现代污水处理生物脱氮除磷工艺分析

合集下载

《2024年污水生物脱氮除磷工艺优化技术综述》范文

《2024年污水生物脱氮除磷工艺优化技术综述》范文

《污水生物脱氮除磷工艺优化技术综述》篇一一、引言随着社会经济的快速发展和城市化进程的加快,污水的处理和净化成为当前环境治理领域的重要议题。

在众多污水处理技术中,生物脱氮除磷技术因其高效、经济和环保的特点,被广泛应用于污水处理厂。

然而,面对日益严格的排放标准和水质要求,传统的生物脱氮除磷工艺逐渐暴露出其局限性。

因此,对污水生物脱氮除磷工艺的优化技术进行综述,分析现有技术的研究进展及未来发展方向,对于提升污水处理效果、促进可持续发展具有重要意义。

二、污水生物脱氮除磷技术概述污水生物脱氮除磷技术主要利用微生物的代谢作用,通过特定的工艺流程,将污水中的氮、磷等营养物质去除,达到净化水质的目的。

该技术主要包括生物反应器、硝化、反硝化、厌氧释磷和好氧吸磷等过程。

其中,脱氮主要依靠硝化菌和反硝化菌的作用,除磷则主要依靠聚磷菌的富集和分离。

三、污水生物脱氮除磷工艺优化技术1. 工艺流程优化针对传统工艺流程中存在的能耗高、处理效率低等问题,研究者们提出了多种工艺流程优化方法。

例如,通过优化曝气系统,调整曝气强度和时间,以提高硝化、反硝化的效率;通过调整厌氧、好氧区域的布局,提高聚磷菌的富集和分离效果。

此外,还有一些新型的工艺流程,如AAO(厌氧-好氧)工艺、MBBR (移动床生物反应器)工艺等,也在实际运行中取得了较好的效果。

2. 微生物种群调控微生物种群是影响生物脱氮除磷效果的关键因素。

通过调控微生物种群结构,可以提高脱氮除磷的效率。

例如,通过投加特定种类的微生物制剂,促进硝化菌、反硝化菌和聚磷菌的生长繁殖;通过调整pH值、温度等环境因素,优化微生物的生长环境。

此外,利用基因工程技术对微生物进行改良,也是当前研究的热点。

3. 新型反应器设计反应器是生物脱氮除磷技术的核心设备。

针对传统反应器存在的混合不均、传质效率低等问题,研究者们设计出了多种新型反应器。

例如,立体循环反应器、复合式反应器等,这些新型反应器具有混合均匀、传质效率高、抗冲击负荷能力强等优点,能够提高生物脱氮除磷的效果。

《2024年城市污水处理新型生物脱氮除磷技术研究进展》范文

《2024年城市污水处理新型生物脱氮除磷技术研究进展》范文

《城市污水处理新型生物脱氮除磷技术研究进展》篇一一、引言随着城市化进程的加快,城市污水处理成为环境保护领域亟待解决的问题。

传统的污水处理方法虽然能够满足基本需求,但面对日益增长的城市人口和日益复杂的污水成分,传统的处理技术已经难以满足当前的环保要求。

因此,新型生物脱氮除磷技术的研究与进步对于改善水质、保护生态环境具有十分重要的意义。

本文旨在梳理近年来城市污水处理中新型生物脱氮除磷技术的研究进展。

二、生物脱氮技术研究(一)发展概况生物脱氮技术主要通过微生物的作用,将污水中的氮素转化为无害的氮气排放到大气中。

近年来,研究者们通过优化反应器设计、改进微生物菌群以及调控环境因素等手段,推动了生物脱氮技术的进步。

(二)技术分类目前,生物脱氮技术主要包括厌氧-好氧(A/O)工艺、同步硝化反硝化(SND)技术、短程硝化反硝化等。

这些技术通过不同的反应过程和微生物活动,实现了高效脱氮的效果。

(三)研究进展随着研究的深入,新型生物脱氮技术如微氧脱氮技术、基于膜生物反应器的脱氮技术等逐渐崭露头角。

这些技术不仅提高了脱氮效率,还降低了能耗和运行成本。

三、生物除磷技术研究(一)发展概况生物除磷技术主要通过微生物的代谢活动,将污水中的磷素去除或转化为易于回收的形态。

近年来,随着对微生物除磷机制的了解加深,除磷技术的效率也得到了显著提高。

(二)技术分类常见的生物除磷技术包括聚磷菌(PAOs)除磷工艺、厌氧-好氧(A/O)结合除磷等。

这些技术通过调控微生物的生长环境和代谢过程,实现了对污水中磷的高效去除。

(三)研究进展新型的生物除磷技术如基于微藻的除磷技术、电化学辅助生物除磷技术等逐渐成为研究热点。

这些技术不仅提高了除磷效率,还为后续的磷资源回收提供了可能。

四、新型生物脱氮除磷技术的优势与挑战(一)优势新型生物脱氮除磷技术相比传统技术,具有更高的处理效率、更低的能耗和运行成本。

同时,这些技术还能够实现对氮、磷等营养元素的回收利用,具有良好的经济和环境效益。

污水处理脱氮除磷工艺介绍及对比分析

污水处理脱氮除磷工艺介绍及对比分析

污水处理脱氮除磷工艺介绍及对比分析污水处理是保护环境、维护人类健康和可持续发展的重要措施之一、污水处理需要对其中的有害物质进行去除,其中包括氮和磷等营养物质。

脱氮除磷是其中一项重要的工艺,下面将对其进行介绍及比较分析。

脱氮工艺主要有生物脱氮工艺和物理化学脱氮工艺两种。

1.生物脱氮工艺:生物脱氮是利用污水处理系统中的微生物来将氨氮转化为氮气释放到大气中的过程。

其中常用的生物脱氮工艺包括硝化-反硝化法和硝化亚硝化法。

-硝化-反硝化法:该方法分为两个阶段,第一步是将氨氮通过硝化菌转化为亚硝酸盐,然后在缺氧条件下使用反硝化菌将亚硝酸盐转化为氮气。

该工艺具有能耗较低和无需额外药剂的优点,同时还可以降低化学消耗物。

-硝化亚硝化法:该方法将硝化菌和亚硝化菌结合在同一反应器中,通过控制氧气浓度和反应温度来实现硝化和亚硝化的联合作用。

该工艺节省了处理污水的时间,同时也减少了系统的占地面积。

2.物理化学脱氮工艺:物理化学脱氮工艺主要包括空气氧化剂法和化学沉淀法。

-空气氧化剂法:该方法是利用氧气或臭氧等氧化剂来氧化污水中的氨氮,使其转化为氮气释放。

该工艺适用于处理高氨氮浓度的废水,并且不需要添加额外的化学品。

-化学沉淀法:该方法通过添加化学药剂来使污水中的氨氮与其结合,形成不溶性的沉淀物进行去除。

常用的药剂包括氢氧化钙、氯化铁和磷酸铁等。

该工艺适用于处理低氨氮浓度的废水,但需要使用额外的化学药剂。

除磷工艺主要有生物除磷工艺和化学除磷工艺两种。

1.生物除磷工艺:生物除磷工艺主要是通过利用污水处理系统中的一些微生物来将废水中的磷元素转化为不溶性的磷酸钙沉淀物进行去除。

该工艺包括聚磷酸盐法、硝化反硝化除磷法和反硝化聚磷酸盐除磷法等。

-聚磷酸盐法:该方法通过添加一定剂量的磷源来诱导有利微生物的适应和繁殖,使其在系统中大量积累。

随后,在缺氧条件下,这些微生物将磷元素从水中去除,形成不溶性的磷酸钙沉淀物。

该工艺操作简单、不需要额外药剂,但容易受到外界环境的影响。

污水生物脱氮除磷工艺的现状与发展

污水生物脱氮除磷工艺的现状与发展

污水生物脱氮除磷工艺的现状与发展污水生物脱氮除磷工艺的现状与发展随着人口的增加和经济的发展,城市污水处理成为一项重要的任务。

污水中的氮和磷是主要污染物之一,它们的过度排放会引起水体富营养化,破坏生态平衡。

为了解决这个问题,科学家们提出了一种被称为“污水生物脱氮除磷工艺”的方法。

污水生物脱氮除磷工艺是利用微生物的代谢活性来实现污水中氮和磷的去除。

这一工艺主要包括两个步骤:脱氮和除磷。

在脱氮过程中,通过控制水体中氧含量和碳氮比,使得一部分氮物质以氨氮的形式被氧化为氮气释放到大气中;在除磷过程中,通过微生物对磷的吸附和沉淀,使得污水中的磷被去除。

当前,污水生物脱氮除磷工艺已经得到广泛应用,并取得了显著的效果。

其中最常用的工艺是BPR工艺(Biological Phosphorus Removal)。

这种工艺中,通过建立好氮磷比例控制系统和合理的生物反应器结构,使得微生物在有氧和无氧的环境中相互转换,从而实现氮和磷的去除。

该工艺具有操作简单、出水质量稳定等优点,已经在很多城市污水处理厂得到应用。

但是,污水生物脱氮除磷工艺还存在一些问题和挑战。

首先,虽然BPR工艺已经得到了大规模应用,但是其操作仍然需要较高的技术要求,需要专业人员进行维护和调节。

其次,BPR工艺只适用于一些中小型城市的污水处理厂,对于大型城市的处理规模仍然不够。

此外,BPR工艺在高温和低温环境下的效果也存在一定差异,需要持续的研究来优化工艺。

针对以上问题和挑战,科学家们正在不断进行研究和探索,为污水生物脱氮除磷工艺的发展提供技术支持。

例如,一些研究人员通过引入新的微生物菌种和添加剂,改进了传统的生物脱氮除磷工艺,提高了去除效率和稳定性。

另外,一些创新型的工艺也被提出,如利用电解气泡浮选技术、生物脱氮除磷和纳米材料协同作用等。

在未来,污水生物脱氮除磷工艺还有很大的发展空间。

一方面,科学家们可以进一步完善和改进现有的工艺,提高其处理能力和适用性。

《2024年城市污水处理新型生物脱氮除磷技术研究进展》范文

《2024年城市污水处理新型生物脱氮除磷技术研究进展》范文

《城市污水处理新型生物脱氮除磷技术研究进展》篇一一、引言随着城市化进程的加速,城市污水处理问题日益突出。

在众多的污水处理技术中,生物脱氮除磷技术因其高效、经济、环保等优点而备受关注。

本文旨在探讨城市污水处理中新型生物脱氮除磷技术的研究进展,分析其技术特点、应用现状及未来发展趋势。

二、生物脱氮除磷技术概述生物脱氮除磷技术是一种利用微生物的新陈代谢活动,通过生物膜法或活性污泥法等工艺,将污水中的氮、磷等营养物质去除的技术。

该技术具有处理效率高、运行成本低、污泥产量少等优点,是当前城市污水处理领域的研究热点。

三、新型生物脱氮技术研究进展(一)A2/O工艺及其改进型技术A2/O(厌氧-缺氧-好氧)工艺是一种典型的生物脱氮技术。

近年来,研究者们针对A2/O工艺的不足,开发了多种改进型技术,如MBBR(移动床生物膜反应器)、SBR(序批式活性污泥法)等。

这些技术通过优化反应器结构、调整运行参数等手段,提高了脱氮效率,降低了能耗。

(二)新型厌氧氨氧化技术厌氧氨氧化技术是一种利用厌氧氨氧化菌将氨氮转化为氮气的生物脱氮技术。

近年来,研究者们通过优化反应条件、提高菌种活性等手段,推动了厌氧氨氧化技术的发展。

该技术具有脱氮效率高、能耗低等优点,是未来生物脱氮技术的重要发展方向。

四、新型生物除磷技术研究进展(一)PAOs(聚磷菌)强化除磷技术PAOs强化除磷技术是一种利用聚磷菌在厌氧-好氧条件下实现高效除磷的技术。

近年来,研究者们通过优化反应条件、提高聚磷菌活性等手段,提高了PAOs强化除磷技术的除磷效率。

该技术具有除磷效果好、污泥产量少等优点。

(二)化学与生物联合除磷技术化学与生物联合除磷技术是一种结合化学沉淀与生物吸附的除磷技术。

该技术通过投加化学药剂与生物反应相结合的方式,实现高效除磷。

近年来,研究者们针对不同水质条件,优化了药剂种类和投加量,提高了除磷效果。

五、新型生物脱氮除磷技术应用及发展趋势(一)应用现状新型生物脱氮除磷技术在城市污水处理中已得到广泛应用。

脱氮除磷污水处理工艺最新版本

脱氮除磷污水处理工艺最新版本
.
生物法除磷的理论基础:
生物除磷是利用聚磷菌一类的微生物, 能够过量地, 在数量上超过其生理需要, 从外部环境摄取磷, 并将磷以聚合的形态储藏在体内, 形成高磷污泥, 排出系统外, 达到从污水中除磷的效果。
.
有机磷 ADP ATP 无机磷 无机磷 ATP ADP 有机磷 释放 聚磷 聚 磷 菌 → 聚 磷 菌 合成 降解 溶解质 ATP ADP PHB PHB ADP ATP 无机物 厌氧段 好氧段 聚 磷 菌 的 作 用 机 理
.
该反应的微生物属自养型厌氧细菌,生长速率非常低,但将氨氮厌氧转化能力非常高,可以达到4.8kgTN/(m3·d),最佳运行条件: 温度为10~43℃,pH值为6.7~8.3。
.
自养型氨厌氧氧化菌生长慢,启动时间非常长,为使ANAMMOX污泥保留在反应器中并得到足够的生物量,需要有效的污泥截留(由此建议用生物膜反应器)。另外ANAMMOX过程的营养需求,是否出现羟胺、肼类化合物,二氧化氮等代谢中间产[HJ]物和二次污染问题等都是新工艺实际运行中要解决的问题。
.
图1 ANAMMOX流化床反应器装置 1.污水 2.亚硝酸盐溶液 3.4.5.泵 6.取样口 7.ANAMMOX流化床反应器 8.恒温水浴 9.水封 10.湿式气体流量计 11.出水
.
该工艺的本质是通过控制环境温度造成两类细菌不同的增长速率,利用该动力学参数的不同造成“分选压力” 。使用无需污泥停留(以恒化器方式运行,其SRT=HRT)的单个CSTR反应器来实现,在较短的HRT(即SRT)和30 ~40℃的条件下,可有效地通过种群筛选产生大量的亚硝酸盐氧化菌,并使硝化过程稳定地控制在亚硝化阶段,以 NO2-为硝化终产物。SHARON工艺适用于含高浓度氨(>500mg/L)废水的处理工艺,

《2024年污水生物脱氮除磷工艺优化技术综述》范文

《2024年污水生物脱氮除磷工艺优化技术综述》范文

《污水生物脱氮除磷工艺优化技术综述》篇一一、引言随着城市化进程的加快和工业的迅猛发展,污水处理问题日益突出。

其中,污水中的氮、磷等营养物质的排放已成为水体富营养化的主要来源。

因此,开发高效、经济的污水生物脱氮除磷技术显得尤为重要。

本文旨在综述当前污水生物脱氮除磷工艺的优化技术,分析其发展现状及未来趋势。

二、污水生物脱氮技术1. 传统生物脱氮工艺传统生物脱氮工艺主要包括硝化与反硝化两个过程。

硝化过程主要由自养型硝化细菌完成,将氨氮氧化为亚硝酸盐氮和硝酸盐氮;反硝化过程则是在缺氧条件下,由反硝化细菌将硝酸盐氮还原为气态氮。

2. 优化技术(1)新型反应器设计:通过改进反应器设计,如采用流态控制技术、生物膜反应器等,提高硝化与反硝化的效率。

(2)强化生物脱氮:通过投加特定微生物、优化运行参数等手段,提高生物脱氮的效率。

(3)组合工艺:将生物脱氮工艺与其他物理、化学方法相结合,如与膜分离技术、高级氧化技术等联用,提高整体处理效果。

三、污水生物除磷技术1. 传统生物除磷工艺传统生物除磷工艺主要依靠聚磷菌在厌氧-好氧交替环境下实现磷的去除。

在厌氧条件下释放磷,好氧条件下过量吸收磷。

2. 优化技术(1)强化生物除磷:通过调控运行参数、投加特定物质等手段,促进聚磷菌的生长和除磷效果。

(2)化学除磷与生物除磷的结合:通过在生物处理后增加化学除磷步骤,进一步提高除磷效率。

(3)新型除磷材料与技术:如利用纳米材料、光催化技术等新型技术进行除磷。

四、污水生物脱氮除磷工艺的优化策略1. 工艺组合优化:根据水质特点和处理要求,合理组合脱氮除磷工艺,如AAO(厌氧-好氧)工艺、MBBR(移动床生物反应器)等。

2. 运行参数优化:通过调整pH值、温度、溶解氧等运行参数,优化微生物的生长环境和代谢过程。

3. 强化技术与常规技术的结合:将强化生物脱氮除磷技术与传统工艺相结合,取长补短,提高整体处理效果。

五、发展前景与展望随着科技的发展和环保要求的提高,污水生物脱氮除磷技术将更加成熟和高效。

脱氮除磷的水污染处理工艺

脱氮除磷的水污染处理工艺

脱氮除磷的水污染处理工艺近几十年来,水污染问题日益严重。

其中,氮和磷的排放是造成水体富营养化的主要原因之一。

为了解决这个问题,脱氮除磷的水污染处理工艺被广泛应用。

本文将对脱氮除磷的工艺进行详细介绍。

一、脱氮工艺1.生物法生物法是目前广泛使用的脱氮工艺。

主要包括生物硝化脱氮和生物反硝化技术两种方式。

生物硝化脱氮:通过硝化作用将氨氮先转化为亚硝酸盐,然后进一步转化为硝酸盐,最终转化成氮气释放。

生物硝化脱氮技术适合于高温和中温条件下的工业和城市污水处理。

生物反硝化技术:通过微生物将污水中的硝态氮还原成分子态氮。

生物反硝化技术在低温条件下和含有高浓度有机物或有毒物质的废水中有着较好的效果。

2.生物化学联合法生物化学联合法是将化学脱氮和生物脱氮相结合的方法。

将化学氮移除和Nitrifier-Denitrifier反应器相结合,可以同时去除废水中的氨氮、硝酸盐和有机氮。

二、除磷工艺1.生物法生物法反应器中添加特定的微生物种类,通过细胞内聚磷体的形成来去除废水中的磷。

生物法可以采用常温条件下的生物除磷法和PRB(磷酸根还原菌)方法。

生物除磷法:将一部分有机质转化为聚磷体,降低了废水中的磷浓度。

其中产生的胞外聚磷体通过化学加药破坏,从而将磷元素移除。

PRB技术:利用磷酸酯酶降解废水中的聚磷体,释放出其身上的磷元素,然后在还原本身成为无磷物质。

2.化学法化学法是使用化学物质来去除废水中的磷。

包括化学沉淀法和吸附法。

化学沉淀法:添加化学药剂,生成难溶的沉淀物,从而使废水中的磷以沉淀物的形式存在,达到去除的效果。

吸附法:利用化学吸附剂吸附废水中的磷元素,将其移除。

在吸附剂表面形成的吸附床与污水中的磷发生交换,达到去除的效果。

三、联合工艺脱氮除磷联合工艺是将脱氮和除磷相结合的工艺。

其中包括生物化学联合法、化学-生物工艺和物理化学-生物工艺。

联合工艺相比于单纯的脱氮或除磷工艺,具有去除效率高、运行稳定等优势。

综上所述,脱氮除磷是解决水污染的重要手段之一。

废水脱氮除磷工艺

废水脱氮除磷工艺

废水脱氮除磷工艺
废水脱氮除磷工艺是一种用于处理含有高浓度氮和磷的废水的技术,旨在减少这些有害污染物的排放,以满足环保标准。

以下是常见的废水脱氮除磷工艺:
1.生物脱氮除磷工艺:
生物脱氮(BNR):生物脱氮是通过在废水处理系统中引入一些特定的微生物,将废水中的氮转化为氮气的过程。

这通常包括硝化和反硝化两个阶段,其中氨氮首先被氧化成亚硝酸盐,然后转化为氮气。

生物除磷(BPR):生物除磷是通过引入能够吸附磷的微生物,将废水中的磷物质吸附并沉淀出来的过程。

2.化学脱氮除磷工艺:
化学沉淀:添加化学药剂,如氧化铁、氧化铝等,与废水中的磷形成沉淀物,从而实现除磷的效果。

这一过程通常被称为磷酸盐的化学沉淀。

硝化-脱硝:使用化学方法将废水中的氨氮氧化成硝酸盐,然后再还原成氮气。

3.物理化学脱氮除磷工艺:
生物物理化学一体化工艺:将生物处理、物理处理和化学处理结合在一起,以提高脱氮除磷效果。

膜分离技术:利用膜过滤技术,如超滤、反渗透等,从废水中去除氮和磷。

4.湿地处理:
人工湿地:利用植物和微生物的协同作用,通过湿地过程去除废水中的氮和磷。

自然湿地模拟:模仿自然湿地的生态系统,利用湿地中的植物和微生物去除废水中的有机和无机污染物。

《2024年污水生物脱氮除磷工艺的现状与发展》范文

《2024年污水生物脱氮除磷工艺的现状与发展》范文

《污水生物脱氮除磷工艺的现状与发展》篇一一、引言随着城市化进程的加速和工业的迅猛发展,大量生活污水和工业废水被排放到水环境中,造成了严重的环境问题。

为了有效减少污水对环境的危害,人们研发了多种污水处理技术。

其中,污水生物脱氮除磷工艺因具有较好的处理效果和较低的运行成本,得到了广泛的应用。

本文将就污水生物脱氮除磷工艺的现状及其发展进行详细探讨。

二、污水生物脱氮除磷工艺的现状1. 工艺概述污水生物脱氮除磷工艺是一种基于微生物作用,利用活性污泥法等生物处理技术,将污水中的氮、磷等营养元素去除的工艺。

该工艺主要利用微生物的代谢作用,将污水中的氮、磷转化为无害物质,从而达到净化水质的目的。

2. 国内外应用现状目前,国内外广泛应用的污水生物脱氮除磷工艺主要包括A/O法、A2/O法、氧化沟法等。

这些工艺在我国污水处理领域得到了广泛应用,特别是在城市污水处理厂和工业废水处理中。

此外,一些新型的生物脱氮除磷技术,如MBR(膜生物反应器)技术、超声波强化生物脱氮除磷技术等也在逐步推广应用。

三、工艺运行机制与原理污水生物脱氮除磷工艺主要依靠活性污泥中的微生物完成。

在反应过程中,微生物通过吸附、吸收、代谢等作用,将污水中的氮、磷等营养元素转化为无害物质。

具体来说,脱氮过程主要通过氨化、硝化和反硝化等步骤实现;除磷过程则主要通过聚磷菌的过量摄磷和释磷实现。

四、工艺发展及挑战1. 技术发展随着科技的不断进步,污水生物脱氮除磷工艺也在不断发展和完善。

新型的生物反应器、高效的微生物菌剂、智能化的控制系统等技术手段的应用,使得污水处理效率得到了显著提高。

同时,一些新型的污水处理理念和技术,如低碳、低能耗、资源化等也得到了广泛关注。

2. 面临的挑战尽管污水生物脱氮除磷工艺取得了显著的成果,但仍面临一些挑战。

如:如何进一步提高处理效率、降低运行成本;如何解决污泥处理与处置问题;如何应对复杂多变的水质等。

此外,一些新兴污染物(如微塑料、新型有机污染物等)也对传统污水处理技术提出了新的挑战。

污水生物脱氮除磷原理及工艺

污水生物脱氮除磷原理及工艺

二、生物除磷过程的影响因素
①溶解氧: l厌氧池内:绝对的厌氧,即使是NO3-等也不允许存在; l好氧池内:充足的溶解氧。 ②污泥龄: l剩余污泥对脱磷效果有很大影响,泥龄短的系统产生的剩余
污泥多,可以取得较好的除磷效果;
l 有报道称:污泥龄为 30d ,除磷率为 40%;污泥龄为 17d,
除磷率为50%;而污泥龄为5d时,除磷率高达87%。
减弱了。
⑦氧化还原电位: l好氧区的ORP: + 40~50mV;缺氧区的ORP: -160~ 5mV
第四节 废水生物脱氮工艺与技术
一、活性污泥法脱氮传统工艺 二、缺氧 — 好氧活性污泥法生物脱氮系统( A—O 工 艺) 三、氧化沟生物脱氮工艺 四、生物转盘生物脱氮工艺
一、活性污泥法脱氮传统工艺
NH3或N2
出水
三、除磷的物化法(混凝沉淀法)
1)铝盐除磷:
Al
3
PO
3 4
AlPO
4
一般用Al2(SO4)3,聚氯化铝(PAC)和铝酸钠(NaAlO2) 2)铁盐除磷:FePO4 、 Fe(OH)3
一般用FeCl2、FeSO4 或 FeCl3 、Fe2(SO4)3
3)石灰混凝除磷:
5 Ca
生物脱氮的基本原理
好氧或厌氧条件 碱度增大,pH值升高 O2或无氧 异养细菌 绝对好氧条件 碱度下降,pH值降低 O2 氨氧化细菌 (自养型) 亚硝化作用 绝对好氧条件 碱度和pH值无变化 O2 硝化细菌 -N (自养型) NO -N
3
有机氮
NH4+-N
NO2
①氨化作用
硝化作用
②硝化作用
碱度增大,pH值升高 缺氧条件 有机物 有机物
2

《2024年污水生物脱氮除磷工艺优化技术综述》范文

《2024年污水生物脱氮除磷工艺优化技术综述》范文

《污水生物脱氮除磷工艺优化技术综述》篇一一、引言随着城市化进程的加快和工业的迅速发展,污水排放量日益增加,水体富营养化问题日趋严重。

其中,氮、磷等营养物质的过量排放是导致水体污染的主要原因之一。

因此,污水处理中的脱氮除磷技术显得尤为重要。

本文旨在综述污水生物脱氮除磷工艺的优化技术,分析现有技术的优缺点,探讨未来技术的发展方向。

二、污水生物脱氮除磷技术概述污水生物脱氮除磷技术主要通过微生物的作用,将污水中的氮、磷等营养物质转化为无害的物质,以达到净化水质的目的。

该技术主要分为生物脱氮技术和生物除磷技术两部分。

生物脱氮技术主要通过硝化、反硝化等过程去除氮;生物除磷技术则通过聚磷菌的富集和排放来去除磷。

三、现有生物脱氮除磷工艺及优缺点分析1. 传统A2/O工艺:A2/O工艺是一种常用的生物脱氮除磷工艺,具有同步脱氮除磷的效果。

但其运行过程中存在碳源竞争、泥龄矛盾等问题,导致处理效果不稳定。

2. 短程硝化反硝化工艺:该工艺通过控制硝化过程,使硝化反应停留在亚硝酸盐阶段,从而减少反硝化过程的能耗和污泥产量。

但该工艺对运行条件要求较高,控制难度较大。

3. 强化生物除磷工艺:通过投加碳源或优化运行条件,提高聚磷菌的除磷效率。

该工艺除磷效果好,但增加了运行成本。

四、生物脱氮除磷工艺优化技术1. 新型反应器技术:如组合式反应器、流态化床反应器等,通过优化反应器结构,提高微生物与污水的接触效率,从而提高脱氮除磷效果。

2. 强化生物脱氮技术:通过投加特定菌种、优化运行参数等方式,提高硝化、反硝化反应速率,降低能耗。

3. 生物膜法技术:利用生物膜的高效吸附和生物降解作用,提高脱氮除磷效果。

同时,生物膜法能够降低污泥产量,减少二次污染。

4. 智能控制技术:通过引入智能控制系统,实时监测和调整污水处理过程中的各项参数,如pH值、溶解氧浓度等,以实现最优的脱氮除磷效果。

五、未来发展趋势与展望1. 高效、低耗的脱氮除磷技术将成为未来研究的重要方向。

给排水工艺中的脱氮除磷技术

给排水工艺中的脱氮除磷技术

给排水工艺中的脱氮除磷技术随着工业化和城市化的不断推进,水资源的污染问题日益严重。

其中,氮和磷的过量排放成为水体富营养化的主要原因,对水生态系统造成了严重破坏。

为了解决这一问题,人们开展了大量的研究工作,发展出了一系列脱氮除磷技术,以实现有效的污水处理和水资源保护。

一、生物脱氮除磷技术生物脱氮除磷技术是指利用微生物将污水中的氮和磷转化为微生物体内的存贮形式,从而达到去除氮和磷的目的。

常见的生物脱氮除磷技术包括断氮除磷工艺、厌氧-氧化法、运动床生物脱氮除磷工艺等。

1. 断氮除磷工艺断氮除磷工艺是通过合理调控好异养和自养微生物的生长环境,使其在不同的环境条件下实现氮和磷的去除。

该工艺特点是操作简单、运行成本低,并且对原有的污水处理系统改造较小。

2. 厌氧-氧化法厌氧-氧化法是一种结合了厌氧和好氧的微生物代谢方式的混合脱氮除磷工艺。

在厌氧条件下,微生物通过吸附有机磷和铁磷化合物,将其转化为可沉淀的无机磷;而在好氧条件下,微生物将污水中的氨氮和亚硝酸盐氮氧化为硝酸盐氮,从而实现氮的去除。

3. 运动床生物脱氮除磷工艺运动床生物脱氮除磷工艺是通过运动床内特殊载体上的生物膜反应,实现氮和磷的去除。

在运动床内,床内载体提供了大量表面积,使微生物能够在其表面附着生长,形成生物膜。

通过床内产生的氧气、底部引入的反应液和定时的床内气流,使微生物脱氮除磷的同时也去除了产生的污泥。

该工艺具有去除效果好、处理效率高等优点。

二、物化脱氮除磷技术除了生物脱氮除磷技术,物化脱氮除磷技术也是一种常用的方法。

物化脱氮除磷技术主要是通过添加化学药剂,使污水中的氮和磷形成不溶于水的沉淀物,从而实现去除的过程。

常见的物化脱氮除磷技术包括化学沉淀法、离子交换法等。

1. 化学沉淀法化学沉淀法是通过添加化学药剂,将污水中的氮和磷与该药剂反应生成不溶于水的沉淀物而达到去除的目的。

常用的药剂包括聚合氯化铝、硫酸铁等。

该工艺具有操作简单、去除效果好的特点,但其副产物需要进行妥善处理。

《2024年污水生物脱氮除磷工艺优化技术综述》范文

《2024年污水生物脱氮除磷工艺优化技术综述》范文

《污水生物脱氮除磷工艺优化技术综述》篇一一、引言随着工业化的快速发展和城市化进程的加速,污水处理问题日益严峻。

在污水处理过程中,脱氮除磷是重要的处理环节。

传统的物理、化学方法虽然能够达到一定的处理效果,但往往存在能耗高、成本大、易产生二次污染等问题。

因此,对污水生物脱氮除磷工艺的优化技术研究显得尤为重要。

本文将就污水生物脱氮除磷工艺的优化技术进行综述,以期为相关领域的研究与应用提供参考。

二、污水生物脱氮除磷工艺概述污水生物脱氮除磷工艺是一种利用微生物的作用,通过生化反应去除污水中的氮、磷等营养物质的工艺。

该工艺具有处理效率高、能耗低、成本低、无二次污染等优点,是当前污水处理领域的研究热点。

三、脱氮工艺优化技术1. 厌氧/缺氧/好氧(A2/O)工艺优化:通过调整进水比例、反应时间、污泥回流比等参数,提高脱氮效率。

同时,利用内源反硝化、短程硝化反硝化等新技术,降低能耗和污泥产量。

2. 生物膜法脱氮技术:通过在生物反应器中填充生物填料,形成生物膜,提高微生物的附着率和生物量,从而提高脱氮效率。

3. 新型脱氮材料与技术:利用纳米材料、生物炭等新型材料,提高微生物的活性和脱氮效率。

四、除磷工艺优化技术1. 生物除磷技术:通过调控系统中的碳源、pH值、污泥龄等参数,提高聚磷菌的活性,从而实现高效除磷。

2. 化学除磷与生物除磷结合技术:在生物除磷的基础上,利用化学药剂辅助除磷,提高除磷效果。

3. 高效沉淀除磷技术:通过投加高效沉淀剂,使磷酸盐沉淀并从污水中分离出来。

五、综合优化技术1. 智能化控制技术:利用智能控制系统,实时监测和调整污水处理过程中的各项参数,实现自动优化控制。

2. 组合工艺:将不同的脱氮除磷工艺进行组合,形成组合工艺,提高处理效果和效率。

3. 污泥处理与资源化利用:对处理过程中产生的污泥进行资源化利用,如制备生物肥料、能源回收等,实现污水的资源化利用。

六、未来展望未来,随着科技的不断进步和环保要求的提高,污水生物脱氮除磷工艺将更加注重节能、降耗、减排。

污水处理中的脱氮除磷工艺

污水处理中的脱氮除磷工艺

污水处理中的脱氮除磷工艺在现代社会,随着工业的发展和人口的增长,污水的排放量不断增加,其成分也变得越来越复杂。

污水中的氮和磷如果未经有效处理直接排放到自然环境中,会导致水体富营养化,引发一系列严重的生态问题。

因此,脱氮除磷工艺在污水处理中显得至关重要。

污水中的氮主要以有机氮和无机氮两种形式存在。

有机氮如蛋白质、氨基酸等,无机氮则包括氨氮、硝态氮和亚硝态氮。

磷主要以磷酸盐的形式存在,包括正磷酸盐、偏磷酸盐和多磷酸盐等。

常见的脱氮工艺包括生物脱氮和化学脱氮。

生物脱氮是目前应用最广泛的方法,其原理是利用微生物的代谢作用将氮转化为氮气排放到大气中。

这个过程主要包括氨化、硝化和反硝化三个步骤。

氨化过程是将有机氮转化为氨氮。

在这个阶段,微生物通过分解作用将蛋白质、氨基酸等有机氮化合物转化为氨氮。

这一过程通常在有氧条件下进行。

硝化过程则是将氨氮转化为硝态氮。

这一步骤需要两类细菌的参与,分别是将氨氮氧化为亚硝态氮的亚硝化细菌和将亚硝态氮进一步氧化为硝态氮的硝化细菌。

这两类细菌都是好氧菌,因此硝化过程需要充足的氧气供应。

反硝化过程是将硝态氮还原为氮气。

反硝化细菌在缺氧条件下,利用有机物作为电子供体,将硝态氮还原为氮气。

这一过程不仅实现了脱氮的目的,还降低了有机物的含量。

除了生物脱氮,化学脱氮方法也有应用。

例如,折点加氯法通过向污水中加入氯气,将氨氮氧化为氮气,但这种方法成本较高,且可能产生二次污染。

在除磷方面,常见的工艺包括生物除磷和化学除磷。

生物除磷主要依靠聚磷菌来实现。

在厌氧条件下,聚磷菌吸收污水中的有机物,并将其转化为聚β羟基丁酸酯(PHB)等储存起来,同时释放出体内的磷酸盐。

而在好氧条件下,聚磷菌分解体内的 PHB 产生能量,用于吸收污水中的磷酸盐,并将其以聚磷酸盐的形式储存在体内。

通过排放富含聚磷菌的剩余污泥,就可以达到除磷的目的。

化学除磷则是通过向污水中添加化学药剂,使磷形成沉淀而去除。

常用的化学药剂有铝盐、铁盐和石灰等。

《2024年污水生物脱氮除磷工艺的现状与发展》范文

《2024年污水生物脱氮除磷工艺的现状与发展》范文

《污水生物脱氮除磷工艺的现状与发展》篇一一、引言随着工业化和城市化的快速发展,污水处理问题日益突出。

其中,氮、磷等营养物质的排放对水环境造成了严重污染。

污水生物脱氮除磷工艺作为一种高效、经济的污水处理技术,得到了广泛的应用和关注。

本文将介绍污水生物脱氮除磷工艺的现状,并探讨其未来的发展趋势。

二、污水生物脱氮除磷工艺的现状1. 工艺原理污水生物脱氮除磷工艺主要利用微生物的作用,通过一系列的生化反应,将污水中的氮、磷等营养物质转化为无害物质,从而达到净化水质的目的。

该工艺主要包括硝化、反硝化、厌氧释磷和好氧吸磷等过程。

2. 常见工艺目前,常见的污水生物脱氮除磷工艺包括A/O(厌氧/好氧)工艺、A2/O(厌氧-缺氧-好氧)工艺、MBBR(移动床生物反应器)工艺等。

这些工艺在不同领域得到了广泛应用,取得了显著的成效。

3. 现状分析(1)优点:污水生物脱氮除磷工艺具有处理效率高、运行成本低、污泥产量少等优点,能够有效地去除污水中的氮、磷等营养物质。

(2)挑战:然而,该工艺在应用过程中也面临一些挑战,如硝化菌和反硝化菌的生长条件差异大、运行管理复杂等。

此外,某些工业废水中的特殊成分可能对微生物产生抑制作用,影响处理效果。

三、污水生物脱氮除磷工艺的发展趋势1. 技术创新随着科技的不断进步,新的污水处理技术不断涌现。

未来,污水生物脱氮除磷工艺将更加注重技术创新,通过优化工艺参数、改进设备结构、提高微生物活性等方式,提高处理效率,降低运行成本。

2. 组合工艺为了进一步提高处理效果,未来将更加注重将不同的污水处理工艺进行组合。

例如,将物理、化学和生物处理方法相结合,形成组合工艺,以适应不同类型污水的处理需求。

3. 智能化管理随着信息技术的发展,污水处理行业的智能化管理将成为未来发展的重要方向。

通过引入物联网、大数据、人工智能等技术手段,实现对污水处理过程的实时监控、远程控制和智能调度,提高运行管理的效率和准确性。

4. 资源化利用为了实现污水的资源化利用,未来将更加注重对污水处理过程中产生的污泥进行资源化利用。

《2024年污水生物脱氮除磷工艺优化技术综述》范文

《2024年污水生物脱氮除磷工艺优化技术综述》范文

《污水生物脱氮除磷工艺优化技术综述》篇一一、引言随着城市化进程的加快和工业的迅猛发展,污水问题日益突出,其中氮、磷等营养物质的排放对水环境造成了严重污染。

因此,污水处理技术的研究与优化显得尤为重要。

污水生物脱氮除磷工艺作为当前主流的污水处理技术,其优化对提升污水处理效果,减少环境污染具有深远意义。

本文将对该技术的优化发展进行综述。

二、污水生物脱氮技术1. 传统生物脱氮技术传统生物脱氮技术主要通过硝化与反硝化过程实现。

其中,硝化过程将氨氮转化为硝酸盐,反硝化过程则将硝酸盐还原为氮气,从而达到脱氮的目的。

然而,传统技术存在能耗高、污泥产量大等问题。

2. 优化生物脱氮技术为提高脱氮效率,降低能耗,研究者们对传统技术进行了优化。

其中包括:引入新型脱氮菌种、优化反应器结构、改进运行控制策略等。

此外,一些新型的生物脱氮技术,如短程硝化反硝化、同时硝化反硝化等也得到了广泛研究。

三、污水生物除磷技术1. 传统生物除磷技术传统生物除磷技术主要依靠聚磷菌的过量摄磷实现。

在厌氧条件下,聚磷菌摄取污水中的挥发性脂肪酸(VFA),并在好氧条件下过量释放磷酸盐。

然而,传统除磷技术存在磷去除不彻底、易造成二次污染等问题。

2. 优化生物除磷技术为解决上述问题,研究者们对传统除磷技术进行了改进。

其中包括:引入高效聚磷菌、优化厌氧/好氧交替运行周期、结合其他物理化学方法等。

此外,一些新型的生物除磷技术,如高效厌氧-好氧(A2/O)工艺、多级AO工艺等也得到了广泛应用。

四、污水生物脱氮除磷工艺优化针对污水生物脱氮除磷工艺的优化,主要包括以下几个方面:1. 工艺参数优化:通过调整pH值、温度、溶解氧(DO)等工艺参数,提高脱氮除磷效率。

例如,适宜的pH值和温度有利于提高硝化、反硝化及聚磷菌的活性。

2. 反应器优化:通过改进反应器结构,提高传质效率,从而提升脱氮除磷效果。

例如,采用内循环反应器、三维电极反应器等新型反应器。

3. 联合处理技术:将生物处理技术与物理化学方法相结合,如结合沉淀、过滤、吸附、氧化等技术,提高污水的处理效果。

《2024年污水生物脱氮除磷工艺优化技术综述》范文

《2024年污水生物脱氮除磷工艺优化技术综述》范文

《污水生物脱氮除磷工艺优化技术综述》篇一一、引言随着城市化进程的加快和工业的迅猛发展,污水处理问题日益凸显。

在污水处理过程中,脱氮除磷是关键环节之一。

为了解决这一问题,国内外众多学者及工程师不断研究、探索、实践和改进生物脱氮除磷工艺,并取得了一定的成效。

本文将综述近年来污水生物脱氮除磷工艺的研究进展、关键技术及优化措施,以期为相关研究与应用提供参考。

二、污水生物脱氮除磷技术概述污水生物脱氮除磷技术主要利用微生物的代谢作用,通过特定的工艺流程,去除水中的氮、磷等污染物。

该技术具有处理效果好、成本低、操作简便等优点,在污水处理领域得到了广泛应用。

然而,随着排放标准的不断提高和污水成分的日益复杂化,传统的生物脱氮除磷技术面临诸多挑战。

三、关键技术研究1. 生物脱氮技术:生物脱氮主要通过硝化与反硝化两个过程实现。

硝化过程主要依靠自养硝化菌将氨氮转化为硝酸盐氮,反硝化过程则利用异养菌在缺氧条件下将硝酸盐氮还原为氮气。

近年来,学者们通过优化反应器设计、调整运行参数等手段,提高了生物脱氮的效率。

2. 生物除磷技术:生物除磷主要依靠聚磷菌在厌氧-好氧交替环境下实现。

在厌氧条件下释放磷,好氧条件下过量吸收磷。

研究人员通过改良反应条件、筛选高效聚磷菌等方法,提高了生物除磷的效果。

四、工艺优化措施1. 强化生物反应器设计:针对不同污水的特性,设计合理的反应器结构,如优化进出水方式、调整曝气系统等,以提高微生物与污水的接触效率。

2. 调整运行参数:通过优化反应器的曝气量、污泥回流比、污泥龄等参数,提高生物脱氮除磷的效率。

3. 引入新型生物技术:如利用基因工程技术构建高效脱氮除磷菌种,或采用微生物燃料电池等技术,提高污水处理效果。

4. 组合工艺:将生物脱氮除磷技术与物理化学法相结合,如采用化学沉淀法辅助生物脱氮除磷,提高处理效果和稳定性。

五、研究展望未来,随着科技的进步和环保要求的提高,污水生物脱氮除磷技术将朝着更加高效、节能、环保的方向发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作者简介 : 刘
统工艺中的碳源问题以及不同菌种之间的竞争问题。 其培养
驯化状 况 .会 直接影 响到 污水 中氮磷 的 同时高 效稳 定去 除
(9 5 , 吉林省 东辽县人 , 业于吉林建筑工程学院给水排 水理 方面的设计和研究。
. .
11 同 步 硝 化 反 硝 化 .. 2
传统脱氮理论 认为 :硝 化反应 只能 由 自养 细菌完 成 : 而 反 硝化只能在 缺氧和低 溶解氧条 件下进行 。但 是 , 异养硝化 细菌 以及好 氧反硝化 细菌 的发现 则打破 了这 一观点[。硝化 2 ]
和反硝化 可以实现 同步进行 。 同步硝化反硝 化技术能够节 省
现代泻 处理望翱脱氮踩磷
刘 跃
鳕桁
( 北京 土人城 市规 划设计有 限公 司 北京 10 8 ) 0 0 0
摘要 概述生物 脱氮除磷机 理 , 包括 生物脱 氮、 生物除磷机理 以及 同步脱 氮除磷机理 、 反硝 化脱 氮除磷机 理 。分析 不 同生
反 硝 化 脱 氮 除 磷
物脱 氮除磷 机理的 处理工 艺, 阐述 了脱氮 除磷 工艺的发展 趋势 。 并
工艺 。
l 机 理 分 析
11 生 物 脱 氮机 理 .
生物除磷原 理 即:聚磷 菌在有氧 条件下 过量吸 收磷 . 在 厌 氧条件下 释放 磷 。厌氧状 态下 。 聚磷菌将 体 内的有 机磷 转 化 成无机磷 释放 , 同时合成 聚一 一 B 羟基 丁酸( HB 颗粒 ; P ) 而好 氧 状态 时 , 聚磷 菌则将 积贮 的 P B降 解 。 H 释放 出能量 。当环 境 中存在 溶解状 态的磷 时 .聚磷 菌可利用 降解 P HB释放 出 的能量主动 吸收磷酸盐 , 以聚磷的形式 贮存于 细胞 内 随 并
NH 4一N
亚硝化细菌 NO
2 一 N
N: N , 0
圈 1 生 物 脱 氮 过 程 示 意 图
菌 的生理 差异 . 得氮和磷 的同时去 除必然存在 着生 物学上 使
的矛盾 和竞争 , 无法 同时达 到高效 同步脱氮除磷 。 13 反硝化脱 氮除磷 .2 . 通过 反硝 化除 磷菌 ( P 的作 用也 能够 实 现 同步脱 氮 D B)
关 键 词 脱 氮 除磷 同 步 脱 氮 除 磷
中 图分 类号 :5 5 X 0
文献标 识码 : A
文章编 号 :6 2 9 6 ( 1 )4 0 2 — 3 1 7 — 0 42 0 — 10 0 01
反应 时间 , 因而反应器 容积减小 , 节省基建 投资 。 但是该法 的 出水 亚硝酸盐含 量可能较 高 。 运行 时需要严格 控制 1 . 厌 氧氨氧化 .4 1 厌 氧氨 氧化是 自养 的微生物 过程 . 氧状 态下 . 厌 微生 物
占地 面积 和投资 。 无需外加碳 源[。 3 ]
11 短程硝 化反硝化 .. 3 这一过 程 的基本原 理是 利用亚 硝化 细菌 和硝化 细菌 的
生理 差异 . 造适宜 亚硝 化细菌 生长 的环 境 。 硝 化过 程控 创 将
制在 亚硝化 阶段 。 照 NH —N rN 2 按 广N 0 —N 的过程实现 短程 硝化 反硝化脱氮 [ ] 3 。亚硝化细菌世 代时 间较 短 , 短 了硝化 l 4 缩
以氨氮为 电子供 体 , N r N 3 以 O 、 0一 作为 电子受体 , 生生化 反 发
应, 产生氮 气。 工艺不需要外加 碳源 、 该 减少 了化 学试剂消 耗 [o 3 ]
1 生物 除磷 机 理 . 2
的逐步深入 .人们对生 物脱氮除磷 的机理 有了新 的认 识 . 在
原有 工艺 的基础上 研究 开发 出 了一 系列 新型 生物脱 氮 除磷
o1 .@ 0. 4 1O. N
111 传统 生物脱氮机理 ..
传 统生物脱氮包 括 四个过 程 : 氨化 、 硝化 、 亚 硝化 和反硝 化。 首先 , 有机 氮化合物 通过氨化 作用分解转 化为氨态氮 ; 然
后 . 态氮在 亚硝化 菌 的作用 下转化 成亚 硝酸 氮 . 而亚硝 氨 继 酸氮又 通过硝化菌 的作用 , 进一步 分解 转化 为硝酸氮 ; 最终 , 硝酸氮 在缺氧条件 下通过反 硝化细菌 的代 谢作用 . 由两种 经
着 剩余 污泥 的排 放 .被聚磷 菌过量摄 取的磷也 排 出系统 . 从 而达到除磷 的 目的
1 . 同 步脱 氮 除 磷 机 理 3
途径转化 : ①同化作用 , 形成 的有机氮化合物成为菌体的组
成部分; ②异化作用 , 终产物是气态氮… 。过程如图 1 所示。
有机氮
NO3一N
1 . 传统 同步脱氮除磷 .1 3
生 物脱 氮需要 在好 氧 、 缺氧交 替 的环境完 成 . 生物 除 而 磷 需要在好 氧 、 氧交替 的环境 下进行 。因此要达 到 同步除 厌 磷 脱氮 的 目的 . 必须创造适 宜各种微 生物生长 所需要 的好 就 氧、 缺氧 、 氧三种生存 环境 。但是 。 厌 由于脱氮类 细菌 和除磷
除磷 在具有 脱氮除磷 处理能力 的活性污泥 中可 以发现 DP B 的存在 。 但并 不是优势 菌种[。通过厌氧, 氧交替运 行 的环 6 ] 缺 境 可以 富集 培养 ,此类 细菌 能以 0 、 O 、 O 为 电子受体 , 2N r N r 通过 自身的代谢 作用完成 同时过量吸磷 和反硝化 的过程 . 从 而 达到 同步 脱氮除磷 的 目的 。D B的菌属特 性解 决 了传 P
氮 和磷能 够使 湖泊 等缓流 封闭 或半 封闭 的水体 产生 富 营养化 , 而水体 富营养化 已成 为全球 的重大环境 问题 。控制
水 体 富营养化 和保 证水 质安全 的关 键就 是有效 地去 除城 市 污水 中的氮和磷 。 物脱氮除磷作 为解决水 体富 营养 化的有 生
效 手段成 为了污水处 理领域 的热 点研究方 向 。 随着研 究工作
相关文档
最新文档