高考物理学科复习题册第1部分专题4电场和磁场第1讲电场限时检测含解析77

合集下载

电场磁场知识点及高考真题

电场磁场知识点及高考真题

电场磁场知识点及高考真题电场和磁场是物理学中重要的概念,也是高考物理考试中常见的考点。

本文将重点探讨电场磁场的知识点,并结合高考真题进行解析,希望能帮助大家更好地理解和掌握这一领域的内容。

一、电场电场是一种物理量,用来描述电荷在空间中产生的作用。

电场的本质是电荷之间的相互作用,通过电场,电荷可以相互吸引或排斥。

在电场中,一个电荷所受到的电力与电荷本身的大小和符号有关。

在高考中,常见的电场知识点有电场强度和电势。

电场强度表示单位正电荷所受到的电力,常用符号为E,单位是牛顿/库仑。

电场强度的大小与电荷的大小、距离的平方成反比。

电势是描述电场对电荷的影响程度的物理量,常用符号为V,单位是伏特。

电势的大小与电场强度和距离的关系有关,可以通过电势差来计算。

高考真题解析:1. (2019年北京卷)一点电荷在电场中受力0.5N,所处位置的电势为0.2V,试求该电荷的大小。

解析:根据定义可得电势差ΔV = V2 - V1, F = qE,由此我们可以得出ΔV = Fq。

代入已知数据计算可求得ΔV = 0.2V,F =0.5N,代入公式得q = F / ΔV = 0.5N / 0.2V = 2.5C。

二、磁场磁场是一种物理现象,用来描述磁荷产生的相互作用。

磁场的本质是磁荷之间的相互作用,通过磁场,磁荷可以相互吸引或排斥。

在高考中,常见的磁场知识点有磁感应强度和磁场力。

磁感应强度表示单位磁极所受到的力,常用符号为B,单位是特斯拉。

磁感应强度的大小与磁极的大小、距离的平方成反比。

磁场力是描述磁场对磁极的作用力的物理量,常用符号为F,单位是牛顿。

磁场力的大小与磁感应强度、磁极的大小、夹角的正弦值有关。

高考真题解析:2. (2017年江苏卷)电子以速度v垂直于磁感应强度B进入磁场,若电子所受的磁场力为F,则速度v与磁感应强度B的关系式是?解析:根据磁场力的公式F = qvBsinθ,电子带负电,所以它在磁场中受到的磁场力的方向与速度方向相反。

2020版高考物理专题1.4电场线(电磁部分)(含解析)

2020版高考物理专题1.4电场线(电磁部分)(含解析)

专题1.4 电场线一.选择题1.(2019江苏泰州12月联考)如图所示,四幅有关电场说法正确的是( )A .图甲为等量同种点电荷形成的电场线B .图乙离点电荷距离相等的 a 、b 两点场强相同C .图丙中在 c 点静止释放一正电荷,可以沿着电场线运动到 d 点D .图丁中某一电荷放在 e 点与放到 f 点,它们的电势能相同【参考答案】D【名师解析】由图可知,甲为等量异种电荷形成的电场线,故A 错误;乙为正的点电荷所形成的电场线分布,离点电荷距离相等的 a 、b 两点场强大小相同,场强方向不同,故B 错误;只有电场线为直线时,粒子才有可能沿着电场线运动。

曲线电场线中,粒子不会沿着电场线运动,故C 错误;图丁中 e 点与 f 点电势相同,它们的电势能相同,故D 正确。

2.(2019高考仿真冲刺卷)如图所示为点电荷A,B 形成的电场,下列说法正确的是( )A.A 带正电,B 带负电B.A 的电荷量大于B 的电荷量C.A 的左侧某点电场强度可能为零D.AB 连线上从A 到B 电势降低【参考答案】.C【名师解析】根据电场线从正电荷出发到负电荷终止,可知A,B 是异种电荷,但不能确定A,B 哪个带正电,选项A 错误;电场线密集程度反映电场强弱,B 附近电场线较密,电场强度较大,由点电荷的电场强度的表达式E=k2Q r 可知B 带电荷量较多,选项B 错误;电场中任意一点电场强度是A,B 产生电场强度的矢量和,由点电荷的电场强度的公式E=k 2Q r 可知,A 的左侧位置距B 远,而B 带电荷量大,所以A,B 产生的电场强度大小可能相同,又因为A,B是异种电荷,A的左侧位置两电荷的电场强度方向相反,因此A的左侧某点电场强度可能为零,选项C正确;沿着电场线方向电势逐渐降低,由于不能确定电场线方向,所以不能确定A,B电势的高低,选项D 错误.【易错警示】解答此题常见错误主要有:一是不能根据电场线分布得出哪个点电荷带电荷量较大,二是没有认真审题审图组成错选。

2025年高考人教版物理一轮复习专题训练—带电粒子在叠加场和交变电磁场中的运动 附答案解析

2025年高考人教版物理一轮复习专题训练—带电粒子在叠加场和交变电磁场中的运动  附答案解析

2025年⾼考⼈教版物理⼀轮复习专题训练—带电粒⼦在叠加场和交变电、磁场中的运动(附答案解析)1.如图所⽰,⼀带电液滴在相互垂直的匀强电场和匀强磁场中刚好做匀速圆周运动,其轨道半径为R,已知该电场的电场强度⼤⼩为E、⽅向竖直向下;该磁场的磁感应强度⼤⼩为B、⽅向垂直纸⾯向⾥,不计空⽓阻⼒,设重⼒加速度为g,则( )A.液滴带正电B.液滴⽐荷=C.液滴沿顺时针⽅向运动D.液滴运动速度⼤⼩v=2.(多选)(2024·吉林长春市外国语学校开学考)如图所⽰,在竖直平⾯内的虚线下⽅分布着互相垂直的匀强电场和匀强磁场,电场的电场强度⼤⼩为10 N/C,⽅向⽔平向左;磁场的磁感应强度⼤⼩为2 T,⽅向垂直纸⾯向⾥。

现将⼀质量为0.2 kg、电荷量为+0.5 C的⼩球,从该区域上⽅的某点A以某⼀初速度⽔平抛出,⼩球进⼊虚线下⽅后恰好做直线运动。

已知重⼒加速度为g=10 m/s2。

下列说法正确的是( )A.⼩球平抛的初速度⼤⼩为5 m/sB.⼩球平抛的初速度⼤⼩为2 m/sC.A点距该区域上边界的⾼度为1.25 mD.A点距该区域上边界的⾼度为2.5 m3.(2023·⼴东梅州市期末)如图甲所⽰,在竖直平⾯内建⽴xOy坐标系(y轴竖直),在x>0区域有沿y轴正⽅向的匀强电场,电场强度⼤⼩为E=;在x>0区域,还有按图⼄规律变化的磁场,磁感应强度⼤⼩为B0,磁场⽅向以垂直纸⾯向外为正⽅向。

t=0时刻,有⼀质量为m、带电荷量为+q的⼩球(可视为质点)以初速度2v0从原点O沿与x轴正⽅向夹⾓θ=的⽅向射⼊第⼀象限,重⼒加速度为g。

求:(1)⼩球从上往下穿过x轴的位置到坐标原点的可能距离;(2)⼩球与x轴之间的最⼤距离。

4.(多选)(2024·重庆西南⼤学附中⽉考)如图甲所⽰的平⾏⾦属极板M、N之间存在交替出现的匀强磁场和匀强电场,取垂直纸⾯向外为磁场正⽅向,磁感应强度B随时间t周期性变化的规律如图⼄所⽰,取垂直极板向上为电场正⽅向,电场强度E随时间t周期性变化的规律如图丙所⽰。

高三物理高考第一轮专题复习电磁场(含答案详解)

高三物理高考第一轮专题复习电磁场(含答案详解)

专题复习——电磁场在以坐标原点O为圆心、半径为r的圆形区域内,存在磁感应强度大小为B、方向垂直于纸面向里的匀强磁场,如图所示。

一个不计重力的带电粒子从磁场边界与x轴的交点A处以速度v沿-x方向射入磁场,恰好从磁场边界与y轴的交点C处沿+y方向飞出。

(1)请判断该粒子带何种电荷,并求出其比荷q/m;(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B’,该粒子仍从A处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B’多大?此次粒子在磁场中运动所用时间t是多少?电子自静止开始经M、N板间(两板间的电压A点垂直于磁场边界射入宽度为d的匀强磁场中,电子离开磁场时的位置P偏离入射方向的距离为L,如图所示.求匀强磁场的磁感应强度.(已知电子的质量为m,电量为e)高考)如图所示,abcd 为一正方形区域,正离子束从a 点沿ad 方向以0 =80m/s的初速度射入,若在该区域中加上一个沿ab 方向的匀强电场,电场强度为E ,则离子束刚好从c 点射出;若撒去电场,在该区域中加上一个垂直于abcd 平面的匀强磁砀,磁感应强度为B ,则离子束刚好从bc 的中点e 射出,忽略离子束中离子间的相互作用,不计离子的重力,试判断和计算:(1)所加磁场的方向如何?(2)E 与B 的比值B E /为多少?两个D 形盒正中间开有一条窄缝。

两个D 型盒处在匀强磁场中并接有高频交变电压。

图乙为俯视图,在D 型盒上半面中心S 处有一正离子源,它发出的正离子,经狭缝电压加速后,进入D 型盒中。

在磁场力的作用下运动半周,再经狭缝电压加速。

如此周而复始,最后到达D 型盒的边缘,获得最大速度,由导出装置导出。

已知正离子的电荷量为q ,质量为m ,加速时电极间电压大小为U ,磁场的磁感应强度为B ,D 型盒的半径为R 。

每次加速的时间很短,可以忽略不计。

正离子从离子源出发时的初速度为零。

高中物理-专题四第1课时 电场和磁场基本问题

高中物理-专题四第1课时 电场和磁场基本问题

专题四电场和磁场第1课时电场和磁场基本问题1.电场强度的三个公式(1)E=Fq是电场强度的定义式,适用于任何电场。

电场中某点的场强是确定值,其大小和方向与试探电荷q无关,试探电荷q充当“测量工具”的作用。

(2)E=k Qr2是真空中点电荷所形成的电场场强的决定式,E由场源电荷Q和场源电荷到某点的距离r决定。

(3)E=Ud是场强与电势差的关系式,只适用于匀强电场。

注意:式中d为两点间沿电场方向的距离。

2.电场能的性质(1)电势与电势能:φ=E p q。

(2)电势差与电场力做功:U AB=W ABq=φA-φB。

(3)电场力做功与电势能的变化:W=-ΔE p。

3.等势面与电场线的关系(1)电场线总是与等势面垂直,且从电势高的等势面指向电势低的等势面。

(2)电场线越密的地方,等差等势面也越密。

(3)沿等势面移动电荷,电场力不做功,沿电场线移动电荷,电场力一定做功。

4.带电粒子在磁场中的受力情况(1)磁场只对运动的电荷有力的作用,对静止的电荷无力的作用。

(2)洛伦兹力的大小和方向:F洛=q v B sin θ。

注意:θ为v与B的夹角。

F的方向由左手定则判定,四指的指向应为正电荷运动的方向或负电荷运动方向的反方向。

5.洛伦兹力做功的特点由于洛伦兹力始终和速度方向垂直,所以洛伦兹力永不做功。

1.主要研究方法(1)理想化模型法。

如点电荷。

(2)比值定义法。

如电场强度、电势的定义方法,是定义物理量的一种重要方法。

(3)类比的方法。

如电场和重力场的类比;电场力做功与重力做功的类比;带电粒子在匀强电场中的运动和平抛运动的类比。

2.静电力做功的求解方法(1)由功的定义式W=Fl cos α来求。

(2)利用结论“电场力做功等于电荷电势能变化量的负值”来求,即W=-ΔE p。

(3)利用W AB=qU AB来求。

3.电场中的曲线运动的分析采用运动合成与分解的思想方法。

4.匀强磁场中的圆周运动解题关键找圆心:若已知进场点的速度和出场点,可以作进场点速度的垂线,依据是F洛⊥v,与进出场点连线的垂直平分线的交点即为圆心;若只知道进场位置,则要利用圆周运动的对称性定性画出轨迹,找圆心,利用平面几何知识求解问题。

2025年高考人教版物理一轮复习阶段复习练四—电场和磁场 附答案解析

2025年高考人教版物理一轮复习阶段复习练四—电场和磁场  附答案解析

2025年⾼考⼈教版物理⼀轮复习阶段复习练(四)—电场和磁场(附答案解析)1.(2024·⼭西晋城市第⼀中学期中)如图甲所⽰,计算机键盘为电容式传感器,每个键下⾯由相互平⾏、间距为d的活动⾦属⽚和固定⾦属⽚组成,两⾦属⽚间有空⽓间隙,两⾦属⽚组成⼀个平⾏板电容器,如图⼄所⽰。

其内部电路如图丙所⽰,则下列说法正确的是( )A.按键的过程中,电容器的电容减⼩B.按键的过程中,电容器的电荷量增⼤C.按键的过程中,图丙中电流⽅向从a流向bD.按键的过程中,电容器间的电场强度减⼩2.(2023·⼴东深圳市期末)如图所⽰,将⼀轻质矩形弹性软线圈ABCD中A、B、C、D、E、F 六点固定,E、F为AD、BC边的中点。

⼀不易形变的长直导线在E、F两点处固定,现将矩形绝缘软线圈中通⼊电流I1,直导线中通⼊电流I2,已知I1≪I2,长直导线和线圈彼此绝缘。

则稳定后软线圈⼤致的形状可能是( )3.(多选)如图甲所⽰,为特⾼压输电线路上使⽤六分裂阻尼间隔棒的情景。

其简化如图⼄,间隔棒将6条输电导线分别固定在⼀个正六边形的顶点a、b、c、d、e、f上,O为正六边形的中⼼,A点、B点分别为Oa、Od的中点。

已知通电导线在周围形成磁场的磁感应强度与电流⼤⼩成正⽐,与到导线的距离成反⽐。

6条输电导线中通有垂直纸⾯向外、⼤⼩相等的电流,其中a导线中的电流对b导线的安培⼒⼤⼩为F,则( )A.A点和B点的磁感应强度相同B.其中b导线所受安培⼒⼤⼩为FC.a、b、c、d、e五根导线在O点的磁感应强度⽅向垂直于ed向下D.a、b、c、d、e五根导线在O点的磁感应强度⽅向垂直于ed向上4.(2024·江苏常州市检测)如图所⽰,ABCD为真空中⼀正四⾯体区域,M和N分别为AC边和AD边的中点,A处和C处分别有等量异种点电荷+Q和-Q。

则( )A.B、D处电场强度⼤⼩相等,⽅向不同B.电⼦在M点的电势能⼩于在N点的电势能C.将⼀试探正电荷从B沿直线BD移动到D静电⼒做正功D.将位于C处的电荷-Q移到B处时M、N点电场强度⼤⼩相等5.(2024·河南周⼝市期中)如图所⽰,在竖直平⾯内有⽔平向左的匀强电场,在匀强电场中有⼀根长为L的绝缘细线,细线⼀端固定在O点,另⼀端系⼀质量为m的带电⼩球。

老高考适用2023版高考物理二轮总复习第1部分题突破方略专题3电场与磁场第1讲电场与磁场的基本性质

老高考适用2023版高考物理二轮总复习第1部分题突破方略专题3电场与磁场第1讲电场与磁场的基本性质

第一部分专题三第1讲基础题——知识基础打牢1.(多选)(2022·河北唐山三模)如图所示,两个等量的点电荷分别固定在A、B两点.虚线为AB的中垂线,交AB于O点.曲线ab为一电子只在电场力作用下的运动轨迹.a、b关于O点对称.则下列说法正确的是( BCD )A.两个点电荷一定是异种电荷B.电子在a、b两点加速度大小相同C.电子在a、b两点动能相同D.电子在a、b两点电势能相同【解析】电子所受电场力一定指向轨迹的凹侧,所以两个点电荷均带正电,故A错误;根据对称性可知电子在a、b两点所受电场力大小相同,所以加速度大小相同,故B正确;根据等量同种点电荷周围电势分布规律以及对称性可知a、b两点电势相等,所以电子在a、b 两点的电势能相同,根据能量守恒定律可知电子在a、b两点动能相同,故C、D正确.故选BCD.2.(多选)(2022·湖北武汉高三阶段练习)如图所示,实线是一电场的电场线,一个电子仅在电场力的作用下从a点运动到b点,过a点、b点的速度分别为v a、v b,虚线为该电子的运动轨迹,下列说法中正确的是( AC )A.A、B所在电场线的方向是由B指向A的方向B.电子在a处的加速度小于在b处的加速度C.电子在a处的电势能大于在b处的电势能D.电子在a处的动能大于在b处的动能【解析】由图可知电子的运动轨迹向右弯曲,电子受到的电场力的方向与电场线的方向相反,所以A、B所在电场线的方向是由B指向A的方向,故A正确;电场线的疏密表示场强大小,由图知粒子在A点的场强大于B点的场强,在A点所受的电场力大,所以在A点的加速度大于B点的加速度,故B错误;电子所受的电场力沿电场线偏向右,电子由a点运动到b 点的过程中,电场力做正功,电子的电势能减小,动能增大,所以电子在b 点的电势能小,动能大,故C 正确,D 错误.故选AC .3.(2022·河北秦皇岛二模)如图所示,一蜘蛛将网织成两个正方形ABCD 、abcd ,其边长分别为2L 、L ,现在a 、b 、c 、B 四个位置分别放置一个点电荷,发现b 处的点电荷所受电场力恰好为零,若仅将b 处的点电荷Q 沿bd 方向移至d 处,则( B )A .a 、c 两处点电荷对点电荷Q 的合力可能先增大后减小B .a 、c 两处点电荷对点电荷Q 的合力可能先减小后增大C .a 、c 两处点电荷对点电荷Q 的合力一定先做正功,后做负功D .a 、c 两处点电荷对点电荷Q 的合力一定先做负功,后做正功【解析】 当点电荷Q 在O 点时,a 、c 两处点电荷对点电荷Q 的合力为零,当场强最大值在Ob 之外时,则将b 处的点电荷Q 沿bd 方向移至d 处时,a 、c 两处点电荷对点电荷Q 的合力先减小后增大,如果场强最大值在Ob 之间,合力先变大后变小再变大再变小,则选项A 错误,B 正确;在a 、b 、c 、B 四个位置分别放置一个点电荷,发现b 处的点电荷所受电场力恰好为零,可知a 、c 、B 三个位置分别放置的点电荷一定是同种电荷,但是不能确定电荷的正负;仅将b 处的点电荷Q 沿bd 方向移至d 处,若点电荷Q 与另外三个电荷带同性电荷,则点电荷Q 从O 到d 时电场力做正功;若点电荷Q 与另外三个电荷带异性电荷,则点电荷Q 从O 到d 时电场力做负功,选项C 、D 错误.故选B .4.(多选)(2022·湖南衡阳三模)在x 轴上固定两个带电荷量分别为+4q 、-q 的点电荷,以其中的某一电荷为原点,两电荷所形成的电场的电势φ在x 轴正半轴上的分布如图所示,下列说法正确的是( BC )A .正电荷在坐标原点,负电荷在x =x 22的位置 B .负电荷在坐标原点,正电荷在x =-x 2的位置C .在x 轴上x >x 2区域电场强度沿x 轴正方向D .一带负电试探电荷从O 处移到x 2处,电势能先减小后增加【解析】 由φ-x 可知,原点附近的电势为负且绝对值很大,可知负电荷在坐标原点,φ-x 图象斜率表示电场强度大小,x =x 2位置电场强度为零,根据k 4qx 2+x 32=k q x 22,解得x3=x2,正电荷在x=-x2的位置,故B正确,A错误;在x轴上x>x2区域电势一直减小,电场强度沿x轴正方向,故C正确;从O处移到x2处,电势不断增加,一带负电试探电荷电势能不断减小,故D错误.故选BC.5.(2022·浙江绍兴模拟预测)如图所示是用于离子聚焦的静电四极子场的截面图,四个电极对称分布,其中两个电极带正电荷,形成高电势+U,两个电极带负电荷,形成低电势-U.图中a、b、c、d四个点为电场中的四个位置,下列说法正确的是( B )A.图中虚线表示电场线B.a点的电势高于b点的电势C.电荷在四个电极的表面分布均匀D.c点的电场强度大小与d点的电场强度大小相等【解析】四个电极都是等势面,电场线与等势面垂直,则图中虚线表示等势面,不表示电场线,选项A错误;a点的电势为零,b点电势小于零,则a点电势高于b点的电势,选项B正确;每个电极附近的等势面分布的疏密不同,则电极表面的电场线疏密不同,则电荷在每个电极的表面分布不均匀,选项C错误;因c点等势面较d点密集,则c点电场线分布较d点密集,即c点的电场强度大小比d点的电场强度大小较大,选项D错误.故选B.6.(2022·辽宁沈阳二中模拟预测)如图所示为某稳定电场的电场线分布情况,A、B、C、D为电场中的四个点,B、C点为空心导体表面两点,A、D为电场中两点,A、D两点所在电场线沿竖直方向,且电场线分布关于竖直方向对称.下列说法中正确的是( C )A.B点的电势低于A点的电势B.B、A两点的电势差小于C、B两点的电势差C.B点场强大于A点场强D.电子在D点的电势能大于在A点的电势能【解析】沿电场线方向电势降低,则B点的电势高于A点的电势,故A错误;空心导体表面电势处处相等,有φC =φB ,根据电势差的公式,可得U BA =φB -φA >0,U CB =φC -φB =0,可知,B 、A 两点的电势差大于C 、B 两点的电势差,故B 错误;B 点电场线较A 点密集,可知B 点场强大于A 点场强,故C 正确;顺着电场线电势降低可得φD >φA ,根据电势能的公式,有E p =qφ,又q <0,联立,可得E p D <E p A ,易知电子在D 点的电势能小于在A 点的电势能,故D 错误.故选C .7.(2022·广东模拟预测)在通电长直导线产生的磁场中,到导线的距离为r 处的磁感应强度大小B =kI r ,其中I 为通过长直导线的电流,k 为常量.如图所示,三根通电长直导线P 、Q 、R 均垂直直角坐标系xOy 所在平面,其间距相等,P 、Q 与坐标平面的交点均在x 轴上且关于原点O 对称,通过P 、Q 、R 的电流之比为1∶1∶3,电流方向已在图中标出.若通过P 的电流产生的磁场在原点O 处的磁感应强度大小为B 0,则原点O 处的合磁感应强度大小为( C )A .B 0B .5B 0C .7B 0D .3B 0【解析】 根据安培定则可知,通过P 的电流产生的磁场在原点O 处的磁感应强度方向沿y 轴负方向,设三根导线的间距为a ,通过P 的电流为I 0,则有B 0=2kI 0a,类似可得,通过Q 的电流产生的磁场在原点O 处的磁感应强度大小B 1=2kI 0a,方向沿y 轴负方向;通过R 的电流产生的磁场在原点O 处的磁感应强度大小B 2=k ·3I 0a sin 60°=23kI 0a ,方向沿x 轴正方向,故原点O 处的合磁感应强度大小B =B 0+B 12+B 22,解得B =7B 0,故选C . 8.(2022·湖北恩施市第一中学模拟预测)丹麦物理学家奥斯特在1820年4月发现了电流的磁效应,从而开启了人类对电与磁相互关联关系探索的序幕.已知通电长直导线周围某点的磁感应强度B =k I r,即磁感应强度B 与导线中的电流I 成正比,与该点到导线的距离r 成反比.如图为垂直于纸面放置在x 轴上0和x 0处的两根平行长直导线,分别通以大小不等、方向相同的电流,已知I 1>I 2.规定磁场方向垂直于x 轴向上为正,在0~x 0区间内磁感应强度B 随x 变化的图线可能是图中的( A )【解析】 由安培定则可知,左侧导线中的电流在该导线右侧产生的磁场的方向垂直于x 轴向上,而右侧导线中的电流在该导线左侧产生的磁场的方向垂直于x 轴向下,由于规定磁场方向垂直于x 轴向上为正,故在0~x 0区间内磁场方向先为正后为负.根据通电长直导线周围某点磁感应强度B =k I r 和I 1>I 2,可知在x 02的位置磁场方向为正方向,A 正确. 9.(多选)(2022·辽宁模拟预测)如图所示,两个带等量正电荷的点电荷分别固定于x 轴上的P 、Q 两点,其位置关于直角坐标系xOy 的原点O 对称.圆弧PQ 是一个以O 点为圆心的半圆,c 点为半圆与y 轴的交点,a 、b 为一平行于x 轴的直线与半圆的交点,下列说法正确的是( AD )A .a 、b 两点的电势相同B .a 、b 两点的电场强度相同C .将一个带负电的试探电荷先沿着圆弧从a 点移到c 点,再沿y 轴正方向移动,试探电荷的电势能先增大后不变D .设两电荷在半圆上任意一点产生的电场强度大小分别是E 1,E 2,则1E 1+1E 2为一定值 【解析】 由对称性和等势线分布可知,a 、b 两点电势相同,A 正确;电场强度大小相等,但方向不同,B 错误;负电荷从a 点移到c 点,电场力做负功电势能一直增大,再从c 点沿y 轴正方向移动电场力同样做负功电势能也一直增大,C 错误;半圆上任一点与P 点连线与PQ 夹角为θ,故E 1=kQ 2R cos θ2,E 2=kQ 2R sin θ2,则1E 1+1E 2=4R 2kQ (cos θ2+sin θ2)=4R 2kQ为一定值,D 正确.故选AD . 10.(2022·山西太原三模)在甲、乙电场中,试探电荷-q (q >0)具有的电势能E p 沿x方向的变化分别如图甲、乙所示,则下列说法正确的是( D )A .图甲中,试探电荷在O 点受到的电场力为零B .图甲中,电场强度沿x 轴正方向C .图乙中,x 1处的电场强度小于x 2处的电场强度D .图乙中,x 1处的电势高于x 2处的电势【解析】 根据ΔE p =-W 电=Fx 可知E p -x 图象斜率的绝对值表示电场力的大小,故图甲中,试探电荷在O 点受到的电场力不为零,沿x 轴正方向电势能增大,则电场力做负功,可知电场力沿x 轴负方向或者有沿x 轴负方向的分量,试探电荷带负电,则电场强度沿x 轴正方向或者电场强度有沿x 轴正方向的分量,电场强度不一定沿x 轴正方向,故A 、B 错误;根据E p -x 图象斜率的绝对值表示电场力的大小,结合F =qE 可知x 1处的电场强度大于x 2处的电场强度,故C 错误;x 1处的电势能低于x 2处的电势能,试探电荷带负电,根据E p =qφ,可知x 1处的电势高于x 2处的电势,故D 正确.故选D .11.(多选)(2022·江西南昌市八一中学三模)如图所示,真空中有四个等量异种点电荷,M 、N 带正电,P 、S 带负电,分别放在圆心为O 的虚线圆上等距离的四个点,a 、b 、c 、d 分别为两点电荷连线的中点,下列说法正确的是( BD )A .O 点的合场强为零,a 点的合场强方向水平向左B .b 点的合场强大于a 点的合场强C .将一电子从b 点沿直线移动到d 点,电场力做负功D .将一质子从a 点沿直线移动到c 点,其电势能一直减小【解析】 M 、S 电荷在O 点电场强度方向由O 指向S ,N 、P 在圆心O 点电场强度方向由O 指向P ,则圆心O 点电场强度由O 指向c ,不为零.M 、N 在a 点合场强为0,P 在a 点电场强度由a 指向P 点,S 在a 点电场强度由a 指向S 点,故a 点合电场强度方向水平向右,A 错误;由A 选项分析可知,a 点电场强度为P 、S 产生的合电场;对b 点来说,电场强度等于M 和P 的合电场强度与N 和S 的合电场强度的叠加,这两个合电场强度方向均向右.点电荷的电场强度E =kq r 2,则仅M 和P 在b 点的合电场强度就大于P 和S 在a 点的合电场强度.故b 点的合场强大于a 点的合场强,B 正确;根据对称性可知,b 点和d 点电势相等,根据W =qU ,可知,将一电子从b点沿直线移动到d点,电场力做功为0,C错误;分析可知,在ac连线上,M、N在任意一点(除a点外)的合电场强度方向均为水平向右.P、S在ac连线上的任意一点(除c点外)的合电场强度也为水平向右.故质子从a点沿直线移动到c点的过程中,电场力方向水平向右,电场力做正功,电势能一直减小,D正确.故选BD.12.(多选)(2022·河北模拟预测)如图所示,真空中a、b两点分别固定电荷量为+q、-q的点电荷,以a、b连线中点O为圆心的圆与a、b连线的中垂线cd交于K点.圆上的四个点M、N、Q、P为矩形的四个顶点,且MP平行于cd.则下列说法不正确的是( BCD )A.M、Q两点电场强度相同B.P、N两点电势相等C.电性为负的试探电荷位于K点时的电势能小于其位于M点时的电势能D.电性为正的试探电荷(不计重力)沿OK方向以一定的速度射出,该电荷将做匀速直线运动【解析】根据对称性和点电荷场强公式知:正电荷在M点的场强与负电荷在Q点的场强相同,正电荷在Q点的场强与负电荷在M点的场强相同,且两电荷在M、Q分别产生的场强夹角相同,根据电场强度的叠加可知:M、Q两点电场强度相同,如图所示,A正确;cd是等量异种点电荷电场中的一条等势线,在其左侧靠近正电荷区域电势高,其右侧靠近负电荷区域电势低,故P点电势高于N点电势,B错误;由B中分析知,K点电势低于M点电势,则负试探电荷从K点移到M点过程中,电场力做正功,电势能减小,所以负电荷在K点电势能大于在M点电势能,C错误;电性为正的试探电荷(不计重力)沿OK方向以一定的速度射出,电荷受向右的电场力作用而做曲线运动,D错误.故选BCD.13.(多选)(2022·湖北广水市一中高三阶段练习)如图甲所示,两个点电荷Q1、Q2固定在x轴上,其中Q1位于原点O,a、b是它们连线延长线上的两点.现有一带负电的粒子q以一定的初速度沿x轴从a点开始经b点向远处运动(粒子只受电场力作用),设粒子经过a、b 两点时的速度分别为v a、v b,其速度随坐标位置变化的图象如图乙所示,以下判断正确的是( AC )A.Q2带负电且电荷量小于Q1B.沿x轴正方向ab连线上电势先降低再升高C.沿x轴正方向ab连线上电场力先做正功再做负功D.沿x轴正方向a点右侧场强先减小再增大【解析】带负电的粒子在2L<x<3L区间加速,说明在2L<x<3L区间负粒子q所受电场力沿x轴正方向,电场方向沿x轴负方向;带负电的粒子在3L<x<4L区间减速,说明在3L<x<4L区间负粒子q所受电场力沿x轴负方向,电场方向沿x轴正方向,因此Q1带正电,Q2带负电,且Q2的电荷量小于Q1的电荷量,故A正确;粒子运动过程中只有静电力做功,动能与电势能之和为定值,由图象可知ab连线的中点x=3L处速度最大,即粒子q的动能最大,电势能最小,由于粒子q带负电,因此ab连线的中点电势最高,即ab连线上电势先升高再降低,故B错误;粒子从a到b的过程中速度先增大再减小,由动能定理知粒子从a到b的过程中,电场力先做正功再做负功,故C正确;沿x轴正方向a点右侧场强先减小到零,然后场强方向变为沿x轴正方向,但a点右侧场强不可能一直增大,无穷远位置场强为零,故D错误.故选AC.14.(多选)(2022·山东菏泽二模)如图所示,空间存在一个正四面体ABCD,其边长为a,在水平面上的B、C、D三个顶点各固定一个电荷量为+q的点电荷,一个质量为m的点电荷N 恰好可以静止在A点.若把点电荷N从A点沿过A点的竖直面向上移动到无穷远处,电场力做功的大小为W.不考虑N对电场的影响,以无穷远处电势为零,重力加速度为g.根据上述现象,可以判定( AB )A.A点的电场强度为E A=6kq a2B.点电荷N带电荷量大小为q N=6mga2 6kqC.A点的电势为φA=6kqW 6mga2D.点电荷N的电势能将先增大后减小【解析】 固定的每个正点电荷对小球的库仑力大小为F =kq N q a 2,设F 与竖直方向的夹角为θ,由几何关系可得cos θ=63,对小球,由平衡条件有3F cos θ=mg ,解得q N =6mga 26kq,A 点的电场强度为E A =mg q N =6kq a2,故A 、B 正确;根据题意可知,点电荷N 在A 点的电势能为W ,则A 点的电势为φA =Wq N =6kqW mga 2,故C 错误;把点电荷N 从A 点沿过A 点的竖直面向上移动到无穷远处,电场力一直做正功,电势能一直减小,故D 错误.故选AB .15.(多选)(2022·重庆八中高三阶段练习)两个等量同种电荷固定于光滑水平面上,其连线的中垂线(在水平面内)上有A 、B 、C 三点,如图甲所示,一个电荷量为2×10-5C 、质量为1 g 的小物块从C 点静止释放,其运动的v -t 图象如图乙所示,其中B 点处为整条图线的切线斜率最大的位置(图中标出了该切线).则下列说法正确的是( ABD )A .小物块带正电B .A 、B 两点间的电势差U AB =-500 VC .小物块由C 点到A 点电势能先减小再增大D .B 点为中垂线上电场强度最大的点,场强E =100 N/C【解析】 根据物块运动的v -t 图象可知,小物块带正电,A 正确;从速度—时间图象可知,A 、B 两点的速度分别为v A =6 m/s ,v B =4 m/s ,再根据动能定理得qU AB =12mv 2B -12mv 2A =12×1×10-3×(42-62)J ,解得U AB =-500 V ,B 正确;从速度—时间图象可知,由C 到A 的过程中,物块的速度一直增大,电场力对物块做正功,电势能一直减小,C 错误;带电粒子在B 点的加速度最大,为a m =47-5m/s 2=2 m/s 2,所受的电场力最大为F m =ma m =0.001×2 N=0.002 N ,则场强最大值为E m =F m q =0.0022×10-5N/C =100 N/C ,D 正确.故选ABD . 应用题——强化学以致用16.(多选)(2022·山东滨州二模)已知球面均匀带电时,球内的电场强度处处为零.如图所示,O 为球心,A 、B 为直径上的两点,垂直于AB 将带正电的球面均分为左右两部分,OA =OB .C 、D 为截面上同一直线上的两点,OC =OD .现移去左半球面只保留右半球面,右半球面所带电荷仍均匀分布.下列说法正确的是( AC )A.C点与D点电场强度大小相等方向相同B.A点与B点电场强度大小相等、方向相反C.将一正电荷从C点沿直线移到D点,电势能始终不变D.将一正电荷从A点沿直线移到B点,电势能先增大后减小【解析】对于完整带电球面,在其内部AB的中垂面上各点场强为零,可知左右半球面在此中垂面上各点的场强等大反向,因左右半球面的电场关于中垂面对称,则左右半球面各自在中垂面上各点的场强方向均垂直于中垂面,则左半球面移走之后,右半球面在中垂面上各点场强均垂直于中垂面,由于C点与D点关于AB对称,则根据场强的叠加原理可知,C点与D点电场强度大小相等方向相同,A正确;将题中半球壳补成一个完整的球壳,且带电均匀,设左、右半球在A点产生的电场强度大小分别为E1和E2;由题知,均匀带电球壳内部电场强度处处为零,则知E1=E2,根据对称性,左右半球在B点产生的电场强度大小分别为E2和E1,且E1=E2,在图示电场中,A的电场强度大小为E2,方向向左,B的电场强度大小为E1,方向向左,B错误;对于完整带电球面,在其内部AB的中垂面上各点场强为零,可知左右半球面在此中垂面上各点的场强等大反向,因左右半球面的电场关于中垂面对称,则左右半球面各自在中垂面上各点的场强方向均垂直于中垂面,则左半球面移走之后,右半球面在中垂面上各点场强均垂直于中垂面,则中垂面为等势面,将一正电荷从C点沿直线移到D点,电势能始终不变,C正确;根据电场的叠加原理可知,在AB连线上电场线方向向左,沿着电场线方向电势逐渐降低,则沿直线从A到B电势升高,将一正电荷从A点沿直线移到B点,电势能一直增大,D错误.故选AC.17.(2022·山东菏泽二模)如图所示,PQ和MN为水平、平行放置的两光滑金属导轨,两导轨相距L=1 m,导体棒ab质量为M=0.9 kg,垂直放在导轨上,导体棒的中点用承受力足够大的轻绳经光滑定滑轮与放在水平面上m=0.1 kg的物体相连,细绳一部分与导轨共面且平行,另一部分与导轨所在平面垂直,磁场的磁感应强度与时间的关系为B=0.2t+0.1(T),方向竖直向下.现给导体棒通入I=2 A的恒定电流,使导体棒最终向左运动,重力加速度大小为g=10 m/s2.下列描述符合事实的是( B )A.ab棒上通入的电流方向为从b向aB.在第2 s末物体m恰好离开地面C .第4.5 s 末ab 棒的加速度为1.1 m/s 2D .ab 棒运动过程中安培力做的功等于系统动能的增加量【解析】 给导体棒通入I =2 A 的恒定电流,使导体棒最终向左运动,说明导体棒所受的安培力向左,根据左手定则,可判断出ab 棒上通入的电流方向为从a 向b ,A 错误;在第二秒末时,磁场强度为B 1=0.2t +0.1=0.5 T ,故ab 棒所受的安培力为F 安=B 1IL =1 N ,导轨光滑,ab 棒未动时,细线拉力等于安培力大小,此刻对m 受力分析得F N =mg -T =mg -F 安=0,在第2 s 末物体m 恰好离开地面,B 正确;在第4.5秒末时,磁场强度为B 2=0.2t +0.1=1 T ,故ab 棒所受的安培力为F =B 2IL =2 N ,对杆和物体整体分析,由牛顿第二定律得F -mg =(m +M )a ,解得a =1 m/s 2,C 错误;ab 棒运动过程中安培力做的功等于系统机械能的增加量,包含系统的动能和重力势能,D 错误.18.(2022·全国甲,25)光点式检流计是一种可以测量微小电流的仪器,其简化的工作原理示意图如图所示.图中A 为轻质绝缘弹簧,C 为位于纸面上的线圈,虚线框内有与纸面垂直的匀强磁场;M 为置于平台上的轻质小平面反射镜,轻质刚性细杆D 的一端与M 固连且与镜面垂直,另一端与弹簧下端相连,PQ 为圆弧形的带有均匀刻度的透明读数条,PQ 的圆心位于M 的中心.使用前需调零;使线圈内没有电流通过时,M 竖直且与纸面垂直;入射细光束沿水平方向经PQ 上的O 点射到M 上后沿原路反射.线圈通入电流后弹簧长度改变,使M 发生倾斜,入射光束在M 上的入射点仍近似处于PQ 的圆心,通过读取反射光射到PQ 上的位置,可以测得电流的大小.已知弹簧的劲度系数为k ,磁场磁感应强度大小为B ,线圈C 的匝数为n 、沿水平方向的长度为l ,细杆D 的长度为d ,圆弧PQ 的半径为r ,r ≫d ,d 远大于弹簧长度改变量的绝对值.(1)若在线圈中通入的微小电流为I ,求平衡后弹簧长度改变量的绝对值Δx 及PQ 上反射光点与O 点间的弧长s .(2)某同学用此装置测一微小电流,测量前未调零,将电流通入线圈后,PQ 上反射光点出现在O 点上方,与O 点间的弧长为s 1;保持其他条件不变,只将该电流反向接入,则反射光点出现在O 点下方,与O 点间的弧长为s 2,求待测电流的大小.【答案】 (1)nBIl k 2nBIlr dk (2)dk s 1+s 24nBlr【解析】 (1)线圈中通入微小电流I ,线圈受到的安培力为F =nBIl弹簧弹力的改变量的绝对值为Δx ,则有F =k Δx解得Δx =nBIl k 设此时平面镜偏转角度为θ,则反射光线转过的角度为2θ因为r ≫d ,d 远大于弹簧长度改变量的绝对值,所以θ≈tan θ=ΔxdPQ 上反射光点与O 点间的弧长s =2θr解得s =2nBIlrkd .(2)设待测电流为I ′,电流反向前后弹簧弹力的变化量F =2nBI ′l 弹簧弹力的改变量的绝对值为Δx ′,则有F =k Δx ′反射光线转过的角度为s 1+s 2r平面镜转过的角度为φ=s 1+s 22r根据φ=Δx ′d解得I ′=dk s 1+s 24nBlr .。

电场与磁场专题(2024高考真题及解析)

电场与磁场专题(2024高考真题及解析)

电场与磁场专题1.(多选)[2024·安徽卷] 空间中存在竖直向下的匀强电场和垂直于纸面向里的匀强磁场,电场强度大小为E ,磁感应强度大小为B.一质量为m 的带电油滴a ,在纸面内做半径为R 的圆周运动,轨迹如图所示.当a 运动到最低点P 时,瞬间分成两个小油滴Ⅰ、Ⅰ,二者带电荷量、质量均相同.Ⅰ在P 点时与a 的速度方向相同,并做半径为3R 的圆周运动,轨迹如图所示.Ⅰ的轨迹未画出.已知重力加速度大小为g ,不计空气浮力与阻力以及Ⅰ、Ⅰ分开后的相互作用,则 ( )A .油滴a 带负电,所带电荷量的大小为mgE B .油滴a 做圆周运动的速度大小为gBREC .小油滴Ⅰ做圆周运动的速度大小为3gBRE ,周期为4πEgB D .小油滴Ⅰ沿顺时针方向做圆周运动1.ABD [解析] 油滴a 做圆周运动,故重力与电场力平衡,可知带负电,有mg =Eq ,解得q =mgE ,故A 正确;根据洛伦兹力提供向心力有Bqv =m v 2R ,得R =mvBq ,解得油滴a 做圆周运动的速度大小为v =gBR E ,故B 正确;设小油滴Ⅰ的速度大小为v 1,得3R =m 2v 1B q 2,解得v 1=3BqR m =3gBRE ,周期为T =2π·3R v 1=2πEgB ,故C 错误;带电油滴a 分离前后动量守恒,设分离后小油滴Ⅰ的速度为v 2,取油滴a分离前瞬间的速度方向为正方向,得mv =m 2v 1+m 2v 2,解得v 2=-gBRE,由于分离后的小油滴受到的电场力和重力仍然平衡,分离后小油滴Ⅰ的速度方向与正方向相反,根据左手定则可知小油滴Ⅰ沿顺时针方向做圆周运动,故D 正确.2.[2024·北京卷] 如图所示,两个等量异种点电荷分别位于M 、N 两点,P 、Q 是MN 连线上的两点,且MP=QN.下列说法正确的是()A.P点电场强度比Q点电场强度大B.P点电势与Q点电势相等C.若两点电荷的电荷量均变为原来的2倍,P点电场强度大小也变为原来的2倍D.若两点电荷的电荷量均变为原来的2倍,P、Q两点间电势差不变2.C[解析] 由等量异种点电荷的电场线分布特点知,P、Q两点电场强度相等,A错误;由沿电场线方向电势越来越低知,P点电势高于Q点电势,B错误;由电场叠加得P点电场强度E=k QMP2+k QNP2,若仅两点电荷的电荷量均变为原来的2倍,则P点电场强度大小也变为原来的2倍,同理Q点电场强度大小也变为原来的2倍,而P、Q间距不变,根据U=Ed定性分析可知P、Q两点间电势差变大,C正确,D错误.3.[2024·北京卷] 我国“天宫”空间站采用霍尔推进器控制姿态和修正轨道.图为某种霍尔推进器的放电室(两个半径接近的同轴圆筒间的区域)的示意图.放电室的左、右两端分别为阳极和阴极,间距为d.阴极发射电子,一部分电子进入放电室,另一部分未进入.稳定运行时,可视为放电室内有方向沿轴向向右的匀强电场和匀强磁场,电场强度和磁感应强度大小分别为E和B1;还有方向沿半径向外的径向磁场,大小处处相等.放电室内的大量电子可视为处于阳极附近,在垂直于轴线的平面绕轴线做半径为R的匀速圆周运动(如截面图所示),可与左端注入的氙原子碰撞并使其电离.每个氙离子的质量为M、电荷量为+e,初速度近似为零.氙离子经过电场加速,最终从放电室右端喷出,与阴极发射的未进入放电室的电子刚好完全中和.已知电子的质量为m、电荷量为-e;对于氙离子,仅考虑电场的作用.(1)求氙离子在放电室内运动的加速度大小a;(2)求径向磁场的磁感应强度大小B2;(3)设被电离的氙原子数和进入放电室的电子数之比为常数k,单位时间内阴极发射的电子总数为n,求此霍尔推进器获得的推力大小F.3.(1)eEM (2)mEB1eR(3)nk√2eEMd1+k[解析] (1)氙离子在放电室时只受电场力作用,由牛顿第二定律有eE=Ma解得a=eEM(2)电子处于阳极附近,在垂直于轴线的平面绕轴线做半径为R的匀速圆周运动,沿轴向向右的匀强磁场的洛伦兹力提供向心力,则有B1ev=m v 2R可得v=B1eRm轴线方向上所受电场力(水平向左)与径向磁场的洛伦兹力(水平向右)平衡,即Ee=evB2解得B2=mEB1eR(3)单位时间内阴极发射的电子总数为n,设单位时间内被电离的氙原子数为N,根据被电离的氙原子数和进入放电室的电子数之比为常数k,可知进入放电室的电子数为Nk又由于这些电离氙原子数与未进入放电室的电子刚好完全中和,说明未进入放电室的电子数也为N即有n=N+Nk则单位时间内被电离的氙离子数N=nk1+k氙离子经电场加速,有eEd=12M v12-0可得v1=√2eEdM设时间Δt内氙离子所受到的作用力为F',由动量定理有F'·Δt=N·Δt·Mv1解得F'=nk√2eEMd1+k由牛顿第三定律可知,霍尔推进器获得的推力大小F=F'则F=nk√2eEMd1+k4.[2024·福建卷] 以O点为圆心,半径为R的圆上八等分放置电荷,除G为-Q,其他为+Q,M、N为半径上的点,OM=ON,已知静电力常量为k,则O点场强大小为,M点电势(选填“大于”“等于”或“小于”)N点电势.将+q点电荷从M沿MN移动到N点,电场力(选填“做正功”“做负功”或“不做功”).4.2kQR2大于做正功[解析] 根据点电荷的场强特点可知,除了MN连线上的正负电荷外,其余的6个电荷形成的电场在O点处相互抵消,故O点场强大小为E O=kQR2+kQR2=2kQR2;根据对称性可知,若没有沿水平直径方向上的正电荷和负电荷,则M和N点的电势相等,由于M点靠近最左边的正电荷,N点靠近最右边的负电荷,故M点电势大于N点电势;将+q点电荷从M沿MN移动到N点,由于电势降低,故电场力做正功.5.[2024·甘肃卷] 一平行板电容器充放电电路如图所示.开关S接1,电源E给电容器C充电;开关S接2,电容器C对电阻R放电.下列说法正确的是()A.充电过程中,电容器两极板间电势差增加,充电电流增加B.充电过程中,电容器的上极板带正电荷、流过电阻R的电流由M点流向N点C.放电过程中,电容器两极板间电势差减小,放电电流减小D.放电过程中,电容器的上极板带负电荷,流过电阻R的电流由N点流向M点5.C[解析] 充电过程中,随着电容器带电荷量的增加,电容器两极板间电势差增加,充电电流在减小,故A错误;根据电路图可知,充电过程中,电容器的上极板带正电荷,流过电阻R的电流由N点流向M点,故B错误;放电过程中,随着电容器带电荷量的减小,电容器两极板间电势差减小,放电电流在减小,故C正确;根据电路图可知,放电过程中,电容器的上极板带正电荷,流过电阻R的电流由M点流向N点,故D错误.6.(多选)[2024·甘肃卷] 某带电体产生电场的等势面分布如图中实线所示,虚线是一带电粒子仅在此电场作用下的运动轨迹,M、N分别是运动轨迹与等势面b、a的交点,下列说法正确的是 ( )A .粒子带负电荷B .M 点的电场强度比N 点的小C .粒子在运动轨迹上存在动能最小的点D .粒子在M 点的电势能大于在N 点的电势能6.BCD [解析] 根据粒子所受电场力指向曲线轨迹的凹侧可知,带电粒子带正电荷,故A 错误;等差等势面越密集的地方场强越大,故M 点的电场强度比N 点的小,故B 正确;粒子带正电,因为M 点的电势大于N 点的电势,故粒子在M 点的电势能大于在N 点的电势能,故D 正确;由于带电粒子仅在电场作用下运动,电势能与动能总和不变,故可知当电势能最大时动能最小,故粒子在运动轨迹上到达最大电势处时动能最小,故C 正确.7.[2024·甘肃卷] 质谱仪是科学研究中的重要仪器,其原理如图所示.Ⅰ为粒子加速器,加速电压为U ;Ⅰ为速度选择器,匀强电场的电场强度大小为E 1,方向沿纸面向下,匀强磁场的磁感应强度大小为B 1,方向垂直纸面向里;Ⅰ为偏转分离器,匀强磁场的磁感应强度大小为B 2,方向垂直纸面向里.从S 点释放初速度为零的带电粒子(不计重力),加速后进入速度选择器做直线运动,再由O 点进入分离器做圆周运动,最后打到照相底片的P 点处,运动轨迹如图中虚线所示. (1)粒子带正电还是负电?求粒子的比荷. (2)求O 点到P 点的距离.(3)若速度选择器Ⅰ中匀强电场的电场强度大小变为E 2(E 2略大于E 1),方向不变,粒子恰好垂直打在速度选择器右挡板的O'点上.求粒子打在O'点的速度大小.7.(1)正电E 122UB 12(2)4UB 1E 1B 2 (3)2E 2-E1B 1[解析] (1)由于粒子在偏转分离器Ⅰ中向上偏转,根据左手定则可知粒子带正电;设粒子的质量为m ,电荷量为q ,粒子进入速度选择器Ⅰ时的速度为v 0,在速度选择器中粒子做匀速直线运动,由平衡条件有qv 0B 1=qE 1在粒子加速器Ⅰ中,由动能定理有 qU =12m v 02联立解得粒子的比荷为q m =E 122UB 12(2)在偏转分离器Ⅰ中,洛伦兹力提供向心力,有qv 0B 2=m v 02r可得O点到P点的距离为OP=2r=4UB1E1B2(3)粒子进入速度选择器Ⅰ瞬间,粒子受到向上的洛伦兹力F洛=qv0B1向下的电场力F=qE2由于E2>E1,且qv0B1=qE1所以通过配速法,如图所示其中满足qE2=q(v0+v1)B1则粒子在速度选择器中水平向右以速度v0+v1做匀速运动的同时,在竖直面内以速度v1做匀速圆周运动,当速度转向到水平向右时,满足垂直打在速度选择器右挡板的O'点的要求,故此时粒子打在O'点的速度大小为v'=v0+v1+v1=2E2-E1B18.(多选)[2024·广东卷] 污水中的污泥絮体经处理后带负电,可利用电泳技术对其进行沉淀去污,基本原理如图所示.涂有绝缘层的金属圆盘和金属棒分别接电源正、负极,金属圆盘置于容器底部,金属棒插入污水中,形成如图所示的电场分布,其中实线为电场线,虚线为等势面.M点和N点在同一电场线上,M点和P点在同一等势面上.下列说法正确的有()A.M点的电势比N点的低B.N点的电场强度比P点的大C.污泥絮体从M点移到N点,电场力对其做正功D.污泥絮体在N点的电势能比其在P点的大8.AC[解析] 电场线的疏密程度反映电场强度大小,电场线越密则电场强度越大,由于N点附近的电场线比P点附近的稀疏,故N点的电场强度比P点的小,B错误;沿电场线方向电势逐渐降低,故M点的电势比N点的低,污泥絮体带负电,故其受到的电场力方向与电场强度方向相反,若从M点移到N点,则电场力对其做正功,A、C正确;由于M点和P点在同一等势面上,故M点电势等于P点电势,则N点电势高于P点电势,污泥絮体带负电,即q<0,根据电势能E p=qφ可知,污泥絮体在N点的电势能比其在P点的小,D错误.9.[2024·广东卷] 如图甲所示,两块平行正对的金属板水平放置,板间加上如图乙所示幅值为U0、周期为t0的交变电压.金属板左侧存在一水平向右的恒定匀强电场,右侧分布着垂直纸面向外的匀强磁场,磁感应强度大小为B.一带电粒子在t=0时刻从左侧电场某处由静止释放,在t=t0时刻从下板左端边缘位置水平向右进入金属板间的电场内,在t=2t0时刻第一次离开金属板间的电场、水平向右进入磁场,并在t=3t0时刻从下板右端边缘位置再次水平进入金属板间的电场.已知金属板的板长是板间距离的π3倍,粒子质量为m.忽略粒子所受的重力和场的边缘效应.(1)判断带电粒子的电性并求其所带的电荷量q;(2)求金属板的板间距离D和带电粒子在t=t0时刻的速度大小v;(3)求从t=0时刻开始到带电粒子最终碰到上金属板的过程中,电场力对粒子做的功W.9.(1)带正电πmBt0(2)√3πU0t08B√π3U024Bt0(3)(π3+16π)mU048Bt0[解析] (1)由带电粒子在左侧电场中由静止释放后加速运动的方向可知粒子带正电(或由带电粒子在磁场中做圆周运动的方向结合左手定则可知粒子带正电).设粒子在磁场内做圆周运动的速度为v,半径为r,根据洛伦兹力提供向心力有qvB=m v 2r粒子在磁场中运动半个圆周所用的时间Δt=3t0-2t0粒子在磁场中做圆周运动的周期为T=2Δt又知T=2πrv联立解得q=πmBt0(2)设金属板间的电场强度为E,粒子在金属板间运动的加速度为a,则有E=U0Da=qEmt 0~2t 0内,粒子在金属板间的电场内做两个对称的类平抛运动,在垂直于金属板方向的位移等于在磁场中做圆周运动的直径,即y =2r 在垂直于金属板方向有y =2×12a (t 02)2在沿金属板方向有π3D =vt 0 联立解得D =√3πU 0t 08B ,v =√π3U 024Bt 0(3)由(1)(2)可知y =2D3由对称性可知,3t 0~4t 0内,粒子第二次进入金属板间的电场内,粒子在竖直方向的位移仍为y ,由于y <D ,故粒子不会碰到金属板.t =4t 0后,粒子进入左侧电场,先减速到速度为零,后反向加速,并在t =6t 0时刻第三次进入金属板间的电场内,此时粒子距上板的距离为h =D -y =D3,注意到h =y2,故粒子恰在加速阶段结束时碰到金属板.粒子第一次、第二次进出金属板间的电场过程中,电场力做功为0,粒子第三次进入金属板间的电场后,电场力做功为qEh ,设粒子在左侧电场中运动时电场力做功为W 左,根据动能定理有 W 左=12mv 2电场力对粒子做的总功为W =W 左+qEh联立解得W =(π3+16π)mU 048Bt 010.[2024·广西卷] xOy 坐标平面内一有界匀强磁场区域如图所示,磁感应强度大小为B ,方向垂直纸面向里.质量为m ,电荷量为+q 的粒子,以初速度v 从O 点沿x 轴正向开始运动,粒子过y 轴时速度与y 轴正向夹角为45°,交点为P .不计粒子重力,则P 点至O 点的距离为 ( )A .mv qBB .3mv2qBC .(1+√2)mvqB D .(1+√22)mvqB10.C [解析] 粒子运动轨迹如图所示,在磁场中,根据洛伦兹力提供向心力有qvB =m v 2r ,可得粒子做圆周运动的半径为r =mvqB ,根据几何关系可得P 点至O 点的距离为L PO =r +r sin45°=(1+√2)mvqB ,故选C .11.[2024·广西卷] 如图所示,将不计重力、电荷量为q 的带负电的小圆环套在半径为R 的光滑绝缘半圆弧上,半圆弧直径两端的M 点和N 点分别固定电荷量为27Q 和64Q 的负点电荷.将小圆环从靠近N 点处静止释放,小圆环先后经过图上P 1点和P 2点,己知sin θ=35,则小圆环从P 1点运动到P 2点的过程中 ( )A .静电力做正功B .静电力做负功C .静电力先做正功再做负功D .静电力先做负功再做正功11.A [解析] 沿电场线越靠近负电荷则电势越低,画出两个不等量负点电荷的电场线分布如图甲所示,半圆与电场线的交点中其电场强度沿半径方向时,该点对应的电势最高,设该点为P ,如图乙所示,设连线PM 与直径MN 的夹角为α,则P 点到M 点的距离d M =2R cos α,P 点到N 点的距离为d N =2R sin α,M 点处点电荷在P 点产生的电场强度为E M =k 27Q d M2,N点处点电荷在P点产生的电场强度为E N =k64Qd N 2,P 点的电场强度沿着圆半径方向,由电场叠加原理可知E NE M=tan α,联立解得α=53°,已知P 2点和N 点连线与直径MN 的夹角恰好为37°,则P 2点和M 点连线与直径MN 的夹角恰好为53°,故半圆上P 2点的电势最高,因此带负电的圆环从P 1点运动到P 2点的过程中,电势一直升高,静电力一直做正功,选项A 正确.12.(多选)[2024·海南卷] 真空中有两个点电荷,电荷量均为-q (q ≥0),固定于相距为2r 的P 1、P 2两点,O 是P 1P 2连线的中点,M 点在P 1P 2连线的中垂线上,距离O 点为r ,N 点在P 1P 2连线上,距离O 点为x (x ≪r ),已知静电力常量为k ,则下列说法正确的是 ( )A .P 1P 2中垂线上电场强度最大的点到O 点的距离为√33rB .P 1P 2中垂线上电场强度的最大值为4√3kq9r 2C .在M 点放入一电子,从静止释放,电子的加速度一直减小D .在N 点放入一电子,从静止释放,电子的运动可视为简谐运动12.BCD [解析] 设P 1处的点电荷在P 1P 2中垂线上某点A 处产生的场强与竖直方向的夹角为θ,则根据场强的叠加原理可知,A 点的合场强为E =k 2qr 2sin 2 θcos θ,根据均值不等式可知当cos θ=√33时E 有最大值,且最大值为E m =4√3kq9r 2,此时A 点到O 点的距离为y =√22r ,故A 错误,B 正确;在M 点放入一电子,从静止释放,由于r >y =√22r ,可知电子向上运动的过程中所受电场力一直减小,则电子的加速度一直减小,故C 正确;根据等量同种电荷的电场线分布可知,电子运动过程中,O 点为平衡位置,可知当发生的位移为x 时,粒子受到的电场力为F =keq ·4rx(r -x )2(r+x )2,由于x ≪r ,整理后有F =4keqr 3·x ,在N 点放入一电子,从静止释放,电子的运动可视为以O 点为平衡位置的简谐运动,故D 正确.13.[2024·海南卷] 如图,在xOy 坐标系中有三个区域,圆形区域Ⅰ分别与x 轴和y 轴相切于P 点和S 点.半圆形区域Ⅰ的半径是区域Ⅰ半径的2倍.区域Ⅰ、Ⅰ的圆心O 1、O 2连线与x 轴平行,半圆与圆相切于Q 点,QF 垂直于x 轴,半圆的直径MN 所在的直线右侧为区域Ⅰ.区域Ⅰ、Ⅰ分别有磁感应强度大小为B 、B 2的匀强磁场,磁场方向均垂直纸面向外.区域Ⅰ下方有一粒子源和加速电场组成的发射器,可将质量为m 、电荷量为q 的粒子由电场加速到v 0.改变发射器的位置,使带电粒子在OF 范围内都沿着y 轴正方向以相同的速度v 0沿纸面射入区域Ⅰ.已知某粒子从P 点射入区域Ⅰ,并从Q 点射入区域Ⅰ.(不计粒子的重力和粒子之间的影响) (1)求加速电场两板间的电压U 和区域Ⅰ的半径R.(2)在能射入区域Ⅰ的粒子中,某粒子在区域Ⅰ中运动的时间最短,求该粒子在区域Ⅰ和区域Ⅰ中运动的总时间t.(3)在区域Ⅰ加入匀强磁场和匀强电场,磁感应强度大小为B ,方向垂直纸面向里,电场强度的大小E =Bv 0,方向沿x 轴正方向.此后,粒子源中某粒子经区域Ⅰ、Ⅰ射入区域Ⅰ,进入区域Ⅰ时速度方向与y 轴负方向成74°角.当粒子动能最大时,求粒子的速度大小及所在的位置到y 轴的距离(sin37°=35,sin53°=45).13.(1)mv 022qmv 0qB (2)πmqB(3)2.6v 0172mv 025qB[解析] (1)根据动能定理得qU =12m v 02解得U =mv 022q粒子进入区域Ⅰ做匀速圆周运动,根据题意某粒子从P 点射入区域Ⅰ,并从Q 点射入区域Ⅰ,故可知此时粒子的运动轨迹半径与区域Ⅰ的半径R 相等,粒子在磁场中做匀速圆周运动,由洛伦兹力提供向心力qBv 0=m v 02R 解得R =mv0qB(2)带电粒子在OF 范围内都沿着y 轴正方向以相同的速度v 0沿纸面射入区域Ⅰ,由(1)可得,粒子在区域Ⅰ中做匀速圆周运动,轨迹半径为R ,因为在区域Ⅰ中的磁场半径和轨迹半径相等,所以粒子射入点、区域Ⅰ圆心O 1、粒子出射点、轨迹圆心O'四点构成一个菱形,由几何关系可得,区域Ⅰ圆心O 1和粒子出射点连线平行于粒子射入点与轨迹圆心O'连线,则区域Ⅰ圆心O 1和粒子出射点连线水平,根据磁聚焦原理可知粒子都从Q 点射出,粒子射入区域Ⅰ,仍做匀速圆周运动,由洛伦兹力提供向心力q B2v 0=m v 02R '解得R'=2R如图甲所示,要使粒子在区域Ⅰ中运动的时间最短,轨迹所对应的圆心角最小,可知在区域Ⅰ中运动的圆弧所对的弦长最短,即此时最短弦长为区域Ⅰ的磁场圆半径2R ,根据几何知识可得此时在区域Ⅰ和区域Ⅰ中运动的轨迹所对应的圆心角都为60°,粒子在两区域磁场中运动周期分别为 T 1=2πR v 0=2πmqBT 2=2π·2R v 0=4πmqB 故可得该粒子在区域Ⅰ和区域Ⅰ中运动的总时间为 t =60°360°T 1+60°360°T 2=πmqB甲(3)如图乙所示,将速度v 0分解为沿y 轴正方向的速度v 0及速度v',因为E =Bv 0,可得qE =qBv 0,故可知沿y 轴正方向的速度v 0产生的洛伦兹力与电场力平衡,粒子同时受到另一方向的洛伦兹力qBv',故粒子沿y 轴正方向做旋进运动,根据几何关系可知 v'=2v 0sin 53°=1.6v 0故当v'方向为竖直向上时粒子速度最大,最大速度为 v m =v 0+1.6v 0=2.6v 0根据几何关系可知此时所在的位置到y 轴的距离为 L =R'+R'sin 53°+2R +2R =6.88R =172mv 025qB乙14.[2024·河北卷] 我国古人最早发现了尖端放电现象,并将其用于生产生活,如许多古塔的顶端采用“伞状”金属饰物在雷雨天时保护古塔.雷雨中某时刻,一古塔顶端附近等势线分布如图所示,相邻等势线电势差相等,则a 、b 、c 、d 四点中电场强度最大的是 ( )A .a 点B .b 点C .c 点D .d 点14.C [解析] 在静电场中,等差等势线的疏密程度反映电场强度的大小,等差势线越密,则电场强度越大.由题图可知,c 点等差等势线最密集,故c 点电场强度最大,C 正确.15.[2024·河北卷] 如图所示,真空中有两个电荷量均为q (q >0)的点电荷,分别固定在正三角形ABC 的顶点B 、C.M 为三角形ABC 的中心,沿AM 的中垂线对称放置一根与三角形共面的均匀带电细杆,电荷量为q2.已知正三角形ABC 的边长为a ,M 点的电场强度为0,静电力常量为k.顶点A 处的电场强度大小为( )A .2√3kq a 2B .kq a 2(6+√3)C .kq a 2(3√3+1)D .kqa2(3+√3)15.D [解析] 如图所示,B 、C 两处点电荷在M 处产生的电场强度大小E 1=E 2=kq(√33a )2=3kqa 2,由于M 点的电场强度为0,故带电细杆在M 点产生的电场强度大小E 3=E 1cos 60°+E 2cos 60°=3kq a 2,B 、C 两处点电荷在A 处产生的电场强度大小E 4=E 5=kqq 2,合场强E 合'=E 4cos 30°+E 5cos 30°=√3kqa 2,方向向上,由于M 点与A 点关于带电细杆对称,故细杆在A 处产生的电场强度大小E 6=E 3=3kqa 2,方向向上,因此A 点的电场强度大小E =E 合'+E 6=kqa 2(√3+3),D 正确.16.(多选)[2024·河北卷] 如图所示,真空区域有同心正方形ABCD 和abcd ,其各对应边平行,ABCD 的边长一定,abcd 的边长可调,两正方形之间充满恒定匀强磁场,方向垂直于正方形所在平面.A处有一个粒子源,可逐个发射速度不等、比荷相等的粒子,粒子沿AD方向进入磁场.调整abcd的边长,可使速度大小合适的粒子经ad边穿过无磁场区后由BC边射出.对满足前述条件的粒子,下列说法正确的是()A.若粒子穿过ad边时速度方向与ad边夹角为45°,则粒子必垂直BC射出B.若粒子穿过ad边时速度方向与ad边夹角为60°,则粒子必垂直BC射出C.若粒子经cd边垂直BC射出,则粒子穿过ad边时速度方向与ad边夹角必为45°D.若粒子经bc边垂直BC射出,则粒子穿过ad边时速度方向与ad边夹角必为60°16.ACD[解析] 若粒子穿过ad边时速度方向与ad边夹角为45°,则粒子必经过cd边,作出粒子运动轨迹图,如图甲所示,由对称性可知,粒子从C点垂直于BC射出,A、C正确;若粒子穿过ad边时速度方向与ad边夹角为60°,则粒子可能从cd边再次进磁场,作出粒子运动轨迹如图乙所示,此时粒子不能垂直BC射出,粒子也可能经bc边再次进入磁场,作出粒子运动轨迹如图丙所示,此时粒子垂直BC边射出,B错误,D正确.17.[2024·河北卷] 如图所示,竖直向上的匀强电场中,用长为L的绝缘细线系住一带电小球,在竖直平面内绕O点做圆周运动.图中A、B为圆周上的两点,A点为最低点,B点与O点等高.当小球运动到A 点时,细线对小球的拉力恰好为0,已知小球的电荷量为q (q >0),质量为m ,A 、B 两点间的电势差为U ,重力加速度大小为g ,求: (1)电场强度E 的大小.(2)小球在A 、B 两点的速度大小.17.(1)U L(2)√Uq -mgLm√3(Uq -mgL )m[解析] (1)A 、B 两点沿电场线方向的距离为L ,在匀强电场中,由电场强度与电势差的关系可知E =U L(2)当小球运动到A 点时,细线对小球的拉力为0,由牛顿第二定律得Eq -mg =mv A 2L解得v A =√Uq -mgLm小球由A 点运动到B 点,由动能定理得 Uq -mgL =12m v B 2-12m v A 2 解得v B =√3(Uq -mgL )m18.[2024·湖北卷] 如图所示,在以O 点为圆心、半径为R 的圆形区域内有垂直于纸面向里的匀强磁场,磁感应强度大小为B.圆形区域外有大小相等、方向相反、范围足够大的匀强磁场.一质量为m 、电荷量为q (q >0)的带电粒子沿直径AC 方向从A 点射入圆形区域.不计重力,下列说法正确的是 ( )A .粒子的运动轨迹可能经过O 点B .粒子射出圆形区域时的速度方向不一定沿该区域的半径方向C .粒子连续两次由A 点沿AC 方向射入圆形区域的最小时间间隔为7πm3qBD.若粒子从A点射入到从C点射出圆形区域用时最短,粒子运动的速度大小为√3qBR3m18.D[解析] 根据磁场圆和轨迹圆相交形成的圆形具有对称性可知,在圆形匀强磁场区域内,沿着径向射入的粒子总是沿径向射出,所以粒子的运动轨迹不可能经过O点,故A、B错误;粒子连续两次由A点沿AC方向射入圆形区域的时间间隔最短对应的轨迹如图甲所示,则最小时间间隔为Δt=2T=4πmqB,故C错误;粒子从A点射入到从C点射出圆形区域用时最短对应的轨迹如图乙所示,设粒子在磁场中运动的半径为r,根据几何关系可知r=√33R,根据洛伦兹力提供向心力有qvB=m v 2r ,解得v=√3qBR3m,故D正确.19.(多选)[2024·湖北卷] 关于电荷和静电场,下列说法正确的是()A.一个与外界没有电荷交换的系统,电荷的代数和保持不变B.电场线与等势面垂直,且由电势低的等势面指向电势高的等势面C.点电荷仅在电场力作用下从静止释放,该点电荷的电势能将减小D.点电荷仅在电场力作用下从静止释放,将从高电势的地方向低电势的地方运动19.AC[解析] 根据电荷守恒定律可知,一个与外界没有电荷交换的系统,电荷的代数和保持不变,故A正确;根据电场线和等势面的关系可知,电场线与等势面垂直,且由电势高的等势面指向电势低的等势面,故B错误;点电荷仅在电场力作用下从静止释放,则电场力做正功,该点电荷的电势能将减小,根据φ=E pq可知,正电荷将从电势高的地方向电势低的地方运动,负电荷将从电势低的地方向电势高的地方运动,故C正确,D错误.20.[2024·湖南卷] 真空中有电荷量为+4q和-q的两个点电荷,分别固定在x轴上-1和0处.设无限远处电势为0,x正半轴上各点电势φ随x变化的图像正确的是()。

【关键问题】专题4---电场与磁场

【关键问题】专题4---电场与磁场

专题4---电场与磁场福建省普通教育教学研究室物理学科编写组【材料导读】本专题包括高中物理的两个关键问题“电场的性质”与“磁场的性质”。

对于“电场的性质”问题,高考中常以选择题的形式出现,考查利用电场线和等势面确定场强的大小和方向,判断电势高低、电场力变化、电场力做功和电势能的变化等,电场力做功与电势能的变化及带电粒子在电场中的运动与牛顿运动定律、动能定理、功能关系相结合的题目是考查的另一热点,电场知识与生产技术、生活实际、科学研究等的联系,如示波管、电容式传感器、静电分选器等,都可成为新情景题的命题素材,应引起重视。

而“磁场的性质”在高考中呈现题型主要为选择题,偶尔也为会在计算题中组成考点,要求考生重点掌握:通电直导线和通电线圈周围的磁场;安培力公式、安培定则及磁感应强度的叠加;通电直导线或线框在磁场中的平衡和运动问题。

本专题通过具体试题呈现这两个关键问题在高考中的考查特点,并以问题串形式引导学生体会用不同方法解决物理问题的异同,再从中归纳问题解决过程中的关键线索和一般方法。

材料中的例题和练习按难度从易到难分为A、B、C三个层次,使用者可根据自身情况选用。

【典例分析】【A】例1(2019年全国Ⅰ卷第15题)如图,空间存在一方向水平向右的匀强电场,两带电小球P和Q用相同的绝缘细绳悬挂在水平天花板下,两细绳都恰好与天花板垂直,则() A.P和Q都带正电荷B.P和Q都带负电荷C.P带正电荷,Q带负电荷P Q D.P带负电荷,Q带正电荷【答案】D【解析】对P、Q整体进行受力分析可知,在水平方向上整体所受电场力为零,所以P、Q 必带等量异种电荷,选项AB错误;对P进行受力分析可知,匀强电场对它的电场力应水平向左,与Q对它的库仑力平衡,所以P带负电荷,Q带正电荷,选项D正确,C错误.【A】变式1:在光滑绝缘的水平地面上放置着四个相同的金属小球,小球A、B、C位于等边三角形的三个顶点上,小球D位于三角形的中心,如图所示。

高中物理电场、磁场的讲解与考题以及答案

高中物理电场、磁场的讲解与考题以及答案

高中物理电场、磁场的讲解与考题以及答案
高中物理电场和磁场是两个相关的物理概念,物理上它们在日常生活中都起着重要的作用。

本文将通过对电场和磁场的讲解以及对部分考题的讲解,来加深大家对它们的了解,以及准备参加高中物理考试的学生可以更好地练习和复习这两个概念。

一、电场
电场是指在一定空间中存在电势差所造成的能量影响,也就是说,它使电荷粒子在其中产生位置变化,并能够决定电荷粒子行为的能量场。

电场的强度和方向也会根据周围的环境及电荷粒子之间的距离而发生变化。

二、磁场
磁场是指在一定空间中存在磁势差所造成的能量影响,也就是说,它使磁性物质在其中产生位置变化,并能够决定磁性物质行为的能量场。

磁场的强度和方向也会根据周围的环境及磁力粒子之间的距离及其速度而发生变化。

三、考题
1.关于电场,下列说法正确的是()
A. 电场是指电势差造成的能量场
B. 电场的强度不随周围环境的变化而变化
C. 电场的方向随着周围的环境及电荷粒子之间的距离而发生变化
D. 电场只影响电荷粒子的行为
答案:A、C。

2021届高考一轮人教物理:电场和磁场含答案

2021届高考一轮人教物理:电场和磁场含答案

2021届高考一轮人教物理:电场和磁场含答案一轮复习:电场和磁场1、如图所示:它是早期发明的一种电流计,它是根据奥斯特实验现象中小磁针的偏转来计量电流的,缺点是精确度不高、易受外界干扰.接通电流前,位于环形导线中央的小磁针仅在地磁场的作用下处于静止状态,调整电流计的方位,使环形导线与小磁针共面.当给环形导线通以恒定电流I后,小磁针偏转α角;当给环形导线通以恒定电流kI时,小磁针偏转β角.若已知环形电流圆心处的磁感应强度与通电电流成正比,则关于这种电流计,下列说法正确的是( )A.该电流计的测量结果与地磁场的竖直分量有关B.该电流计在地球上不同位置使用时,所标刻度均相同C.小磁针偏转角满足关系式sin β=ksin αD.小磁针偏转角满足关系式tan β=ktan α2、(多选)如图甲,质量为m、电荷量为-e的粒子初速度为零,经加速电压U1加速后,在水平方向沿O1O2垂直进入偏转电场。

已知形成偏转电场的平行板电容器的板长为L,两极板间距为d,O1O2为两极板的中线,P是足够大的荧光屏,且屏与极板右边缘的距离为L,不考虑电场边缘效应,不计粒子重力。

则下列说法正确的是( )A.粒子进入偏转电场的速度大小v=2eU1 mB.若偏转电场两板间加恒定电压U0,粒子经过偏转电场后正好打中屏上的A点,A点与极板M在同一水平线上,则所加电压U0=dU1 3L2C.若偏转电场两板间的电压按如图乙作周期性变化,要使粒子经加速电场后在t=0时刻进入偏转电场后水平击中A点,则偏转电场周期T应该满足的条件为T=Lnm2eU1(n=1,2,3…)D.若偏转电场两板间的电压按如图乙做周期性变化,要使粒子经加速电场后在t=0时刻进入偏转电场后水平击中A点,则偏转电场周期U0应该满足的条件为U0=4nU1d2L2(n=1,2,3…)3、如图所示,在水平连线MN和PQ间有竖直向上的匀强电场,在MN上方有水平向里的匀强磁场。

两个质量和带电量均相等的带正电的粒子A、B,分别以水平初速度v0、2v0从PQ连线上O点先后进入电场,带电粒子A、B第一次在磁场中的运动时间分别为t A和t B,前两次穿越连线MN时两点间的距离分别为d A和d B,粒子重力不计,则( )A.t A一定小于t B,d A一定等于d BB.t A一定小于t B,d A可能小于d BC.t A可能等于t B,d A一定等于d BD.t A可能等于t B,d A可能小于d B4、从地面竖直向上抛出一物体,物体在运动过程中除受到重力外,还受到一大小不变、方向始终与运动方向相反的外力作用。

2023版高考物理二轮总复习第1部分题突破方略专题4电路与电磁感应第1讲直流电路与交流电路课件

 2023版高考物理二轮总复习第1部分题突破方略专题4电路与电磁感应第1讲直流电路与交流电路课件

命题热点•巧突破
考点一 直流电路的计算与分析
考向1 直流电路的动态分析
1.(2021·广东广州模拟)如图所示的电路中,当变阻器R1的滑动触
头向上滑动时,A、B两灯亮度的变化情况为
(A )
A.A灯和B灯都变亮
B.A灯和B灯都变暗
C.A灯变亮,B灯变暗
D.A灯变暗,B灯变亮
【解析】 “串反并同”指的是在一个闭合回路中某一个电学元件 的阻值发生了变化,则与其并联的电学元件的电学量的变化趋势与其相 同,与其串联的电学元件的电学量的变化趋势与其相反,这里的并联是 指两电学元件之间没有电流的流进流出关系,串联指的是电流有流进流 出关系.当变阻器R1的滑动触头向上滑动时,滑动变阻器的阻值增大, 根据“串反并同”规律可知A、B灯泡与之并联,则两灯都变亮,所以A 正确,B、C、D错误.故选A.
则下列描述电阻R两端电压UR随时间t变化的图象中,正确的是 (A )
【解析】 当电容器两端电压变化时,电容器由于充放电,电路中 会有电流 I=ΔΔQt =CΔΔtU,而充电放电时,电流方向相反,电阻 R 两端电 压 UR=IR=CΔΔtUR,由图(b)可知,(1~2)s 电容器充电,(3~5)s 过程电 容放电,且放电时电流为充电时的一半,故选 A.
( AD )
A.若将电容器上极板上移少许,则液滴的电势能增大
B.若减小电容器两极板的正对面积,则液滴向下加速运动
C.闭合 S,则电路稳定后电容器所带电荷量比原来增加C3E
D.闭合 S,若电路稳定后液滴还在板间运动,则其加速度大小为13g
【解析】 若将电容器上极板上移少许,和电容并联部分电路没有 发生改变,电容器两端的电压不变,根据 E=Ud 可知电场强度变小,则油 滴所受向上电场力变小,油滴向下运动,电场力做负功,油滴的电势能 增大,故 A 正确;若减小电容器两极板的正对面积,不改变极板间的电 场强度,则油滴所受向上电场力不变,油滴仍然静止,故 B 错误;

2023版新教材高考物理微专题小练习专题77电磁场和电磁波

2023版新教材高考物理微专题小练习专题77电磁场和电磁波

专题77 电磁场和电磁波1.(多选)下列关于机械波和电磁波,下列说法正确的是( )A.机械波和电磁波都可以在真空中传播B.机械波既有横波又有纵波,而电磁波只有纵波C.电磁波和机械波都能产生干涉、衍射现象以及多普勒效应D.波速、波长与频率的关系ν=λf,对机械波和电磁波都适用2.电磁波的频率范围很广,按电磁波的波长或频率大小的顺序把它们排列成谱,叫做电磁波谱,如图所示.下列说法正确的是( )A.移动电话使用可见光进行Wi­Fi联网B.冷物体的红外辐射比热物体的红外辐射强C.紫外线具有的能量足以破坏细胞核中的物质D.X射线的频率比γ射线的频率高3.[2022·江苏省十三中期中考试]图甲LC振荡电路中通过Q点的电流(向右为正)变化规律如图乙所示,则( )A.t=0.25 s时,电容器处于充电状态B.t=0.25 s时,电容器上极板带正电C.t=1.75 s时,Q点的电势比P点低D.t=1.75 s时,磁场能向电场能转化4.地面阳光的成分包括44%的可见光、53%的红外线和3%的紫外线.在大气层之外,阳光中含有10%的紫外线,大多数的紫外线被大气阻挡住而无法到达地表.下列说法正确的是( )A.红外线的频率比可见光大B.紫外线的波长比可见光长C.红外线的衍射能力比紫外线弱D.红外线和紫外线在真空中的传播速度相同5.下列关于电磁波的说法正确的是( )A.X射线能在磁场中偏转,穿透力较强,可用来进行人体透视B.紫外线有很强的荧光效应,可用于防伪C.麦克斯韦建立了电磁场理论并证实了电磁波的存在D.红外体温计是依据体温计发射红外线来测量体温的6.第五代移动通信系统(5G)将无线通信与国际互联网等多媒体通信结合起来,能为客户提供各种通信及信息服务,与4G相比,5G使用的电磁波频率更高.下列关于电磁波叙述正确的是( )A.周期性变化的电场和磁场可以相互激发,形成电磁波B.电磁波是纵波,不能产生偏振现象C.电磁波和机械波都依赖于介质才能传播D.与4G相比,5G使用的电磁波在空中传播的速度更快,更容易发生衍射7.收音机中的调谐电路线圈的电感为L,要想接收波长为λ的电台信号,应把调谐电路中电容器的电容调至(c为光速)( )A.λ2πLc B.12πLcλC.λ22πLc2D.λ24π2Lc2专题77 电磁场和电磁波1.CD 电磁波可以在真空中传播,机械波需要介质来传播,不能在真空中传播,A错误;电磁波是横波,B错误;电磁波和机械波都能产生干涉、衍射现象以及多普勒效应,C 正确;波速、波长与频率的关系ν=λf,对机械波和电磁波都适用,D正确.2.C 移动电话经常使用Wi­Fi联网,也会用蓝牙传输数据,两种方式均是利用电磁波来传输信息的,均利用了电磁波中的微波,A错误;根据辐射的特点可知,所有物体都发射红外线,热物体的红外辐射比冷物体的红外辐射强,B错误;紫外线频率较高,所以具有较高的能量,可破坏细胞中的物质,通常用于杀菌,C正确;在电磁波谱中,常见电磁波有:无线电波、红外线、可见光、紫外线、X射线、γ射线,它们的波长依次变短,频率依次变长,D错误.3.D 由题图乙知,0~0.5 s内,电流逐渐增大,电容器正在放电,振荡电路中通过Q 点的电流向右,可知电容器下极板带正电,A、B错误;由题图乙知,1.5 s~2.0 s内,电流减小,电容器充电,下极板带正电,流过Q点的电流向左,Q点的电势比P点高,磁场能向电场能转化,故D正确,C错误.4.D 根据电磁波谱的波长顺序可知,红外线的波长大于可见光的波长大于紫外线的波长,所以紫外线的频率大于可见光的频率大于红外线的频率,A、B错误;光的波长越长,衍射现象越明显,衍射能力越强,红外线波长大于紫外线波长,所以红外线的衍射能力更强,C错误;红外线和紫外线都是电磁波,它们在真空中的传播速度相同,D正确.5.B X射线穿透力较强,可用来进行人体透视,但不带电,不能在磁场中偏转,故A 错误;紫外线有很强的荧光效应,可用于防伪,故B正确;麦克斯韦建立了电磁场理论并预言了电磁波的存在,赫兹通过实验证实了电磁波的存在,故C错误;红外体温计是依据人体发射红外线来测量体温的,不是体温计发射红外线,故D错误.6.A 据麦克斯韦电磁理论可知,周期性变化的电场和磁场可以相互激发,形成电磁波,A正确;由电磁波产生的原理可知,电磁波是横波,能产生偏振现象,B错误;电磁波可以在真空中传播,而机械波必须依赖于介质才能传播,C错误;电磁波在空中均以光速传播,D错误.7.D 波长为λ的信号的频率为f=cλ,LC振荡回路的频率为f=12πLC,联立以上两式可知,要想接收波长为λ的电台信号,应把调谐电路中电容器的电容调至C=λ24π2Lc2,D 正确.。

2021年高考物理模拟试题专题汇编 专题4 电场和磁场 第1讲 电场(A)(含解析)

2021年高考物理模拟试题专题汇编 专题4 电场和磁场 第1讲 电场(A)(含解析)

2021年高考物理模拟试题专题汇编专题4 电场和磁场第1讲电场(A)(含解析)一.选择题1.(xx・张掖三诊・14).下列说法正确的是()A.电荷的周围既有电场也有磁场,反映了电和磁是密不可分的B.由电场强度的定义式可知E的方向决定于q的正负C.法拉第首先总结出磁场对电流作用力的规律D.“电生磁”和“磁生电”都是在变化、运动的过程中才能出现的效应2.(xx・衡水高三调・14).下列说法不正确的是 ( )A.法拉第最先引入“场”的概念,并最早发现了电流的磁效应现象B.互感现象是变压器工作的基础C.在推导匀变速直线运动位移公式时,把整个运动过程划分成很多小段,每一小段近似看做匀速直线运动,然后把各小段的位移相加,这应用了“微元法”D.电场强度和磁感应强度定义物理量的方法是比值定义法3.(xx・西安交大附中三模・14).由于万有引力定律和库仑定律都满足平方反比定律,因此引力场和电场之间有许多相似的性质,在处理有关问题时可以将它们进行类比.例如电场中反映各点电场强弱的物理量是电场强度,其定义式为.在引力场中可以有一个类似的物理量用来反映各点引力场的强弱.设地球质量为,半径为R,地球表面处重力加速度为,引力常量为G.如果一个质量为的物体位于距地心2R处的某点,则下列表达式中能反映该点引力场强弱的是()A. B. C. D.4.(xx・江山市模拟・)4.(6分)物理关系式不仅反映了物理量之间的关系,也确定了单位间的关系.如关系式U=IR既反映了电压、电流和电阻之间的关系,也确定了V(伏)与A(安)和Ω(欧)的乘积等效,即V与A•Ω等效.现有物理量单位:m(米)、s(秒)、N(牛)、J(焦)、W(瓦)、C(库)、F(法)、A(安)、Ω(欧)和T(特),由他们组合成的单位都与电压单位V(伏)等效的是()A. J/C和T•A•m B. C./F和W•Ω C. W/A和C•T•m/s D. T•m2/s和N/C5.(xx・马鞍山三模・19). 对于真空中电量为Q的静止点电荷而言,当选取离点电荷无穷远处的电势为零时,离点电荷距离为r处电势为(k Array为静电力常量)。

高三物理 专题复习 《电场与磁场的理解》(含答案解析)

高三物理 专题复习 《电场与磁场的理解》(含答案解析)

复习备考建议1.电场问题是动力学与能量观点在电磁学中的延续,主要考查点有电场叠加、电场描述、电场能的性质、带电粒子(带电体)在电场中的运动等.带电粒子(带电体)在电场中的运动能够综合考查运动的合成与分解、牛顿第二定律、动能定理等.这部分内容综合性强,是命题的热点.2.带电粒子在匀强磁场中的运动综合了洛伦兹力、牛顿运动定律、匀速圆周运动等知识,是高考命题的热点和重点,对磁场叠加、安培力的考查,难度一般不大.高考对于带电粒子在磁场中的运动的考查,多为选择题或计算题,难度适中,所以要重点复习,但不要过于繁、难.第6课时 电场与磁场的理解 考点电场性质的理解1.电场强度、电势、电势能的表达式及特点对比表达式特点电场强度E =F q ,E =k Q r 2,E =U d矢量,由电场本身决定.电场线越密,电场强度越大电势 φ=E pq标量,与零电势点的选取有关,沿电场线方向电势逐渐降低电势能 E p =qφ,ΔE p =-W 电标量,电场力做正功,电势能减小2.电势高低的比较(1)沿着电场线方向,电势越来越低;(2)带电荷量为+q 的点电荷,在电场力的作用下从电场中的某点移至无穷远处,电场力做功越多,则该点的电势越高;(3)根据电势差U AB =φA -φB ,若U AB >0,则φA >φB ,反之φA <φB .3.电势能变化的判断(1)由E p=qφ判断:正电荷在电势高的地方电势能大,负电荷在电势低的地方电势能大;(2)由W AB=E p A-E p B判断:电场力做正功,电势能减小,电场力做负功,电势能增大;(3)只有电场力做功时,电荷的电势能与动能之和守恒.4.运动轨迹问题(1)某点速度方向即为轨迹在该点的切线方向;(2)从轨迹的弯曲方向判断受力方向(轨迹向合外力方向弯曲),从而分析电场方向或电荷的正、负;(3)结合速度方向与电场力的方向,确定电场力做功的正、负,从而确定电势能、电势的变化等.例1(多选)(2019·贵州安顺市上学期质量监测)两电荷量分别为q 1和q2的点电荷分别放在x 轴上的O、M两点,两电荷连线上各点电势φ随x变化的关系如图1所示,其中A、N两点的电势均为零,ND段中的C点电势最高,则()图1A.q1带正电,q2带负电B.A、N点的电场强度大小为零C.NC间场强方向沿x轴负方向D.将一负点电荷从N点移到D点,电势能一直增大答案AC解析由题图可知,在q1附近电势为正,q2附近电势为负,可知q1带正电,q2带负电,故A 正确;φ-x图象的斜率表示场强E,可知A、N两点电场强度不为零,故B错误;由题图可知:由N至C,电势升高,所以场强方向沿x轴负方向,故C正确;由N至D,电势先升高后降低,则将一负点电荷从N点移到D点,电势能先减小后增大,故D错误.变式训练1.(多选)(2019·全国卷Ⅲ·21)如图2,电荷量分别为q和-q(q>0)的点电荷固定在正方体的两个顶点上,a、b是正方体的另外两个顶点.则()图2A.a点和b点的电势相等B.a点和b点的电场强度大小相等C.a点和b点的电场强度方向相同D.将负电荷从a点移到b点,电势能增加答案BC解析b点距q近,a点距-q近,则b点的电势高于a点的电势,A错误;如图所示,a、b 两点的电场强度可视为E3与E4、E1与E2的合场强.其中E1∥E3,E2∥E4,且知E1=E3,E2=E4,故合场强E a与E b大小相等、方向相同,B、C正确;由于φa<φb,负电荷从低电势处移至高电势处过程中,电场力做正功,电势能减少,D错误.2.(多选)(2020·山东等级考模拟卷·9)在金属球壳的球心有一个正点电荷,球壳内外的电场线分布如图3所示,下列说法正确的是()图3A.M点的电场强度比K点的大B.球壳内表面带负电,外表面带正电C.试探电荷-q在K点的电势能比在L点的大D.试探电荷-q沿电场线从M点运动到N点,电场力做负功答案ABD解析由电场线的疏密程度可知,M点的场强大于K点的场强,A正确;由于感应起电,在金属球壳的内表面感应出负电,外表面感应出正电,B正确;负电荷在电场中,沿电场线方向运动,电场力做负功,电势能增加,C错误,D正确.例2(多选)(2018·全国卷Ⅱ·21)如图4,同一平面内的a、b、c、d四点处于匀强电场中,电场方向与此平面平行,M为a、c连线的中点,N为b、d连线的中点.一电荷量为q(q>0)的粒子从a点移动到b点,其电势能减小W1;若该粒子从c点移动到d点,其电势能减小W2.下列说法正确的是()图4A .此匀强电场的场强方向一定与a 、b 两点连线平行B .若该粒子从M 点移动到N 点,则电场力做功一定为W 1+W 22C .若c 、d 之间的距离为L ,则该电场的场强大小一定为W 2qLD .若W 1=W 2,则a 、M 两点之间的电势差一定等于b 、N 两点之间的电势差 答案 BD解析 结合题意,只能判定U ab >0,U cd >0,但电场方向不能确定,A 项错误;由于M 、N 分别为ac 和bd 的中点,对于匀强电场,则U MN =φa +φc 2-φb +φd 2=U ab +U cd2,可知该粒子由M至N 过程中,电场力做功W =W 1+W 22,B 项正确;电场强度的方向只有沿c →d 时,才有场强E =W 2qL ,但本题中电场方向未知,C 项错误;若W 1=W 2,则U ab =U cd =U MN ,即φa -φb=φM -φN ,φa -φM =φb -φN ,可知U aM =U bN ,D 项正确. 变式训练3.(多选)(2019·山东日照市上学期期末)一匀强电场的方向平行于xOy 平面,平面内a 、b 、c 三点的位置如图5所示,三点的电势分别为10 V 、16 V 、24 V .下列说法正确的是( )图5A .坐标原点的电势为18 VB .电场强度的大小为1.25 V/cmC .电场强度的方向从c 点指向a 点D .电子从b 点运动到坐标原点,电场力做功为2 eV 答案 ABD解析 根据φb -φa =φc -φO ,因a 、b 、c 三点电势分别为φa =10 V 、φb =16 V 、φc =24 V ,则原点处的电势为φO =18 V ,故A 正确;如图,y 轴上y =2点(M 点)的电势为φM =φO -φO -φa 4=16 V ,所以b 点与y 轴上y =2点的电势相等,连接b 点与y 轴上y =2点的直线即为等势线,过a 点作Mb 的垂线即为电场线,方向与y 轴负方向成37°角斜向上,垂足为N ,由几何关系得:∠abM =37°,aN =ab ·sin 37°=4.8 cm ,φN =φb ,所以E =U Na aN =1.25 V/cm ,故B 正确,C 错误;φb <φO ,则电子从b 点运动到坐标原点,电场力做正功,W =2 eV ,故D 正确.考点 带电粒子(带电体)在电场中的运动1.直线运动的两种处理方法 (1)动能定理:不涉及t 、a 时可用.(2)牛顿第二定律和运动学公式:涉及a 、t 时可用.尤其是交变电场中,最好再结合v -t 图象使用.2.匀强电场中偏转问题的处理方法 (1)运动的分解已知粒子只在电场力作用下运动,且初速度方向与电场方向垂直. ①沿初速度方向做匀速直线运动,运动时间t =Lv 0.②沿电场方向做初速度为零的匀加速直线运动,加速度a =F m =qE m =qUmd .③离开电场时的偏移量y =12at 2=qUL 22md v 02.④速度偏向角tan φ=v y v 0=qUx md v 02――→x =L tan φ=qULmd v 02; 位移偏向角tan θ=y x =qUx 2md v 02――→x =Ltan θ=qUL 2md v 02. (2)动能定理:涉及功能问题时可用.注意:偏转时电场力做的功不一定是W =qU 板间,应该是W =qEy (y 为偏移量). 3.非匀强电场中的曲线运动(1)电荷的运动轨迹偏向所受合外力的一侧,即合外力指向轨迹凹的一侧;电场力一定沿电场线切线方向,即垂直于等势面.(2)由电场力的方向与运动方向的夹角,判断电场力做功的正负,再由功能关系判断动能、电势能的变化.例3 (2019·全国卷Ⅱ·24)如图6,两金属板P 、Q 水平放置,间距为d .两金属板正中间有一水平放置的金属网G ,P 、Q 、G 的尺寸相同.G 接地,P 、Q 的电势均为φ(φ>0).质量为m 、电荷量为q (q >0)的粒子自G 的左端上方距离G 为h 的位置,以速度v 0平行于纸面水平射入电场,重力忽略不计.图6(1)求粒子第一次穿过G 时的动能,以及它从射入电场至此时在水平方向上的位移大小; (2)若粒子恰好从G 的下方距离G 也为h 的位置离开电场,则金属板的长度最短应为多少? 答案 (1)12m v 02+2φd qh v 0mdhqφ(2)2v 0mdh qφ解析 (1)PG 、QG 间场强大小相等,均为E .粒子在PG 间所受电场力F 的方向竖直向下,设粒子的加速度大小为a ,有E =2φd ①F =qE =ma ②设粒子第一次到达G 时动能为E k ,由动能定理有 qEh =E k -12m v 02③设粒子第一次到达G 时所用的时间为t ,粒子在水平方向的位移为l ,则有h =12at 2④l =v 0t ⑤联立①②③④⑤式解得 E k =12m v 02+2φd qhl =v 0mdhqφ(2)若粒子穿过G 一次就从电场的右侧飞出,则金属板的长度最短.由对称性知,此时金属板的长度为L =2l =2v 0mdhqφ. 变式训练4.(2019·湖南六校4月联考)如图7所示,空间中存在着由一固定的负点电荷Q (图中未画出)产生的电场.另一正点电荷q 仅在电场力作用下沿曲线MN 运动,在M 点的速度大小为v 0,方向沿MP 方向,到达N 点时速度大小为v ,且v <v 0,则( )图7A .Q 一定在虚线MP 下方B .M 点的电势比N 点的电势高C .q 在M 点的电势能比在N 点的电势能小D .q 在M 点的加速度比在N 点的加速度小 答案 C解析 场源电荷带负电,运动电荷带正电,它们之间是吸引力,而曲线运动合力指向曲线的内侧,故负点电荷Q 应该在轨迹的内侧,故A 错误;只有电场力做功,动能和电势能之和守恒,运动电荷在N 点的动能小,故其在N 点的电势能大,故C 正确;运动电荷为正电荷,故N 点电势高于M 点电势,故M 点离场源电荷较近,则M 点场强较大,所以q 在M 点的加速度比在N 点的加速度大,故B 、D 错误.5.(2019·河北“五个一名校联盟” 第一次诊断)如图8所示,地面上某区域存在着水平向右的匀强电场,一个质量为m 的带负电的小球以水平方向的初速度v 0由O 点射入该区域,刚好竖直向下通过竖直平面中的P 点,已知连线OP 与初速度方向的夹角为60°,重力加速度为g ,则以下说法正确的是( )图8A .电场力大小为3mg2B .小球所受的合外力大小为3mg3 C .小球由O 点到P 点用时3v 0gD .小球通过P 点时的动能为52m v 02答案 C解析 设OP =L ,从O 到P 水平方向做匀减速运动,到达P 点的水平速度为零;竖直方向做自由落体运动,则水平方向:L cos 60°=v 02t ,竖直方向:L sin 60°=12gt 2,解得:t =3v 0g ,选项C 正确;水平方向F 1=ma =m v 0t =3mg3,小球所受的合外力是F 1与mg 的合力,可知合力的大小F =(mg )2+(F 1)2=233mg ,选项A 、B 错误;小球通过P 点时的速度v P =gt =3v 0,则动能:E k P =12m v P 2=32m v 02,选项D 错误.考点磁场对电流的作用1.对磁场的理解(1)磁感应强度是矢量,其方向与通电导线在磁场中所受力的方向垂直; (2)电流元必须垂直于磁场方向放置,公式B =FIL才成立;(3)磁场中某点的磁感应强度是由磁场本身决定的,与通电导线受力的大小及方向均无关. 2.磁场的叠加对于电流在空间某点的磁场,首先应用安培定则判断出各电流在该点的磁场方向,然后应用平行四边形定则合成. 3.安培力(1)若磁场方向和电流方向垂直:F =BIL . (2)若磁场方向和电流方向平行:F =0. (3)方向判断:左手定则.(4)方向特点:垂直于磁感线和通电导线确定的平面. 4.磁场力做功情况磁场力包括洛伦兹力和安培力,由于洛伦兹力的方向始终和带电粒子的运动方向垂直,洛伦兹力不做功,但是安培力可以做功.例4 (2019·全国卷Ⅰ·17)如图9,等边三角形线框LMN 由三根相同的导体棒连接而成,固定于匀强磁场中,线框平面与磁感应强度方向垂直,线框顶点M 、N 与直流电源两端相接.已知导体棒MN 受到的安培力大小为F ,则线框LMN 受到的安培力的大小为( )图9A .2FB .1.5FC .0.5FD .0 答案 B解析 设三角形边长为l ,通过导体棒MN 的电流大小为I ,则根据并联电路的特点可知通过导体棒ML 和LN 的电流大小为I2,如图所示,依题意有F =BlI ,则导体棒ML 和LN 所受安培力的合力为F 1=Bl ·I 2=12F ,方向与F 的方向相同,所以线框LMN 受到的安培力大小为1.5F ,选项B 正确.变式训练5.电磁炮是一种理想的兵器,它的主要原理如图10所示,利用这种装置可以把质量为m =2.0 g 的弹体(包括金属杆EF 的质量)加速到6 km/s ,若这种装置的轨道宽d =2 m 、长L =100 m 、电流I =10 A 、轨道摩擦不计且金属杆EF 与轨道始终垂直并接触良好,则下列有关轨道间所加匀强磁场的磁感应强度和磁场力的最大功率结果正确的是( )图10A .B =18 T ,P m =1.08×108 W B .B =0.6 T ,P m =7.2×104 WC .B =0.6 T ,P m =3.6×106 WD .B =18 T ,P m =2.16×106 W 答案 D解析 由v m 2=2aL 和BId =ma 可得B =18 T , 最大功率P m =BId ·v m =2.16×106 W ,故D 正确.6.(2019·河南天一大联考上学期期末)一课外探究小组用如图11所示实验装置测量学校所在位置的地磁场的水平分量B x .将一段细长直导体棒南北方向放置,并与开关、导线、电阻箱以及电动势为E 、内阻为R 的电源组成如图所示的电路.在导体棒正下方距其l 处放一小磁针,开关断开时小磁针与导体棒平行,现闭合开关,缓慢调节电阻箱阻值,发现小磁针逐渐偏离南北方向,当电阻箱的接入阻值为5R 时,小磁针的偏转角恰好为30°.已知通电长直导线周围某点磁感应强度大小为B =k Ir (r 为该点到通电长直导线的距离,k 为比例系数),导体棒和导线电阻不计,则该位置地磁场的水平分量大小为( )图11A.3kE5lR B.3kE6lR C.3kE15lRD.3kE18lR答案 B解析 通电长直导体棒在其正下方距其l 处产生的磁场的磁感应强度大小为B 1=k Il,方向沿东西方向,其中的I =E R +5R =E 6R;如图,由磁场的叠加可知B x =B 1tan 30°=3kE6lR ,故选B.考点 磁场对运动电荷的作用1.基本公式:q v B =m v 2r ,T =2πrv重要结论:r =m v qB ,T =2πmqB .2.基本思路(1)画轨迹:确定圆心,用几何方法求半径并画出运动轨迹.(2)找联系:轨迹半径与磁感应强度、运动速度相联系;偏转角度与圆心角、运动时间相联系;在磁场中运动的时间和周期相联系.(3)用规律:利用牛顿第二定律和圆周运动的规律,特别是周期公式和半径公式. 3.轨迹的几个基本特点(1)粒子从同一直线边界射入磁场和射出磁场时,入射角等于出射角.如图12,θ1=θ2=θ3. (2)粒子经过磁场时速度方向的偏转角等于其轨迹的圆心角,即α1=α2.图12(3)沿半径方向射入圆形磁场的粒子,射出时亦沿半径方向,如图13.图13 图14(4)磁场圆与轨迹圆半径相同时,以相同速率从同一点沿各个方向射入的粒子,出射速度方向相互平行.反之,以相互平行的相同速率射入时,会从同一点射出(即磁聚焦现象),如图14所示. 4.半径的确定方法一:由物理方程求.由于Bq v =m v 2R ,所以半径R =m vqB;方法二:由几何关系求.一般由数学知识(勾股定理、三角函数等)通过计算来确定. 5.时间的确定方法一:由圆心角求,t =θ2πT ;方法二:由弧长求,t =sv . 6.临界问题(1)解决带电粒子在磁场中运动的临界问题,关键在于运用动态思维,寻找临界点,确定临界状态,根据粒子的速度方向确定半径方向,同时由磁场边界和题设条件画好轨迹,定好圆心,建立几何关系.(2)粒子射出或不射出磁场的临界状态是粒子运动轨迹与磁场边界相切.例5 如图15所示,在矩形区域内有垂直于纸面向外的匀强磁场,磁感应强度大小为B = 5.0×10-2 T ,矩形区域长为235m ,宽为0.2 m ,在AD 边中点O 处有一粒子源,某时刻,粒子源沿纸面向磁场中各方向均匀地发射出速率均为v =2×106 m/s 的某种带正电粒子,带电粒子质量m =1.6×10-27kg 、电荷量为q =+3.2×10-19C(不计粒子重力和粒子间的相互作用),求:图15(1)带电粒子在磁场中做圆周运动的半径为多大?(2)从BC 边界射出的粒子中,在磁场中运动的最短时间为多少? (3)从BC 边界射出的粒子中,在磁场中运动的最长时间为多少? 答案 (1)0.2 m (2)π3×10-7 s (3)π2×10-7 s解析 (1)粒子在磁场中做匀速圆周运动, 由牛顿第二定律得:q v B =m v 2R解得:R =0.2 m.(2)因为所有粒子的轨道半径相同,所以弦最短的圆所对应的圆心角最小,运动时间最短,作EO ⊥AD ,则EO 弦最短,如图所示.因为EO =0.2 m ,且R =0.2 m ,所以对应的圆心角为θ=π3由牛顿第二定律得:q v B =m (2πT )2R解得:T =2πmqB最短时间为:t min =θ2πT =θm qB解得:t min =π3×10-7 s.(3)从BC 边界射出的粒子在磁场中运动的时间最长时,粒子运动轨迹与BC 边界相切或粒子进入磁场时的速度方向指向OA 方向,转过14圆周,对应的圆心角:α=π4,粒子的最长运动时间:t max =14T =πm 2qB ,解得:t max =π2×10-7 s.变式训练8.(2019·山东菏泽市下学期第一次模拟)如图16所示,abcd 为边长为L 的正方形,在四分之一圆abd 区域内有垂直正方形平面向外的匀强磁场,磁感应强度大小为B .一个质量为m 、电荷量为q 的带正电粒子从b 点沿ba 方向射入磁场,结果粒子恰好能通过c 点,不计粒子的重力,则粒子的速度大小为( )图16A.qBLm B.2qBLmC.(2-1)qBL mD.(2+1)qBL m答案 C解析 粒子沿半径方向射入磁场,则出射速度的反向延长线一定过圆心,由于粒子能经过c 点,因此粒子出磁场时一定沿ac 方向,轨迹如图所示,由几何关系可知,粒子做圆周运动的半径r =2L -L =(2-1)L ,根据牛顿第二定律得q v 0B =m v 02r ,求得v 0=(2-1)qBLm ,C 项正确.9.(2019·全国卷Ⅱ·17)如图17,边长为l 的正方形abcd 内存在匀强磁场,磁感应强度大小为B ,方向垂直于纸面(abcd 所在平面)向外.ab 边中点有一电子发射源O ,可向磁场内沿垂直于ab 边的方向发射电子.已知电子的比荷为k .则从a 、d 两点射出的电子的速度大小分别为( )图17A.14kBl ,54kBl B.14kBl ,54kBl C.12kBl ,54kBl D.12kBl ,54kBl 答案 B解析 如图,电子从a 点射出时,其轨迹半径为r a =l4,由洛伦兹力提供向心力,有e v a B =m v a 2r a ,又e m =k ,解得v a =kBl 4;电子从d 点射出时,由几何关系有r d 2=l 2+(r d -l2)2,解得轨迹半径为r d =5l 4,由洛伦兹力提供向心力,有e v d B =m v d 2r d ,又e m =k ,解得v d =5kBl 4,选项B正确.专题突破练级保分练1.(2019·山东济南市上学期期末)长为L 的直导体棒a 放置在光滑绝缘水平面上,固定的长直导线b 与a 平行放置,导体棒a 与力传感器相连,如图1所示(俯视图).a 、b 中通有大小分别为I a 、I b 的恒定电流,I a 、I b 方向未知.导体棒a 静止时,传感器受到a 给它的方向向左、大小为F 的拉力.下列说法正确的是( )图1A.I b与I a的方向相同,I b在a处的磁感应强度B大小为FI b LB.I b与I a的方向相同,I b在a处的磁感应强度B大小为FI a LC.I b与I a的方向相反,I b在a处的磁感应强度B大小为FI b LD.I b与I a的方向相反,I b在a处的磁感应强度B大小为FI a L答案 B解析因传感器受到a给它的方向向左、大小为F的拉力,可知电流a、b之间是相互吸引力,即a、b中的电流同向;根据F=BI a L,可知I b在a处的磁感应强度B大小为B=FI a L,故选B.2.(2019·浙江绍兴市3月选考)如图2所示,下边缘浸入水银槽中的铝盘置于蹄形磁铁的磁场中,可绕转轴转动,当转轴、水银槽分别与电源的正、负极相连时,铝盘开始转动.下列说法中不正确的是()图2A.铝盘绕顺时针方向转动B.只改变磁场方向,铝盘的转动方向改变C.只改变电流方向,铝盘的转动方向改变D.同时改变磁场方向与电流方向,铝盘的转动方向不变答案 A3.(2019·安徽合肥市第一次质量检测)如图3所示,真空中位于x轴上的两个等量负点电荷,关于坐标原点O对称.下列关于电场强度E随x变化的图象正确的是()图3答案 A解析设x轴的正方向代表电场强度的正方向,两负点电荷所在位置分别为A、B点,等量负点电荷电场线分布如图所示.①在A点左侧电场线水平向右,场强为正,离A点越近,场强越大;②在A到O之间,电场线向左,场强为负,离A越近,场强越大;③在O到B之间,电场线向右,场强为正,离B越近,场强越大;④在B点右侧,电场线水平向左,场强为负,离B越近,场强越大.综上所述,只有选项A符合题意.4.(2019·福建厦门市第一次质量检查)如图4所示,菱形ABCD的对角线相交于O点,两个等量异种点电荷分别固定在AC连线上的M点与N点,且OM=ON,则()图4A.B、D两处电势相等B.把一个带正电的试探电荷从A点沿直线移动到B点的过程中,电场力先做正功再做负功C.A、C两处场强大小相等、方向相反D.同一个试探电荷放在A、C两处时电势能相等答案 A5.(多选)(2019·全国卷Ⅱ·20)静电场中,一带电粒子仅在电场力的作用下自M点由静止开始运动,N为粒子运动轨迹上的另外一点,则()A.运动过程中,粒子的速度大小可能先增大后减小B.在M、N两点间,粒子的轨迹一定与某条电场线重合C.粒子在M点的电势能不低于其在N点的电势能D.粒子在N点所受电场力的方向一定与粒子轨迹在该点的切线平行答案AC解析在两个等量同种点电荷的电场中,一带同种电荷的粒子在两点电荷的连线上自M点(非两点电荷连线的中点)由静止开始运动,粒子的速度先增大后减小,选项A正确;仅在电场力作用下运动,带电粒子的动能和电势能之和保持不变,粒子运动到N点时动能不小于零,则粒子在M点的电势能不低于其在N点的电势能,选项C正确;若静电场的电场线不是直线,带电粒子仅在电场力作用下的运动轨迹不会与电场线重合,选项B错误;若粒子运动轨迹为曲线,根据粒子做曲线运动的条件,可知粒子在N点所受电场力的方向一定不与粒子轨迹在该点的切线平行,选项D错误.6.(多选)(2019·广东珠海市质量监测)如图5,空间有平行于纸面的匀强电场,处于该电场中的直角三角形ABC 直角边BC =20 cm ,∠A =60°,AD 是∠A 的角平分线.若在直角顶点B 处有一个射线源,能朝空间各方向射出动能为1 000 eV 的电子,则能在顶点A 和C 分别探测到动能为1 100 eV 和900 eV 的电子,本题中运动的电子仅需考虑匀强电场的电场力,则( )图5A .AB 间的电势差U AB =100 V B .该匀强电场的场强E =1 000 V/mC .电场强度的方向沿A 指向D D .整个三角形内,顶点C 的电势最高 答案 ABC解析 从B 到A 由动能定理可得:-eU BA =1 100 eV -1 000 eV ,可得U BA =-100 V ,所以U AB =100 V ,故A 正确;由题可知BC 间的电势差U BC =100 V ,所以AC 间的电势差为U AC =200 V ,由几何知识可得AC 在AD 方向上的投影是AB 在AD 方向上的投影的2倍,这就说明电场的方向一定沿着AD ,并且由A 指向D ,故C 正确;AB 在AD 上的投影AB ′=AB ·cos 30°=BC ·tan 30°·cos 30°=BC ·sin 30°=10 cm ,所以电场强度的大小为:E =1000.1 V /m =1 000 V/m ,故B正确;分析可知,整个三角形内,顶点A 的电势最高,故D 错误.7.(2019·山西晋城市二模)一正方形导体框abcd ,其单位长度的电阻值为r ,现将该正方形导体框置于如图6所示的匀强磁场中,磁感应强度的大小为B ,用不计电阻的导线将导体框连接在电动势为E 、不计内阻的电源两端,则关于导体框所受的安培力,下列描述正确的是( )图6A .安培力的大小为2EB r ,方向竖直向上B .安培力的大小为4EB3r ,方向竖直向下C .安培力的大小为EBr ,方向竖直向下D .安培力的大小为EBr,方向竖直向上答案 B解析 由题图可知,电路接通后流过导体框的电流方向为ad 及abcd ,假设导体框的边长为L ,由欧姆定律可得流过ad 边的电流大小为I 1=E Lr ,流过bc 边的电流大小为I 2=E3Lr ;又由左手定则可知ab 、cd 两边所受安培力大小相等、方向相反,ad 、bc 两边所受安培力方向均竖直向下,则导体框所受的安培力大小为F =BI 1L +BI 2L =4EB3r,方向竖直向下,故选项B 正确. 8.(多选)(2019·山东烟台市上学期期末)如图7所示,一平行板电容器的A 、B 两极板与一电压恒定的电源相连,极板水平放置,极板间距为d ,两极板间有一个质量为m 的带电粒子静止于P 点.下列说法正确的是( )图7A .带电粒子带负电B .若仅将A 板稍微向上移动一定距离,则带电粒子仍将保持静止C .若仅将两极板各绕其中点快速顺时针转过一定小角度,则粒子将向左做直线运动D .若断开电源并将B 板稍向右移动一定距离,则带电粒子将向上做直线运动 答案 AD解析 带电粒子静止于P 点,则所受电场力竖直向上,因电场强度方向向下,知粒子带负电,故A 正确;若仅将A 板稍微向上移动一定距离,因电压U 不变,E =Ud ,则电场力减小,因此粒子将向下运动,故B 错误;将两极板顺时针旋转α角度后,电场强度E ′=Ud ·cos α,而且电场强度的方向也旋转了α,由受力分析可知,竖直方向合力为0,水平方向有电场力向右的分力,所以粒子水平向右做匀加速直线运动,故C 错误;若断开电源,电容器所带电荷量Q 不变,根据C =Q U ,E =U d 及C =εr S 4πkd 得E =4πkQεr S ,则知将B 板稍向右移动一定距离,电场强度E 增大,则带电粒子将向上做直线运动,故D 正确.9.(多选)(2019·江西赣州市上学期期末)如图8所示,在半径为R 的圆形区域内,存在匀强磁场,磁感应强度大小为B ,方向垂直于圆平面(未画出).一群比荷为qm 的负离子以相同速率v 0(较大),由P 点在纸平面内沿不同方向射入磁场中发生偏转后,又飞出磁场,最终打在磁场区域右侧的荧光屏(足够大)上,则下列说法正确的是(不计离子的重力和离子间的相互作用)( )。

高考物理二轮复习 专题四 电场和磁场 4

高考物理二轮复习 专题四 电场和磁场 4
答案:BC
6.半径为R的均匀带电球体,在通过球心O的直线上,各点的电场分布如图所示。当x≥R时,电场分布与电荷量全部集中在球心时相同.已知静电力常量为k,则()
A.球面是个等势面,球体是个等势体
B.在x轴上x=R处电势最高
C.xP=R
D.球心O与球面间的电势差为E0R
解析:从图象上看,球内部电场强度都不等于零,因此球体不是等势体,A错误;在x轴上x=R处场强最大,而不是电势最高,B错误;EP=,E=·,因为EP=E,所以xP=R,C正确;假设球心O与球面间的电场为匀强电场,且大小为E0,则电势差U=E0R,但是O与球面间的电场并不是匀强电场,因此D错误.
答案:D
4.(多选)如图所示,MON是固定的光滑绝缘直角杆,MO沿水平方向,NO沿竖直方向,A、B为两个套在此杆上的带有同种电荷的小球,用一指向竖直杆的水平力F作用在A球上,使两球均处于静止状态.现将A球向竖直杆方向缓慢拉动一小段距离后,A、B两小球可以重新平衡.则后一种平衡状态与前一种平衡状态相比较,下列说法正确的是()
A.和B.和
C.和D.和
解析:由题知,σ=,故电场强度E==.带电量为Q的平板在与另一平板产生的电场中受力F=QE=.两板之间的场强为两板各自场强叠加的合场强,E合=2E=,D正确.
答案:D
3.如图所示为静电力演示仪,两金属极板分别固定于绝缘支架上,且正对平行放置.工作时两板分别接高压直流电源的正负极,表面镀铝的乒乓球用绝缘细线悬挂在两金属极板中间,则()
答案:BD
二、非选择题
8.如图,一质量为m、电荷量为q(q>0)的粒子在匀强电场中运动,A、B为其运动轨迹上的两点.已知该粒子在A点的速度大小为v0,方向与电场方向的夹角为60°;它运动到B点时速度方向与电场方向的夹角为30°.不计重力.求A、B两点间的电势差.

2024广东高考物理第一轮章节复习--电场

2024广东高考物理第一轮章节复习--电场

专题八电场基础篇考点一电场力的性质1.(2021湖北,8,4分)(多选)关于电场,下列说法正确的是()A.电场是物质存在的一种形式B.电场力一定对正电荷做正功C.电场线是实际存在的线,反映电场强度的大小和方向D.静电场的电场线总是与等势面垂直,且从电势高的等势面指向电势低的等势面答案AD2.(2018浙江4月选考,6,3分)真空中两个完全相同、带等量同种电荷的金属小球A和B(可视为点电荷),分别固定在两处,它们之间的静电力为F。

用一个不带电的同样的金属球C先后与A、B球接触,然后移开球C,此时A、B球间的静电力为()A.F8B.F4C.3F8D.F2答案C3.(2021揭阳一模,2)如图是库仑做实验用的库仑扭秤。

带电小球A与不带电小球B等质量,带电小球C 靠近A,两者之间的库仑力使横杆旋转,转动旋钮M,使小球A回到初始位置,此时A、C间的库仑力与旋钮旋转的角度成正比。

现用一个电荷量是小球C的三倍、其他完全一样的小球D与小球C完全接触后分开,再次转动旋钮M使小球A回到初始位置,此时旋钮旋转的角度与第一次旋转的角度之比为()A.1B.12C.2D.4答案C4.(2019课标Ⅰ,15,6分)如图,空间存在一方向水平向右的匀强电场,两个带电小球P和Q用相同的绝缘细绳悬挂在水平天花板下,两细绳都恰好与天花板垂直,则()A.P和Q都带正电荷B.P和Q都带负电荷C.P带正电荷,Q带负电荷D.P带负电荷,Q带正电荷答案D5.(2022广州二模,4)如图,在光滑绝缘斜面上有带电小球a与b,两球同时释放瞬间,a球的加速度刚好为零,则下列关于a、b的电性及初始位置,符合要求的是()A BC D答案B考点二电场能的性质1.(2022佛山二模,3)如图,医用口罩由多层织物材料构成,其中有一层熔喷布经过特殊工艺处理后成为驻极体材料,这层材料表面长期带有正电荷,能有效吸附细小的粉尘,而这些粉尘通常是细菌和病毒传播的载体。

其中即将被吸附的带电粉尘,一定是()A.带正电B.沿电场线加速靠近熔喷布C.在靠近熔喷布的过程中电场力做正功D.在靠近熔喷布的过程中电势能增加2.(2022广东二模,5)如图(a),某棵大树被雷电击中,此时以大树为中心的地面上形成了电场,该电场的等势面分布及电场中M、P两点的位置如图(b)所示,则()图(a)图(b)A.M点电势较低B.电场线由P点指向M点C.越靠近大树的地方电场强度越小D.M、P两点间的电势差约为200 kV答案D3.(2022潮州二模,2)某电场区域的电场线分布如图,在电场中有A、B、C、D四个点,下面说法正确的是()A.E A>E BB.E C>E DC.φA<φBD.φC<φD答案B4.(2021辽宁,6,4分)等量异号点电荷固定在水平向右的匀强电场中,电场分布如图所示,实线表示电场线,虚线表示等势线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1讲电场[限时45分钟;满分80分]一、选择题(每小题5分,共40分)1.(多选)(2019·全国卷Ⅱ)静电场中,一带电粒子仅在电场力的作用下自M点由静止运动,N为粒子运动轨迹上的另外一点,则A.运动过程中,粒子的速度大小可能先增大后减小B.在M、N两点间,粒子的轨迹一定与某条电场线重合C.粒子在M点的电势能不低于其在N点的电势能D.粒子在N点所受电场力的方向一定与粒子轨迹在该点的切线平行解析在两个同种点电荷的电场中,一带同种电荷的粒子在两电荷的连线上自M点由静止开始运动,粒子的速度先增大后减小,选项A正确;带电粒子仅在电场力作用下运动,若运动到N点的动能为零,则带电粒子在N、M两点的电势能相等;仅在电场力作用下运动,带电粒子的动能和电势能之和保持不变,可知若粒子运动到N点时动能不为零,则粒子在N 点的电势能小于在M点的电势能,即粒子在M点的电势能不低于其在N点的电势能,选项C 正确。

若静电场的电场线不是直线,带电粒子仅在电场力作用下的运动轨迹不会与电场线重合,选项B错误;若粒子运动轨迹为曲线,根据粒子做曲线运动的条件,可知粒子在N点所受电场力的方向一定不与粒子轨迹在该点的切线平行,选项D错误。

答案AC2.(2019·河北九校高三联考)如图4-1-18所示,A、B、C三点的连线组成一个直角三角形,∠BAC=30°,D为AC边的中点。

在A、B两点分别放置一个点电荷后,C点的场强方向水平向右,则图4-1-18A.一定是A点放正电荷,B点放负电荷B.两点电荷的电荷量可能相等C.D点的电势高于C点的电势D.将一带负电的试探电荷从C点移到D点,电势能增加解析由于C点的电场强度方向水平向右,由电场的叠加可知,B点的点电荷在C点的电场强度方向竖直向上,A点的点电荷在C点的电场强度方向沿AC连线指向A,故A点应放置负电荷,B点应放置正电荷,A错误;由电场的叠加可知,A、B两点放置的点电荷在C点的场强大小关系为E A =2E B ,设B 、C 两点间的距离为d ,则A 、C 两点间的距离为2d ,由点电荷的场强公式可得k |Q A |(2d )2=2k |Q B |d 2,解得|Q A |=8|Q B |,B 错误;在B 点的正点电荷形成的电场中,C 、D 两点的电势相等,而在A 点放置的负点电荷形成的电场中,C 点的电势高于D 点的电势,由此可知,在两点电荷形成的电场中,C 点的电势高于D 点的电势,C 错误;将一带负电的试探电荷从C 点移到D 点的过程中,电场力做的功为W =-q (φC -φD )<0,所以电势能增加,D 正确。

答案 D3.(2019·株洲模拟)如图4-1-19所示,R 是一个定值电阻,A 、B 为水平正对放置的两块平行金属板,两板间带电微粒P 处于静止状态,则下列说法正确的是图4-1-19A .若增大A 、B 两金属板的间距,则有向右的电流通过电阻R B .若增大A 、B 两金属板的间距,P 将向上运动C .若紧贴A 板内侧插入一块一定厚度的金属片,P 将向上运动D .若紧贴B 板内侧插入一块一定厚度的陶瓷片,P 将向上运动解析 由于两极板和电源相连,则两极板间的电压恒定,若增大A 、B 两金属板的间距,根据公式C =εr S 4πkd 可知,电容减小,根据公式C =QU 以及电压不变可得电容器两极板上所带电荷量减小,故电容器放电,R 中有向左的电流,A 错误;由于两极板间的电压不变,若增大A 、B 两金属板的间距,根据公式E =Ud可得两极板间的电场强度减小,电场力小于重力,微粒P 将向下运动,B 错误;若紧贴A 板内侧插入一块一定厚度的金属片,相当于两极板间的距离减小,电场强度增大,则微粒P 受到的电场力大于重力,P 向上运动,C 正确;若紧贴B 板内侧插入一块一定厚度的陶瓷片,相当于εr 增大,两极板间的电场强度恒定不变,所以微粒P 受到的电场力不变,P 仍静止,D 错误。

故选C 。

答案 C4.(2019·淄博高三模拟)已知一个无限大的金属板与一个点电荷之间的空间电场分布与等量异种电荷之间的电场分布类似,即金属板表面各处的电场强度方向与板面垂直。

如图4-1-20所示MN 为无限大的不带电的金属平板,且与大地连接。

现将一个电荷量为Q 的正点电荷置于板的右侧,图中a 、b 、c 、d 是以正点电荷Q 为圆心的圆上的四个点,四点的连线构成一内接正方形,其中ab 连线与金属板垂直。

则下列说法正确的是图4-1-20A.b点电场强度与c点电场强度相同B.a点电场强度与b点电场强度大小相等C.a点电势等于d点电势D.将一试探电荷从a点沿直线ad移到d点的过程中,试探电荷电势能始终保持不变解析画出电场线如图所示,根据对称性可知,b点电场强度与c点电场强度大小相等,方向不同,故A错误;电场线密集的地方电场强度大,从图上可以看出a点电场强度大于b 点电场强度,故B错误;根据对称性并结合电场线的分布可知a点电势等于d点电势,故C 正确;由于试探电荷从a沿直线ad到d点,则先靠近正电荷后远离正电荷,所以电场力在这个过程中做功,只是总功为零,所以试探电荷电势能不是始终保持不变,故D错误。

答案 C5.(多选)(2019·惠州高三模拟)如图4-1-21所示,一带电液滴在水平向左的匀强电场中由静止释放,液滴沿直线由b运动到d,直线bd方向与竖直方向成60°角,则下列结论正确的是图4-1-21A.液滴做匀速直线运动B.液滴带正电荷C.液滴所受的电场力大小是其重力的3倍D.液滴的电势能减小解析由题可知,带电液滴只受重力和电场力作用,两个力都是恒力,其合力沿bd方向,则电场力必定水平向右,液滴做匀加速直线运动且带负电荷,故选项A、B错误;由于合力沿bd方向,则根据力的合成规律可知Eq=mg tan 60°,即Eq=3mg,故选项C正确;由于电荷带负电,沿bd方向运动,电场力做正功,故电势能减小,故选项D正确。

答案CD6.水平放置的平行板电容器与某一电源相连接后,断开开关,重力不可忽略的小球由电容器的正中央沿水平向右的方向射入该电容器,如图4-1-22所示,小球先后经过虚线的A、B两点。

则图4-1-22A.如果小球所带的电荷量为正电荷,小球所受的电场力一定向下B.小球由A到B的过程中电场力一定做负功C.小球由A到B的过程中动能可能减小D.小球由A到B的过程中,小球的机械能可能减小解析小球在极板间受到竖直向下的重力作用与电场力作用,由题图小球运动轨迹可知,小球向下运动,说明小球受到的合力竖直向下,重力与电场力的合力竖直向下;当小球带正电时,若上极板带正电荷,小球受到的合力向下,小球运动轨迹向下,若上极板带负电,但如果电场力小于重力,小球受到的合力向下,小球运动轨迹向下,故无法确定电场力与重力的大小关系,A错误;如果小球受到的电场力向下,小球从A运动到B点过程中电场力做正功,如果小球受到的电场力向上,则电场力做负功,B错误;小球受到的合力向下,小球从A点运动到B点过程中合外力做正功,小球的动能增加,C错误;小球从A点运动到B点过程,如果所受电场力向上,则机械能减小,D正确。

答案 D7.(多选)如图4-1-23所示,竖直放置的两个平行金属板间存在匀强电场,与两板上边缘等高处有两个质量相同的带电小球,P小球从紧靠左极板处由静止开始释放,Q小球从两板正中央由静止开始释放,两小球最终都能运动到右极板上的同一位置。

则从开始释放到运动到右极板的过程中,下列选项正确的是图4-1-23A.P的运动时间大于Q的运动时间B.P、Q的电势能减少量之比为4∶1C.P、Q的动能增加量之比为4∶1D .P 、Q 的电荷量之比为2∶1解析 小球在竖直方向为自由落体运动,两者下落高度相同,说明运动时间一样,故A 错误。

在水平方向小球做匀加速直线运动,根据x =12·qU mdt 2,可知位移之比为2∶1,说明P 、Q 粒子的电荷量之比为2∶1,故D 正确。

电势能的减少量为电场力做的功,即E p P ∶E p Q =2qU ∶q U2=4∶1,故B 正确。

动能增加量为合外力做的功,即E k P ∶E k Q =(mgh +2qU )∶⎝⎛⎭⎪⎫mgh +q U 2,由于不知道重力与电场力的关系,故C 错误;故选BD 。

答案 BD8.(多选)(2019·河北衡水金卷模拟)如图4-1-24所示,竖直面内固定的均匀带电圆环半径为R ,带电荷量为+Q ,在圆环的最高点用绝缘丝线悬挂一质量为m 、带电荷量为q 的小球(大小不计),小球在垂直圆环平面的对称轴上处于平衡状态,小球到圆环中心O 距离为R ,已知静电力常量为k ,重力加速度为g ,则小球所处位置的电场强度为图4-1-24A.mg q B.2mg 2q C .k Q R 2 D .k 2Q 4R2 解析 对小球受力分析可知mg tan 45°=qE ,解得E =mgq,则选项A 正确,B 错误;由于圆环不能看作点电荷,我们取圆环上一部分Δx ,总电荷量为Q ,则该部分电荷量为Δx 2πR Q ;该部分电荷在小球处产生的电场强度为E 1=kQ Δx 2πL 2R =kQ Δx 2π(2R )2R =kQ Δx4πR3,方向沿该点与小球的连线指向小球;同理取以圆心对称的相同的一段,其电场强度与E 1相同;则两个电场强度的合电场强度为E 1′=2·kQ Δx 4πR 3cos 45°=2kQ Δx4πR3,方向应沿圆心与小球的连线向外;因圆环上各点均在小球处产生电场,则合电场强度为E =πR Δx E 1′=2kQ4R 2,选项D 正确,C错误;故选AD 。

答案 AD二、计算题(共40分)9.(12分)(2019·全国卷Ⅱ)如图4-1-25,两金属板P 、Q 水平放置,间距为d ,两金属板正中间有一水平放置的金属网G ,P 、Q 、G 的尺寸相同。

G 接地,P 、Q 的电势均为φ(φ>0)。

质量为m 、电荷量为q (q >0)的粒子自G 的左端上方距离G 为h 的位置,以速度v 0平行于纸面水平射入电场,重力忽略不计。

图4-1-25(1)求粒子第一次穿过G 时的动能,以及它从射入电场至此时在水平方向上的位移大小; (2)若粒子恰好从G 的下方距离G 也为h 的位置离开电场,则金属板的长度最短应为多少?解析 (1)PG 、QG 间场强大小相等,均为E 。

粒子在PG 间所受电场力F 的方向竖直向下,设粒子的加速度大小为a ,有E =2φd①F =qE =ma ②设粒子第一次到达G 时动能为E k ,由动能定理有qEh =E k -12mv 02③设粒子第一次到达G 时所用的时间为t ,粒子在水平方向的位移大小为l ,则有h =12at 2④ l =v 0t ⑤联立①②③④⑤式解得E k =12mv 02+2φdqh ⑥l =v 0mdh qφ⑦ (2)若粒子穿过G 一次就从电场的右侧飞出,则金属板的长度最短。

相关文档
最新文档