多肽与蛋白质上优秀课件
合集下载
【生化精品课件】多肽与蛋白质
单纯蛋白质(simple protein)
结合蛋白质 = 蛋白质部分 + 非蛋白质部分
(conjugated protein)
辅基 (prosthetic group)
2. 蛋白质根据结构特点进行分类 :
将具有相同或类似结构域或模体的蛋 白质归为一类。既体现结构特性又提 示功能特性。
超家族(super family) 家族(family) 亚家族(subfamily)
凡氨基酸残基数目在50个以上,且具有特定空间结构的肽称蛋白质; 凡氨基酸残基数目在50个以下,且无特定空间结构者称多肽。
(二)生物活性肽:
• 生物体内具有一定生物学活性的肽 类物质称生物活性肽。
• 重要的有谷胱甘肽、神经肽、肽类 激素等。
1.谷胱甘肽是体内重要的还原剂
谷胱甘肽(GSH):
全称为γ-谷氨酰半胱氨酰甘氨酸。其巯基可 氧化、还原,故有还原型(GSH)与氧化型 (GSSG)两种存在形式。
有些蛋白质含有少量磷或金属元素铁、铜、 锌、锰、钴、钼,个别蛋白质还含有碘 。
蛋白质是体内的主要含氮物。 其中N元素的含量相对稳定,约为16%, 故每克氮相当于6.25克蛋白质。
N的含量平均为16%——凯氏定氮法 (Kjadehl)的理论基础
(一)蛋白质的分类
1. 蛋白质根据分子组成分为单纯蛋白质和结合蛋 白质两类:
3. 蛋白质根据其形状 可分为: 纤维状蛋白质:结构蛋白,难溶于水。如结缔组织中的胶原蛋白 球状蛋白质:易溶于水,功能蛋白。
(二构(primary structure)
二级结构(secondary structure) 三级结构(tertiary structure) 四级结构(quaternary structure)
蛋白质、多肽、氨基酸概述及分类重点 PPT
步进行 ❖ 组氨酸可在生理条件解离、结合质子
❖ 咪唑环形成质子传递体系
亲核试剂:给出电子
(3)Neutral Amino Acids中性氨基酸
❖ 中性氨基酸侧链不提供也不接受质子
❖ (1) Glysine甘氨酸 最简单、没有光学活性的氨基
酸
❖ (abbreviation:Gly)
❖ 显然与这种氨基酸相关的化学反应比较少,在生物学 上的意义主要是作为结构成份,大量的结构蛋白质如: 胶原和丝素中含有大量的甘氨酸。
CO2H H2N C H
R
R的结构
-H -CH3 -CH(CH3)2 -CH2CH(CH3)2 -CH(CH3)CH2CH3
N H
CO2H
-CH2C6H5
CH2
OH
CH2
N H
-CH2OH -CH(OH)CH3 -CH2CO2H -CH2CH2CO2H -CH2CONH2 -CH2CH2CONH2
-CH2SH -CH2CH2SCH3 -CH2CH2CH2CH2NH2 -CH2CH2CH2NHC(=NH)NH2
❖ 亲水性特别好,但第二个羟基(仲羟基)形成氢键能力弱、
HOOC
NH2
CCHH来自OH CH3❖ (3) Cysteine半胱氨酸 ❖ (abbreviation:Cys)
NH2 HOOC C CH2 SH
H
用 sulfur(硫) 取代丝氨酸的氧,较高pH值下能够给出质子 离 解
硫原子是特别好的亲核试剂
❖ α-,β-,γ-,orδ-氨基酸、
❖ γ-aminobutyric acid γ-氨基丁酸 (GABA):
❖ 神经传递素
❖ 2,5-diiodotyrosine 2, 5-二碘酪氨酸 ❖ 甲状腺激素前体
❖ 咪唑环形成质子传递体系
亲核试剂:给出电子
(3)Neutral Amino Acids中性氨基酸
❖ 中性氨基酸侧链不提供也不接受质子
❖ (1) Glysine甘氨酸 最简单、没有光学活性的氨基
酸
❖ (abbreviation:Gly)
❖ 显然与这种氨基酸相关的化学反应比较少,在生物学 上的意义主要是作为结构成份,大量的结构蛋白质如: 胶原和丝素中含有大量的甘氨酸。
CO2H H2N C H
R
R的结构
-H -CH3 -CH(CH3)2 -CH2CH(CH3)2 -CH(CH3)CH2CH3
N H
CO2H
-CH2C6H5
CH2
OH
CH2
N H
-CH2OH -CH(OH)CH3 -CH2CO2H -CH2CH2CO2H -CH2CONH2 -CH2CH2CONH2
-CH2SH -CH2CH2SCH3 -CH2CH2CH2CH2NH2 -CH2CH2CH2NHC(=NH)NH2
❖ 亲水性特别好,但第二个羟基(仲羟基)形成氢键能力弱、
HOOC
NH2
CCHH来自OH CH3❖ (3) Cysteine半胱氨酸 ❖ (abbreviation:Cys)
NH2 HOOC C CH2 SH
H
用 sulfur(硫) 取代丝氨酸的氧,较高pH值下能够给出质子 离 解
硫原子是特别好的亲核试剂
❖ α-,β-,γ-,orδ-氨基酸、
❖ γ-aminobutyric acid γ-氨基丁酸 (GABA):
❖ 神经传递素
❖ 2,5-diiodotyrosine 2, 5-二碘酪氨酸 ❖ 甲状腺激素前体
《多肽、蛋白质药物》课件
多肽、蛋白质药物
目录
• 多肽、蛋白质药物的概述 • 多肽、蛋白质药物的合成与制备 • 多肽、蛋白质药物的特性与优势 • 多肽、蛋白质药物的应用领域 • 多肽、蛋白质药物的研发与审批 • 多肽、蛋白质药物的挑战与前景
01
多肽、蛋白质药物的概述
定义与分类
定义
多肽和蛋白质药物是指利用基因工程 技术、蛋白质工程技术或化学合成等 方法制备的,具有治疗、预防或诊断 疾病作用的大分子化合物。
感谢观看
研究与开发阶段
确定药物靶点
首先需要确定药物作用的生物靶点,即药物作用的生物分子,如蛋 白质或基因。
多肽、蛋白质设计
基于靶点的结构和功能,设计能够与靶点相互作用的多肽或蛋白质 药物。
合成与优化
通过化学或生物方法合成多肽或蛋白质药物,并进行药效和药代动力 学优化。
临床试验阶段
Ⅰ期临床试验
评估药物的安全性和耐受性,确定药物剂量和给药方案。
神经性疾病治疗
神经保护剂
01
多肽、蛋白质药物可以保护神经元免受损伤,用于治疗帕金森
病、阿尔茨海默病等神经退行性疾病。
镇痛剂
02
一些多肽、蛋白质药物具有镇痛作用,可以用于治疗疼痛性疾
病,如偏头痛、神经痛等。
促进神经再生
03
多肽、蛋白质药物可以促进神经细胞的再生和修复,用于治疗
脑外伤、脊髓损伤等。
心血管疾病治疗
药物作用机制
01
02
03
靶点识别与结合
多肽和蛋白质药物通过与 靶点分子结合,发挥其治 疗作用。
信号转导调控
一些多肽和蛋白质药物可 以调控细胞内的信号转导 通路,从而达到治疗目的 。
免疫调节
多肽和蛋白质药物还可以 调节机体的免疫反应,用 于治疗免疫相关疾病。
目录
• 多肽、蛋白质药物的概述 • 多肽、蛋白质药物的合成与制备 • 多肽、蛋白质药物的特性与优势 • 多肽、蛋白质药物的应用领域 • 多肽、蛋白质药物的研发与审批 • 多肽、蛋白质药物的挑战与前景
01
多肽、蛋白质药物的概述
定义与分类
定义
多肽和蛋白质药物是指利用基因工程 技术、蛋白质工程技术或化学合成等 方法制备的,具有治疗、预防或诊断 疾病作用的大分子化合物。
感谢观看
研究与开发阶段
确定药物靶点
首先需要确定药物作用的生物靶点,即药物作用的生物分子,如蛋 白质或基因。
多肽、蛋白质设计
基于靶点的结构和功能,设计能够与靶点相互作用的多肽或蛋白质 药物。
合成与优化
通过化学或生物方法合成多肽或蛋白质药物,并进行药效和药代动力 学优化。
临床试验阶段
Ⅰ期临床试验
评估药物的安全性和耐受性,确定药物剂量和给药方案。
神经性疾病治疗
神经保护剂
01
多肽、蛋白质药物可以保护神经元免受损伤,用于治疗帕金森
病、阿尔茨海默病等神经退行性疾病。
镇痛剂
02
一些多肽、蛋白质药物具有镇痛作用,可以用于治疗疼痛性疾
病,如偏头痛、神经痛等。
促进神经再生
03
多肽、蛋白质药物可以促进神经细胞的再生和修复,用于治疗
脑外伤、脊髓损伤等。
心血管疾病治疗
药物作用机制
01
02
03
靶点识别与结合
多肽和蛋白质药物通过与 靶点分子结合,发挥其治 疗作用。
信号转导调控
一些多肽和蛋白质药物可 以调控细胞内的信号转导 通路,从而达到治疗目的 。
免疫调节
多肽和蛋白质药物还可以 调节机体的免疫反应,用 于治疗免疫相关疾病。
第15章 氨基酸、多肽和蛋白质 ppt课件
ppt课件 4
COOH H C R NH 2 NH2
COOH C R H
天然氨基酸(出甘氨酸外)其他所有 α- 碳原子都是手性的,都有旋光性,而 且发现主要是 L 型的(也有 D 型的,但很 少)。
ppt课件 5
存在形式:氨基酸都以偶极离子的形式存在。
CH3-CH-COO NH3
+
丙氨酸
HO2C(CH 2)2-CH-COO NH3
C
O
NK C O
(1) H3O (2) CO 2
COOC 2H5 N CH C COOC 2H5 O C
C C O N CH COOH O CH 2Ph
O
NH 2NH 2
C C
O NH NH O
+
NH 2
CH COOH CH 2Ph
合成法合成的氨基酸是外消旋体,拆分后才 能得到D-合L-氨基酸。
ppt课件 19
ppt课件 12
2、氨基酸氨基的反应 (1)氨基的酰基化 氨基酸分子中的氨基 能酰基化成酰胺。
R R' COCl + NH 2 CH COOH R R' C NH CH COOH + HCl O
乙酰氯、醋酸酐、苯甲酰氯邻苯二甲酸 酐等都可用作酰化剂。在蛋白质的合成过程 中为了保护氨基则用苄氧甲酰氯作为酰化剂。
R CH COOH NH2 OH R CH COO NH 2 H H OH
R CH COO NH 3
R CH COOH NH 3
11
溶液pH>等电点
等电点(pI)
ppt课件
溶液pH<等电点
注:1°等电点为电中性而不是中性(即 pH=7),在溶液中加入电极时其电荷迁 移为零。 中性氨基酸 pI = 4.8~6.3 酸性氨基酸 pI = 2.7~3.2 碱性氨基酸 pI = 7.6~10.8 2°等电点时,偶极离子在水中的溶解 度最小,易结晶析出。
COOH H C R NH 2 NH2
COOH C R H
天然氨基酸(出甘氨酸外)其他所有 α- 碳原子都是手性的,都有旋光性,而 且发现主要是 L 型的(也有 D 型的,但很 少)。
ppt课件 5
存在形式:氨基酸都以偶极离子的形式存在。
CH3-CH-COO NH3
+
丙氨酸
HO2C(CH 2)2-CH-COO NH3
C
O
NK C O
(1) H3O (2) CO 2
COOC 2H5 N CH C COOC 2H5 O C
C C O N CH COOH O CH 2Ph
O
NH 2NH 2
C C
O NH NH O
+
NH 2
CH COOH CH 2Ph
合成法合成的氨基酸是外消旋体,拆分后才 能得到D-合L-氨基酸。
ppt课件 19
ppt课件 12
2、氨基酸氨基的反应 (1)氨基的酰基化 氨基酸分子中的氨基 能酰基化成酰胺。
R R' COCl + NH 2 CH COOH R R' C NH CH COOH + HCl O
乙酰氯、醋酸酐、苯甲酰氯邻苯二甲酸 酐等都可用作酰化剂。在蛋白质的合成过程 中为了保护氨基则用苄氧甲酰氯作为酰化剂。
R CH COOH NH2 OH R CH COO NH 2 H H OH
R CH COO NH 3
R CH COOH NH 3
11
溶液pH>等电点
等电点(pI)
ppt课件
溶液pH<等电点
注:1°等电点为电中性而不是中性(即 pH=7),在溶液中加入电极时其电荷迁 移为零。 中性氨基酸 pI = 4.8~6.3 酸性氨基酸 pI = 2.7~3.2 碱性氨基酸 pI = 7.6~10.8 2°等电点时,偶极离子在水中的溶解 度最小,易结晶析出。
多肽与蛋白质类药物 ppt课件
疾病发病机理的揭示, 对体内各种酶, 辅酶, 生长代谢调 节因子的深入认识, 可以针对性开展多肽和蛋白质类药物 的研发。
12
多肽和蛋白质类药物研发技术与方向
1) 化学合成方法
2) 改造生物活性多肽及现有多肽药物
3) 提高活性多肽及现有多肽药物档次
4) 针对具生物活性的多肽天然产物研发
13
三、多肽及蛋白质类药物的生产方法
(3)胰岛素及其它激素 生长素释放抑制因子,是一种人 脑激素,治疗肢端肥大症, 50万个羊脑提取5mg. 工程菌:7.5L培养液可得到5mg.
肢端肥大症
2.血浆蛋白质
白蛋白,纤维蛋白溶酶原,血纤蛋白等
3.蛋白质类细胞生长调节因子 干扰素α、 β、 γ(IDN),白细胞介素(1~16)(IL)神经生 长因子等
IFN:干扰素 IL:白细胞介素 hGH:生长激素 FDGF:成纤维细胞衍化生长因子
CSF:克隆刺激因子 EPO:红细胞生成素
10
二、多肽和蛋白质类药物特点
1) 基本原料简单易得 多肽和蛋白质类药物主要以20种天然氨基酸为基本结构
单元依序连接而得,代谢物氨基酸为人体生长的基本营养成分, 可通过农产品发酵而制备。
t-PA(tissue-plasminogen activator)译成中文为组织纤溶 酶原激活剂,人体内自然存在,同时也是临床上用于急性心 肌梗死的一种生物蛋白药物,有18个半胱氨酸,9对二硫键
1953年,人类用化学合成法合成了有生物活性的多
肽----催产素。
(2)天然动植物及重组动植物提取法
通过生化工程技术,从天然动植物中分离纯化。由 于天然动植物中的有效成分含量过低,杂质太多,引起人 们对重组动植物的重视。
重组动植物只通过基因工程技术手段,将药物基因 或能对药物基因起调节作用的基因转导入动植物细胞,以 提高动植物合成药用成分的能力,再经过生化分离,制得 生物制品。
12
多肽和蛋白质类药物研发技术与方向
1) 化学合成方法
2) 改造生物活性多肽及现有多肽药物
3) 提高活性多肽及现有多肽药物档次
4) 针对具生物活性的多肽天然产物研发
13
三、多肽及蛋白质类药物的生产方法
(3)胰岛素及其它激素 生长素释放抑制因子,是一种人 脑激素,治疗肢端肥大症, 50万个羊脑提取5mg. 工程菌:7.5L培养液可得到5mg.
肢端肥大症
2.血浆蛋白质
白蛋白,纤维蛋白溶酶原,血纤蛋白等
3.蛋白质类细胞生长调节因子 干扰素α、 β、 γ(IDN),白细胞介素(1~16)(IL)神经生 长因子等
IFN:干扰素 IL:白细胞介素 hGH:生长激素 FDGF:成纤维细胞衍化生长因子
CSF:克隆刺激因子 EPO:红细胞生成素
10
二、多肽和蛋白质类药物特点
1) 基本原料简单易得 多肽和蛋白质类药物主要以20种天然氨基酸为基本结构
单元依序连接而得,代谢物氨基酸为人体生长的基本营养成分, 可通过农产品发酵而制备。
t-PA(tissue-plasminogen activator)译成中文为组织纤溶 酶原激活剂,人体内自然存在,同时也是临床上用于急性心 肌梗死的一种生物蛋白药物,有18个半胱氨酸,9对二硫键
1953年,人类用化学合成法合成了有生物活性的多
肽----催产素。
(2)天然动植物及重组动植物提取法
通过生化工程技术,从天然动植物中分离纯化。由 于天然动植物中的有效成分含量过低,杂质太多,引起人 们对重组动植物的重视。
重组动植物只通过基因工程技术手段,将药物基因 或能对药物基因起调节作用的基因转导入动植物细胞,以 提高动植物合成药用成分的能力,再经过生化分离,制得 生物制品。
十七章氨基酸多肽和蛋白质ppt课件
天冬氨酸(PI=2.98)和精氨酸(PI=10.76) 写出其存在形式以及在电场中的移动方向。
存在: 偶极离子 移动:不移动
负离子 正极
正离子 负极
试用电泳法(缓冲溶液 pH=6.0)分 离赖氨酸、谷氨酸和甘氨酸的混合物
赖氨酸 谷氨酸 甘氨酸 pI=6.0 电中性 不移动
pI=9.7
阳离子 负极
固态氨基酸通常以内盐(偶极离子) 形式存在:
H H3N C COO R
离子型化合物:
熔点高(分解) 难溶于有机溶剂
二、化学性质
-
(一) 两性与等电点
H2O
OH + R CH COOH
+ NH3 (Ⅰ)
R CH COO
+ NH3
-
H2O
R CH COO + H3O NH2 (Ⅱ) 负离子
-
+
正离子
H3N CHCOO 酰基化 R
R'OH 酯化
H H2N C COOR' R
电泳:带电颗粒在电场中向其相反方向的电极移动 的现象。
加酸,平衡左移,以正离子存在,电场中向负极移动。
加碱,平衡右移,以负离子存在,电场中向阳极移动。
等电点:当溶液调节至一定的 pH 值时,氨基酸 以偶极离子的形式存在,将此溶液置于电场中 ,氨基酸不向电场的任何一极移动,即处于电 中性状态,这时溶液的 pH 值称为氨基酸的等 电点。 常利用上述性质分离氨基酸。
3
O C
O NH CH C CH2SH 半胱氨酸残基
NH CH2 COO 甘氨酸残基
-
谷氨酸残基
γ-谷氨酰半胱氨酰甘氨酸 γ-谷-半胱-甘 γ-Glu-Cys-Gly 谷胱甘肽(GSH——还原型谷胱甘肽)
存在: 偶极离子 移动:不移动
负离子 正极
正离子 负极
试用电泳法(缓冲溶液 pH=6.0)分 离赖氨酸、谷氨酸和甘氨酸的混合物
赖氨酸 谷氨酸 甘氨酸 pI=6.0 电中性 不移动
pI=9.7
阳离子 负极
固态氨基酸通常以内盐(偶极离子) 形式存在:
H H3N C COO R
离子型化合物:
熔点高(分解) 难溶于有机溶剂
二、化学性质
-
(一) 两性与等电点
H2O
OH + R CH COOH
+ NH3 (Ⅰ)
R CH COO
+ NH3
-
H2O
R CH COO + H3O NH2 (Ⅱ) 负离子
-
+
正离子
H3N CHCOO 酰基化 R
R'OH 酯化
H H2N C COOR' R
电泳:带电颗粒在电场中向其相反方向的电极移动 的现象。
加酸,平衡左移,以正离子存在,电场中向负极移动。
加碱,平衡右移,以负离子存在,电场中向阳极移动。
等电点:当溶液调节至一定的 pH 值时,氨基酸 以偶极离子的形式存在,将此溶液置于电场中 ,氨基酸不向电场的任何一极移动,即处于电 中性状态,这时溶液的 pH 值称为氨基酸的等 电点。 常利用上述性质分离氨基酸。
3
O C
O NH CH C CH2SH 半胱氨酸残基
NH CH2 COO 甘氨酸残基
-
谷氨酸残基
γ-谷氨酰半胱氨酰甘氨酸 γ-谷-半胱-甘 γ-Glu-Cys-Gly 谷胱甘肽(GSH——还原型谷胱甘肽)
氨基酸多肽及蛋白质
O
N H 2
O O+R C H 2C H C O O H
荧 光 胺
C O O H
RC H
N
+H 2 O
O O
*
食品化学 第六章 食品中的氨基酸、多肽及蛋白质类物质
生物活性肽也称作功能肽,是近年来非常活泼的研究领域,其应用涉及 到生物学、医药学、化学等多种学科,在食品科学研究及功能食品开发中 也显示出美好的前景。
去除正电荷
琥珀酸酐
O R NHCCH3
在Lys上引入正电荷
硫代仲康酸**
O C O O H 在Lys残基引入巯基
R N H C C H 2C H C H 2SH
*
食品化学 第六章 食品中的氨基酸、多肽及蛋白质类物质
官能团及反应
试剂及条件
产物
评价
6.芳基化
FDNB***
NO2
R NH
NO2
氨基酸序列测定
官能团及反应
氨基酸和蛋白质中官能团的化学反响性
试剂和条件
产物
评论
A.非α氨基 1.还原甲基化 2.胍基化 3.乙酰化 4.琥珀酰化 5.巯基化
甲醛、NaBH4 邻甲基异脲*,pH10.6,4℃,4d
+
R NHCH 32
+
NH2
R NHCNH2 O
蛋白放射性标记 Lys转换成Arg
乙酸酐
R NHCCH3
感染性疾病曾一度是人类生存所面临的最大威胁。随着抗生素的创造 和广泛使用,感染性疾病得到了一定程度的控制,但仍然是人类死亡的 一个重要原因。据WHO报告,2000年全球死亡人数5570万,其中 1440万由感染性疾病引起,占总死亡人数的15.9%。过去的几十年里, 耐药性微生物的不断产生和生物耐药性问题的日益恶化,开发新的抗感 染药物已成为治疗感染疾病的必由之路。昆虫抗菌肽因其独特的抗菌、 杀菌效果和良好的应用前景近来成为抗感染新药开发的热点。*目前国外
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单纯蛋白质(simple protein)
结合蛋白质 = 蛋白质部分 + 非蛋白质部分
(conjugated protein)
辅基 (prosthetic group)
结合蛋白质及其辅基
分类 脂蛋白
糖蛋白 核蛋白 磷蛋白 血红素蛋白 黄素蛋白
金属蛋白
辅基
举例
脂类
血浆脂蛋白(VLDL、LDL、 HDL等)
糖基或糖链
胶原蛋白、纤连蛋白等
核酸
核糖体
磷酸基团
酪蛋白(casein)
血红素(铁卟啉) 血红蛋白、细胞色素c
黄素核苷酸(FAD、琥珀酸脱氢酶 FMN)
铁
铁蛋白
锌
乙醇脱氢酶
钙
钙调蛋白
锰
丙酮酸羧化酶
铜
细胞色素氧化酶
2. 蛋白质根据结构特点进行分类 ,可分为: 超家族(super family) 家族(family) 亚家族(subfamily)
3. 蛋白质根ቤተ መጻሕፍቲ ባይዱ其形状分为纤维状蛋白质和球状 蛋白质两类 ,可分为:
纤维状蛋白质 球状蛋白质
(二)蛋白质分子结构可区分为4个层次
一级结构(primary structure)
二级结构(secondary structure) 三级结构(tertiary structure) 四级结构(quaternary structure)
白的四级结构。 20世纪90年代以后,后基因组计划。
什么是蛋白质?
蛋 白 质 ( protein ) 是 由 许 多 氨 基 酸 (amino acids)通过肽键(peptide bond) 相连形成的高分子含氮化合物。
蛋白质的生物学重要性
1. 蛋白质是生物 体重要组成成分
分布广:所有器官、组织都含有蛋白质;细胞的 各个部分都含有蛋白质。
并将氨基酸合成了多种短肽 。 1938年,德国化学家Gerardus J. Mulder引用
“Protein” 一词来描述蛋白质。
1951年, Pauling采用X(射)线晶体衍射发现了蛋 白质的二级结构——α-螺旋(α-helix)。
1953年,Frederick Sanger完成胰岛素一级序列测定。 1962年,John Kendrew和Max Perutz确定了血红蛋
多肽链从氨基末端走向羧基末端。
N末端
半胱氨酸的二硫键
C末端
牛核糖核酸酶
肽是根据由N-端至C-端参与其组成的氨基酸残基命名的
O
O
NH2-CH-C
NH-CH-C
H OH + H H OH
甘氨酸
甘氨酸
-HOH
O
O
NH2-CH-C-N-CH-C
H HH OH
肽键
甘氨酰甘氨酸
(二)体内存在多种重要的生物活性肽
肽键是由一个氨基酸的-羧基与另一个氨 基酸的-氨基脱水缩合而形成的化学键。 氨基酸通过肽键(peptide bond) 相互连接 而形成多肽和蛋白质。
* 一分子氨基酸与另一分子氨基酸脱去一分子水缩 合成二肽。
* 二肽通过肽键与另一分子氨基酸缩合生成三肽 ……
* 一般来说,由数个、十数个氨基酸组成的肽习惯称 为寡肽(oligopeptide),而很多氨基酸组成的肽称为多 肽(polypeptide)。通常,多肽分子质量<10 kD; 而蛋白质则是由一条或多条肽链组成的更大分子, 但两者两者经常通用。
由于体内的含氮物质以蛋白质为主,因此, 只要测定生物样品中的含氮量,就可以根据以 下公式推算出蛋白质的大致含量:
100克样品中蛋白质的含量 ( g % ) = 每克样品含氮克数× 6.25×100
1/16%
(一)蛋白质的分子组成与结构特征是其分 类的基础
1. 蛋白质根据分子组成分为单纯蛋白质和结合蛋 白质两类:
3. 氧化供能
肽和蛋白质的一级结构
Primary Structure of Peptides and Proteins
一、肽和蛋白质是由氨基酸组成的多聚体
(一)氨基酸通过肽键相连形成肽/蛋白质
L- -氨基酸(除甘氨酸外)。
COO-
CHRH3
C +NH3
H
L-氨基酸的丙甘通氨氨式酸酸
肽/蛋白质分子中的氨基酸通过脱水生成的共价键 被称为肽键(peptide bond),肽键是一种酰胺键,具有 部分双键的性质。
较早发现的有脑啡肽(5肽)、β-内啡肽(31肽)和 强啡肽(17肽)等。
近年发现的孤啡肽(17肽),其一级结构类似于 强啡肽。
二、蛋白质的分子组成和结构极其复杂
组成蛋白质的元素: 主要有C、H、O、N和S。 有些蛋白质含有少量磷或金属元素铁、铜、
锌、锰、钴、钼,个别蛋白质还含有碘 。
蛋白质元素组成的特点: 各种蛋白质的含氮量很接近,平均为16%。
多肽与蛋白质上
20年前,无数生物Ph.D的博士生涯
一个基因,一个蛋白(提纯),一个修饰… … …
现在,
一条通路,一堆结构(结晶),XXX组… … …
1833年,Payen和Persoz分离出淀粉酶。 1864年,Hoppe-Seyler从血液分离出血红蛋白,
并将其制成结晶。 19世纪末,Fischer证明蛋白质是由氨基酸组成的,
1.谷胱甘肽是体内重要的还原剂
谷胱甘肽 (glutathione, GSH)
H2O2 2H2O
2GSH
GSH过氧 化物酶
GSSG
NADP+
GSH还原酶
NADPH+H+
2.体内有许多激素属寡肽或多肽
下丘脑到垂 体
3. 神经肽是脑内一类重要的肽
在神经传导过程中起重要作用的肽类称为 神经肽(neuropeptide)。
肽链中的氨基酸分子因脱水缩合而基团不全, 被称为氨基酸残基(residue)。
多肽链具有方向性: 不要读成
氮端碳端
氨基末端(amino terminal)或 N 末端: 多肽链中有游离氨基的一端称氨基末 端(amino terminal)或N-端。
羧基末端(carboxyl terminal)或C 末端: 多肽链中有游离羧基的一端称为羧基 末端(carboxyl terminal)或C-端。
含量高:蛋白质是细胞内最丰富的有机分子,占 人体干重的45%,某些组织含量更高, 例如脾、肺及横纹肌等高达80%。
2. 蛋白质具有重要的生物学功能
1)作为生物催化剂(酶) 2)代谢调节作用 (激素) 3)免疫保护作用 (抗体) 4)物质的转运和存储 (motor,cargo) 5)运动与支持作用 (肌动蛋白) 6)参与细胞间信息传递 (ligand receptor,跨膜)