光无源器件介绍

合集下载

光无源器件研究报告

光无源器件研究报告

光无源器件研究报告近年来,随着通信技术的快速发展,人们对光通信技术的研究和应用越来越广泛。

而光无源器件作为光通信系统中重要的组成部分,对于提高光通信的性能和稳定性具有重要的意义。

本文将介绍光无源器件的研究现状和发展趋势。

一、光无源器件的定义和分类光无源器件是指无需外部能量输入即可实现光信号处理的元器件。

它不需要任何电、磁或化学能量的输入,只需要利用光本身的特性完成光信号的处理。

光无源器件广泛应用于光通信、光存储、光计算等领域。

根据不同的工作原理,光无源器件可以分为几种类型,如:1. 光纤光纤是一种将光信号传输到目的地的无源设备。

光纤具有低损耗、高速率和抗电磁干扰等特点,因此它广泛应用于光通信系统中。

一般来讲,光纤可分为单模光纤和多模光纤两种。

其中,单模光纤适合远距离传输,而多模光纤适合短距离传输。

2. 光栅光栅是一种将光信号进行处理的器件。

它通常由一系列的反射棱镜组成,可以用来扩展、稳定和调制光信号。

光栅广泛应用于激光系统、治疗仪器和光谱仪等领域。

3. 光衰减器光衰减器是一种可以调节光的强度的器件。

它可用来控制光信号的输出功率,从而保证通信系统的正常运行。

光衰减器通常由气体、固体材料或半导体材料构成。

4. 光开关光开关是一种可以控制光线的传输路径的器件。

它通过调节光的传输路径来进行光信号的切换和路由。

光开关广泛应用于网络通信、光计算和光传感器等领域。

近年来,随着通信技术的快速发展,人们对光无源器件的研究越来越深入。

目前,研究人员主要关注以下几个方面:1. 新型光无源器件的研发为了提高光通信系统的性能和稳定性,研究人员一直在努力研发新型的光无源器件。

这些新型器件具有更高的灵敏度、更低的损耗和更广泛的应用范围,并且可以适应不同的光通信需求。

除了研发新型器件之外,研究人员还在努力优化现有的光无源器件。

通过改进设备的结构和材料,研究人员可以提高器件的性能和工作效率,并提高器件的可靠性和稳定性。

随着通信设备越来越小、越来越便携,研究人员也在努力实现光无源器件的集成化。

光无源器件介绍范文

光无源器件介绍范文

光无源器件介绍范文光无源器件是指无需外界能源输入即可以产生、控制、处理或传输光信号的器件。

它们在光通信、光传感、光储存、激光装置等领域具有重要应用价值。

本文将详细介绍几种常见的光无源器件,包括光纤、光栅、偏振器件、光耦合器件和光探测器等。

首先,光纤是一种常见的光无源传输介质。

它具有优异的光学特性,可以实现长距离、高速、低损耗的光信号传输。

光纤通信系统中的核心部件就是光纤。

光纤根据其结构可以分为多模光纤和单模光纤。

多模光纤通常用于短距离通信,而单模光纤适用于长距离通信。

光纤的制作工艺和材料技术的不断进步使得光纤通信系统性能不断提升。

其次,光栅是另一种常见的光无源器件。

光栅是在光介质中周期性变化的折射率结构,可以对入射光进行衍射和反射。

光栅可以用于光谱分析、光信号处理和光波波长选择等应用。

根据光栅的结构可以分为吸收光栅和反射光栅。

吸收光栅通过调整折射率分布来实现频率选择,反射光栅则通过反射光波形成波束宽度调制。

光栅可以实现光信号的分光、滤波和耦合等功能。

再次,偏振器件是用于控制和调整光波偏振状态的器件。

偏振器件根据其工作原理可以分为吸收式偏振器、分束偏振器和光学偏振调制器。

吸收式偏振器通过吸收非期望偏振分量来实现偏振分离。

分束偏振器通过折射率分布的改变实现光波的分离。

光学偏振调制器则通过改变材料的光学特性或施加电场来调制光的偏振状态。

其次,光耦合器件用于实现不同光波的耦合和分离。

光耦合器按照其结构和工作原理可分为分离型光耦合器和集成型光耦合器。

分离型光耦合器通过光波的反射和折射实现光波的耦合。

集成型光耦合器则通过光导波结构的耦合来实现不同波长光波的耦合和分离。

光耦合器为光通信和光传感等系统提供了重要的互连和耦合功能。

最后,光探测器是一种用于接收光信号并转换为电信号的器件。

根据工作原理,光探测器可分为光电二极管、光电导探测器和光电子倍增器等。

光电二极管是最常见的光探测器,它利用内建电场将吸收的光电子转化为电流。

光无源器件的技术分析

光无源器件的技术分析

光无源器件的技术分析光无源器件是光通信系统中至关重要的一部分,其在光通信系统中起到传输、分配和处理光信号的作用。

光无源器件主要指的是不需要外部能量作为驱动力的器件,比如光纤、光耦合器、光接收器等。

本文将对光无源器件的技术特点、应用领域和发展趋势进行分析。

一、光无源器件的技术特点1.1 宽带传输特性光无源器件具有宽带传输特性,能够支持高速数据传输。

与传统的电子通信相比,光无源器件能够实现更高的数据传输速率和更远的传输距离,适用于大容量、远距离、高速的通信需求。

1.2 低损耗光无源器件的传输损耗较小,在信息传输过程中能够减少光信号的衰减。

这使得光无源器件在长距离传输中具有优势,保证了信号的稳定传输。

1.3 高稳定性光无源器件在工作过程中具有高稳定性,能够长时间保持良好的性能。

这对于光通信系统的稳定性和可靠性至关重要,能够有效减少系统的故障率。

1.4 低能耗光无源器件不需要外部能量作为驱动力,能够通过光信号本身完成工作,因此具有较低的能耗。

这符合当今节能环保的发展趋势,也是光通信技术被广泛应用的重要原因之一。

二、光无源器件的应用领域2.1 光通信系统光无源器件是光通信系统中不可或缺的一部分,能够支持大容量、高速、长距离的数据传输需求。

在光通信系统中,光无源器件被广泛应用于光纤通信、无线光通信、卫星通信等领域。

2.2 数据中心随着云计算、大数据、人工智能等技术的快速发展,数据中心对于高速数据传输的需求越来越大。

光无源器件能够满足数据中心对于高速、大容量数据传输的需求,提高数据中心的传输效率和稳定性。

2.3 军事领域军事通信对于信息传输的安全性、稳定性、快速性有着极高的要求,光无源器件能够满足军事通信对于大容量、高速、长距离传输的需求,确保军事信息的安全传输。

2.4 其他领域除了上述领域,光无源器件还在医疗、航空航天、工业自动化等领域有着广泛的应用。

随着光通信技术的发展和普及,光无源器件的应用领域将会继续扩大。

光无源器件的原理及应用

光无源器件的原理及应用

光无源器件的原理及应用概述光无源器件是指在光通信系统中不需要能量供给而能够实现光信号的传输和处理的器件。

这些器件主要包括光纤、光耦合器、光分路器和光合器等。

本文将介绍光无源器件的原理和应用。

光纤光纤是光通信系统的核心组成部分。

它通过将光信号以光的全内反射方式在高纯度的玻璃/塑料纤维中传输。

光纤有着很低的损耗和高的带宽能力,也是目前最主要的传输媒介之一。

光纤的原理光纤的工作原理基于光的光束泄漏现象,即当光束从一种介质射入另一种折射率较低的介质中时,光束会不断发生反射并沿着光纤内部进行传输。

光纤的核心由折射率较高的材料组成,以便在传输过程中最小化信号的损耗。

光纤的应用光纤广泛应用于长距离通信和局域网等领域。

其高带宽和低损耗的特点使得它成为传输大量数据的理想选择。

此外,光纤还应用于医疗设备、光纤传感器和光纤显示等领域。

光耦合器光耦合器是一种用于将光信号从一个光纤耦合到另一个光纤的器件。

它广泛应用于光通信系统中,可以实现信号的分配、处理和路由等功能。

光耦合器的原理光耦合器的原理基于波导模式之间的耦合。

当光信号从一个波导模式传输到另一个波导模式时,通过适当设计导波结构,可以实现高效的能量转移。

光耦合器的设计可以根据具体的应用需求进行调整,以实现不同的功能。

光耦合器的应用光耦合器广泛应用于光网络中的信号分配和路由。

在光通信系统中,光耦合器可以用于将信号从主干光纤耦合到分支光纤或从分支光纤耦合到接收器等。

此外,光耦合器还可以应用于光传感器和光存储等领域。

光分路器光分路器是一种可以将入射光信号分为两个或多个输出通道的器件。

它常用于光网络中的信号分配和选择。

光分路器的原理光分路器的原理基于多模干涉。

当光信号通过光分路器时,不同波长的光信号会按照特定的光学路径进行干涉,从而实现光的分路。

根据光分路器的设计,可以实现不同的分路比例和带宽。

光分路器的应用光分路器广泛应用于光通信系统中的信号分配和选择。

光分路器可以将光信号分为不同的通道,实现多路复用和分布式传输。

光纤无源器件常用晶体介绍

光纤无源器件常用晶体介绍

光纤无源器件常用晶体介绍
光纤无源器件常用的晶体包括:
1. 红外光通信中使用的铌酸锂晶体(LiNbO3),它具有优良
的非线性光学效应,适用于光调制器和光开关等光纤无源器件。

2. 铋硼酸锂晶体(LiB3O5,简称BBO),它具有较大的非线
性折射率和较宽的透明度范围,适用于高功率激光系统和频率倍频器等器件。

3. 铂酸锂晶体(LiNbO3)、磷酸钛锂晶体(LiTaO3)等铁电
晶体,它们具有压电效应和光电效应,适用于电光调制器和光开关等器件。

4. 硼酸锂晶体(Li2B4O7,简称LBO),它具有大的非线性
光学系数和宽的透明范围,适用于高功率激光系统和频率倍频器等器件。

5. 硼砂晶体(B2O3),它具有良好的非线性光学特性,适用
于光调制器和非线性光纤等器件。

这些晶体具有不同的光学特性和应用领域,根据具体的应用需求选择合适的晶体材料可以提高光纤无源器件的性能和效果。

光通信:第04章常用光无源器

光通信:第04章常用光无源器

光隔离器的应用场景
光隔离器是一种用于防止光信 号反方向传输的无源器件,主 要用于光纤放大器和激光雷达 等光通信系统。
在光纤放大器中,光隔离器可 以防止反向传输的光信号对放 大器的工作产生干扰,提高系 统的稳定性。
在激光雷达中,光隔离器可以 防止反向传输的光信号对激光 源的工作产生干扰,提高系统 的测量精度。
光通信第04章常用光无源器
contents
目录
• 光无源器件概述 • 常用光无源器件 • 光无源器件的工作原理 • 光无源器件的应用场景 • 光无源器件的挑战与解决方案
01 光无源器件概述
定义与分类
定义
光无源器件是指那些在光通信网络中 ,不需要外部电源直接驱动,只起到 传输、控制或变换光信号作用的器件 。
光衰减器的工作原理
光衰减器是一种用于降低光信号 强度的器件,它可以通过吸收或 散射等方式将光信号能量损耗掉
一部分。
光衰减器通常由光学玻璃、陶瓷 等材料制成,其结构可分为均匀
损耗和渐变损耗两种类型。
光衰减器在光通信系统中主要用 于调整光信号的功率、测试光路 的损耗以及保护光接收器件等。
光分路器的工作原理
光环形器的应用场景
光环形器是一种用于实现光信 号环形传输的无源器件,主要 用于光纤传感和激光雷达等光
通信系统。
在光纤传感中,光环形器可 以将多个传感光纤环形连接 在一起,实现多点同时测量
和数据采集。
在激光雷达中,光环形器可以 将多路激光信号环形连接在一 起,实现多目标同时测量的功
能。
05 光无源器件的挑战与解决 方案
应用
WDM系统等领域。
03 光无源器件的工作原理
光纤连接器的工作原理
光纤连接器是用于连接两根光纤的器件,通过精确对准光纤的纤芯和包层,实现光 信号的传输。

光无源器件测试方法

光无源器件测试方法

光无源器件测试方法光无源器件是指在光通信系统中,不需要外部能源供应而能够实现光信号的传输和控制的器件。

典型的光无源器件包括光纤、光栅、光分路器、光耦合器等。

为了确保光无源器件在正常工作条件下能够稳定可靠地传输光信号,需要进行严格的测试和验证。

本文将从光纤、光栅、光分路器和光耦合器等不同类型的光无源器件入手,介绍其测试方法。

1.光纤测试方法光纤是光通信系统中最基础、最重要的光无源器件。

常用的光纤测试方法包括:(1)衰减测试:通过测试光信号从光纤中的衰减情况,来评估光纤功率损失情况。

(2)反射测试:测试光纤接口的反射损耗,确保光信号不会因为接口反射而引起干扰或损失。

(3)纤芯直径测试:测试光纤纤芯直径的尺寸,以确保光信号能够正常传输。

2.光栅测试方法光栅是一种具有周期性折射率变化的光无源器件,常用于光波的衍射和光谱分析等应用。

光栅的测试方法包括:(1)频率响应测试:测试光栅的响应频率范围和频率分辨率,以评估其衍射性能。

(2)衍射效率测试:测试光栅的衍射效率,即测试输入光功率和输出光功率之间的关系。

(3)波长选择测试:测试光栅的波长选择性能,即测试不同波长的光信号在光栅中的传输效果和衍射效率。

3.光分路器测试方法光分路器是一种能够将入射光信号分成两个或多个输出的光无源器件。

光分路器的测试方法包括:(1)分光比测试:通过测试输入光功率和输出光功率之间的关系,来评估光分路器的分光比性能。

(2)均匀性测试:测试光分路器的不同输出通道之间的功率均匀性,以确保光信号在分路器中能够平衡地分布。

4.光耦合器测试方法光耦合器是一种能够将两个或多个光纤的光信号耦合在一起的光无源器件。

光耦合器的测试方法包括:(1)插损测试:通过测试耦合器输入光功率和输出光功率之间的差异,来评估光耦合器的插损性能。

(2)均匀性测试:测试耦合器不同输出通道之间的功率均匀性,以确保光信号在耦合器中能够均匀地分布。

综上所述,光无源器件的测试方法主要包括衰减测试、反射测试、频率响应测试、衍射效率测试、波长选择测试、分光比测试、均匀性测试和插损测试等。

十常见光无源器件制作工艺

十常见光无源器件制作工艺

十常见光无源器件制作工艺光无源器件,也被称为光波导器件或光学器件,是光通信领域中至关重要的组成部分。

光无源器件主要包括光纤、光耦合器、分束器、滤波器、波长分复用器等。

这些器件在光通信系统中起到了传输、分配、滤波等关键作用。

下面将介绍光无源器件制作的一般工艺流程。

1.光纤制作工艺光纤是光通信系统中最基础的无源器件。

光纤的制作工艺主要包括:预制棒拉制法、外气流法、内气流法和PCVD法。

其中,最常用的方法是PCVD法(Plasma Chemical Vapor Deposition),即等离子体化学气相沉积法。

PCVD法利用预制的石英玻璃作为基材,将基材放入反应室中,在高温下加入反应气体,通过化学反应和热反应生成二氧化硅,从而在玻璃表面形成纳米级别的光纤芯。

然后通过拉伸和涂覆等工艺,制作出具有高纯度、低损耗的光纤。

2.光耦合器制作工艺光耦合器用于将光信号从一个光波导传输到另一个光波导,是光通信系统中常见的无源器件。

光耦合器的制作工艺主要包括:硅基法、焕射损耗法和金属/微透镜法等。

其中,硅基法是最常见的制作工艺。

硅基法利用硅基材料作为基底,通过刻蚀技术制作出光波导结构,再利用电子束光刻技术和离子束刻蚀技术进行微结构的制作。

通过这些工艺步骤,可以实现光耦合器的制作。

3.分束器制作工艺分束器是将入射的光信号等比例地分离到不同的输出通道中的器件。

分束器的制作工艺主要包括:多模段法、多波长法、光纤法等。

其中,多模段法是最常用的制作工艺。

多模段法利用光波导的多模特性,通过调整光波导的宽度和长度等参数,实现光信号的分束效果。

此外,多波长法则是利用不同波长的光信号在光波导中的传输特性差异,实现光信号的分束。

4.滤波器制作工艺滤波器用于选择性地传输特定波长的光信号,常用于光通信系统中的波分复用和波长切换。

滤波器的制作工艺主要包括:干涉滤波器法、光波导滤波器法等。

干涉滤波器法利用光的干涉效应,通过将不同波长的光信号引入波导滤波器中,通过干涉效应来实现波长选择性的滤波。

光无源器件介绍范文

光无源器件介绍范文

光无源器件介绍范文光无源器件,又称为光传输无源器件,是指在光通信或光网络中起到信号传输、辅助和转换的功能,但没有电源和活动部件的器件。

光无源器件包括各种被动元件,如光纤、光耦合器、光分路器、光滤波器、光合分器、光切换器等等。

在光通信和光网络中,光无源器件的使用非常广泛且至关重要。

首先,光纤是光无源器件中最基础和最关键的一个。

光纤的作用是将光信号传输到目标地点。

光纤由细长的玻璃或塑料材料制成,其核心是一个折射率较高的介质,被一个折射率较低的包层包围。

光纤的传输速度快、信号损耗小、带宽大,使其成为光通信和光网络中最常用的传输介质。

其次,光耦合器是光无源器件中一种常见的元件,用于实现光信号的耦合和分配。

光耦合器可以将入射光信号分配到多个输出端口,也可以将多个光信号通过耦合器的输入端口合并到一个输出端口。

光耦合器通常以光栅波导结构实现,其工作原理是通过光栅波导的折射率周期性变化将光信号耦合到不同的传输通道。

光分路器是另一种常见的光无源器件,用于将光信号按不同的比例分配到不同的输出通道。

光分路器通常采用耦合波导技术,通过改变波导的结构或尺寸使得不同的输出通道对应不同的传输损耗。

光分路器广泛应用于光网络中的信号分配、波长分割和波长选择等应用场景。

光滤波器是一种能够选择性地传递或阻挡特定波长的光信号的器件。

光滤波器通常采用薄膜多层堆积技术,通过控制多层膜材料的厚度和折射率来实现对特定波长的选择性透过或反射。

光滤波器在光通信中被广泛应用于波分复用和波分多路复用系统中,用于合并或分离不同波长的光信号。

此外,光合分器和光切换器也是光无源器件中的重要代表。

光合分器是一种能够将多个光信号合并到一个输出通道的器件,常用于光网络中信号的合并和集中。

光切换器则是一种能够通过调节输入和输出通道的连通状态实现光信号的切换的器件。

光切换器在光通信和光网络中能够实现对光路的切换、光路的互联等重要功能。

总之,光无源器件是光通信和光网络中不可或缺的一部分。

光无源器件介绍

光无源器件介绍
图13.EDFA结构及其中功能集成方案(摘自康顺网页)
第二十五页,共39页
lHybrid
vHybrid分类
根据图13中的功能集成方案,Hybrid有很多种类,此处仅列出几种无源集 成Hybrid。
ØWDM+Isolator
signal
signal+pump
pump 接掺铒光纤 图14.正向泵浦的WDM+Isolator
隔离。
2
1
21
3
3 三端口环形器
4 四端口环形器
图6.光环形器中的信号光流向
第十四页,共39页
l光环形器
v光环形器应用 用于密集波分复用系统、单纤双向传输、光时阈反射计( OTDR)、色散补偿器。
1、2n
1、2 m-1、m+1 n
FBG m
图7.光环形器用于密集波分复用系统
Tx
Rx
Rx
Tx
图8.光环形器用于单纤双向传输
第四页,共39页
l光纤准直器
v准直器应用 光隔离器、光环形器、光开关、光衰减器、波分复用 器,保偏准直器可用于偏振合束器中
Metal Tube
Glass Tube
Pigtail
图2.准直器结构
第五页,共39页
Lens
l光纤准直器
v准直器参数 Ø工作波长和工作带宽 Ø插入损耗(Insertion Loss,IL)
第三页,共39页
Capillary
l光纤准直器
v准直器分类 Ø按准直透镜分类 G-Collimator、C-Collimator、D-Collimator Ø按尺寸分类
普通型和Mini型
Ø按尾纤类型分类
单模光纤准直器、多模光纤准直器

光无源器件

光无源器件

激光雷达中的应用
激光准直器
用于激光雷达的发射端,将激光束准直为平行光,以提高激光雷 达的测量精度和距离。
光学滤波器
用于滤除激光雷达接收端中的背景光和干扰光,提高信噪比和探 测灵敏度。
光电探测器
将激光雷达接收到的光信号转换为电信号,以便进行后续的信号 处理和分析。
其他领域的应用
1 2 3
光学仪器
光无源器件可用于显微镜、望远镜、光谱仪等光 学仪器中,以改善成像质量、提高分辨率或实现 特定功能。
光无源器件
汇报人:XX
目 录
• 光无源器件概述 • 光无源器件原理及技术 • 常见光无源器件介绍 • 光无源器件性能指标及测试方法 • 光无源器件应用案例分析 • 光无源器件市场前景及挑战
01 光无源器件概述
定义与分类
定义
光无源器件是光通信系统中的重要组 成部分,用于实现光信号的传输、分 配、耦合、隔离、滤波等功能,而无 需外部能源驱动。
距离和接收灵敏度的要求。
传感领域的应用
光纤光栅传感器
01
利用光纤光栅的波长选择性反射特性,实现对温度、压力、应
变等物理量的测量。
光纤陀螺仪
02
基于萨格纳克效应,利用光纤环中的两束反向传播的光波干涉
来测量旋转角速度。
分布式光纤传感器
03
通过测量光纤中后向散射光的强度和时间变化,实现对温度、
应变等物理量的分布式测量。
场景。
行业法规政策影响因素
1
国家对光通信产业的支持力度不断加大,相关法 规政策逐步完善,为光无源器件市场发展提供了 有力保障。
2
随着全球环保意识的提高,环保法规对光无源器 件的生产和使用提出了更高要求,推动行业向绿 色、环保方向发展。

无源器件

无源器件

P2 Pin sin 2 (cz)
P1 Pin P2 Pin cos2 (cz)
式中c为耦合系数
其中d为两光纤耦合区中的纤芯距离,K0、K1为第二类零阶和一阶的贝塞尔函 数。 当波长固定时,可以通过改变W等参数来制作不同性能的耦合器。
Wd ) U2 a c 2n1 a 2V 2 K 12 (W ) K0 (
分路器 4 1
合路器 (a) 3端口耦合器
3 (b) 4端口耦合器
λ 1+λ λ
2
2
1
λ
M
2
N
λ λ
1
λ 1+λ
2
(c) 星形耦合器
2
(d) 3波分复用器
2. 工作原理 2×2耦合器
光纤耦合器结构和原理
将两根单模光纤扭绞在一起,然后加热并拉伸,使它在长为W的距离内均匀熔 融以形成耦合器。在耦合区,纤芯直径变小,归一化频率下降,V值越小模场 直径越大,也即模场超过光纤直径的部分越多。这样,一个光模式的更多部分 在耦合区的包层部分传播,然后被耦合到另一根光纤的纤芯中。 从一根光纤耦合到另一根光纤的光功率取决于耦合区内两个纤芯之间的距 离、两个纤芯直径和工作波长,并与耦合区的长度有关。 Pin是输入功率,P1称为直通功率,P2是耦合到第二根光纤中的功率,P3、 P4是由于耦合器弯曲和封装而产生的反射和散射功率。假设耦合器是无损耗的, 因为P3、P4的比例很小,在此也忽略掉,则耦合功率和直通功率分别可表示为
f F P
c 1 R 2nL R
F-P滤波器的精细度,反映滤波器的选择性,即能分辨的最小频率差。
F
FSR R f F P 1 R
平行镜
平行镜
TFPF

无源光器件

无源光器件

无源光器件(Optical Passive Devices)简介:又称为光无源器件,是光纤通信设备的重要组成部分,也是其它光纤应用领域不可缺少的元器件。

具有高回波损耗、低插入损耗、高可靠性、稳定性、机械耐磨性和抗腐蚀性、易于操作等特点,广泛应用于长距离通信、区域网络及光纤到户、视频传输、光纤感测等等。

其结构图如下:无源光器件原理、作用、种类以及应用简介光无源器件是光纤通信设备的重要组成部分。

它是一种光学元器件,其工艺原理遵守光学的基本规律及光线理论和电磁波理论、各项技术指标、多种计算公式和各种测试方法,与纤维光学、集成光学息息相关;因此它与电无源器件有本质的区别。

无源光器件的种类繁多,功能及形式各异,但在光纤通信网络里是一种使用性很强的不可缺少的器件,而在光纤有线电视中,起着连接、分配、隔离、滤波等作用。

作用概括起来主要是:连接光波导或光路;控制光的传播方向;控制光功率的分配;控制光波导之间、器件之间和光波导与器件之间的光耦合;以及合波和分波等作用。

光无源器件有很多种,分别是:光纤准直器(Fiber Collimators)光纤连接器(Connector),光耦合器件(Coupler),光衰减器(Attenuator),光隔离器(Isolator),光波分复用器(WDM),偏振光合波器(PBC)、光开关(Switch),光环形器(Circulator);在此只介绍几种常见的无源光器件,其余的不再一一介绍。

1、光纤连接器:又称光纤活动连接器,俗称活动接头,用于设备与光纤之间的连接。

光纤连接器的作用是将需要连接起来的单根或多根光纤芯线的断面对准、贴紧,并能多次使用。

2、光纤分路器及耦合器:光纤耦合器,将不同方向的光信号耦合(光纤flash\光纤耦合器SWF )送入一根光纤中传输,或者相反。

常用的三极管光耦合器结构图如下:3、光合波器、光分波器:光合波器和光分波器是用于波分复用等传输方式中的无源光器件.可将不同波长的多个光信号合并在一起耦合到一根光纤中传输,或者反过来说,将从一根光纤传输来的不同波长的复合光信号,按不同光波长分开。

光无源器件概述

光无源器件概述
光器件是具有上述一种功能的元器件的总称。
类型:无源、有源
无源器件主要包括:光连接器、光衰减器、光耦合器、光 波分复用/解复用器、隔离器、环行器、滤波器、光调制器、 光开光等。
有源器件主要包括:激光器、光探测器、光放大器等。
3
光纤无源器件技术
4
无源器件功能
光无源器件是一种能量消耗型器件,主要功能是对信号或能 量进行连接、合成、分叉、转换以及有目的的衰减等,在光纤通 信系统以及各类光纤传感系统中是必不可少的重要器件。
光纤无源及有源器件 技术及应用
1
主要内容:
光纤无源器件技术
光纤光栅、滤波器、调制器等
光纤放大器技术
掺铒光纤放大器、拉曼放大器等
光纤激光器技术
多波长光纤激光器、锁模光纤激光器、单频 光纤激光器等
2
光器件
用途:
实现光信号的连接、能量分路/合路、波长复用/解复用、光路 转换、能量衰减、方向阻隔、光-电-光转换、光信号放大、光信号 调制等功能,是构成光纤通信系统的必备元件。
光波分复用器和解复用器是WDM光纤通信系统中 的关键部件。
25
熔锥光纤型波分复用器结构和特性
P P1
P2
0
1 2
26
1 2 3
1+ 2+ 3
光纤
透镜
光栅
衍射光栅型波分复用器结构示意图
27
光纤
1 2 3
1+ 2+ 3
棒透镜 光栅
采用棒透镜的光栅型WDM
28
光波导
开角
(a)
波导型波分解复用器
1.3 mm
19
光纤耦合器的技术参数
(6) 工作波长范围

常见光无源器件

常见光无源器件

ILf
10lg
16K2
(1(3.K3))4
式中, K n。1 /当n0=1, =1.46时,
ILf。0.32dB
❖ (3) 由于两根光纤纤心直径不同,数值孔径不同也会引起 光纤连接器损耗。

3.1.2 光纤固定连接器
❖ 光纤固定连接器的作用是使一对或几对光纤之间永久性的 连接。
IL10(ldgBP u 输t 出光功率。插入损耗 越
小越好。

3.1.1 光纤活动连接器
❖(2) 回波损耗
❖ 回波损耗又称为后向反射损耗,是指光纤连接处,后向反 射光功率相对入射光功率的分贝数,其表达式为
RL10 (dlBg)Pr(3/.P 2in )
(3.4)
式中, I L为i 第i个输出端口的插入损耗; 的光功率; 为输P i n入的光功率。
❖ 2.附加损耗(Excess Loss)
P为o u第t i i个输出端口
EL10lg
i
Pouti Pin
(dB)
(3.5)
❖ 插入损耗是各输出端口的输出功率状况,不仅与固有损耗 有关,而且与分光比有很大的关系。
❖ 光纤活动连接器结构上差别很大,品种也很多, 但按功能可分成如下几部分:
❖ (1) 连接器插头(Plug Connector):由插针体和若干外 部零件组成。
❖ (2) 转换器或适配器(Adapter):即插座,可以连接同型 号插头,也可以连接不同型号插头,可以连一对插头,也 可以连接几对插头或多心插头。

3.1.2 光纤固定连接器
❖ 实现光纤熔接的设备是光纤熔接机,它由下述部分组成: (1)光纤的准直与夹紧结构;(2)光纤的对准机构;(3)电 弧放电机构;(4)电弧放电和电机驱动的控制机构。

光通信无源器件技术

光通信无源器件技术
智能化技术
随着人工智能和机器学习技术的发展,智能化技术在光通信无源器件中 的应用逐渐增多。例如,通过机器学习算法优化器件性能、预测器件寿 命等。
未来发展前景与展望
高带宽、低损耗
随着通信速率的不断提升,光通信无源器件将朝着高带宽、低损耗的方向发展。这将有助 于提高光通信系统的传输效率和可靠性。
小型化、集成化
具有较强实力和市场份额。
这些厂商主要提供光分路器、光 耦合器、光隔离器等光通信无源
器件产品。
此外,还有一些专业从事光通信 无源器件研发和生产的小型厂商。
市场竞争格局
华为、中兴通讯、爱立信等大 型通信设备厂商在光通信无源 器件市场上占据主导地位。
这些厂商通过技术创新、规模 效应和品牌优势,不断提高市 场份额和竞争力。
隔离度
插入损耗是指光通信无源器件引入的光信 号损失。较低的插入损耗可以提高信号传 输质量和降低系统能耗。
隔离度用于衡量光通信无源器件对不同光 信号的隔离能力。较高的隔离度可以降低 信号串扰和噪声干扰。
带宽
稳定性
带宽是指光通信无源器件的工作频率范围 。较宽的带宽可以提高光通信系统的传输 速率和容量。
稳定性是指光通信无源器件在工作过程中 性能参数的变化情况。良好的稳定性可以 提高光通信系统的可靠性和稳定性。
03
光通信无源器件的应用场景
长距离通信网络
总结词
长距离通信网络是光通信无源器件技术的重要应用领域,主要用于骨干网、核心网等高速、大容量的 信息传输。
详细描述
在长距离通信网络中,光通信无源器件如光分路器、光耦合器等用于实现光信号的分路和合路,延长 传输距离并提高传输容量。此外,光衰减器、光隔离器等器件也用于调节光信号的强度和防止光信号 的反射。

光无源器件介绍分析课件

光无源器件介绍分析课件
APC : Angled Physical Contact connector 有角度接触连接器
这里端面一般为球面,球面增加回损。比较两种连接器, APC斜球端面连接器可以在接触时产生更大的回波损耗, 其数值可以达到50-70dB,而一般的PC端面连接器回损约 为30-40dB ,只是由于角度位置的要求, APC连接器制作 工艺会稍微复杂。
光 鹅 合 器 ( Coupler) 3. 光鹅合器(Coupler)
光 耦 合 器 ( Coupler)
耦合器件的定义以及种类
光耦合器是重要的无源器件,可是传输中的光信号在特殊结构的耦合 区发生耦合,然后进行再分配。 种 类 从 功 能 上 分 光 功 率 ( Splitter) 和 光 波 长 分 配 耦 合 器 (WDM Coupler);从端口形式可分为X形、 Y形、星形以及树形耦合器;从 工作带宽分窄带耦合器、单工作窗口宽带耦合器、双工作窗口的宽带 耦合器;从传导光模式分多模耦合器、单模耦合器。 熔融拉锥型全光纤耦合器应为其良好的综合优势成为现在制作耦合器 的主要方法。 JDSU主要制造此类Coupler,为本章节专讲内容。
光 隔 离 器 ( Isolator) 5. 光隔离器(Isolator)
光 隔 离 器 ( Isolator)
概述与光隔离器种类
光隔离器主要是解决光路中光的反射问题,它是只允许光线沿光路正向传输的 非互易性无源器件。包括两种主要类型:
1 、 Polarization- Dependent Free- space Optical Isolator
在器件工作带宽范围内,各输出端口输出光功率的最大变化值 6、偏振相关损耗(Polarization Dependent Loss)
当传输光信号偏振态发生360度变化,器件各端口输出光功率最大 变化量 7、隔离度(Isolation)

有源光器件和无源光器件区别及基础剖析

有源光器件和无源光器件区别及基础剖析

P peak
λ (nm)
相邻两个纵模的间隔λN –Fra bibliotekN+1 ≈ λ2/2 n L
当谐振器的L=0.4mm, n=1,工作在λ= 1300 nm 附近时,计算出λN –λN+1≈ 2.1 nm ,假设 增益曲线的线宽等于7nm,则这种活性介质可支持3个纵模。
c)增益损耗曲线和可能的纵模
d)实际的多模辐射
有源光器件和无源光器件
光有源器件
定义:需要外加能源驱动工作的光电子器件 –半导体光源(LD,LED,DFB,QW,SQW,VCSEL) –半导体光探测器(PD,PIN,APD) –光纤激光器(OFL:单波长、多波长) –光放大器(SOA,EDFA) –光波长转换器(XGM,XPM,FWM) –光调制器(EA) –光开关/路由器
N2
N1
为了实现粒子数反转,就需要大量电子跃迁到导带,为此,需要泵浦为跃迁提 供能量。 此外,还需要亚稳态能级使激发的电子保持一段时间,形成粒子数反转。
例如:T ~103 K; kT~1.38×10-20 J ~ 0.086 eV;
在可见光和近红外,Eg=hv=E 2-E 1~1eV;
N E2E1
• 多波长光源与波长可调谐激光器
• 光电探测器(PD、PIN、APD)
光调制器件
• 幅度调制
– 机械调制 – 电光调制 – 直接调制 – 电吸收光调制(EA)
• 相位调制 • 偏振调制 • 光电集成芯片(OEIC) • 光子集成芯片(PIC)
光色散补偿器件
• 色散控制
– 色散位移单模光纤 – 非零色散位移单模光纤 – 大有效截面单模光纤 – 色散平坦单模光纤
Ep =hν( )
h是普朗克常数(h=6.626 ×10-34 J • S),而ν是光子的频率。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

连接器(Connector)
部分连接器图例
SC/PC
SC/APC
连接器(Connector)
FC/PC
FC/APC
连接器(Connector)
LC/PC
LC/APC
连接器(Connector)
MU/PC
MU/APC
连接器(Connector)
ST/PC
连接器(Connector)
E2000/PC
SMA905
SMA906
5
方型塑料插芯 MT MPX MPT MT-RJ
6
双锥插芯
(老式连接器)
连接器(Connector)
各种制造标准
Hale Waihona Puke 类型 FC&SC ST LC MU D4 DIN&E2000 BSC2 MPX
MT-RJ
VF-45
厂商 NTT AT&T Lucent NTT NEC Diamond Molex AMP AMP&Stratos Siemeas
C-Lens 可通过增大端面曲率半径来增加工作距离,比G-Lens 改变参数相对容易,长工作距离应用中具有优势,而在普通应 用中,也因其成本优势受到欢迎。只是在Filter 型WDM 中,需 要在透镜的端面粘贴滤波片,Grin-Lens端面为平面易于贴片。
光纤准直器(Collimator)
制作工艺 Lens组装
概述
PPT内容介绍
• 各种无源器件的基本原理 • 各种无源器件的种类 •各种无源器件的性能技术指标
光纤准直器(Collimator) 1. 光纤准直器(Fiber Collimator)
光纤准直器(Collimator)
原理与作用
光纤准直器的基本原理是,将光纤端面置于准直透镜的焦点处, 使光束得到准直,然后在焦点附近轻微调节光纤端面位置,得 到所需工作距离,因此准直器的工作距离与光纤头和透镜的间 距L 相关。 光纤准直器的作用是将光纤输出的束腰半径较小而发散角较大 的近似高斯光束转化为腰斑较大而发散角较小的光束,以增加 对轴向间距的容查从而提高光纤与光纤之间的耦合效率,这样 可使两准直器之间保持较长的距离,可以插入光学元件以实现 器件性能。如下图所示;
光纤准直器(Collimator)
原理示意图
近高斯光束
束腰半径小 发散角大
腰斑较大 发散角小
折射率径向变
Fiber Pigtail Grin Lens Glass Sleeve 化示意图
光纤尾纤
(1/4透镜) 玻璃套管
光纤准直器(Collimator)
种类
• C-Lens光纤准直器: Cylindrical-Lens,球端面透镜技术准直器 • G-Lens光纤准直器: Grin Lens,斜端面折射率径向渐变技术准直器
UV胶
玻璃管
Lens
Epoxy环氧树脂
光纤准直器(Collimator) 制作工艺 Pigtail组装
斜面对齐
对齐后作标记
光纤准直器(Collimator) 制作工艺 Lens Holder套管组装
Lens Holder
光纤准直器(Collimator)
主要性能技术指标:
1. Wavelength(波长) = 1520 ~ 1580 nm 2. Insertion Loss(插入损耗) < 0.15 dB 3. Return Loss(回波损耗) > 65 dB 4. Tensile Load (拉力)> 5 N 5. Working Distance(工作距离): 10 mm
连接器(Connector)
插针端面
PC: Non-angled Physical Contact connector 无角度接触连接器
APC: Angled Physical Contact connector 有角度接触连接器
这里端面一般为球面,球面增加回损。比较两种连接器, APC斜球端面连接器可以在接触时产生更大的回波损耗, 其数值可以达到50-70dB,而一般的PC端面连接器回损约 为30-40dB,只是由于角度位置的要求,APC连接器制作 工艺会稍微复杂。
连接器(Connector) 2. 连接器(Connector)
连接器(Connector)
基本原理
光纤连接器的基本原理是采用某种机械和光学机 构,是两根光纤的纤心对准,保证90%以上的光 可以通过。
光纤连接器是光学元器件中的基础元件,除了实 现光纤之间的连接外,它还具有将光纤光缆、有 源器件、其他无源器件、系统与仪表实现连接的 功能。
E2000/APC
连接器(Connector)
F3000/PC
F3000/APC
Note: SFF Connector: Small Form Factor (1.25mm ferrule OD).
2、固定连接器:主要为光纤熔接(Fiber Fusing Splicing)
连接器(Connector)
基本制造类型
序号 按ferrule插针分类
类型
1
ø2.5mm陶瓷
SC FC ST ESCON E2000 BSC2 DIN
2
ø1.25mm陶瓷 LC MU
3
ø2.0mm陶瓷
D4
4 ø3.17 mm陶瓷
连接器(Connector)
种类
1、活动连接器: a、连接器插头(Plug Connector) 使光纤(缆)在转换器或变换器中完成插拔功能的器件 b、转换器(Adaptor) 把光纤(缆)插头连接在一起,从而实现光纤接通的器件 c、跳线(Jumper Connector) 一根光纤(缆)的两端都装上插头 d、变换器(Converter) 使某种型号的插头换成另一种型号插头的器件 e、裸光纤转换器(Bare Fiber Adaptor) 使裸光纤与光源、探测器、各类光仪表连接的器件
Title
Optical Passive Devices 光无源器件
概述
简介
• 是一种光学元器件 • 工艺原理遵循光学的基本原理,即光线理论
以及电磁波理论 • 光通信设备的重要组成部分 • 工艺涉及多种加工工艺,特别复杂
概述
光无源器件主要分为以下几种
1. 光纤准直器(Fiber Collimators ) 2. 光纤连接器(Connector) 3. 光耦合器件(Coupler) 4. 光衰减器(Attenuator) 5. 光隔离器(Isolator) 6. 光波分复用器(WDM) 7. 偏振光合波器(PBC) 8. 光开关(Switch) 9. 光环形器(Circulator)
相关文档
最新文档