常用光无源器件

合集下载

光无源器件介绍范文

光无源器件介绍范文

光无源器件介绍范文光无源器件是指无需外界能源输入即可以产生、控制、处理或传输光信号的器件。

它们在光通信、光传感、光储存、激光装置等领域具有重要应用价值。

本文将详细介绍几种常见的光无源器件,包括光纤、光栅、偏振器件、光耦合器件和光探测器等。

首先,光纤是一种常见的光无源传输介质。

它具有优异的光学特性,可以实现长距离、高速、低损耗的光信号传输。

光纤通信系统中的核心部件就是光纤。

光纤根据其结构可以分为多模光纤和单模光纤。

多模光纤通常用于短距离通信,而单模光纤适用于长距离通信。

光纤的制作工艺和材料技术的不断进步使得光纤通信系统性能不断提升。

其次,光栅是另一种常见的光无源器件。

光栅是在光介质中周期性变化的折射率结构,可以对入射光进行衍射和反射。

光栅可以用于光谱分析、光信号处理和光波波长选择等应用。

根据光栅的结构可以分为吸收光栅和反射光栅。

吸收光栅通过调整折射率分布来实现频率选择,反射光栅则通过反射光波形成波束宽度调制。

光栅可以实现光信号的分光、滤波和耦合等功能。

再次,偏振器件是用于控制和调整光波偏振状态的器件。

偏振器件根据其工作原理可以分为吸收式偏振器、分束偏振器和光学偏振调制器。

吸收式偏振器通过吸收非期望偏振分量来实现偏振分离。

分束偏振器通过折射率分布的改变实现光波的分离。

光学偏振调制器则通过改变材料的光学特性或施加电场来调制光的偏振状态。

其次,光耦合器件用于实现不同光波的耦合和分离。

光耦合器按照其结构和工作原理可分为分离型光耦合器和集成型光耦合器。

分离型光耦合器通过光波的反射和折射实现光波的耦合。

集成型光耦合器则通过光导波结构的耦合来实现不同波长光波的耦合和分离。

光耦合器为光通信和光传感等系统提供了重要的互连和耦合功能。

最后,光探测器是一种用于接收光信号并转换为电信号的器件。

根据工作原理,光探测器可分为光电二极管、光电导探测器和光电子倍增器等。

光电二极管是最常见的光探测器,它利用内建电场将吸收的光电子转化为电流。

常用光电子器件介绍

常用光电子器件介绍

主要光电子器件介绍【内容摘要】光自身固有的优点注定了它在人类历史上充当不可忽略的角色,本文从几种常见的光电子器件的介绍来展示光纤通信技术的发展。

【关键词】光纤通信光电子器件【正文】光自身固有的优点注定了它在人类历史上充当不可忽略的角色,随着人类技术的发展,其应用越来越广泛,优点也越来越突出。

将优点突出的光纤通信真正应用到人类生活中去,和很多技术一样,都需要一个发展的过程。

从宏观上来看,光纤通信主要包括光纤光缆、光电子器件及光通信系统设备等三个部分,本文主要介绍几种常见的光电子器件。

1、光有源器件1)光检测器常见的光检测器包括:PN光电二极管、PIN光电二极管和雪崩光电二极管(APD)。

目前的光检测器基本能满足了光纤传输的要求,在实际的光接收机中,光纤传来的信号及其微弱,有时只有1mW左右。

为了得到较大的信号电流,人们希望灵敏度尽可能的高。

光电检测器工作时,电信号完全不延迟是不可能的,但是必须限制在一个范围之内,否则光电检测器将不能工作。

随着光纤通信系统的传输速率不断提高,超高速的传输对光电检测器的响应速度的要求越来越高,对其制造技术提出了更高的要求。

由于光电检测器是在极其微弱的信号条件下工作的,而且它又处于光接收机的最前端,如果在光电变换过程中引入的噪声过大,则会使信噪比降低,影响重现原来的信号。

因此,光电检测器的噪声要求很小。

另外,要求检测器的主要性能尽可能不受或者少受外界温度变化和环境变化的影响。

2)光放大器光放大器的出现使得我们可以省去传统的长途光纤传输系统中不可缺少的光-电-光的转换过程,使得电路变得比较简单,可靠性也变高。

早在1960年激光器发明不久,人们就开始了对光放大器的研究,但是真正开始实用化的研究是在1980年以后。

随着半导体激光器特性的改善,首先出现了法布里-泊罗型半导体激光放大器,接着开始了对行波式半导体激光放大器的研究。

另一方面,随着光纤技术的发展,出现了光纤拉曼放大器。

光纤无源器件常用晶体介绍

光纤无源器件常用晶体介绍

光纤无源器件常用晶体介绍
光纤无源器件常用的晶体包括:
1. 红外光通信中使用的铌酸锂晶体(LiNbO3),它具有优良
的非线性光学效应,适用于光调制器和光开关等光纤无源器件。

2. 铋硼酸锂晶体(LiB3O5,简称BBO),它具有较大的非线
性折射率和较宽的透明度范围,适用于高功率激光系统和频率倍频器等器件。

3. 铂酸锂晶体(LiNbO3)、磷酸钛锂晶体(LiTaO3)等铁电
晶体,它们具有压电效应和光电效应,适用于电光调制器和光开关等器件。

4. 硼酸锂晶体(Li2B4O7,简称LBO),它具有大的非线性
光学系数和宽的透明范围,适用于高功率激光系统和频率倍频器等器件。

5. 硼砂晶体(B2O3),它具有良好的非线性光学特性,适用
于光调制器和非线性光纤等器件。

这些晶体具有不同的光学特性和应用领域,根据具体的应用需求选择合适的晶体材料可以提高光纤无源器件的性能和效果。

光通信:第04章常用光无源器

光通信:第04章常用光无源器

光隔离器的应用场景
光隔离器是一种用于防止光信 号反方向传输的无源器件,主 要用于光纤放大器和激光雷达 等光通信系统。
在光纤放大器中,光隔离器可 以防止反向传输的光信号对放 大器的工作产生干扰,提高系 统的稳定性。
在激光雷达中,光隔离器可以 防止反向传输的光信号对激光 源的工作产生干扰,提高系统 的测量精度。
光通信第04章常用光无源器
contents
目录
• 光无源器件概述 • 常用光无源器件 • 光无源器件的工作原理 • 光无源器件的应用场景 • 光无源器件的挑战与解决方案
01 光无源器件概述
定义与分类
定义
光无源器件是指那些在光通信网络中 ,不需要外部电源直接驱动,只起到 传输、控制或变换光信号作用的器件 。
光衰减器的工作原理
光衰减器是一种用于降低光信号 强度的器件,它可以通过吸收或 散射等方式将光信号能量损耗掉
一部分。
光衰减器通常由光学玻璃、陶瓷 等材料制成,其结构可分为均匀
损耗和渐变损耗两种类型。
光衰减器在光通信系统中主要用 于调整光信号的功率、测试光路 的损耗以及保护光接收器件等。
光分路器的工作原理
光环形器的应用场景
光环形器是一种用于实现光信 号环形传输的无源器件,主要 用于光纤传感和激光雷达等光
通信系统。
在光纤传感中,光环形器可 以将多个传感光纤环形连接 在一起,实现多点同时测量
和数据采集。
在激光雷达中,光环形器可以 将多路激光信号环形连接在一 起,实现多目标同时测量的功
能。
05 光无源器件的挑战与解决 方案
应用
WDM系统等领域。
03 光无源器件的工作原理
光纤连接器的工作原理
光纤连接器是用于连接两根光纤的器件,通过精确对准光纤的纤芯和包层,实现光 信号的传输。

光无源器件测试方法

光无源器件测试方法

光无源器件测试方法光无源器件是指在光通信系统中,不需要外部能源供应而能够实现光信号的传输和控制的器件。

典型的光无源器件包括光纤、光栅、光分路器、光耦合器等。

为了确保光无源器件在正常工作条件下能够稳定可靠地传输光信号,需要进行严格的测试和验证。

本文将从光纤、光栅、光分路器和光耦合器等不同类型的光无源器件入手,介绍其测试方法。

1.光纤测试方法光纤是光通信系统中最基础、最重要的光无源器件。

常用的光纤测试方法包括:(1)衰减测试:通过测试光信号从光纤中的衰减情况,来评估光纤功率损失情况。

(2)反射测试:测试光纤接口的反射损耗,确保光信号不会因为接口反射而引起干扰或损失。

(3)纤芯直径测试:测试光纤纤芯直径的尺寸,以确保光信号能够正常传输。

2.光栅测试方法光栅是一种具有周期性折射率变化的光无源器件,常用于光波的衍射和光谱分析等应用。

光栅的测试方法包括:(1)频率响应测试:测试光栅的响应频率范围和频率分辨率,以评估其衍射性能。

(2)衍射效率测试:测试光栅的衍射效率,即测试输入光功率和输出光功率之间的关系。

(3)波长选择测试:测试光栅的波长选择性能,即测试不同波长的光信号在光栅中的传输效果和衍射效率。

3.光分路器测试方法光分路器是一种能够将入射光信号分成两个或多个输出的光无源器件。

光分路器的测试方法包括:(1)分光比测试:通过测试输入光功率和输出光功率之间的关系,来评估光分路器的分光比性能。

(2)均匀性测试:测试光分路器的不同输出通道之间的功率均匀性,以确保光信号在分路器中能够平衡地分布。

4.光耦合器测试方法光耦合器是一种能够将两个或多个光纤的光信号耦合在一起的光无源器件。

光耦合器的测试方法包括:(1)插损测试:通过测试耦合器输入光功率和输出光功率之间的差异,来评估光耦合器的插损性能。

(2)均匀性测试:测试耦合器不同输出通道之间的功率均匀性,以确保光信号在耦合器中能够均匀地分布。

综上所述,光无源器件的测试方法主要包括衰减测试、反射测试、频率响应测试、衍射效率测试、波长选择测试、分光比测试、均匀性测试和插损测试等。

实验一 光纤、光纤接头及常用光无源器件认识 [兼容模式]

实验一  光纤、光纤接头及常用光无源器件认识 [兼容模式]

光纤跳线即倾斜8度;研磨用插芯(Angled PC Optical Connectors)这是
日本精工技研发明的插芯形状,被认定为世界标准。相比较UPC或PC型,有较
低的插入损耗和高的回波损耗 。
实验一 光纤、光纤接头及常用光无源器件认识
• 实验原理
– 常见的光线连接器
SC(APC)型使用范围: 光纤通信网络、光纤宽带接入网、光纤CATV、光纤仪器仪表、
• 实验原理
– 常见的光线连接器
ST(PC)型使用范围: 光纤通信网络、光纤宽带接入网、光纤CATV、光纤仪器仪表、光
纤局域网
特点说明:
图 1-11ST(PC)型
ST 型由日本NTT公司开发的光纤连接器。 ST 型光纤跳线由两个高精度金
属连接器和光缆组成。连接器外部件为精密金属件,包含推拉旋转式卡口卡紧机构。
实验一 光纤、光纤接头及常用光无源器件认识
实验原理
– 光纤的传输特性 输入脉冲
多模光纤
输出脉冲
输入脉冲
单模光纤
图1-3单、多、光纤接头及常用光无源器件认识
实验原理
– 光衰减器衰减量的测量
图1-4光衰减器衰减量的测试
实验一 光纤、光纤接头及常用光无源器件认识
实验原理
特点说明:
图1-9FC(PC)型
FC连接器最早是由日本NTT研制。FC是Ferrule Connector的缩写,表明
其外部加强方式是采用金属套,紧固方式为螺丝扣。
实验一 光纤、光纤接头及常用光无源器件认识
• 实验原理
– 常见的光线连接器
SC(PC)型使用范围: 光纤通信网络、光纤宽带接入网、光纤、光纤仪器仪表、光纤局
实验一 光纤、光纤接头及常用光无源器件认识

光无源器件常见类型

光无源器件常见类型

就是不含光能源的光功能的器件,是光纤通信设备的重要组成部分,也是其它光纤应用领域不可缺少的元器件。

因其具有高回波损耗、低插入损耗、高可靠性、稳定性、机械耐磨性和抗腐蚀性、易于操作等特点,广泛应用于长距离通信、区域网络及光纤到户、视频传输、光纤感测等等领域。

光无源器件在光路中都要消耗能量,插入损耗是其主要性能指标。

光无源器件包括光纤连接器、光开关、光衰减器、光纤耦合器、波分复用器、光调制器、光滤波器、光隔离器、光环行器等。

它们在光路中分别可实现连接、能量衰减、反向隔离、分路或合路、信号调制、滤波等功能。

光无源器件有很多种,本文将讲述常用的几种—光纤衰减器、光纤环形器、光纤准直器、光纤隔离器、光纤传感器、光纤合束器和光纤起偏器。

光纤衰减器是一种非常重要的纤维光学无源器件,是光纤CATV中的一个不可缺少的器件。

从市场需求的角度看,一方面光衰减器正向着小型化、系列化、低价格方向发展。

另一方面由于普通型光衰减器已相当成熟,光衰减器正向着高性能方向发展,如智能化光衰减器,高回损光衰减器等。

到目前为止市场上已经形成了固定式、步进可调式、连续可调式及智能型光衰减器四种系列。

任何光纤系统传输数据的能力取决于接收器的光功率,如下图所示,其显示了接收光功率作用下的数据链路误码率。

(误码率是信噪比的倒数,例如误码率越高表示信噪比的信号越低。

)无论功率过高或者过低都会导致较高的误码率。

功率过高,接收放大器饱和,功率过低,可能会干扰信号产生噪音等问题。

光纤衰减器主要用于调整光功率到所需标准。

光纤环形器光纤环形器为非互易设备,只能沿单方向环行,反方向是隔离的。

光纤环形器除了有多个端口外,其工作原理与光纤隔离器类似,也是一种单项传输器件,主要用于单纤双向传输系统和光分插复用器中。

光纤准直器光纤准直器由尾纤与自聚焦透镜精确定位而成。

它可以将光纤内的传输光转变成准直光(平行光),或将外界平行(近似平行)光耦合至单模光纤内。

适用于扩展以及校准光纤端的输出光束,或耦合两光纤光束的装置。

十常见光无源器件制作工艺

十常见光无源器件制作工艺

十常见光无源器件制作工艺光无源器件,也被称为光波导器件或光学器件,是光通信领域中至关重要的组成部分。

光无源器件主要包括光纤、光耦合器、分束器、滤波器、波长分复用器等。

这些器件在光通信系统中起到了传输、分配、滤波等关键作用。

下面将介绍光无源器件制作的一般工艺流程。

1.光纤制作工艺光纤是光通信系统中最基础的无源器件。

光纤的制作工艺主要包括:预制棒拉制法、外气流法、内气流法和PCVD法。

其中,最常用的方法是PCVD法(Plasma Chemical Vapor Deposition),即等离子体化学气相沉积法。

PCVD法利用预制的石英玻璃作为基材,将基材放入反应室中,在高温下加入反应气体,通过化学反应和热反应生成二氧化硅,从而在玻璃表面形成纳米级别的光纤芯。

然后通过拉伸和涂覆等工艺,制作出具有高纯度、低损耗的光纤。

2.光耦合器制作工艺光耦合器用于将光信号从一个光波导传输到另一个光波导,是光通信系统中常见的无源器件。

光耦合器的制作工艺主要包括:硅基法、焕射损耗法和金属/微透镜法等。

其中,硅基法是最常见的制作工艺。

硅基法利用硅基材料作为基底,通过刻蚀技术制作出光波导结构,再利用电子束光刻技术和离子束刻蚀技术进行微结构的制作。

通过这些工艺步骤,可以实现光耦合器的制作。

3.分束器制作工艺分束器是将入射的光信号等比例地分离到不同的输出通道中的器件。

分束器的制作工艺主要包括:多模段法、多波长法、光纤法等。

其中,多模段法是最常用的制作工艺。

多模段法利用光波导的多模特性,通过调整光波导的宽度和长度等参数,实现光信号的分束效果。

此外,多波长法则是利用不同波长的光信号在光波导中的传输特性差异,实现光信号的分束。

4.滤波器制作工艺滤波器用于选择性地传输特定波长的光信号,常用于光通信系统中的波分复用和波长切换。

滤波器的制作工艺主要包括:干涉滤波器法、光波导滤波器法等。

干涉滤波器法利用光的干涉效应,通过将不同波长的光信号引入波导滤波器中,通过干涉效应来实现波长选择性的滤波。

光无源器件介绍范文

光无源器件介绍范文

光无源器件介绍范文光无源器件,又称为光传输无源器件,是指在光通信或光网络中起到信号传输、辅助和转换的功能,但没有电源和活动部件的器件。

光无源器件包括各种被动元件,如光纤、光耦合器、光分路器、光滤波器、光合分器、光切换器等等。

在光通信和光网络中,光无源器件的使用非常广泛且至关重要。

首先,光纤是光无源器件中最基础和最关键的一个。

光纤的作用是将光信号传输到目标地点。

光纤由细长的玻璃或塑料材料制成,其核心是一个折射率较高的介质,被一个折射率较低的包层包围。

光纤的传输速度快、信号损耗小、带宽大,使其成为光通信和光网络中最常用的传输介质。

其次,光耦合器是光无源器件中一种常见的元件,用于实现光信号的耦合和分配。

光耦合器可以将入射光信号分配到多个输出端口,也可以将多个光信号通过耦合器的输入端口合并到一个输出端口。

光耦合器通常以光栅波导结构实现,其工作原理是通过光栅波导的折射率周期性变化将光信号耦合到不同的传输通道。

光分路器是另一种常见的光无源器件,用于将光信号按不同的比例分配到不同的输出通道。

光分路器通常采用耦合波导技术,通过改变波导的结构或尺寸使得不同的输出通道对应不同的传输损耗。

光分路器广泛应用于光网络中的信号分配、波长分割和波长选择等应用场景。

光滤波器是一种能够选择性地传递或阻挡特定波长的光信号的器件。

光滤波器通常采用薄膜多层堆积技术,通过控制多层膜材料的厚度和折射率来实现对特定波长的选择性透过或反射。

光滤波器在光通信中被广泛应用于波分复用和波分多路复用系统中,用于合并或分离不同波长的光信号。

此外,光合分器和光切换器也是光无源器件中的重要代表。

光合分器是一种能够将多个光信号合并到一个输出通道的器件,常用于光网络中信号的合并和集中。

光切换器则是一种能够通过调节输入和输出通道的连通状态实现光信号的切换的器件。

光切换器在光通信和光网络中能够实现对光路的切换、光路的互联等重要功能。

总之,光无源器件是光通信和光网络中不可或缺的一部分。

光无源器件介绍

光无源器件介绍
图13.EDFA结构及其中功能集成方案(摘自康顺网页)
第二十五页,共39页
lHybrid
vHybrid分类
根据图13中的功能集成方案,Hybrid有很多种类,此处仅列出几种无源集 成Hybrid。
ØWDM+Isolator
signal
signal+pump
pump 接掺铒光纤 图14.正向泵浦的WDM+Isolator
隔离。
2
1
21
3
3 三端口环形器
4 四端口环形器
图6.光环形器中的信号光流向
第十四页,共39页
l光环形器
v光环形器应用 用于密集波分复用系统、单纤双向传输、光时阈反射计( OTDR)、色散补偿器。
1、2n
1、2 m-1、m+1 n
FBG m
图7.光环形器用于密集波分复用系统
Tx
Rx
Rx
Tx
图8.光环形器用于单纤双向传输
第四页,共39页
l光纤准直器
v准直器应用 光隔离器、光环形器、光开关、光衰减器、波分复用 器,保偏准直器可用于偏振合束器中
Metal Tube
Glass Tube
Pigtail
图2.准直器结构
第五页,共39页
Lens
l光纤准直器
v准直器参数 Ø工作波长和工作带宽 Ø插入损耗(Insertion Loss,IL)
第三页,共39页
Capillary
l光纤准直器
v准直器分类 Ø按准直透镜分类 G-Collimator、C-Collimator、D-Collimator Ø按尺寸分类
普通型和Mini型
Ø按尾纤类型分类
单模光纤准直器、多模光纤准直器

无源光器件

无源光器件

无源光器件(Optical Passive Devices)简介:又称为光无源器件,是光纤通信设备的重要组成部分,也是其它光纤应用领域不可缺少的元器件。

具有高回波损耗、低插入损耗、高可靠性、稳定性、机械耐磨性和抗腐蚀性、易于操作等特点,广泛应用于长距离通信、区域网络及光纤到户、视频传输、光纤感测等等。

其结构图如下:无源光器件原理、作用、种类以及应用简介光无源器件是光纤通信设备的重要组成部分。

它是一种光学元器件,其工艺原理遵守光学的基本规律及光线理论和电磁波理论、各项技术指标、多种计算公式和各种测试方法,与纤维光学、集成光学息息相关;因此它与电无源器件有本质的区别。

无源光器件的种类繁多,功能及形式各异,但在光纤通信网络里是一种使用性很强的不可缺少的器件,而在光纤有线电视中,起着连接、分配、隔离、滤波等作用。

作用概括起来主要是:连接光波导或光路;控制光的传播方向;控制光功率的分配;控制光波导之间、器件之间和光波导与器件之间的光耦合;以及合波和分波等作用。

光无源器件有很多种,分别是:光纤准直器(Fiber Collimators)光纤连接器(Connector),光耦合器件(Coupler),光衰减器(Attenuator),光隔离器(Isolator),光波分复用器(WDM),偏振光合波器(PBC)、光开关(Switch),光环形器(Circulator);在此只介绍几种常见的无源光器件,其余的不再一一介绍。

1、光纤连接器:又称光纤活动连接器,俗称活动接头,用于设备与光纤之间的连接。

光纤连接器的作用是将需要连接起来的单根或多根光纤芯线的断面对准、贴紧,并能多次使用。

2、光纤分路器及耦合器:光纤耦合器,将不同方向的光信号耦合(光纤flash\光纤耦合器SWF )送入一根光纤中传输,或者相反。

常用的三极管光耦合器结构图如下:3、光合波器、光分波器:光合波器和光分波器是用于波分复用等传输方式中的无源光器件.可将不同波长的多个光信号合并在一起耦合到一根光纤中传输,或者反过来说,将从一根光纤传输来的不同波长的复合光信号,按不同光波长分开。

十常见光无源器件制作工艺

十常见光无源器件制作工艺

十常见光无源器件制作工艺常见光无源器件制作工艺:光无源器件是指利用光学材料、结构和工艺来制造的无源元件,如光纤、光波导和光栅等。

这些器件不需要外部电能供给,能够在光的作用下实现特定的光学功能。

光无源器件具有体积小、重量轻、传输速度快、抗干扰能力强等优点,在通信、传感和光学计量等领域得到了广泛应用。

1.光纤制备技术:(1)预制棒拉丝法:首先将光纤芯棒制作成预定的形状和尺寸,然后用预制棒拉丝机将其加热并逐渐拉伸,形成预制光纤。

拉丝温度和拉伸速度的控制是关键,以保证光纤的质量。

(2)气相法:将有机金属化合物气体送入石英管中,经过热分解和化学反应生成光纤材料,最后通过气相催化沉积方法使得光纤材料沉积在石英管壁上。

(3)浸渍法:将预制的石英管浸入液态光纤材料中,通过浸渍和取出石英管的循环处理,使光纤材料沉积在石英管壁上。

2.光波导制备技术:(1)直写法:利用激光束通过透镜系统将光聚焦在光波导材料表面,对光波导结构进行直接写入。

直写可以实现复杂的光波导结构,并且不需要掩膜,制备过程简洁方便。

(2)离子交换法:将离子溶液浸渍到基底上,通过离子交换反应使离子置换到基底中的离子位置,从而形成光波导结构。

(3)光栅法:利用光栅对光波导进行调制,形成光波导的参数周期性变化,从而实现光波导结构的制备。

3.光栅制备技术:(1)光刻法:在光硬化的光刻胶上,利用掩膜对光刻胶进行曝光,然后进行显影和退火等步骤,最后得到光栅结构。

(2)干涉法:利用干涉光束对光敏材料进行曝光,形成亚波长的光栅结构,然后进行显影和退火等处理。

(3)激光直接写入法:利用激光束直接写入光敏材料,通过调节激光能量和扫描速度等参数,形成光栅结构。

以上是常见光无源器件制作工艺的介绍。

不同类型的光无源器件有各自的制作技术和工艺流程,但都离不开对光学材料和光学结构的加工和处理。

随着技术的不断进步,相信光无源器件的制作工艺将不断完善,为光电通信和光学应用领域带来更多的创新和发展。

常见光无源器件

常见光无源器件

ILf
10lg
16K2
(1(3.K3))4
式中, K n。1 /当n0=1, =1.46时,
ILf。0.32dB
❖ (3) 由于两根光纤纤心直径不同,数值孔径不同也会引起 光纤连接器损耗。

3.1.2 光纤固定连接器
❖ 光纤固定连接器的作用是使一对或几对光纤之间永久性的 连接。
IL10(ldgBP u 输t 出光功率。插入损耗 越
小越好。

3.1.1 光纤活动连接器
❖(2) 回波损耗
❖ 回波损耗又称为后向反射损耗,是指光纤连接处,后向反 射光功率相对入射光功率的分贝数,其表达式为
RL10 (dlBg)Pr(3/.P 2in )
(3.4)
式中, I L为i 第i个输出端口的插入损耗; 的光功率; 为输P i n入的光功率。
❖ 2.附加损耗(Excess Loss)
P为o u第t i i个输出端口
EL10lg
i
Pouti Pin
(dB)
(3.5)
❖ 插入损耗是各输出端口的输出功率状况,不仅与固有损耗 有关,而且与分光比有很大的关系。
❖ 光纤活动连接器结构上差别很大,品种也很多, 但按功能可分成如下几部分:
❖ (1) 连接器插头(Plug Connector):由插针体和若干外 部零件组成。
❖ (2) 转换器或适配器(Adapter):即插座,可以连接同型 号插头,也可以连接不同型号插头,可以连一对插头,也 可以连接几对插头或多心插头。

3.1.2 光纤固定连接器
❖ 实现光纤熔接的设备是光纤熔接机,它由下述部分组成: (1)光纤的准直与夹紧结构;(2)光纤的对准机构;(3)电 弧放电机构;(4)电弧放电和电机驱动的控制机构。

光无源器件介绍分析课件

光无源器件介绍分析课件
APC : Angled Physical Contact connector 有角度接触连接器
这里端面一般为球面,球面增加回损。比较两种连接器, APC斜球端面连接器可以在接触时产生更大的回波损耗, 其数值可以达到50-70dB,而一般的PC端面连接器回损约 为30-40dB ,只是由于角度位置的要求, APC连接器制作 工艺会稍微复杂。
光 鹅 合 器 ( Coupler) 3. 光鹅合器(Coupler)
光 耦 合 器 ( Coupler)
耦合器件的定义以及种类
光耦合器是重要的无源器件,可是传输中的光信号在特殊结构的耦合 区发生耦合,然后进行再分配。 种 类 从 功 能 上 分 光 功 率 ( Splitter) 和 光 波 长 分 配 耦 合 器 (WDM Coupler);从端口形式可分为X形、 Y形、星形以及树形耦合器;从 工作带宽分窄带耦合器、单工作窗口宽带耦合器、双工作窗口的宽带 耦合器;从传导光模式分多模耦合器、单模耦合器。 熔融拉锥型全光纤耦合器应为其良好的综合优势成为现在制作耦合器 的主要方法。 JDSU主要制造此类Coupler,为本章节专讲内容。
光 隔 离 器 ( Isolator) 5. 光隔离器(Isolator)
光 隔 离 器 ( Isolator)
概述与光隔离器种类
光隔离器主要是解决光路中光的反射问题,它是只允许光线沿光路正向传输的 非互易性无源器件。包括两种主要类型:
1 、 Polarization- Dependent Free- space Optical Isolator
在器件工作带宽范围内,各输出端口输出光功率的最大变化值 6、偏振相关损耗(Polarization Dependent Loss)
当传输光信号偏振态发生360度变化,器件各端口输出光功率最大 变化量 7、隔离度(Isolation)

光通信系统中的重要有源光器件和无源光器件有源器件光

光通信系统中的重要有源光器件和无源光器件有源器件光

谐振型和传输型半导体光放大器的光谱特性
半导体光放大器的串音特性
光放大器增益的偏振特性
光放大器增益的偏振特性的消除
2。掺铒光纤光放大器的结构
Signal in λ = 1550 nm
Optical isolator
Er 3+ -doped fiber (10 - 20 m)
Wavelength-selective
couplerຫໍສະໝຸດ SpliceSplice
Optical isolator
Signal out λ = 1550 nm
Pump laser diode λ = 980 nm
Termination
掺铒光纤光放大器的特性
掺铒光纤光放大器的原理
Energy of the Er in the glass fiber
3 + ion
1.54 eV 1.27 eV
E 3
E3
Non-radiative decay
980 nm
Pump
0.80 eV 1550 nm
In
0
E2
1550 nm
Out E1
掺铒光纤光放大器增益谱特性
掺铒光纤结构
两种实际掺铒光纤光放大器结构
光通信系统中的重要 有源光器件和无源光器件
有源器件: 光放大器等
无源器件: 耦合器,波分复用器,滤波器, 隔离器,环行器等
光有源器件:光放大器
光通信系统中的几种光放大器
1。半导体光放大器
谐振型和传输型半导体光放大器
谐振型半导体光放大器
传输型半导体光放大器I
传输型半导体光放大器II
光放大器的增益饱和特性

第04章常用光无源器件

第04章常用光无源器件

21
Fiber Communications @ SDU-WH 2010
4.1.2 光纤连接器特性
评价连接器的主要指标: 插入损耗、回波 损耗、重复性和互换性。
1. 插入损耗 插入损耗是指光纤中的光信号通过活动连接器 之后,其输出光功率相对输入光功率的比率的 分贝数,表达式为: Ac=-10lgP1/P0(dB) 式中:Ac为连接器插入损耗;P0为输入端的光功 率;P1为输出端的光功率。
MIN ( Poutj ) P.D.Lj 10 lg (dB ) MAX ( Poutj )
在实际应用中,光信号偏振态的变化是经常发生的, 因此,为了不影响器件的使用效果往往要求器件有足 够小的偏振相关损耗。
32
Fiber Communications @ SDU-WH 2010
7. 隔离度 隔离度是指某一光路对其他光路中的信 号的隔离能力。隔离度高,也就意味着 线路之间的“串话”小。其数学表达式为
22
Fiber Communications @ SDU-WH 2010
2. 回波损耗
回波损耗又称为后向反射损耗。它是指 光纤连接处,后向反射光对输入光的比 率的分贝数,表达式为:
Ar=-10lgPR/P0 (dB)
式中: Ar 表示回波损耗; P0 表示输入光功 率;PR表示后向反射光功率。
模块化插孔闩锁机理制成插针尺寸小125mm可提高光机架中的接口密度连接器剖面fibercommunicationssduwh201018连接器的类型按插针端面分类fibercommunicationssduwh201019?多芯光纤连接器随着用户通信网规模的扩大wdm的普及电信网数据网的光纤化乃至多媒体大容量信息处理设备的发展均推动着光缆向多芯高密度方向深入发展带状多芯光缆需要用多芯光纤连接器进行连接多芯带状光纤mt连接器就应运而生
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ar=-10lgPR/P0 (dB)
式中:Ar表示回波损耗;P0表示输入光功 率;PR表示后向反射光功率。
3.
重复性是指光纤(缆)活动连接器多次 插拔后插入损耗的变化,用dB表示。互换 性是指连接器各部件互换时插入损耗的变 化,也用dB表示。
4.2 光纤耦合器
光耦合器是将光信号进行分路或合路、 插入、分配的一种器件。
(6)
随着用户通信网规模的扩大、WDM 的普及、电信网/数据网的光纤化乃至多 媒体大容量信息处理设备的发展均推动着 光缆向多芯、高密度方向深入发展,带状 多芯光缆需要用多芯光纤连接器进行连接, 多芯带状光纤MT连接器就应运而生。
4.1.2
评价一个连接器的主要指标有4个, 即插入损耗、回波损耗、重复性和互换性。
第四章 常用光无源器件
4.1 光 纤 连 接 器 4.2 光纤耦合器 4.3 波分复用/解复用器 4.4 光 开 关
4.1 光 纤 连 接 器
4.1.1 光纤连接器的结构与种类
光纤(缆)活动连接器是实现光纤(缆)之 间活动连接的光无源器件,它还具有将光 纤(缆)与其他无源器件、光纤(缆)与系统和 仪表进行活动连接的功能。
1.
插入损耗是指光纤中的光信号通过活 动连接器之后,其输出光功率相对输入光 功率的比率的分贝数,表达式为:
Ac=-10lgP1/P0 (dB)
式中:A c为连接器插入损耗;P0为输入 端的光功率;P1为输出端的光功率。
2.
回波损耗又称为后向反射损耗。它是 指光纤连接处,后向反射光对输入光的比 率的分贝数,表达式为:
4.2.1 光纤耦合器的结构与原理
制作光耦合器可以有多种方法,大致 可分为分立光学元件组合型、全光纤型、 平面波导型等。
下面主要介绍熔融拉锥法的原理。
熔融拉锥法就是将两根(或两根以上) 除去涂覆层的光纤以一定的方式靠拢,在 高温加热下熔融,同时向两侧拉伸,最终 在加热区形成双锥体形式的特殊波导结构, 实现传输光功率耦合的一种方法。
D.L10lgPIN2(dB) PIN1
式中:Pin1代表总注入光功率;Pin2代 表输入端非注入光端口的输出光功率。
5.
均匀性就是衡量均分器件的“不均匀 程度”的参数。它定义为在器件的工作带 宽范围内,各输出端口输出功率的最大变 化量。其数学表达式为
F.L10lgMI(P Nou)t(dB ) MA(P Xou)t
(1)
在单模光纤中,传导模是两个正交的 基模(HE11)信号。图4.9所示是单模光纤耦 合器的迅衰场耦合示意图,其中归一化频
率 V2a(n 1 2n2 2)1/2/
(2)
在多模光纤中,传导模是若干个分立 的模式,不仅应在数值孔径角内,还要同 时 满 足 4 a n1sinθ=mλ(m=1,2,3,…)。 其 中,a为纤芯半径,n1是纤芯折射率,θ为 传导模与光轴的夹角,λ为传输光的波长。 总的模式数为:
图4.3 V形槽结构
(4)
球面定心结构由两部分组成,一部分 是装有精密钢球的基座,另一部分是装有 圆锥面(相当于车灯的反光镜)的插针。
(5)
透镜耦合又称远场耦合,它分为球透 镜耦合和自聚焦透镜耦合两种,其结构分 别如图4.5、图4.6所示。
图4.5 球透镜耦合结构 图4.6 自聚焦透镜耦合
2.
示为 C.R Pouti 100%
Pouti
i
例如对于标准X形耦合器,1∶1或50∶50 代表了同样的分光比,即输出为均分的器 件。
4.
方向性也是光耦合器所特有的一个技 术术语,它是衡量器件定向传输性的参数。 以标准X形耦合器为例,方向性定义为在 耦合器正常工作时,输入端非注入光端口 的输出光功率(图4.8中的I2)与总注入光功 率的比值,以分贝(dB)为单位的数学表达 式为:
(3) ST
ST型连接器采用带键的卡口式锁紧机 构,确保连接时准确对中。
(4) 不同型号插头互相连接的转换器
对于上述FC、SC、ST三种连接器, 在对不同型号插头连接时,需要转换器进 行连接。
(5)
由于实际使用情况非常复杂,因而跳 线的规格也多种多样。在选择跳线时,至 少有下述几个参数是需要明确的。
式 中 : M I N ( Pout) 为 最 小 输 出 光 功 率 ; MAX(Pout)为最大输出光功率。
6.
偏振相关损耗(Polarization Dependent Loss,PDL)是衡量器件性能对 于传输光信号的偏振态的敏感程度的参量。 它是指当传输光信号的偏振态发生360°变 化时,器件各输出端口输出光功率的最大 变化量:
2.
附加损耗(Excess Loss,EL)定义为所
有输出端口的光功率总和相对于全部输入
光功率的减小值。该值以分贝(dB)表示的
数学表达式为
Pouti
E.L10lgi (dB) Pin
式中:Pouti为第i个输出口的输出功率;Pin 为输入光功率。
3.
分光比(Coupling Ratio,CR)是光耦 合器所特有的技术术语,它定义为耦合器 各输ቤተ መጻሕፍቲ ባይዱ端口的输出功率相对输出总功率的 百分比,在具体应用中常用数学表达式表
M=V2/2
式中:V为归一化频率。
4.2.2
1.
插入损耗(Insertin Loss,IL)定义为指 定输出端口的光功率相对全部输入光功率 的减少值。该值通常以分贝(dB)表示,数
学表达式为 I.Li 10lgPout(idB) Pin
其中:ILi是第i个输出端口的插入损 耗;Pouti是第i个输出端口测到的光功率值; Pin是输入端的光功率值。
光纤活动连接器的品种、型号很多, 其中有代表性的有:FC、ST、SC、D4、 双锥、VF O(球面定心)、F-SMA、MTRJ连接器等等。
下面针对FC、SC和ST这三种连接器 作简单的介绍。
(1) FC
FC型连接器是一种用螺纹连接,外部 零件采用金属材料制作的连接器,它是我 国电信网采用的主要品种,我国已制定了 FC型连接器的国家标准。
1.
光纤连接器基本上是采用某种机械和 光学结构,使两根光纤的纤芯对准,保证 90%以上的光能够通过,目前有代表性并 且正在使用的光纤连接器主要有五种结构。
(1)
套管结构的连接器由插针和套筒组成。
(2)
双锥结构连接器是利用锥面定位。
(3) V
V形槽结构的光纤连接器是将两个插 针放入V形槽基座中,再用盖板将插针压 紧,利用对准原理使纤芯对准,(如图4.3所 示)。
相关文档
最新文档