高中数学一轮复习集合与函数概念知识点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学一轮复习集合与函数概念知识点集合具有某种特定性质的事物的总体。这里的事物可以是人,物品,也可以是数学元素。以下是集合与函数概念知识点,请考生及时查看。
例如:1、分散的人或事物聚集到一起;使聚集:紧急~。2、数学名词。一组具有某种共同性质的数学元素:有理数的~。
3、口号等等。集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,专门研究集合的理论叫做集合论。康托(Cantor,G.F.P.,1845年1918年,德国数学家先驱,是集合论的创始者,目前集合论的基本思想已经渗透到现代数学的所有领域。
集合,在数学上是一个基础概念。什么叫基础概念?基础概念是不能用其他概念加以定义的概念。集合的概念,可通过直观、公理的方法来下定义。集合
集合是把人们的直观的或思维中的某些确定的能够区分的
对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称为这一集合的元素(或简称为元)。
元素与集合的关系
元素与集合的关系有属于与不属于两种。
集合与集合之间的关系
某些指定的对象集在一起就成为一个集合集合符号,含有有
限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有传递性。『说明一下:如果集合A的所有元素同时都是集合B的元素,则A称作是B的子集,写作A?B。若A是B 的子集,且A不等于B,则A称作是B的真子集,一般写作A?B。中学教材课本里将?符号下加了一个符号(如右图),不要混淆,考试时还是要以课本为准。所有男人的集合是所有人的集合的真子集。』
集合的几种运算法则
并集:以属于A或属于B的元素为元素的集合称为A与B 的并(集),记作AB(或BA),读作A并B(或B并A),即
AB={x|xA,或xB}交集:以属于A且属于B的元差集表示素为元素的集合称为A与B的交(集),记作AB(或BA),读作A交B(或B交A),即AB={x|xA,且xB}例如,全集U={1,2,3,4,5}A={1,3,5}B={1,2,5}。那么因为A和B中都有1,5,所以AB={1,5}。再来看看,他们两个中含有1,2,3,5这些个元素,不管多少,反正不是你有,就是我有。那么说AB={1,2,3,5}。图中的阴影部分就是AB。有趣的是;例如在1到105中不是3,5,7的整倍数的数有多少个。结果是3,5,7每项减集合
1再相乘。48个。对称差集:设A,B为集合,A与B的对
称差集A?B定义为:A?B=(A-B)(B-A)例如:A={a,b,c},B={b,d},则A?B={a,c,d}对称差运算的另一种定义是:A?B=(AB)-(AB)无限集:定义:集合里含有无限个元素的集合叫做无限集有限集:令N*是正整数的全体,且N_n={1,2,3,,n},如果存在一个正整数n,使得集合A与N_n一一对应,那么A叫做有限集合。差:以属于A而不属于B 的元素为元素的集合称为A与B的差(集)。记作:AB={x│xA,x不属于B}。注:空集包含于任何集合,但不能说空集属于任何集合.补集:是从差集中引出的概念,指属于全集U不属于集合A的元素组成的集合称为集合A的补集,记作CuA,即CuA={x|xU,且x不属于A}空集也被认为是有限集合。例如,全集U={1,2,3,4,5}而A={1,2,5}那么全集有而A中没有的3,4就是CuA,是A的补集。CuA={3,4}。在信息技术当中,常常把CuA写成~A。
集合元素的性质
1.确定性:每一个对象都能确定是不是某一集合的元素,没有确定性就不能成为集合,例如个子高的同学很小的数都不能构成集合。这个性质主要用于判断一个集合是否能形成集合。
2.独立性:集合中的元素的个数、集合本身的个数必须为自然数。
3.互异性:集合中任意两个元素都是不同的对象。如写成{1,1,2},等同于{1,2}。互异性使集合中的元素是没有重复,两个相同的对象在同一个集合中时,只能算作这
个集合的一个元素。4.无序性:{a,b,c}{c,b,a}是同一个集合。5.纯粹性:所谓集合的纯粹性,用个例子来表示。集合A={x|x2},集合A中所有的元素都要符合x2,这就是集合纯粹性。6.完备性:仍用上面的例子,所有符合x2的数都在集合A中,这就是集合完备性。完备性与纯粹性是遥相呼应的。
集合有以下性质
若A包含于B,则AB=A,AB=B
集合的表示方法
集合常用大写拉丁字母来表示,如:A,B,C而对于集合中的元素则用小写的拉丁字母来表示,如:a,b,c拉丁字母只是相当于集合的名字,没有任何实际的意义。将拉丁字母赋给集合的方法是用一个等式来表示的,例如:A={}的形式。等号左边是大写的拉丁字母,右边花括号括起来的,括号内部是具有某种共同性质的数学元素。
常用的有列举法和描述法。1.列举法﹕常用于表示有限集合,把集合中的所有元素一一列举出来﹐写在大括号内﹐这种
表示集合的方法叫做列举法。{1,2,3,}2.描述法﹕常用于表示无限集合,把集合中元素的公共属性用文字﹐符号或式子等描述出来﹐写在大括号内﹐这种表示集合的方法叫做
描述法。{x|P}(x为该集合的元素的一般形式,P为这个集合的元素的共同属性)如:小于的正实数组成的集合表示为:
{x|0
4.自然语言常用数集的符号:(1)全体非负整数的集合通常简称非负整数集(或自然数集),记作N;不包括0的自然数集合,记作N*(2)非负整数集内排除0的集,也称正整数集,记作Z+;负整数集内也排除0的集,称负整数集,记作Z-(3)全体整数的集合通常称作整数集,记作Z(4)全体有理数的集合通常简称有理数集,记作Q。Q={p/q|pZ,qN,且p,q互质}(正负有理数集合分别记作Q+Q-)(5)全体实数的集合通常简称
实数集,记作R(正实数集合记作R+;负实数记作R-)(6)复数集合计作C集合的运算:集合交换律AB=BB=BA集合结合律(AC=AC)(AC=AC)集合分配律AC)=(A(AC)AC)=(A(AC)集合德.摩根律集合
“教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。只是更早的“先生”概念并非源于教书,最初出现的“先生”一词也并非有传授知识那般的含义。《孟子》中的“先生何为出此言也?”;《论语》中的“有酒食,先生馔”;《国策》中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。其实《国策》中本身就有“先生长者,有德之称”的说法。可见“先生”之原意非真正的“教师”之意,倒是与当今“先生”的称呼更接近。看来,“先生”之本源含义在于礼貌和尊称,并非具学问