、)【答案】B综合练习简单1. 式子在实数范围内有意义,则x的取值范围是()A.<1 B.≥1 C.≤-1 D.<-1【答案】B【解析】由二次根式的意义,知:x-1≥0,所以x≥1.2.如果代数式有意义,那么x的取值范围是()A.x≥0 B.x≠1 C.x>0 D.x≥0且x≠1【答案】D解:根据题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故选D.【解析】代数式√x有意义的条件为:x﹣1≠0,x≥0.即可求得x的范围.x-13.要使式子2-x有意义,则x的取值范围是()A.x>0 B.x≥﹣2 C.x≥2 D.x≤2【答案】D解:根据题意得,2﹣x≥0,解得x≤2.【解析】根据被开方数大于等于0列式计算即可得解.4. 下列计算正确的是()=√2 D.3+2√2=5√2 A.4√3-3√3=1 B.√2+√3=√5 C.2√12【答案】C【解析】 A、4√3-3√3=√3,原式计算错误,故本选项错误;B、√2与√3不是同类二次根式,不能直接合并,故本选项错误;=√2,计算正确,故本选项正确;C、2√12D、3+2√2≠5√2,原式计算错误,故本选项错误;根据二次根式的化简及同类二次根式的合并,分别进行各选项的判断即可.5. 若,则=【答案】6【解析】原方程变为:,所以,,由得:=3,两边平方,得:=7,所以,原式=7-1=6中等题1.结果是。
《二次根式》期末复习知识清单及典型例题
二次根式期末复习知识清单及典型例题知识点1:二次根式的定义:形如()0≥a a 的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,a 才有意义.【例1】下列各式()511,()52-,()232+-x ,()44,()2315⎪⎭⎫ ⎝⎛-,()a -16,()1272+-a a 其中是,二次根式的是_________(填序号).变式:1、下列各式中,一定是二次根式的是()A 、a B 、10-C 、1a +D 、21a+2、在a 、2a b 、1x +、21x +、3中是二次根式的个数有______个【例2】若式子13x -有意义,则x 的取值范围是. 变式:1、使代数式43--x x 有意义的x 的取值范围是() A 、x>3B 、x ≥3C 、x>4D 、x ≥3且x ≠4 2、如果代数式mnm 1+-有意义,那么,直角坐标系中点P (m ,n )的位置在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限3、使代数式221x x -+-有意义的x 的取值范围是 【例3】若y=5-x +x -5+2009,则x+y=变式:1、若11x x ---2()x y =+,则x -y 的值为()A .-1B .1C .2D .3 2、当a 取什么值时,代数式112++a 取值最小,并求出这个最小值。
【例4】已知a 是5整数部分,b 是5的小数部分,求12a b ++的值。
变式:1、若3的整数部分是a ,小数部分是b ,则=-b a 3。
2、若17的整数部分为x ,小数部分为y ,求yx 12+的值. 知识点2:2、双重非负性:a a ()≥0是一个非负数.即①0≥a;②0≥a3、平方的形式(双胞胎公式):(1)()()a aa 20=≥;(2)a a a a a a 200==≥-<⎧⎨⎩||()().公式a a a a a a 200==≥-<⎧⎨⎩||()()与()()a aa 20=≥的区别与联系:(1)a 2表示求一个数的平方的算术根,a 的范围是一切实数. (2)()a 2表示一个数的算术平方根的平方,a 的范围是非负数. (3)a 2和()a 2的运算结果都是非负的. 【例5】若()04322=-+-+-c b a 则c b a +-=.变式:若1+-b a 与42++b a 互为相反数,则()2017b a -=。
二次根式及经典习题与答案
二次根式及经典习题与答案二次根式的知识点汇总二次根式的概念是指形如√a的式子,其中被开方数可以是数、单项式、多项式、分式等代数式。
需要注意的是,因为负数没有平方根,所以当a<0时,二次根式无意义。
为了使二次根式有意义,只需要满足被开方数大于或等于零,即a≥0.此外,二次根式的非负性也是一个重要的知识点,即√a表示a的算术平方根,且当a≥0时,√a是一个非负数。
二次根式的性质包括:一个非负数的算术平方根的平方等于这个非负数;一个数的平方的算术平方根等于这个数的绝对值。
需要注意的是,当被开方数是负数时,需要先将其化为绝对值形式,再根据绝对值的意义进行化简。
综上所述,二次根式的知识点包括概念、取值范围、非负性、性质等。
在解题时,需要注意化简时的符号变化和取值范围的限制。
4.当x满足什么条件时,(1-x)²是一个二次根式。
5.在实数范围内分解因式:x⁴-9=(x²+3)(x²-3),x²-22x+2=(x-11-√119)(x-11+√119)。
6.若4x²=2x,则x的取值范围是x=0或1/2.7.已知(x-2)²=2-x,则x的取值范围是x=1-√2或1+√2.8.化简:x²-2x+1÷(x-1),结果是x-1.9.当1≤x≤5时。
10.把a-√a的根号外的因式移到根号内,等于√a(a-1)。
11.使等式(x-1)²+x-5=。
成立的根号外的因式是x-1.12.若a-b+1和a+2b+4互为相反数,则(a-b)²=4.13.在式子x²,2,y+1(y=-2),-2x(x²+1),x+y中,二次根式有3个。
14.下列各式一定是二次根式的是a²+1.15.若2/a-7/a³=2/a²-a,则(2-a)²-(a-3)等于1-2a。
16.若A=√(a²+4)/2,则A=(a+2)/2.17.若a≤1,则(1-a)³化简后为1-a³。
《二次根式》的知识要点和习题
《二次根式》的知识要点和习题知识要点1、二次根式的概念:形如a (a ≥0)的式子叫做二次根式。
二次根式a 的实质是一个非负数a 的算术平方根。
注意:在二次根式中,被开放数能够是数,也能够是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以a ≥0是a 为二次根式的前提条件,如5,21x +,等是二次根式,而5-、2x -、12--x 等都不是二次根式;a 的根指数是2, 即2a ,可省略不写;b a 也是二次根式。
当b 为带分数时,要把b 改写成假分数。
538是二次根式,不能写成2532。
2.最简二次根式:满足下列两个条件的二次根式,叫做最简二次根式; (1)被开方数的因数是整数,因式是整式; (2)被开方数中不含能开得尽方的因数或因式。
如 不是最简二次根式,因被开方数中含有4是可开得尽方的因数,又如 ,,..........都不是最简二次根式,而,,5,都是最简二次根式。
3.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式。
如 ,,就是同类二次根式,因为=2,=3,它们与的被开方数均为2。
4.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式。
①的有理化因式为,②的有理化因式为,③的有理化因式为,④的有理化因式为,⑤的有理化因式为5.二次根式的性质:(1). (a≥0)是一个非负数, 即≥0;(2).非负数的算术平方根再平方仍得这个数,即:( )2=a(a≥0);(3).某数的平方的算术平方根等于某数的绝对值,即=|a|=(4).非负数的积的算术平方根等于积中各因式的算术平方根的积,即= ·(a≥0,b≥0)。
(5).非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根,即= (a≥0,b>0)。
6.二次根式的乘除(1). 二次根式的乘法两个二次根式相乘,把被开方数相乘,根指数不变,即(≥0,≥0)。
二次根式的知识点、典型例题、练习
第十六章 二次根式的知识点、典型例题及相应的练习1、二次根式的概念:1、定义:一般地,形如a (a≥0)的代数式叫做二次根式。
当a≥0时,a 表示a 的算术平方根,当a 小于0时,非二次根式(在一元二次方程中,若根号下为负数,则无实数根)概念:式子a (a≥0)叫二次根式。
a (a≥0)是一个非负数。
题型一:判断二次根式(1)下列式子,哪些是二次根式,哪些不是二次根式:2、33、1x 、x (x>0)、0、42、-2、1x y+、x y +(x≥0,y ≥0). (2)在式子()()()230,2,12,20,3,1,2x x y y x x x x y+=--++中,二次根式有( )A. 2个B. 3个C. 4个D. 5个(3)下列各式一定是二次根式的是( )A. 7-B. 32mC. 21a +D. a b2、二次根式有意义的条件题型二:判断二次根式有没有意义1、写出下列各式有意义的条件:(1)43-x (2)a 831- (3)42+m (4)x 1- 2、21x x --有意义,则 ; 3、若x x x x --=--3232成立,则x 满足_______________。
典型练习题:1、当x 是多少时, 23x ++11x +在实数范围内有意义?2、当x 是多少时,23x x++x 2在实数范围内有意义? 3、当__________时,212x x ++-有意义。
4、使式子2(5)x --有意义的未知数x 有( )个.A .0B .1C .2D .无数 5、已知y=2x -+2x -+5,求x y的值. 6、若3x -+3x -有意义,则2x -=_______.7、若11m m -++有意义,则m 的取值范围是 。
8、已知()222x x -=-,则x 的取值范围是 。
9、使等式()()1111x x x x +-=-+成立的条件是 。
10、已知233x x +=-x 3+x ,则( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤011、若x <y <0,则222y xy x +-+222y xy x ++=( )(A )2x (B )2y (C )-2x (D )-2y12、若0<x <1,则4)1(2+-x x -4)1(2-+xx 等( ) (A )x 2 (B )-x2 (C )-2x (D )2x 13、化简aa 3-(a <0)得( ) (A )a - (B )-a (C )-a - (D )a3、最简二次根式的化简最简二次根式是特殊的二次根式,他需要满足:(1)被开方数的因数是整数,字母因式是整式;(2)被开方数中不含能开的尽方的因数或因式。
八年级数学下册《二次根式》知识点+解题技巧+章节测试(含答案)
五、求值:(每小题 7 分,共 14 分)
3 2
3 2
x3 xy2
25.已知 x=
,y=
,求
的值.
3 2
3 2
x4 y 2x3y2 x2 y3
x
2x x2 a2
1
26.当 x=1- 2 时, 求
+
+
的值.
x2 a2 x x2 a2 x2 x x2 a2
x2 a2
六、解答题:(共 20 分)
=______.
ab c2d 2
1
1
12.比较大小:- _________- .
27
43
13.化简:(7-5
2
2018
) ·(-7-5
2
2017
) =______________.
14.若
x 1+
y
3
2
2
=0,则(x-1) +(y+3) =____________.
15.x,y 分别为 8- 11 的整数部分和小数部分,则 2xy-y2=____________.
四、巧配方,独占鳌头
例 4. 计算 分析:因为
都有意义,所以
所以
所以
解:原式
五、整体代入,别开生面
例 5. 已知
,求下列各式的值。
(1)
(2)
分析:根据 x、y 值的特点,可以求得
,如果能将所求的值的
式子变形为关于
或 xy 的式子,再代入求值要比直接代入求值简单得多。
解:因为 所以 (1)
(2) (也可以将
1
32
2、【提示】
=
=-( 3 +2).【答案】×.
32 34
3、【提示】 (x 1)2 =|x-1|, ( x 1)2 =x-1(x≥1).两式相等,必须 x≥1.但等式左边 x 可取任
二次根式知识点总结及常见题型
二次根式知识点总结及常见题型一、二次根式的定义形如a (a ≥0)的式子叫做二次根式.其中“”叫做二次根号,a 叫做被开方数.(1)二次根式有意义的条件是被开方数为非负数.据此可以确定字母的取值范围; (2)判断一个式子是否为二次根式,应根据以下两个标准判断: ①是否含有二次根号“”;②被开方数是否为非负数.若两个标准都符合,则是二次根式;若只符合其中一个标准,则不是二次根式.(3)形如a m (a ≥0)的式子也是二次根式,其中m 叫做二次根式的系数,它表示的是:a m a m ⋅=(a ≥0);(4)根据二次根式有意义的条件,若二次根式B A -与A B -都有意义,则有B A =. 二、二次根式的性质 二次根式具有以下性质:(1)双重非负性:a ≥0,a ≥0;(主要用于字母的求值) (2)回归性:()a a =2(a ≥0);(主要用于二次根式的计算)(3)转化性:⎩⎨⎧≤-≥==)0()0(2a a a a a a .(主要用于二次根式的化简)重要结论:(1)若几个非负数的和为0,则每个非负数分别等于0. 若02=++C B A ,则0,0,0===C B A . 应用与书写规范:∵02=++C B A ,A ≥0,2B ≥0,C ≥0∴0,0,0===C B A . 该性质常与配方法结合求字母的值. (2)()()()⎩⎨⎧≤-≥-=-=-B A A B B A B A B A B A 2;主要用于二次根式的化简.(3)()()⎪⎩⎪⎨⎧<⋅->⋅=0022A B A A B A B A ,其中B ≥0; 该结论主要用于某些带系数的二次根式的化简:可以考虑把二次根号外面的系数根据符号以平方的形式移到根号内,以达到化简的目的. (4)()B A BA ⋅=22,其中B ≥0.该结论主要用于二次根式的计算. 例1. 式子11-x 在实数范围内有意义,则x 的取值范围是_________.分析:本题考查二次根式有意义的条件,即被开方数为非负数,注意分母不能为0. 解:由二次根式有意义的条件可知:01>-x ,∴1>x . 例2. 若y x ,为实数,且2111+-+-=x x y ,化简:11--y y .分析:本题考查二次根式有意义的条件,且有重要结论:若二次根式B A -与A B -都有意义,则有B A =. 解:∵1-x ≥0,x -1≥0 ∴x ≥1,x ≤1 ∴1=x ∴1212100<=++=y ∴11111-=--=--y yy y . 习题1. 如果53+a 有意义,则实数a 的取值范围是__________. 习题2. 若233+-+-=x x y ,则=y x _________. 习题3. 要使代数式x 21-有意义,则x 的最大值是_________. 习题4. 若函数xxy 21-=,则自变量x 的取值范围是__________. 习题5. 已知128123--+-=a a b ,则=b a _________.例3. 若04412=+-+-b b a ,则ab 的值等于 【 】(A )2- (B )0 (C )1 (D )2分析:本题考查二次根式的非负性以及结论:若几个非负数的和为0,则每个非负数分别等于0.解:∵04412=+-+-b b a ∴()0212=-+-b a∵1-a ≥0,()22-b ≥0∴02,01=-=-b a ∴2,1==b a∴221=⨯=ab .选择【 D 】.例4. 无论x 取任何实数,代数式m x x +-62都有意义,则m 的取值范围是__________. 分析:无论x 取任何实数,代数式m x x +-62都有意义,即被开方数m x x +-62≥0恒成立,所以有如下两种解法:解法一:由题意可知:m x x +-62≥0 ∵()93622-+-=+-m x m x x ≥0∴()23-x ≥m -9∵()23-x ≥0∴m -9≤0,∴m ≥9. 解法二:设m x x y +-=62∵无论x 取任何实数,代数式m x x +-62都有意义 ∴m x x y +-=62≥0恒成立即抛物线m x x y +-=62与x 轴最多有一个交点 ∴()m m 436462-=--=∆≤0解之得:m ≥9.例 5. 已知c b a ,,是△ABC 的三边长,并且满足c c b a 20100862=++-+-,试判断△ABC 的形状.分析:非负数的性质常和配方法结合用于求字母的值. 解:∵c c b a 20100862=++-+- ∴010020862=+-+-+-c c b a ∴()010862=-+-+-c b a∵6-a ≥0,8-b ≥0,()210-c ≥0∴010,08,06=-=-=-c b a ∴10,8,6===c b a∵10010,10086222222===+=+c b a ∴222c b a =+ ∴△ABC 为直角三角形.习题 6. 已知实数y x ,满足084=-+-y x ,则以y x ,的值为两边长的等腰三角形的周长为 【 】 (A )20或16 (B )20(C )16 (D )以上答案均不对习题7. 当=x _________时,119++x 取得最小值,这个最小值为_________.习题8. 已知24422--+-=x x x y ,则y x 的值为_________.习题9. 已知非零实数b a ,满足()()a b a b a a =++-+-++-415316822,求1-b a 的值.提示:由()()152+-b a ≥0,且012>+b 可得:5-a ≥0,∴a ≥5.例6. 计算:(1)()26; (2)()232+x ; (3)2323⎪⎪⎭⎫⎝⎛-. 分析:本题考查二次根式的性质: ()a a =2(a ≥0).该性质主要用于二次根式的计算.解:(1)()662=;(2)()32322+=+x x ;(3)()6329323323222=⨯=⎪⎪⎭⎫ ⎝⎛⨯-=⎪⎪⎭⎫ ⎝⎛-. 注意:()B A B A ⋅=22,其中B ≥0.该结论主要用于二次根式的计算.例7. 化简:(1)225; (2)2710⎪⎭⎫ ⎝⎛-; (3)962+-x x ()3<x .分析:本题考查二次根式的性质:⎩⎨⎧≤-≥==)0()0(2a a a a a a .该性质主要用于二次根式的化简.解:(1)2525252==;(2)7107107102=-=⎪⎭⎫ ⎝⎛-; (3)()339622-=-=+-x x x x∵3<x ∴原式x -=3.注意: 结论:()()()⎩⎨⎧≤-≥-=-=-B A A B B A B A B A B A 2.该结论主要用于二次根式和绝对值的化简.例8. 当3-x 有意义时,化简:()()22125x x x -+-++.解:∵二次根式3-x 有意义 ∴3-x ≥0 ∴x ≥3 ∴()()22125x x x -+-++图(1)23125125+=-+-++=-+-++=x x x x x x x例9. 化简:()()2223-+-x x .分析:()222-=-x x ,继续化简需要x 的取值范围,而取值范围的获得需要挖掘题目本身的隐含条件:3-x 的被开方数3-x 为非负数. 解:由二次根式有意义的条件可知:3-x ≥0 ∴x ≥3 ∴()()2223-+-x x522323-=-+-=-+-=x x x x x 例10. 已知10<<a ,化简=-+-++2121aa a a __________. 解:∵10<<a ∴aa 1<∴2121-+-++aa a a aaa a a a a a a a a a a a a a a 21111111122=+-+=⎪⎭⎫⎝⎛--+=--+=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+= 例11. 已知直线()23-+-=n x m y (n m ,是常数), 如图(1),化简1442--+---m n n n m . 解:由函数()23-+-=n x m y 的图象可知:02,03<->-n m∴2,3<>n m∴1442--+---m n n n m()()()1121212122-=+-+--=-----=-----=-----=m n n m m n n m m n n m m n n m例12. 已知c b a ,,在数轴上的位置如图(2)所示,化简:()()222b a c c a a --++-.解:由数轴可知:b a c <<<0 ∴0<+c a ∴()()222b a c c a a --++-ba b c a c a a b a c c a a -=--+++-=--++--=习题10. 要使()()2222-=-x x ,x 的取值范围是__________.习题11. 若02=+a a ,则a 的取值范围是__________.习题12. 计算:=⎪⎪⎭⎫⎝⎛243_________. 习题13. 计算:=⎪⎭⎫⎝⎛-2221_________. 习题14. 若()332-=-x x 成立,则x 的取值范围是__________.习题15. 下列等式正确的是 【 】 (A )()332= (B )()332-=-(C )333= (D )()332-=-习题16. 下列各式成立的是 【 】图(2)(A )21212-=⎪⎭⎫ ⎝⎛- (B )()ππ-=-332(C )21212=⎪⎪⎭⎫ ⎝⎛ (D )74322=+ 习题17. 计算:()=-272_________.习题18. 化简:()=+-22x x_________.习题19. 若=-+=++++-b a a b b a a 22221,01213则________. 习题20. 已知01<<-a ,化简414122+⎪⎭⎫ ⎝⎛-+-⎪⎭⎫ ⎝⎛+a a a a 得__________. 习题21. 实数c b a ,,在数轴上对应的点如图(3)所示,化简代数式:222212b ab a c b a a +---++-的结果为 【 】 (A )12--c b (B )1- (C )12--c a (D )1+-c b习题22. 化简:()2232144--+-x x x .例13. 把aa 1-中根号外的因式移到根号内,结果是 【 】 (A )a - (B )a - (C )a (D )a --分析:本题实为二次根式的化简:某些二次根式在化简时,把根号外的系数移到根号内,可以达到化简的目的,但要注意根号外面系数的符号.有如下的结论:()()⎪⎩⎪⎨⎧<⋅->⋅=0022A B A A B A B A ,其中B ≥0. 图(3)解:由二次根式有意义的条件可知:01>-a∴0<a ∴a a a a a --=⎪⎭⎫⎝⎛-⋅-=-112.选择【 D 】. 习题23. 化简()212--a a 得__________. 三、二次根式的乘法 一般地,有:ab b a =⋅(a ≥0,b ≥0)(1)以上便是二次根式的乘法公式,注意公式成立的条件:a ≥0,b ≥0.即参与乘法运算的每个二次根式的被开方数均为非负数;(2)二次根式的乘法公式用于二次根式的计算;(3)两个带系数的二次根式的乘法为:ab mn b n a m =⋅(a ≥0,b ≥0); (4)二次根式的乘法公式可逆用,即有:b a ab ⋅=(a ≥0,b ≥0)公式的逆用主要用于二次根式的化简.注意公式逆用的条件不变.例14. 若()66-=-⋅x x x x 成立,则 【 】 (A )x ≥6 (B )0≤x ≤6 (C )x ≥0 (D )x 为任意实数分析:本题考查二次根式乘法公式成立的条件:ab b a =⋅(a ≥0,b ≥0)解:由题意可得:⎩⎨⎧≥-≥060x x解之得:x ≥6. 选择【 A 】.例15. 若1112-⋅+=-x x x 成立,则x 的取值范围是__________.分析:本题考查二次根式乘法公式逆用成立的条件:b a ab ⋅=(a ≥0,b ≥0)解:由题意可得:⎩⎨⎧≥-≥+0101x x解之得:x ≥1. 例16. 计算:a a 812⋅(a ≥0). 解:a a a a a a a 21214181281222=⎪⎭⎫ ⎝⎛==⋅=⋅(a ≥0). 习题24. 计算:=⨯2731_________. 习题25. 已知()21233-⨯⎪⎪⎭⎫⎝⎛-=m ,则有 【 】 (A )65<<m (B )54<<m (C )45-<<-m (D )56-<<-m 习题26. 化简12的结果是_________. 四、二次根式的除法 一般地,有:baba =(a ≥0,0>b ) (1)以上便是二次根式的除法公式,要特别注意公式成立的条件; (2)二次根式的除法公式用于二次根式的计算;(3)二次根式的除法公式可写为:b a b a ÷=÷ (a ≥0,0>b ); (4)二次根式的除法公式可逆用,即有:ba b a =(a ≥0,0>b ) 公式的逆用主要用于二次根式的化简,注意公式逆用的条件不变. 五、最简二次根式符合以下条件的二次根式为最简二次根式: (1)被开方数中不含有完全平方数或完全平方式; (2)被开方数中不含有分母或小数.注意:二次根式的计算结果要化为最简二次根式.六、分母有理化把分母中的根号去掉的过程,叫做分母有理化. 如对21进行分母有理化,过程为:2222221=⨯=;对321+进行分母有理化,过程为:()()723232323321-=-+-=+. 由举例可以看出,分母有理化是借助于分数或分式的性质实现的.例17. 计算:(1)654; (2)3223238÷; (3)()22728y xy -÷. 解:(1)39654654===; (2)24338169388323383823383832383223238=⨯==⨯⨯=÷⨯=÷=÷; (3)()x x y xy y xy 247287282222-=-=÷-=-÷.例18. 化简: (1)65; (2)4.0; (3)a a a 9623+-(3>a ). 解:(1)63066656565=⨯⨯==; (2)51052524.0===; (3)∵3>a ∴()()()a a a a a a a a a a 3396962223-=-=+-=+- 注意:随着学习的深入,在熟练时某些计算或化简的环节可以省略,以简化计算. 例19. 式子2121-+=-+x x x x 成立的条件是__________.分析:本题求解的是x 的取值范围,考查了二次根式除法公式逆用成立的条件:ba b a = (a ≥0,0>b ). 解:由题意可得:⎩⎨⎧>-≥+0201x x 解之得:2>x .例20. 计算:(1)7523⨯; (2)5120-; (3)2832-. 解:(1)5225275237523==⨯=⨯; (2)552515205120-=-=-; (3)解法1:224416282322832=-=-=-=-. 解法2:()2248216642228322832=-=-=⨯⨯-=-. 二次根式的乘除混合运算例21. 计算:(1)⎪⎪⎭⎫ ⎝⎛-÷⨯21223222330; (2)182712⨯÷. 解:(1)原式⎪⎪⎭⎫ ⎝⎛-÷⨯=252382330 232443216435238302123-=⨯⨯-=⨯⨯-=⨯⨯⨯⎪⎭⎫ ⎝⎛-⨯=(2)原式228324182712===⨯=.习题27. 下列计算正确的是 【 】(A )3212= (B ) (C ) (D )x x =2习题28. 计算:=÷⨯213827_________. 习题29. 计算:=÷32643x x _________. 习题30. 直线13-=x y 与x 轴的交点坐标是_________.习题31. 如果0,0<+>b a ab ,那么下面各式:①ba b a =; ②1=⋅a b b a ; ③b b a ab -=÷. 其中正确的是_________(填序号).习题32. 若0<ab ,则化简2ab 的结果是_________.习题33. 计算:(1)⎪⎪⎭⎫ ⎝⎛-⨯÷7225283212; (2)⎪⎪⎭⎫ ⎝⎛÷⨯2143236181841.例22. 先化简,再求值:1441132+++÷⎪⎭⎫ ⎝⎛+-+x x x x x ,其中22-=x . 解:1441132+++÷⎪⎭⎫ ⎝⎛+-+x x x x x ()()()()()()2221122211111322+--=++⋅+-+-=++⋅⎥⎦⎤⎢⎣⎡+-+-+=x x x x x x x x x x x x x 2323=x x x -=-3当22-=x 时 原式122242222222-=--=+----=.习题34. 先化简,再求值:11121122-+÷+-+--a a a a a a ,其中12+=a .习题35. 先化简,再求值:2222221y xy x y x x x yx +--÷⎪⎭⎫ ⎝⎛---,其中6,2==y x .习题36. 下列根式中是最简二次根式的是【】 (A )32(B )3 (C )9 (D )12例23. 观察下列各式: ()()()()()().;34434343431;23323232321;12212121211 -=-+-=+-=-+-=+-=-+-=+ (1)请利用上面的规律直接写出100991+的结果;(2)请用含n (n 为正整数)的代数式表示上述规律,并证明;(3)计算:()20171201720161431321211+⨯⎪⎭⎫ ⎝⎛++++++++ . 分析:本题考查分母有理化.解:(1)1131099100100991-=-=+; (2)n n n n -+=++111; (3)原式()()2017120162017342312+⨯-++-+-+-= ()()2016120171201712017=-=+-= 习题37. 化简:891231121++++++ .七、同类二次根式 如果几个最简二次根式的被开方数相同,那么它们是同类二次根式. 同类二次根式的判断方法:(1)先化简二次根式;(2)看被开方数是否相同;(3)定结果:若相同,则它们是同类二次根式;若不相同,则不是.同类二次根式的合并方法:几个同类二次根式相加减,将它们的系数相加减,二次根式保持不变.八、二次根式的加减二次根式相加减,先把各个二次根式化简,再合并同类二次根式.二次根式加减运算的步骤:(1)化简参与运算的二次根式;(2)合并同类二次根式;(3)检查结果.例24. 计算:(1)12188++; (2)451227+-. 解:(1)原式3225322322+=++=;(2)原式533533233+=+-=.注意:不是同类二次根式不能合并.例25. 计算:1832225-+.解:原式232425-+=2272225=+=例26. 计算:(1)⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛+32233223;(2)()()()23225775-++-.解:(1)原式223223⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛=36199243=-=(2)原式364875+-+-=649-=.。
专题01 二次根式的概念及性质(知识精讲+综合训练)(解析版)
章节复习知识精讲与综合训练专题01 二次根式的概念及性质知识点01 二次根式的概念1、二次根式的概念(1(0a ³)叫做二次根式,读作“根号a ”,其中a 是被开方数.(2)二次根式有意义的条件是被开方数是非负数.即两个特性(双重非负性)⎩⎨⎧³³00a a 【典例分析】1.下列式子一定是二次根式的是( )ABCD【答案】.B【分析】根据二次根式的定义判断即可;【详解】A 错误;B 正确;C 错误;a 的取值范围,故D 错误;故选B .【点睛】本题主要考查了二次根式的定义应用,准确分析判断是解题的关键.2是整数,则a 能取的最小整数为( )A .0B .1C .2D .3【答案】.A【分析】首先根据二次根式有意义的条件确定a是整数,知识精讲即可求得a 能取的最小整数.【详解】解:成立,410a \+³,解得14a ³-,又\a 能取的最小整数为0,故选:A .【点睛】本题考查了二次根式有意义的条件,熟练掌握和运用次根式有意义的条件是解决本题的关键.3a 的取值范围为( )A .1a ³-B .2a ¹C .1a ³-且2a ¹D .1a >-【答案】.C【分析】二次根式有意义的条件和分式分母有意义的条件即可解得.【详解】∵∴10a +³,-20a ¹解得-1a ³且2a ¹故选:C .【点睛】此题考查了二次根式和分式有意义的条件,解题的关键是列出不等式求解.4.若2m =,则m n -=( )A .425B .254C .254-D .425-【答案】A【分析】先根据二次根式的意义求出n ,再求出m ,最后根据负整数指数幂的运算法则得到最终解答.【详解】解:由题意可得:2n -5=5-2n =0,∴52n =,m =0+0+2=2,∴n-m =225242525-æöæö==ç÷ç÷èøèø,故选A .【点睛】本题考查二次根式和负整数指数幂的综合应用,熟练掌握二次根式有意义的条件及负整数指数幂的计算方法是解题关键.5=-,则a 的取值范围是( )A .20a -££B .0a £C .a<0D .2a ³-【答案】A【分析】根据二次根式的性质列出不等式,解不等式即可解答.【详解】=-,∴020a a £+³,,∴-20a ££.故选A .【点睛】本题考查二次根式的性质,根据二次根式的性质列出不等式是解题的关键知识点02 二次根式的性质1、二次根式的性质(1)二次根式的性质:性质1(0)a a =³;性质2:2(0)a a =³;性质3=0a ³,0b ³);性质4=(0a ³,0b >).(2与a的关系:(0)0(0)(0)a a a a a >=-<.【典例分析】6====….请你按照规律写出第n (1n ³)个式子是()A (n=-B=C (n=+D =【答案】.C【分析】观察等式,找出规律,写出第n 个式子即可.【详解】解:由规律可得,第n 个式子为:(n =+.故选项A 、B 、D 错误,选项C 正确故选:C .【点睛】本题主要考查了二次根式,解题的关键是观察等式,找出规律.7.实数a 、b 在数轴上对应点的位置如图所示,化简b )A .2a b -+B .2b a -C .aD .B【答案】.B【分析】由数轴知,a <0<b ,得到a-b <0,进而根据二次根式的性质化简即可求解.【详解】解:∵由数轴知,a <0<b ,∴a-b <0,∴b +2b b a b a+-=-故选:B .【点睛】此题考查了利用数轴比较数的大小,化简二次根式,正确利用数轴比较数的大小是解题的关键.8.已知xy >0,化简二次根式-的正确结果( )A B C .D .【答案】.B 【分析】根据二沉池根式有意义的条件求出2x y -≥0,求出x 、y 的范围,再根据二根式的性质进行化简即可.【详解】解:由二次根式有意义的条件可得20x y ->,∵xy >0,∴x <0,y <0,∴-==故选:B.【点睛】本题考查了二次根式的性质与化简和二次根式有意义的条件,能熟记二次根式的性质是解此题的关键.9.实数a、b的结果是()A.- 2a B.2(a+b)C.2b D.- 2b【答案】.C【分析】根据数轴判断a、b、a+b与0的大小关系,然后根据二次根式的性质即可求出答案.【详解】解:由数轴可知:a<-b<0<b,∴a<0,b>0,a+b<0,∴原式=|a|+|b|-|a+b|=-a+b+(a+b)=-a+b+a+b=2b,故选:C.【点睛】本题考查二次根式的性质与化简、化简绝对值、数轴,解题的关键是熟练运用二次根式的性质,本题属于基础题型.10.实数a,b)A.2b-D.0b a-B.2a-C.22【答案】.A【分析】先根据数轴判断出a、b和a-b的符号,然后根据二次根式的性质化简求值即可.【详解】解:由数轴可知:a<0,b>0,a-b<0=a b a b---=-a -b +a -b=2b-故选A .【点睛】此题考查的是二次根式的化简,掌握利用数轴判断字母符号和二次根式的性质是解决此题的关键.123x =+,则x 取值范围为( )A .2233x -££B .203x -££C .203x ££D .23x £-或23x ³2.当1a <- )A .1-B .1C .21a +D .12a--3.已知0xy <).AB.CD .4.实数a ,b ||a b +化简的结果为( )A .aB .2a b +C .2a b-D .2a b -+5.在下列各式中,计算正确的是( )综合训练A 9=-B .3=C .(22=-D 1-6,3,…,,3,L ;若()14,,()23, )A .()64,B .()53,C .()52,D .()65,7.若实数a 、b 、c 在数轴上的对应点如图所示,( )A .a c -B .2a b c --+C .a c --D .a c-+8.下列二次根式中,是最简二次根式的是( )A B C D9.x )A .0B .1-C .2-D .3-10)A 5=±B 142=C =D 210-=-二、填空题11.对于任意两个不相等的数a ,b ,定义一种运算※如下:a b =※,例如23==※62=※____________.12.实数a ,b ___________.13)12x <<=___________.14有意义,则a 的取值范围是_____________________.15.已知等腰三角形ABC 0BC =,则此三角形的周长为___________.16.如果2、5、m _____.17=_____.18.若22m n x y --与423m n x y +是同类项,则3m n -的平方根是____________.19a =,则a =_____________.20.若3y ,则xy =________.三、解答题21.求代数式a 2022a =-.如图,小芳和小亮的解题过程,都是把含有字母式子先开方再进行运算的方法,请认真思考、理解解答过程,回答下列问题.(1)___________的解法是错误的;(2)求代数式a +的值,其中4a =22.已知关于x 、y 的二元一次方程组325342x y a x y a +=⎧⎨+=-⎩①②的解互为相反数.(1)求a 的值;(2)若b 为3c23.当2022a =时,求a(1)__________的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质:____________________;a>|1|a-的值.(3)当3参考答案:1.B【分析】根据算术平方根的非负性可得230x +³,23x =+可得x x =-,据此即可作答.【详解】∵23x =+,∴230x +³,∴23x ³-,23x =+,∴()()222323x x -=+,∴2291249124x x x x -+=++,∴x x =-,∴0x £,∴x 取值范围:203x -££,故选:B .【点睛】本题主要考查了算术平方根的非负性,二次根式的化简以及绝对值的知识,掌握二次根式的化简以及算术平方根的非负性是解答本题的关键.2.A【分析】根据1a <-去绝对值计算即可.【详解】∵1a <-∴11a a +=--,a a=-1)()1a a ----=-故选:A .3.C【分析】根据二次根式有意义的条件求出20xy -³,求出x 、y 的范围,再根据二次根式的性质进行化简即可.【详解】解:由二次根式有意义的条件求出20xy -³,∵0xy <,∴0x <,0y >,==故选:C .【点睛】本题考查了二次根式的性质与化简和二次根式有意义的条件,能熟记二次根式的性质是解此题的关键.4.D 【分析】根据题意可得:a b >,0a b <<,从而可得0a b +<,0b a ->,然后利用二次根式的性质,绝对值的意义,进行化简计算,即可解答.【详解】解:∵a b >,0a b <<,∴0a b +<,0b a ->,||a b ++a b a a b =+--+a b a a b =-+-++2a b =-+故选:D【点睛】本题考查了二次根式的性质与化简,实数与数轴,整式的加减,准确熟练地进行计算是解题的关键.5.D【分析】根据立方根,算术平方根,二次根式的性质计算判断即可.【详解】解:|9|9=-=,∴A 不符合题意;∵-=∴B 不符合题意;∵(22=,∴C 不符合题意;1=-,∴D 符合题意;故选D .【点睛】本题考查了求立方根,算术平方根,二次根式的性质,熟练掌握求立方根的方法和二次根式的性质是解题的关键.6.A【分析】由题意可知,每行5个数,数的被开方的规律是3n 29个数,6行的第4个数.【详解】解:一组数据的排列变形为L ;由题意可知,每行5个数,∵87=3×29,29个数,∵2955¸=…4,6行的第4个数,()64,,故选:A .【点睛】本题考查数字的变化规律,能够根据所给的数的特点,找到数的排列规律是解题的关键.7.C【分析】根据题意0a b c <<<,从而可得0b c -<,然后利用二次根式的性质,以及绝对值的意义进行计算即可得出答案.a b c b---+【详解】由题意得0a b c <<<,∴0b c -<,b ()ac b =+--,()a b c b =-+--+,a b c b =---+,a c =--,故选:C .键.8.C【分析】根据最简二次根式的概念逐项判断即可.【详解】解:A.=A 不符合题意;B. ===,故B 不符合题意;C.是最简二次根式,故C 符合题意;D. 1=-,故D 不符合题意.故选:D .【点睛】本题考查了最简二次根式,掌握最简二次根式的特点①被开方数不含分母,②被开方数不含能开得尽方的因数或因式是解答本题的关键.9.A【分析】根据二次根式有意义求出x 的取值范围,即可得出答案.【详解】解:由题意得,210x +³,解得:21x ³-,∴只有A 选项符合题意,故选:A .【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练掌握二次根式有意义的条件是被开方数为非负数.10.C 【分析】根据求一个数的算术平方根及立方根,幂的乘方运算的逆用,即可一一判定.【详解】解:5=,故该选项错误,不符合题意;==,故该选项错误,不符合题意;=210-==,故该选项错误,不符合题意;故选:C .【点睛】本题考查了求一个数的算术平方根及立方根,幂的乘方运算的逆用,熟练掌握和运用各运算法则是解决本题的关键.11【分析】根据新定义运算进行运算,即可求得.【详解】解:2==6※【点睛】本题考查了新定义运算,二次根式的性质,理解题意,正确进行运算是解决本题的关键.12.b【详解】由数轴得:0a b <<,∴a a =- ,a b a b-=-+()b a a b a b--=-+--=故答案为:b .13.21及1的符号,去绝对值化简即可.+1-∵12x <<,∴011x <-<,∴01<<,∴110-<<10>,∴原式11=2=,故答案为:2.【点睛】题目主要考查二次根式的化简及完全平方公式,化简绝对值,熟练掌握二次根式的化简方法是解题关键.14.2a £【分析】根据二次根式有意义的条件列式计算可求解.【详解】解:由题意得20a -³,解得2a £,故答案为2a £.【点睛】本题主要考查二次根式有意义的条件,根据二次根式有意义时被开方数为非负数求解是解题的关键.15.15【分析】根据二次根式和绝对值的非负性得出,AB BC 的值,然后结合三角形三边关系进行计算即可.【详解】解:0BC =,30AB \-=,60BC -=,解得:3AB =,6BC =,若等腰三角形ABC 的三边分别为3,3,6,则336+=,不能构成三角形;若等腰三角形ABC 的三边分别为3,6,6,则此三角形周长为36615++=,故答案为:15.【点睛】本题考查了二次根式和绝对值的非负性,等腰三角形的定义,三角形三边关系的应用,熟练掌握基础知识点是解本题的关键.16.4【分析】根据三角形三边的关系得到37m <<,再根据二次根式的性质得原式37m m =-+-,然后根据m 的取值范围去绝对值后合并即可.【详解】解:∵2、5、m 为三角形三边,∴37m <<,∴原式()3737374m m m m m m =-+-=---=--+=,故答案为:4.熟练掌握知识点是解题的关键.17.5【分析】直接根据二次根式的性质进行化简即可得到答案.|5|5=-=故答案为:5(0)0(0)a a a a >-<⎩是解答本题的关键.18.±【分析】利用同类项的含义可得4,22m n m n -=⎧⎨+=⎩再解方程组可得m ,n 的值,再求解3m n -及其平方根即可.【详解】解:∵22m n x y --与423m n x y +是同类项,∴4,22m n m n -=⎧⎨+=⎩解得:2,2m n =⎧⎨=-⎩ ∴()32328,m n -=-´-=∴3m n -的平方根是±故答案为:±【点睛】本题考查的是利用同类项的含义求解未知系数的值,求解非负数的平方根,二元一次方程组的解法,二次根式的化简,掌握“同类项的定义及求解平方根的方法”是解本题的关键.19.13【分析】由二次根式有意义的条件可得4,a ³ 3=再利用算术平方根的含义解方程可得答案.a =,∴40,a -³解得:4,a ³∴3,a a -+=3,=∴49,a -=解得:13a =,经检验符合题意;故答案为:13.【点睛】本题考查的是二次根式有意义的条件,算术平方根的含义,掌握“判断题干当中的隐含条件4a ³”是解本题的关键.20.6【分析】先根据二次根式有意义的条件求出x 的值,进而得出y 的值,再求出xy 的值即可.【详解】解:∵∴2020x x -³⎧⎨-³⎩,解得x =2,∴y =3,∴xy =2×3=6.故答案为:6.【点睛】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.21.(1)小亮(2)2+【分析】(1)根据二次根式的性质,完全平方公式进行化简即可.(2)先化简,代入计算即可.【详解】(1)因为a=1a a a =+-,因为2022a =-,所以10a -<,所以原式=11a a +-=,所以小亮的解法错误,故答案为:小亮.(2)因为a +=23a a a +=+-,因为4a =-,所以43,所以原式=2(3)6a a a +-=-,当4a =-原式=642-=【点睛】本题考查了二次根式的性质,完全平方公式,绝对值的化简,熟练掌握二次根式的性质是解题的关键.22.(1)1(2)2【分析】(1)先应用求二元一次方程组的解法进行计算,求出x ,y ,再根据题意可得0x y +=,代入计算即可得出答案;(2)根据估算无理数大小的方法,计算出b ,c 出答案.【详解】(1)325342x y a x y a +=⎧⎨+=-⎩①②①×3-②得:484x a =-∴21x a =-把21x a =-代入①得:()32142a y a -+=-∴78y a=-∴x 、y 互为相反数∴0x y +=∴()()21870a a -+-+=∴1a =.(2)23,12,<<<<Q536,\<+<5,1,b c \=-====2=【点睛】本题主要考查了估算无理数的大小及解二元一次方程组,熟练掌握估算无理数的大小及解二元一次方程组的方法进行求解是解决本题的关键.23.(1)小亮||a =(3)2-【分析】(1)根据二次根式的性质即可判断答案.(2)根据二次根式的性质即可判断答案.(3)根据a 的范围判断3a -与1a -的符号,然后根据绝对值的性质以及二次根式的性质即可求出答案.【详解】(1)原式a =|1|a a =+-,2022a =Q ,10a \-<,\原式1212202214043a a a =+-=-=´-=,故小亮的解法错误.故答案为:小亮.(2||a =.||a =.(3)原式|1|a -|3||1|a a =---,3a >Q ,30a \->,10a -<,原式3(1)a a =-+-31a a=-+-2=-.【点睛】本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.。
最新人教版八年级数学下册 二次根式知识点归纳及题型总结
最新人教版八年级数学下册二次根式知识点归纳及题型总结二次根式知识点归纳和题型归类一、知识框图二、知识要点梳理知识点一、二次根式的主要性质:1.二次根式的定义:形如$\sqrt{a}$($a\geq 0$)的式子叫做二次根式。
2.二次根式的双重非负性:$\sqrt{a}\geq 0$,即一个非负数的算术平方根是一个非负数。
3.二次根式的同底同指数相加减:$\sqrt{a}+\sqrt{b}=\sqrt{a+b}$,$\sqrt{a}-\sqrt{b}=\sqrt{a-b}$。
4.积的算术平方根的性质:$\sqrt{ab}=\sqrt{a}\cdot\sqrt{b}$。
5.商的算术平方根的性质:$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$($b\neq 0$)。
6.若$a\geq 0$,则$\sqrt{a^2}=|a|$。
知识点二、二次根式的运算1.二次根式的乘除运算1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号。
2) 注意每一步运算的算理。
3) 乘法公式的推广:$(\sqrt{a}\pm\sqrt{b})^2=a+b\pm2\sqrt{ab}$。
2.二次根式的加减运算:先化简,再运算。
3.二次根式的混合运算1) 明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里。
2) 整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用。
例题:1.下列各式中一定是二次根式的是()。
A。
$-3$;B。
$x$;C。
$x^2+1$;D。
$x-1$2.$x$取何值时,下列各式在实数范围内有意义。
1)$\sqrt{-15+x}$;(2)$\frac{1}{\sqrt{x+4}}$3)$\sqrt{x+4}+\sqrt{2x+1}$;(4)$\sqrt{x+1}-\sqrt{x}$5)$3-\sqrt{x+1}$;(6)$\frac{2x}{\sqrt{x+1}}$7)若$x(x-1)=\frac{1}{4}$,则$x$的取值范围是()。
二次根式知识点及例题
第十六章 二次根式知识点一、二次根式1.定义0)a ≥二次根号下的a 叫做被开方数.注意:(1)二次根号的定义是从形式上界定的,即必须含有二次根号.(2)二次根式的被开方数可以是一个数字,也可以是一个代数式,但必须满足被开方数大于等于0. (3)根指数是2,这里的2可以省略不写.(4)形如0)a ≥的式子也是二次根式,它表示b例题:!1.下列各式中,一定是二次根式的是 .12x ⎫<⎪⎭练习:1.下列各式中,一定是二次根式的是 .0,0)x y ≥≥知识点二、二次根式有意义的条件1.0a ≥0a <2.从具体的情况总结,如下:(1)0A ≥;(2)⋅⋅⋅有意义的条件:000A B N ≥⎧⎪≥⎪⎨⋅⋅⋅⎪⎪≥⎩;?(3)0A >;(4)二次根式作为分式的分子如B A有意义的条件:00A B ≥⎧⎨≠⎩.例题:1.当x 是怎样的实数时,下列各式在实数范围内有意义.11x +练习:知识点三、二次根式的性质(重点,难点)性质10)a ≥具有双重非负性,它即表示二次根式,又表示非负数a 的算式平方根,具体描述为:0;a 是非负数. 注意:几个非负数的和为0时,这几个非负数必须同时为0.、例题:@练习:则2015)(yx 的值为________.3.已知a ,b 4b +,求a ,b 的值.·2210b b -+=,求221a b a +-的值.性质2:2(0)a a=≥,即一个非负数的算术平方根的平方等于它本身.注意:不能忽略0a≥这一限制条件,导致类似24=-的错误.性质3(0)(0)a aaa a≥⎧==⎨-<⎩,即当一个数为非负数时,它的平方的算术平方根等于它本身,(0)a a=≥;(0)a a-<.&注意:不要认为a2-的错误.2的区别与联系:例题:1.计算:(1) 2(2)2(3) 2(-(4)22.计算:'(1)23()5(2)23()5- (3)2(6)- (4)2(3.14)π-3.当m <3时,2(3)m -=_______.4.设三角形的三边长为a ,b ,c ,试化简:2222()()()()a b c a b c b a c c b a +++--+-----.、练习: 1.计算:(1) 2( 3.4) (2) 2( 3.4)- (3)2(3)π- (4) 2(4)π-2.若23a <<,则22(2)(3)a a ---等于( )~A . 52a -B . 12a -C . 25a -D . 21a - 3.已知实数a b 、在数轴上的位置如图所示,化简:222+()a b a b +-.4.已知a 2224a a a +--的值.$知识点四、二次根式的乘除1.二次根式的乘法法则0,0)a b ab a b =≥≥.提示:(1)在设计二次根式运算时没有特备说明,所有字母都表示正数;(2),a b 可以是数,也可以是代数式,但必须是非负的. 推广a b cd abcd =()0,0,0,0a b c d ≥≥≥≥.2.ab ab =a b (0,0a b ≥≥).#例题: 1.计算:(1)62⨯ (2) )32(276-⨯ (3))196()121(-⨯-(4))33)(31(+- (5) 38xy y 8y y!2.化简:(1)1259⨯ (2) 24323.(1)比较的大小__________, (2)比较3655与的大小__________. 练习: 1.计算: (1) )196()121(-⨯- (2) )33)(31(+- (3) 329y (4) 9y xy@2.化简:(1)12116⨯ (2) 96323.比较6456与的大小__________,(2)比较8338与的大小__________. 3.分母有理化:把分母中的根号化去,叫做分母有理化。
专题01二次根式(5个知识点7种题型1个易错点)(解析版)
专题01二次根式(5个知识点7种题型1个易错点)【目录】【倍速学习四种方法】【方法一】脉络梳理法知识点1:二次根式的概念二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式.①“”称为二次根号②a (a ≥0)是一个非负数;学习要求:理解被开方数是非负数,给出一个式子能准确的判断其是否为二次根式,并能根据二次根式的定义确定被开方数中的字母取值范围.【变式1】下列式子,哪些是二次根式,哪些不是二次根式:,1x 0x >),,1x y+0,0x y ³³).0x >)、0,0x y ³³1x 、1x y+不是二次根式.的根指数分别为3、4,不是二次根式;1x 、1x y+是分式,不是二次根式.【变式2】下列各式中,二次根式的个数有 ()A .2个B .3个C .4个D .5个【答案】B .当0x <时就不是.【总结】考查二次根式的概念,需满足两个条件:①根指数为2;②被开方数为非负数.知识点2:二次根式有意义的条件二次根式有意义的条件是被开方数是非负数.注意:①二次根式的被开方数为非负数;②分母不为零;③零没有零次幂.【例2】设x 是实数,当x 满足什么条件时,下列各式有意义?(1;(2.【答案】(1)12x ³;(2)2x £.【解析】(1)由12102x x -³³,得:;(2)由202x x -³£,得:.【总结】本题考查二次根式有意义的条件,即被开方数为非负数即可.【变式】设x 是实数,当x 满足什么条件时,下列各式有意义?(1;(2.【答案】(1)0x >;(2)2x <.【解析】(1)由100x x x ì³ï>íï¹î,得:; (2)由102220x x x ì-³ï<-íï-¹î,得:.【总结】考查式子有意义的条件,式子有意义的时候式子的每一个部分都有意义.知识点3:二次根式的性质性质1(0)a a =³;性质2:2(0)a a =³;性质3=(0a ³,0b ³);性质4=(0a ³,0b >).【例3】求下列二次根式的值:(1;(2;(3(4.【答案】(1)4;(2)5;(3)4)3p -.【解析】(14==;(25==;(3===(433p p =-=-.【总结】考查二次根式的性质1,确保开方出来的结果非负.【例4】计算下列各式的值:(1)2;(2); (3)2;(4)2;(5)2;(6)22-;(7)2(0)x ³;(8)2 ;(9)2.【答案】(1)18;(2)23;(3)916;(4)0;(5)14;(6)30-;(7)1x +;(8)2a ;(9)221a a ++.【解析】根据二次根式性质2即可得出结果,注意(5)小题中两部分分别平方.【总结】考查二次根式的性质2.【例5】化简:(1(20)m ³;(3)(4【答案】(1)32);(3)232y x ;(4)2-【解析】(1)由二次根式非负性3270x ³,可得0x ³,原式3==;(2)由二次根式非负性3120mn ³,结合0m ³,可得0n ³,原式===;(3)原式=223642y y x x ==;(4)由二次根式非负性33240x y -³,即有()30xy £,可得0xy £,原式2==-.【总结】考查二次根式的被开方数的非负性和二次根式的性质1性质3,先将根号中的平方数或平方式找出来,以绝对值的形式写出来,然后根据式子确立相关隐含条件,去绝对值解题.【例6】化简:(10)y <;(2).【答案】(1);(2【解析】(1)原式=(136y´-=;(2)原式() ()xx><,∴=.【总结】考查二次根式的被开方数的非负性和二次根式的性质3、性质4,先将根号中的平方数或平方式找出来,以绝对值的形式写出来,然后根据式子确立相关隐含条件,去绝对值解题.(0)0(0)(0)a aaa a>=-<î.【例7】(2022秋•虹口区校级月考)已知,则x的取值范围是( )A.B.C.D.或【解答】解:等式左边=|2﹣3|x||,它要等于2+3x,则x≤0且2+3x≥0,所以≤x≤0.故选:B.【变式】(2022秋•浦东新区校级月考)若m,n为任意实数,则下列各式成立的是( )A .=m+nB.+=m+nC.=D.【解答】解:=|m+n|,A错误;+=|m|+|n|,B错误;≠+,C错误;=(m+n)2,D正确,故选:D.知识点5:化简二次根式利用二次根式的性质进行化简;化简二次根式的步骤:①把被开方数分解因式;②利用二次根式的性质,把被开方数中能开得尽方的因数(或因式)都开出来;③化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2.【变式1】化简:(100)ab bc ><,;(20)a b <<【答案】(1)-;(2)22a b -.【解析】(1=-; (2)原式=2222a b a b -=-.【变式2】化简下列二次根式:(100)x y ³³,;(2(3(0)a a -<.【答案】(1)5 (2) 3.14p -; (3)2a -.【解析】(15==(2 3.14 3.14p =-=-π;(32a a a a -=--=-.【方法二】实例探索法题型1:求二次根式被开方数中所含字母的取值范围2.若11)--有意义,则x 的取值范围是______.【答案】10x x ³¹且.【解析】∵11)--=,∴01010x x ³³ìí¹-¹î,解得:.3.求使下列二次根式有意义的实数x 的取值范围.(1;(2【答案】(1)1x ³或0x <;(2)12x ³-且1x ¹.【解析】(1)由110x -+³,得1x ³或0x <; (2)由21010x x +³ìí-¹î,得12x ³-且1x ¹.4.2成立,求a 的取值范围.【答案】24a ££.24a a +=-+-,由此进行分类讨论:①当2a <时,原式=()()2462a a a -+-=-;②当24a ££时,原式=()()242a a -+-=;③当4a >时,原式=()()2426a a a -+-=-;综上所述,可知a 的取值范围是24a ££.题型3:利用数轴和二次根式的性质进行化简或计算5.(2022秋•虹口区校级月考)设实数a ,b 在数轴上对应的位置如图所示,化简的结果是( )A .﹣2a +bB .2a +bC .﹣bD .b【解答】解:根据数轴上a ,b 的值得出a ,b 的符号,a <0,b >0,a +b >0,∴=﹣a +a +b =b ,故选:D .6.已知实数a ,b ,c 在数轴上的对应点位置如图所示:__________.【答案】2c -.【解析】根据点在数轴上的位置,可得0c b a <<<,由此0a c ->,0b a -<,0b c +<,原式=()()()2a c b a b c a c b a b c a c b a b c c ---++=-+--+=-+---=-.题型4:利用二次根式的非负性求值7.(2022秋•奉贤区期中)已知x ,y 为实数,且,求xy 的平方根.【解答】解:由题意得,,解得x =27,则y =,∴xy ==9,∴9的平方根是±=±3.8.若,x y 是实数,且2y <++,化简22y y --.【答案】1-.【解析】根据二次根式有意义的条件,可得:210120x x -³ìí-³î,即得:210x -=,由此可知2y <,所以22y y --=()212y y --=--.9.已知3y =,求22x xy y -+的值.【答案】7.【解析】根据二次根式的非负性,可知2020x x -³ìí-³î,由此20x -=,即2x =,此时3y =,原式=2222337-´+=.10.若a 、b是实数,且13b +1-+【答案】46b -+.【解析】根据二次根式的非负性,可知3030a a -³ìí-³î,由此30a -=,即3a =,此时13b <,原式=()()231213346b b a b b b -+-+=-+-+=-+.11.0=,求()x x y +的值.【答案】9.【解析】由题意得:203280x y x y -=ìí+-=î, \21x y =ìí=î. \()()2219xx y +=+=.12.若z+=+,求z 的值.【答案】3358.【解析】 Q 20160x y -+³, ∴2016x y +³.又 Q 20160x y --³, \2016x y +£, \2016x y +=.\0+=.即35230125302x y z x y z +--=ìí+-=îL L ()(), 解得:220143358x y z =ìï=íï=î.题型5:根据二次根式的值是整数,求字母的取值13.(2022秋•奉贤区校级期中)已知是正整数,则实数n 的最大值为 .【解答】解:由题意可知12﹣n 是一个完全平方数,且不为0,最小为1,所以n 的最大值为12﹣1=11.题型6:二次根式与三角形的综合15.在△ABC 中,a b c 、、2c a b --.【答案】33c a b --.【解析】根据三角形三边关系,任意两边之和大于第三边,可知0a b c -+>,0c a b --<,原式=()()22a b c c a b a b c c a b -+---=-++--22233a b c c a b c a b =-++--=--.16.在△ABC 中,a b c 、、0=,求最大边c 的取值范围.【答案】814c £<.【解析】根据题意,即为60a -+=,由此60a -=,80b -=,解得:6a =,8b =,根据三角形三边关系,且c 为最大边,可知b c a b £<+,即814c £<.17.解下列各式:(1)已知0a a +=(2)a b c 、、+.【答案】(1)12a -;(2)3a b c +-.【解析】(1)由0a a +=,即a a =-,可得0a £,原式=1112a a a a a -+=--=-;(2)根据三角形三边关系,可知0a b c --<,0b c a -+>,0c b a --<,原式=a b c b c a c b a--+-++--3b c a b c a a b c a b c =+-+-+++-=+-.18.(1)在△ABC 中,a b c 、、0=,求最大边c 的取值范围;(2)已知实数x y 、,满足2()x y +22x y +的平方根.【答案】(1)814c £<;(2)±.【解析】(1)根据题意,即为60a -+=,由此60a -=,80b -=,解得:6a =,8b =,根据三角形三边关系,且c 为最大边,可知b c a b £<+,即814c £<.(2)由题意得:2()0x y +=,∴053160x y x y +=ìí--=î,解得:22x y =ìí=-î,∴==±.题型7:二次根式的性质的应用19.(1(2);(3)2-;(4)(1)x -【答案】(1; (23);(4)【解析】(1=;(2)(3)(4)=.20.将x 移到根号内,不改变原来的式子的值:(11)x >;(2)(2)x x ->.【答案】(12)1.【解析】(1==;(2)(1x -==.【方法三】差异对比法易错点:忽略隐含条件,误将负数移到根号外21.(2022秋•虹口区校级期中)已知a <0,则二次根式化简后的结果为( )A .aB .aC .﹣aD .﹣a【解答】解:∵a<0,﹣a2b≥0,∴a<0,b≤0,∴=﹣a.故选:D.22.(2022秋•虹口区校级期中)已知a<0,那么可化简为( )A.2b B.﹣C.﹣D.【解答】解:∵a<0,﹣>0,∴b>0,∴原式=,故选:D.23.(2022秋•静安区校级期中)已知xy<0,化简二次根式的值是( )A.B.C.D.【解答】解:由题意可知﹣xy2≥0.因为y2>0,所以﹣x≥0,所以x≤0,又因为xy<0,所以x<0,y>0,所以==.故选:C.24.(2022秋•青浦区校级期中)化简:(a<0)= .【解答】解:原式=.故答案为:.25.(2022秋•嘉定区校级月考)化简:= .【解答】解:∵﹣a4b3≥0,∴b≤0,∴=﹣a2b,故答案为:﹣a2b.【方法四】成功评定法一、单选题三、解答题222 =-++--a b c c a b =--.33c a b。
二次根式知识点总结及常见题型
二次根式知识点总结及常见题型资料编号:一、二次根式的定义形如.a( a >0)的式子叫做二次根式.其中“”叫做二次根号,a叫做被开方数.(1)二次根式有意义的条件是被开方数为非负数.据此可以确定字母的取值范围;(2)判断一个式子是否为二次根式,应根据以下两个标准判断:①是否含有二次根号“”;②被开方数是否为非负数.若两个标准都符合,则是二次根式;若只符合其中一个标准,则不是二次根式.(3)形如m・.a ( a > 0)的式子也是二次根式,其中m叫做二次根式的系数,它表示的是:m- a m a ( a > 0);(4)根据二次根式有意义的条件,若二次根式、、A B与.B A都有意义,则有A B.二、二次根式的性质二次根式具有以下性质(1)双重非负性:..a >0, a >0;(主要用于字母的求值)(2)回归性:...a2 a( a > 0);(主要用于二次根式的计算)(3)转化性:a2 a a(a (主要用于二次根式的化简)a(a 0)重要结论:(1)若几个非负数的和为°,则每个非负数分别等于0.若 A B2C 0,贝卩 A 0,B 0,C 0.应用与书写规范:V A B2.C 0,A > 0, B2>0,、C > 0A 0,B 0,C 0.该性质常与配方法结合求字母的值.(2)•. AB2 AB A BA B ;主要用于二次根式的化简.A2 B A 0(3)A国—,其中 B > 0;<A2 B A 0该结论主要用于某些带系数的二次根式的化简:可以考虑把二次根号外面的系数根据符号以平方的形式移到根号内,以达到化简的目的.2(4) A B A2 B,其中 B > 0.该结论主要用于二次根式的计算.例1.式子〒二在实数范围内有意义,则x的取值范围是 ____________ .寸x 1分析:本题考查二次根式有意义的条件,即被开方数为非负数,注意分母不能为0.解:由二次根式有意义的条件可知:x 1 0,二x 1.例2.若x,y为实数,且y -x 1 J x丄,化简:丄」.2 y 1分析:本题考查二次根式有意义的条件,且有重要结论:若二次根式A B与B A都有意义,则有A B .解:•/ x 1 > 0, 1 x > 0x》1, x W 1/. x 1• 1 1 ,…y 0 0 12 2习题1.如果V3C有意义,则实数a的取值范围是_____________ .习题 2.若y 4^32,则x y_____________ .习题3.要使代数式(P 有意义,则x的最大值是 _______________ .习题4.若函数y 丄空,则自变量x的取值范围是.x习题5. 已知b J3a 12 <8 2a 1,贝廿a b__________________ .例 3. 若.a 1 b2 4b 4 0 ,贝卩ab 的值等【】(A) 2 (B) 0 (C) 1 (D) 2分析:本题考查二次根式的非负性以及结论:若几个非负数的和为0,则每个非负数分别等于0.解:T1 b2 4b 4 0/. a 1 b 2 20T a 1 > 0, b 2 2> 0二 a 1 0,b 2 0「• ab 1 2 2.选择【D ] 例4.无论x取任何实数,代数式x2 6x m都有意义,则m的取值范围是 __________ .分析:无论x取任何实数,代数式.x2 6x m都有意义,即被开方数x2 6x m > 0恒成立,所以有如下两种解法:解法一:由题意可知:x2 6x m > 0T x2 6x m x 3 2 m 9 > 0--x 3 > 9 m•/ x 3 2> 0/. 9 m < 0, A m > 9.解法二:设y x2 6x mT•无论x取任何实数,代数式x2 6x m都有意义A y x2 6x m》0恒成立即抛物线y x2 6x m与x轴最多有一个交点2A 6 4m 36 4m < 0解之得:m > 9.例5.已知a,b,c是厶ABC勺三边长,并且满足、、a 6 8 b c2 100 20c,试判断△ ABC勺形状.分析:非负数的性质常和配方法结合用于求字母的值解:T a 6 8 b c2100 20ca 6b 8 c220c 100 0.a 6 b 8 c 10 20T a 6 > 0, b 8 > 0, c 10 2> 0二 a 6 0, b 8 0,c 10 0二 a 6, b 8, c 10T a2 b26282100,c2102100•••△ ABC为直角三角形.习题6.已知实数x,y满足x 4,Y 8 0,则以x,y的值为两边长的等(A) 20或16 (B) 20解:(1 )-6 2 6;(D )以上答案均不对习题7.当x ________________ 时,<9x 1 1取得最小值,这个最小值为习题8.已知V 我4韶X?,则x y 的值为x 2习题9.已知非零实数a,b 满足.a 2 8a 16 b 3 . a 5 b 2 1 4 a ,求a b1的值.提示:由 a 5 b 2 1 > 0,且 b 2 1 0可得:a 5》0, — a > 5.例6•计算:二次根式的计算.(C ) 16 —2(1)6 ;------------- 2(2)2x 3 ;(3)3,3分析:本题考查二次根式的性质_ 2 ______________________________________________________ . ”.a a ( a > 0).该性质主要用于_ ______ 2(2)、2x 3 2x 3;-2 - 2(3)3J - 3 29 - 6. ^3丫 3 3注意:A. B 2 A 2 B ,其中B > 0.该结论主要用于二次根式的计算例7.化简:I2(1)< 252 ; ( 2)10; ( 3). X 2 6x 9 x 3 .¥7二次根式的化简. 解:(1).25225 25;10 ;7;二原式 3 x .和绝对值的化简.分析:本题考查二次根式的性质:a 2aaa(a 0)0).该性质主要用于(2)注意:结论:.A B 2A BABA B A A.该结论主要用于二次根式10 7(3) x 2 6x 932例10.已知0 a 1 ,化简:a ; 2例8.当、、x 3有意义时,化简:x 5 . x 22.. 1解:•••二次根式、x 3有意义-----2'xx 5 x 2 1xx 5 x 2 x 13x 2例9. 化简:i.2一 x 2分析:,x 2 2x 2,继续化简需要x 的取值范围需要挖掘题目本身的隐含条件 「X 3的被开方数 ,而取值范围的获得x 3为非负数.解:由二次根式有意义的条件可知:* 3 >----------- 2 --------------------------x 3 x 2x 3 x 2 x 3 x 22x 5221解:由函数y m 3x n 2的图象可知: m 3 0, n 2 0m 3,n 2m n | :n 2 4n 4 |m 1m n..n 2 2 m1mn n2 m 1 m n 2 n m 1m n 2 n m 1解:•/ 0 a 1• r~ 1…、.a —.a2肓I.a 1 ■- a1 a 1 .a例11.已知直线y m 3 x n 2 ( m,n 是常数),如图(1),化简m| *n 2 4n 4 m 1 .x例12.已知a,b,c在数轴上的位置如图(2 )所示,化简:ac a 0图(2)解:由数轴可知:c a 0 b二 a a c $ 、c a $ . b2习题10.要使..x 2 2 x 2 2 ,x的取值范围是习题11.若.a2 a 0,则a的取值范围是习题12.习题13.计算:〉2习题14. 若:.x 3 2x 3成立,则x的取值范围是15. 下列等式正确2 __________________________________________________________ _____ _(A )品 3(B )厂〒 3___ 2(C )-..33 3(D )、、3 3习题18.化简:厂2卫 _________________ .习题 19.若 Ja 2 3a 1 b 2 2b 1 0,则a 2 丄 b ______________________a2 '2~习题20.已知1 a 0,化简{ a 14J a 14得 -----------16.下 列 各 式成 立 的 是(A )(B )32 3(C )(D), 32 42 7习题17.计算:2、72习题21.实数a,b,c 在数轴上对应的点如图3)所示,化简代数式: a 2 2a 1 b c | ::a 2 2ab b 2的【 】 结果为(A ) 2b c 1(B ) 1(C) 2a c 1 (D) b c 11 212例13.把a 1中根号外的因式移到根号内,结果是Y a【 】(A ) . a( B ) .. a ( C ) . a( D )a分析:本题实为二次根式的化简:某些二次根式在化简时,把根号外的 系数移到根号内,可以达到化简的目的,但要注意根号外面系数的符 号.有如下的结论:解:由二次根式有意义的条件可知:1 0a图(3)习题22.化简:.4x 2 4x 1________ 2“2x 3A-BA 2B A 0 A 2B A 0,其中B > 0.1 a 1aa .选择【D ]习题23.化简2「工得\a 2 ----------------------三、二次根式的乘法一般地,有:a b ab ( a > 0, b > 0)(1)以上便是二次根式的乘法公式,注意公式成立的条件:a >0, b > 0.即参与乘法运算的每个二次根式的被开方数均为非负数;(2)二次根式的乘法公式用于二次根式的计算;(3)两个带系数的二次根式的乘法为:m.. a n b mn._ ab ( a > 0, b > 0);(4)二次根式的乘法公式可逆用,即有:' ab a ' b ( a》0, b》0)公式的逆用主要用于二次根式的化简.注意公式逆用的条件不变.例14.若.x x 6 .. x x 6 成立,则【】(C) x > 0 (D) x为任意实数(A) x》6(B) 0w x w 63分析:本题考查二次根式乘法公式成立的条件:•. a .b . ab ( a > 0, b > 0)解:由题意可得解之得:x > 6.选择【A J .例15.若Vx2 i jx i 成立,则x的取值范围是___________________分析:本题考查二次根式乘法公式逆用成立的条件:ab - a0, b >0)解:由题意可得解之得:x > 1.例16.计算:..2a :;a ( a >0) 解:2a 8a .2a 8a >2■. :a厂a》0)习题24.计算:J-叼 ______________ .习题25. 已知2 213(A ) 5 m 6(C )5 m 4(D )6 m 5习题26.化简 辺 的结果是 __________ .四、二次根式的除法般地,有:(1) 以上便是二次根式的除法公式,要特别注意公式成立的条件(2) 二次根式的除法公式用于二次根式的计算;(3) 二次根式的除法公式可写为:•. a . a b ( a > 0, b 0 )(4) 二次根式的除法公式可逆用,即有:公式的逆用主要用于二次根式的化简,注意公式逆用的条件不变 五、最简二次根式符合以下条件的二次根式为最简二次根式(B) 4 m 5:a(a》o,b(1)被开方数中不含有完全平方数或完全平方式(2)被开方数中不含有分母或小数.注意:二次根式的计算结果要化为最简二次根式.六、分母有理化把分母中的根号去掉的过程,叫做分母有理化.如对寺进行分母有理化,过程为:〒2 2 2 2;对、233进行42分母有理化,过程为:丽 3 、2 3 -、23 .2 3 27 '由举例可以看出,分母有理化是借助于分数或分式的性质实现的.例17•计算:(1 ;(2)8占23 ;(3)J28xy2 J7『.解:(1)54 54.9 3;(2)83 3 228338 8 3 8 8 3 3 8 9 8 3(2)®2 3 23 8:2 3、3 3 -2 3 3-2 8 3 “6 3 ;2;v4x 2丘.3 - 28xy2...7y2 28xy2 7y2例18.化简:(1) 5;(2) .、0.4;(3) ,.a3 6a2 9a ( a 3).Y 6解:(1) 5i5'-5 6 30 .解:(1)'. 6 .6 .6、6 可;(—5; ¥;(3)V a 3/. .a3 6a2 9a a a2 6a 9 、aa 32 a 3 , a注意:随着学习的深入,在熟练时某些计算或化简的环节可以省略以简化计算.例19.式子$ —旦成立的条件是\x 2 v x 2 ----------------------分析:本题求解的是x的取值范围,考查了二次根式除法公式逆用成立的条件:a a\ b vb(a > 0, b 0 )解:由题意可得解之得:x 2.2 4-16 2 4,2 4 3、-2例20.计算:⑵201解:(1)3 . 752 2 .275 ■. 25 ~5(2)(3) 解法1:32'.8.232 8.16 42 24 22.解法 2: 32.82:、22 、8 、2 ■::2 」2• 64 、162二次根式的乘除混合运算 例21.计算:222W ;(2)■ 12 .27.18.解:(〔)原式竝号芒2£18 3(2原式1218f --- 1 O 24、8 2.2.;27■ 3习题27.下列计算正确的是【】(A)J2 2.3(B) . 3\ 22(C)、、x3x.. x(D). x2x习题28.计算:727 J8黒.\ 3 \ 2 -------------------习题29.计算:^r6x y2\卜.\ 3习题30.直线y打x 1与x轴的交点坐标是____________ .习题31.如果ab 0, a b 0 ,那么下面各式:①,a a;②.a . b 1;③ ab ,a b.-b . b■. b . a,b其中正确的是__________ (填序号).习题32.若ab 0,则化简J硬的结果是 _____________ .习题33.计算:(1)■. 2 1 3.28 5 22;(2)1 18 8 1〈41\ 2 V 7 4 * 36 ^2X 3 4x 4 n3X 1 X 1 X 1 X 1X 12x 2X 2 x 2 X 1X 1 X 22X 2X2当X2 2时原式2 2 2 2 4222 2 2J 、J3X例也先化简,再求值:耳X 1=,其中X 2 *-习题34.先化简,再求值:占a 1 a 2 2a 1时其中 a 2 1.2 2x y2 2X 2xy y习题36.下列根式中是最简二次根式的是(B) 3(C) .9 (D) 、12例23.观察下列各式:112 .313 .41 、21 \2 1 2■ 3 .2;卅4 ?3;(1)请利用上面的规律直接写出 199 .100的结果(2)请用含n ( n为正整数)的代数式表示上述规律,并证明;(3)计算:丿I 1 V2017■ 2016-2017分析:本题考查分母有理化2. 100、99 10 3 11 ; •、99 .100(2).2017 1 . 2017 12017 1 2016七、同类二次根式如果几个最简二次根式的被开方数相同,那么它们是同类二次根 式•同类二次根式的判断方法:(1) 先化简二次根式;(2) 看被开方数是否相同;(3) 定结果:若相同,则它们是同类二次根式;若不相同,则不是.同类二次根式的合并方法几个同类二次根式相加减,将它们的系数相加减,二次根式保持解:(1) (3)原式 2 1,3 ,2.3 .2017 ,2016 1 .. 2017习题37.化简:二1、9 、8不变.八、二次根式的加减二次根式相加减,先把各个二次根式化简,再合并同类二次根式二次根式加减运算的步骤:(1)化简参与运算的二次根式;(2)合并同类二次根式;(3)检查结果.例24.计算:(1).8 -.18 12;(2)• 27 ■. 12 . 45 .解:(1)原式2、2 3-2 2..3 5 2 2 3 ;(2)原式 3 3 2.3 3 5 ,3 3.5 .注意:不是同类二次根式不能合并例25 •计算:..25 32 <18.2解:原式4.2 3、\2 .227、22例26 •计算:(1)三二虫二T V T V解:(1)原式3 24 91936(2)原式 5 7 8 463习题35.先化简,再求值:--x 12。
二次根式知识点总结及习题带答案
二次根式知识点总结及习题带答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN【基础知识巩固】一、二次根式的概念形如()的式子叫做二次根式。
注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式。
二、取值范围1.二次根式有意义的条件:由二次根式的意义可知,当a≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
2.二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,没有意义。
三、二次根式()的非负性()表示a的算术平方根,也就是说,()是一个非负数,即0()。
注:因为二次根式()表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。
这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,b=0。
四、二次根式()的性质:一个非负数的算术平方根的平方等于这个非负数。
()注:二次根式的性质公式()是逆用平方根的定义得出的结论。
上面的公式也可以反过来应用:若,则,如:,.五、二次根式的性质:一个数的平方的算术平方根等于这个数的绝对值。
1、化简时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即;若a是负数,则等于a的相反数-a,即;2、中的a的取值范围可以是任意实数,即不论a取何值,一定有意义;3、化简时,先将它化成,再根据绝对值的意义来进行化简。
六、与的异同点1、不同点:与表示的意义是不同的,表示一个正数a的算术平方根的平方,而表示一个实数a的平方的算术平方根;在中,而中a可以是正实数,0,负实数。
但与都是非负数,即,。
因而它的运算的结果是有差别的,,而2、相同点:当被开方数都是非负数,即时,=;时,无意义,而.七、二次根式的运算1、最简二次根式必须满足以下两个条件(1)被开方数不含分母,即被开方的因式必须是整式;(2)被开方数中不含能开得尽方的因数或因式,即被开方数中每一个因数或因式的指数都是1.2ab a·b(a≥0,b≥0);积的算术平方根的性质即乘法法则的逆用.3、除法法则:b ba a(b≥0,a>0);商的算术平方根的性质即除法法则的逆用.4、合并同类项的法则:系数相加减,字母的指数不变.5、二次根式的加减(1)二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式的知识点汇总知识点一: 二次根式的概念形如()的式子叫做二次根式。
注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式。
例题 判断下列代数式中哪些是二次根式?⑴21, ⑵16-, ⑶9+a , ⑷12+x ,⑸222++a a ,⑹x -(0≤x ), ⑺()23-m 。
巩固1、下列各式中,不是二次根式的是( ) A .45 B .3π- C .22a + D .122、下列各式中,是二次根式是( ).(A )x (B )30- (C ) 1a + (D ) 21b +知识点二:取值范围1. 二次根式有意义的条件:由二次根式的意义可知,当a ≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
2. 二次根式无意义的条件:因负数没有算术平方根,所以当a ﹤0时,没有意义。
例题1 x 取什么值时,45x +有意义( )(A )x > 45(B )x <54(C )x ≥54-(D ) x ≤54-巩固 使代数式32xx -+有意义的x 取值范围是( )A2x ≠-; B 32x x <≠-且,; C .32x x ≠且,;≤D .32x x ≠-且,;≤知识点三:二次根式()的非负性()表示a 的算术平方根,也就是说,()是一个非负数,即0()。
注:因为二次根式()表示a 的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。
这个性质在解答题目时应用较多,如若,则a=0,b=0;若,则a=0,b=0;若,则a=0,b=0。
例题 已知221y x x =-+-+,则yx=知识点四:二次根式()的性质 ()文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。
注:二次根式的性质公式()是逆用平方根的定义得出的结论。
上面的公式也可以反过来应用:若,则,如:,.知识点五:二次根式的性质文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。
注:1、化简时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即;若a是负数,则等于a的相反数-a,即;2、中的a的取值范围可以是任意实数,即不论a取何值,一定有意义;3、化简时,先将它化成,再根据绝对值的意义来进行化简。
知识点六:与的异同点1、不同点:与表示的意义是不同的,表示一个正数a的算术平方根的平方,而表示一个实数a的平方的算术平方根;在中,而中a可以是正实数,0,负实数。
但与都是非负数,即,。
因而它的运算的结果是有差别的,,而2、相同点:当被开方数都是非负数,即时,=;时,无意义,而.知识点七:二次根式的运算(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.ab a b b ba aa>0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.例题1 计算3393a a a a -+= ..例题3 计算:(1))455112()3127(+--+ ;《二次根式》同步学习检测(一)(整章检测)(时间90分钟 满分100分)一、选择题(共12分)1.在根式15、22b -a 1b a -、3ab 、631、b a a221中,最简二次根式有( ) A .1个 B .2个 C .3个 D .4个例题2 3)154276485(÷+-(2)2.在二次根式32,-256,611,4951和232中,与6是同类根式的有( )A .2个B .3个C .4个D .5个3.在下列各式中,等号不成立的是( )A .a-1=-aaB .2x y =y 4x 2(x >0)C .32a -=a 2a - D .(x+2xy +y)÷(x +y )=x +y4.在下列各式的化简中,化简正确的有( )①3a =a a ②5x x -x =4x x ③6a2b a =ab 2b3a ④24+61=106 A .1个 B .2个 C .3个 D .4个5.已知二条线段的长分别为2cm 、3cm ,那么能与它们组成直角三角形的第三条线段的长是( )A .1cmB .5cmC .5cmD .1cm 或5cm6.已知a <0,化简:aa a 22+的结果是 ( )A .1B .-1C .0D .2a二、填空题(每题2分,共20分)7.52-的绝对值是__________,它的倒数__________8.当x ___________时,x311--是二次根式. 9.当x ______时,52+x 有意义,若xx-2有意义,则x ______。
10.当m >n 时,2)(m n -=______,当a _______时,3132-=a a 11.化简=⨯04.0225_________,=-22108117_________。
12.计算:=⋅b a 10253___________.13.若最简二次根式1522+x 与-172-x 是同类二次根式,则x =______。
14.把根式aa 1-根号外的a 移到根号内,得___________。
15.二次根式x 33-与ax 2的和是一个..二次根式,则正整数a 的最小值为 ;其和为 。
16.观察下列各式:322322+=⨯;833833+=⨯;15441544+=⨯;……则依次第四个式子是 ;用)2(≥n n 的等式表达你所观察得到的规律应是 。
三、解答题(共68分)17.(5分)计算:ba b aba a ---18.(5分)计算:)483814122(22-+ 19.(5分)解方程:3548015+=+x x 20.(5分)解不等式:)1(6)3(2+≥-x x21.(5分)已知:2420-=x ,求221xx +的值. 22.(5分)化简并求值a a a a a a a -+---+-22212121 其中321+=a 23.(5分)已知实数a 满足|2003-a |+a -2004 =a ,则a -20032的值是多少? 24.(5分)已知正数a 和b ,有下列命题:(1)若2=+b a ,则ab ≤1; (2)若3=+b a ,则ab ≤23; (3)若6=+b a ,则ab ≤3;根据以上三个命题所提供的规律猜想:若9=+b a ,则ab ≤ 。
25.(6分)阅读下面的解题过程,判断是否正确?若不正确,请写出正确的解答。
已知m 为实数,化简:mm m 13----解:原式=m mm m m -⋅---1=()m m ---126.(6分)如图,ABC ∆中,∠=∠Rt ACB ,2,8==BC AB ,求斜边AB 上的高CD .27.(8分)观察下列等式:①12)12)(12(12121-=-+-=+;②23)23)(23(23231-=-+-=+;③34)34)(34(34341-=-+-=+;……回答下列问题:(1)利用你观察到的规律,化简:11321+(2)计算:1031 (2)31321211++++++++28.(8分)水库大坝截面的迎水坡坡比(DE 与AE 的长度之比)为1:0.6,背水坡坡比为1:2,大坝高DE =30米,坝顶宽CD =10米,求大坝的截面的周长。
ACBE D F新人教九年级(上)第21章《二次根式》同步学习检测(二)一、选择题 1、如果-3x+5是二次根式,则x 的取值范围是( ) A 、x≠-5 B 、x>-5 C 、x<-5 D 、x≤-52、等式x 2-1 =x+1 ·x -1 成立的条件是( ) A 、x>1 B 、x<-1 C 、x ≥1 D 、x ≤-13、已知a= 15 -2 ,b=15 +2 ,则a 2+b 2+7 的值为( )A 、3B 、4C 、5D 、64、下列二次根式中,x 的取值范围是x ≥2的是( ) A 、2-x B 、x+2 C 、x -2 D 、1x -25、在下列根式中,不是最简二次根式的是( ) A 、a 2+1 B 、2x+1 C 、2b4D 、0.1y 6、下面的等式总能成立的是( )A 、a 2=a B 、a a 2=a 2C 、 a · b =abD 、ab = a · b 7、m 为实数,则m 2+4m+5 的值一定是( ) A 、整数 B 、正整数 C 、正数 D 、负数 8、已知xy>0,化简二次根式x-yx2 的正确结果为( ) A 、y B 、-y C 、-y D 、--y9、若代数式(2-a)2+(a -4)2的值是常数2,则a 的取值范围是( ) A 、a ≥4 B 、a ≤2 C 、2≤a ≤4 D 、a=2或a=4 10、下列根式不能与48 合并的是( ) A 、0.12 B 、18 C 、113D 、-75 11、如果最简根式3a -8 与17-2a 是同类二次根式,那么使4a -2x 有意义的x 的范围是( )A 、x ≤10B 、x ≥10C 、x<10D 、x>10 12、若实数x 、y 满足x 2+y 2-4x -2y+5=0,则x +y 3y -2x的值是( )A 、1B 、32 + 2 C 、3+2 2 D 、3-2 2二、填空题 1、要使x -13-x有意义,则x 的取值范围是 。
2、若a+4 +a+2b-2 =0,则ab= 。
3、若1-a2与a2-1 都是二次根式,那么1-a2 +a2-1 = 。
4、若y=1-2x +2x-1 +(x-1)2,则(x+y)2003= 。
5、若 2 x>1+ 3 x ,化简(x+2)2 -3(x+3)3 = 。
6、若(a+1)2 =(a -1)2,则a= .7、比较大小:⑴3 5 2 6 ⑵11 -10 -138、若最简根式m 2-3 与5m+3 是同类二次根式,则m= . 9、已知223 =223 ,338 =338 ,4415 =4415 ,…请你用含n 的式子将其中蕴涵的规律表示出来: .10、若 5 的整数部分是a ,小数部分是b ,则a -1b = 。