高考复数真题汇编
复数【2023高考必备】2013-2022十年全国高考数学真题分类汇编(全国通用版)(原卷版)
专题07复数
一、选择题
1.(2022年全国甲卷理科·第1题)若 ,则 ()
A. B. C. D.
2.(2022年全国乙卷理科·第2题)已知 ,且 ,其中a,b为实数,则()
A. B. C. D.
3.(2022新高考全国II卷·第2题) ()
A. B. C. D.
A. B. C. D.
19.(2017年高考数学新课标Ⅰ卷理科·第3题)设有下面四个命题
:若复数 满足 ,则 ; :若复数 满足 ,则 ;
:若复数 满足 ,则 ; :若复数 ,则 .
其中的真命题为()
A. B. C. D.
20.(2017年高考数学课标Ⅲ卷理科·第2题)设复数z满足 ,则 ().
A. B. C. D.2
15.(2019年高考数学课标全国Ⅰ卷理科·第2题)设复数 满足 , 在复平面内对应的点为 ,则()
A.
B.
C.
D.
16.(2018年高考数学课标Ⅲ卷(理)·第2题) ()
A. B. C. D.
17.(2018年高考数学课标Ⅱ卷(理)·第1题) ()
A. B. C. D.
18.(2018年高考数学课标卷Ⅰ(理)·第1题)设 ,则 ()
A.0B.1CBiblioteka D.212.(2020年高考数学课标Ⅲ卷理科·第2题)复数 虚部是()
A. B. C. D.
13.(2019年高考数学课标Ⅲ卷理科·第2题)若 ,则 ()
A. B. C. D.
14.(2019年高考数学课标全国Ⅱ卷理科·第2题)设 ,则在复平面内 对应的点位于()
A.第一象限B.第二象限C.第三象限D.第四象限
高考数学 真题分类汇编:专题(15)复数(理科)及答案
专题十五 复数1.【20xx 高考新课标2,理2】若a 为实数且(2)(2)4ai a i i +-=-,则a =( )A .1-B .0C .1D .2【答案】B【解析】由已知得24(4)4a a i i +-=-,所以240,44a a =-=-,解得0a =,故选B .【考点定位】复数的运算.【名师点睛】本题考查复数的运算,要利用复数相等列方程求解,属于基础题.2.【20xx 高考四川,理2】设i 是虚数单位,则复数32i i-( ) (A )-i (B )-3i (C )i. (D )3i【答案】C【解析】32222i i i i i i i i-=--=-+=,选C. 【考点定位】复数的基本运算.【名师点睛】复数的概念及运算也是高考的热点,几乎是每年必考内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可.3.【20xx 高考广东,理2】若复数()32z i i =- ( i 是虚数单位 ),则z =( )A .32i -B .32i +C .23i +D .23i -【答案】D .【解析】因为()3223z i i i =-=+,所以z =23i -,故选D .【考点定位】复数的基本运算,共轭复数的概念.【名师点睛】本题主要考查复数的乘法运算,共轭复数的概念和运算求解能力,属于容易题;复数的乘法运算应该是简单易解,但学生容易忘记和混淆共轭复数的概念,z a bi =+的共轭复数为z a bi =-.4.【20xx 高考新课标1,理1】设复数z 满足11z z+-=i ,则|z|=( )(A )1 (B (C (D )2【答案】A【解析】由11z i z +=-得,11i z i -+=+=(1)(1)(1)(1)i i i i -+-+-=i ,故|z|=1,故选A. 【考点定位】本题主要考查复数的运算和复数的模等.【名师点睛】本题将方程思想与复数的运算和复数的模结合起来考查,试题设计思路新颖,本题解题思路为利用方程思想和复数的运算法则求出复数z ,再利用复数的模公式求出|z|,本题属于基础题,注意运算的准确性.5.【20xx 高考北京,理1】复数()i 2i -=( )A .12i +B .12i -C .12i -+D .12i --【答案】A考点定位:本题考查复数运算,运用复数的乘法运算方法进行计算,注意21i =-.【名师点睛】本题考查复数的乘法运算,本题属于基础题,数的概念的扩充部分主要知识点有:复数的概念、分类,复数的几何意义、复数的运算,特别是复数的乘法与除法运算,运算时注意21i =-,注意运算的准确性,近几年高考主要考查复数的乘法、除法,求复数的模、复数的虚部、复数在复平面内对应的点的位置等.6.【20xx 高考湖北,理1】 i 为虚数单位,607i 的共轭复数....为( ) A .i B .i - C .1 D .1-【答案】A【解析】i i i i -=⋅=⨯31514607,所以607i 的共轭复数....为i ,选A . 【考点定位】共轭复数.【名师点睛】复数中,i 是虚数单位,24142434111()n n n n i i i i i i i n +++=-==-=-=∈Z ;,,,7.【20xx 高考山东,理2】若复数z 满足1z i i=-,其中i 为虚数为单位,则z =( ) (A )1i - (B )1i + (C )1i -- (D )1i -+【答案】A 【解析】因为1z i i=-,所以,()11z i i i =-=+ ,所以,1z i =- 故选:A. 【考点定位】复数的概念与运算.【名师点睛】本题考查复数的概念和运算,采用复数的乘法和共轭复数的概念进行化简求解. 本题属于基础题,注意运算的准确性.8.【20xx 高考安徽,理1】设i 是虚数单位,则复数21i i-在复平面内所对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限【答案】B 【解析】由题意22(1)2211(1)(1)2i i i i i i i i +-+===-+--+,其对应的点坐标为(1,1)-,位于第二象限,故选B.【考点定位】1.复数的运算;2.复数的几何意义.【名师点睛】复数的四则运算问题主要是要熟记各种运算法则,尤其是除法运算,要将复数分母实数化(分母乘以自己的共轭复数),这也历年考查的重点;另外,复数z a bi =+在复平面内一一对应的点为(,)Z a b .9.【20xx 高考重庆,理11】设复数a +bi (a ,b ∈R ),则(a +bi )(a -bi )=________.【答案】3【解析】由a +得=,即223a b +=,所以22()()3a bi a bi a b +-=+=.【考点定位】复数的运算.【名师点晴】复数的考查核心是代数形式的四则运算,即使是概念的考查也需要相应的运算支持.本题首先根据复数模的定义得a +,复数相乘可根据平方差公式求得()()a bi a bi +-22()a bi =-22a b =+,也可根据共轭复数的性质得()()a bi a bi +-22a b =+.10.【20xx 高考天津,理9】i 是虚数单位,若复数()()12i a i -+ 是纯虚数,则实数a 的值为 .【答案】2-【解析】()()()12212i a i a a i -+=++-是纯虚数,所以20a +=,即2a =-.【考点定位】复数相关概念与复数的运算.【名师点睛】本题主要考查复数相关概念与复数的运算.先进行复数的乘法运算,再利用纯虚数的概念可求结果,是容易题.11.【20xx 江苏高考,3】设复数z 满足234z i =+(i 是虚数单位),则z 的模为_______.【解析】22|||34|5||5||z i z z =+=⇒=⇒=【考点定位】复数的模【名师点晴】在处理复数相等的问题时,一般将问题中涉及的两个复数均化成一般形式,利用复数相等的充要条件“实部相等,虚部相等”进行求解.本题涉及复数的模,利用复数模的性质求解就比较简便:2211121222||||||||||||.||z z z z z z z z z z ==⋅=,, 12.【20xx 高考湖南,理1】已知()211i i z -=+(i 为虚数单位),则复数z =( ) A.1i + B.1i - C.1i -+ D.1i --【答案】D.【考点定位】复数的计算.【名师点睛】本题主要考查了复数的概念与基本运算,属于容易题,意在考查学生对复数代数形式四则运算的掌握情况,基本思路就是复数的除法运算按“分母实数化”原则,结合复数的乘法进行计算,而复数的乘法则是按多项式的乘法法则进行处理.13.【20xx 高考上海,理2】若复数z 满足31z z i +=+,其中i 为虚数单位,则z = .【答案】1142i +【解析】设(,)z a bi a b R =+∈,则113()1412142a bi a bi i a b z i ++-=+⇒==⇒=+且 【考点定位】复数相等,共轭复数【名师点睛】研究复数问题一般将其设为(,)z a bi a b R =+∈形式,利用复数相等充要条件:实部与实部,虚部与虚部分别对应相等,将复数相等问题转化为实数问题:解对应方程组问题.复数问题实数化转化过程中,需明确概念,如(,)z a bi a b R =+∈的共轭复数为(,)z a bi a b R =-∈,复数加法为实部与实部,虚部与虚部分别对应相加.【20xx 高考上海,理15】设1z ,2C z ∈,则“1z 、2z 中至少有一个数是虚数”是“12z z -是虚数”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件【答案】B【解析】若1z 、2z 皆是实数,则12z z -一定不是虚数,因此当12z z -是虚数时,则“1z 、2z 中至少有一个数是虚数”成立,即必要性成立;当1z 、2z 中至少有一个数是虚数,12z z -不一定是虚数,如12z z i ==,即充分性不成立,选B.【考点定位】复数概念,充要关系【名师点睛】形如a +b i(a ,b ∈R )的数叫复数,其中a ,b 分别是它的实部和虚部.若b =0,则a +b i 为实数;若b ≠0,则a +b i 为虚数;若a =0且b ≠0,则a +b i 为纯虚数.判断概念必须从其定义出发,不可想当然.。
高中数学《复数》高考真题汇总(详解)——精品文档
高中数学《复数》高考真题汇总(详解)1.对任意复数()i ,R z x y x y =+∈,i 为虚数单位,则下列结论正确的是( ) A.2z z y -= B.222z x y =+ C.2z z x -≥ D.z x y ≤+2.复数231i i -⎛⎫= ⎪+⎝⎭( )A.34i --B.34i -+C.34i -D.34i +3.复数z =1ii+在复平面上对应的点位于( ) A.第一象限B.第二象限C.第三象限D.第四象限4.设a,b 为实数,若复数11+2ii a bi=++,则( ) A.31,22a b == B.3,1a b == C.13,22a b == D.1,3a b ==5.已知(x+i )(1-i )=y ,则实数x ,y 分别为( ) A.x=-1,y=1 B. x=-1,y=2 C. x=1,y=1 D. x=1,y=26.已知21i =-,则i(1)=( )i i C.i D.i 7.设i 为虚数单位,则51ii-=+( ) A.-2-3i B.-2+3i C.2-3iD.2+3i8.已知()2,a ib i a b R i+=+∈,其中i 为虚数单位,则a b +=( ) A. 1- B. 1 C. 2 D. 3 9.在复平面内,复数6+5i, -2+3i 对应的点分别为A,B.若C 为线段AB 的中点,则点C 对应的复数是( )A.4+8iB.8+2iC.2+4iD.4+i10. i 是虚数单位,计算i +i 2+i 3=( )A.-1B.1C.i -D.i11. i 是虚数单位,复数31ii+-=( ) A.1+2i B.2+4i C.-1-2i D.2-i 12.i 是虚数单位,复数1312ii-+=+( )A.1+iB.5+5iC.-5-5iD.-1-i 13.若复数z 1=1+i ,z 2=3-i ,则z 1·z 2=( )A .4+2i B. 2+i C. 2+2i D.3 14. i 是虚数单位,41i ()1-i+等于 ( ) A .i B .-i C .1D .-115.复数3223ii+=-( ) A.i B.i - C.12-13i D. 12+13i16.已知2(,)a i b i a b i +=+2a ib i i+=+(a,b ∈R ),其中i 为虚数单位,则a+b=( ) A.-1 B.1 C.2 D.3 17. i 33i=+ ( ) A.13412- B.13412+ C.1326i + D.1326- 18.若i 为虚数单位,图中复平面内点Z 表示复数Z ,则表示复数1z i+的点是( )A.EB.FC.GD.H19.某程序框图如左图所示,若输出的S=57,则判断框内位( ) A. k >4? B.k >5? C. k >6? D.k >7? 20.如果执行下图(左)的程序框图,输入6,4n m ==,那么输出的p 等于( )A.720B.360C.240D.12021.如果执行上图(右)的程序框图,输入正整数n ,m ,满足n ≥m ,那么输出的P 等于( ) A.1m nC - B.1m nA - C.m n C D.mn A22.某程序框图如下图(左)所示,若输出的S=57,则判断框内为( ) A.k >4? B.k >5? C. k >6? D. k >7?23.【2010·天津文数】阅读右边的程序框图,运行相应的程序,则输出s 的值为( ) A.-1 B.0 C.1 D.3标准答案1.【答案】D【解析】可对选项逐个检查,A 项,y z z 2≥-,故A 错;B 项,xyi y x z 2222+-=,故B 错;C 项,y z z 2≥-,故C 错;D 项正确.本题主要考察了复数的四则运算、共轭复数及其几何意义,属中档题. 2.【答案】A【解析】本试题主要考查复数的运算.231i i -⎛⎫= ⎪+⎝⎭22(3)(1)(12)342i i i i --⎡⎤=-=--⎢⎥⎣⎦. 3.【答案】A【解析】本题考查复数的运算及几何意义.1i i +i i i 21212)1(+=-=,所以点()21,21位于第一象限 4.【答案】A【解析】本题考查了复数相等的概念及有关运算,考查了同学们的计算能力. 由121ii a bi +=++可得12()()i a b a b i +=-++,所以12a b a b -=⎧⎨+=⎩,解得32a =,12b =,故选A.5.【答案】D【解析】考查复数的乘法运算.可采用展开计算的方法,得2()(1)x i x i y -+-=,没有虚部,x=1,y=2. 6.【答案】B【解析】直接乘开,用21i =-代换即可.(1)i i =,选B. 7.【答案】C【解析】本题主要考察了复数代数形式的四则运算,属容易题. 8.【答案】B 9.【答案】C 10. 【答案】A【解析】由复数性质知:i 2=-1,故i +i 2+i 3=i +(-1)+(-i )=-1. 11.【答案】A【解析】本题主要考查复数代数形式的基本运算,属于容易题.进行复数的除法的运算需要份子、分母同时乘以分母的共轭复数,同时将i 2改为-1.331+24121-(1-)(1+)2i i i ii i i i +++===+()() 12.【答案】A【解析】本题主要考查复数代数形式的基本运算,属于容易题。
专题17 复数-高考题专项练习(解析版)
专题17 复数-高考题专项练习一、单选题1.(2018·全国高考真题(文)) A . B . C .D .【答案】D【分析】根据公式,可直接计算得(23)32i i i +=-+ 【解析】 ,故选D .【名师点睛】复数题是每年高考的必考内容,一般以选择或填空形式出现,属简单得分题,高考中复数主要考查的内容有:复数的分类、复数的几何意义、共轭复数,复数的模及复数的乘除运算,在解决此类问题时,注意避免忽略中的负号导致出错. 2.(2018·全国高考真题(理)) A . B . C .D .【答案】D 【解析】 故选D .3.(2019·全国高考真题(文))设,则= A .2 B . C .D .1【答案】C【分析】先由复数的除法运算(分母实数化),求得,再求. 【解析】因为,所以,所以,故选C .【名师点睛】本题主要考查复数的乘法运算,复数模的计算.本题也可以运用复数模的运算性质直接求解.4.(2019·全国高考真题(理))设复数z 满足,z 在复平面内对应的点为(x ,y ),则 A .22+11()x y += B .22(1)1x y -+= C .22(1)1y x +-= D .22(+1)1y x +=【答案】C【分析】本题考点为复数的运算,为基础题目,难度偏易.此题可采用几何法,根据点(x ,y )和点(0,1)之间的距离为1,可选正确答案C .【解析】,(1),z x yi z i x y i =+-=+-1,z i -=则22(1)1y x +-=.故选C .【名师点睛】本题考查复数的几何意义和模的运算,渗透了直观想象和数学运算素养.采取公式法或几何法,利用方程思想解题.5.(2020·浙江高考真题)已知a ∈R ,若a –1+(a –2)i (i 为虚数单位)是实数,则a = A .1 B .–1 C .2D .–2【答案】C【解析】因为(1)(2)a a i -+-为实数,所以202a a -=∴=,,故选C 6.(2020·全国高考真题(理))复数的虚部是 A . B . C .D .【答案】D【分析】利用复数的除法运算求出z 即可. 【解析】因为1131313(13)(13)1010i z i i i i +===+--+, 所以复数的虚部为.故选D .【点晴】本题主要考查复数的除法运算,涉及到复数的虚部的定义,是一道基础题. 7.(2020·全国高考真题(文))(1–i )4= A .–4 B .4 C .–4i D .4i【答案】A【分析】根据指数幂的运算性质,结合复数的乘方运算性质进行求解即可. 【解析】.故选A .【名师点睛】本题考查了复数的乘方运算性质,考查了数学运算能力,属于基础题. 8.(2020·全国高考真题(理))若z=1+i ,则|z 2–2z |= A .0B .1【答案】D【分析】由题意首先求得的值,然后计算其模即可. 【解析】由题意可得()2212z i i =+=,则()222212z z i i -=-+=-.故.故选D .【名师点睛】本题主要考查复数的运算法则和复数的模的求解等知识,属于基础题. 9.(2020·全国高考真题(文))若312i i z =++,则 A .0 B .1 C . D .2【答案】C【分析】先根据将化简,再根据向量的模的计算公式即可求出. 【解析】因为31+21+21z i i i i i =+=-=+,所以.故选C . 【名师点睛】本题主要考查向量的模的计算公式的应用,属于容易题. 10.(2017·山东高考真题(文))已知i 是虚数单位,若复数z 满足,则= A .-2i B .2i C .-2D .2【答案】A【解析】由得22(i)(1i)z =+,即,所以,故选A .【名师点睛】复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化.注意下面结论的灵活运用:(1)(1±i)2=±2i ;(2)=i ,=-i .11.(2017·全国高考真题(理))设有下面四个命题 :若复数满足,则; :若复数满足,则; :若复数满足,则; :若复数,则. 其中的真命题为 A .B .【答案】B【解析】令i(,)z a b a b R =+∈,则由2211i i a b z a b a b-==∈++R 得,所以,故正确;当时,因为22i 1z ==-∈R ,而知,故不正确; 当时,满足,但,故不正确;对于,因为实数的共轭复数是它本身,也属于实数,故正确,故选B .【名师点睛】分式形式的复数,分子、分母同乘以分母的共轭复数,化简成i(,)z a b a b R =+∈的形式进行判断,共轭复数只需实部不变,虚部变为原来的相反数即可.12.(2017·北京高考真题(文))若复数(1–i )(a +i )在复平面内对应的点在第二象限,则实数a 的取值范围是 A .(–∞,1) B .(–∞,–1) C .(1,+∞) D .(–1,+∞)【答案】B【解析】设()()()()1i i 11i z a a a =-+=++-,因为复数对应的点在第二象限,所以,解得,故选B .【名师点睛】复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.复数z =a +b i 复平面内的点Z (a ,b )(a ,b ∈R).复数z =a +b i(a ,b ∈R) 平面向量. 13.(2018·全国高考真题(文))设,则 A . B . C .D .【答案】C【分析】利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,然后求解复数的模. 【解析】()()()()1i 1i 1i2i 2i 1i 1i 1i z ---=+=++-+,则,故选C . 【名师点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.14.(2019·北京高考真题(理))已知复数z=2+i,则A.B.C.3D.5【答案】D【分析】题先求得,然后根据复数的乘法运算法则即得.【解析】因为z2i,z z(2i)(2i)5=+⋅=+-=故选D.【名师点睛】本题主要考查复数的运算法则,共轭复数的定义等知识,属于基础题..15.(2018·浙江高考真题)若复数,其中i为虚数单位,则 =A.1+i B.1−iC.−1+i D.−1−i【答案】B【解析】22(1i)1i,1i1i(1i)(1i)z z+===+∴=---+,选B.【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目看,复数题目往往不难,一般考查复数运算与概念或复数的几何意义,也是考生必定得分的题目之一.16.(2019·全国高考真题(理))设z=-3+2i,则在复平面内对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【分析】先求出共轭复数再判断结果.【解析】由得则对应点(-3,-2)位于第三象限.故选C.17.(2019·全国高考真题(文))设z=i(2+i),则=A.1+2i B.–1+2iC.1–2i D.–1–2i【答案】D【分析】本题根据复数的乘法运算法则先求得,然后根据共轭复数的概念,写出.【解析】2i(2i)2i i 12i z =+=+=-+,所以,选D .【名师点睛】本题主要考查复数的运算及共轭复数,容易题,注重了基础知识、基本计算能力的考查.理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.18.(2020·北京高考真题)在复平面内,复数对应的点的坐标是,则. A . B . C .D .【答案】B【分析】先根据复数几何意义得,再根据复数乘法法则得结果. 【解析】由题意得,.故选B .【名师点睛】本题考查复数几何意义以及复数乘法法则,考查基本分析求解能力,属基础题.19.(2020·海南高考真题)= A . B . C .D .【答案】B【解析】2(12)(2)2425i i i i i i ++=+++=,故选B. 20.(2020·海南高考真题) A .1 B .−1 C .i D .−i【答案】D【分析】根据复数除法法则进行计算. 【解析】,故选D.【名师点睛】本题考查复数除法,考查基本分析求解能力,属基础题. 21.(2017·全国高考真题(理))复数等于 A . B . C .D . 【答案】D【解析】=2-i .故选D .【名师点睛】这个题目考查了复数的除法运算,复数常考的还有几何意义,z =a +bi(a ,b ∈R)与复平面上的点Z(a ,b)、平面向量都可建立一一对应的关系(其中O 是坐标原点);复平面内,实轴上的点都表示实数;虚轴上的点除原点外都表示纯虚数.涉及到共轭复数的概念,一般地,当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数,复数z 的共轭复数记作.22.(2017·山东高考真题(理))已知,是虚数单位,若,,则 A .1或 B .或 C .D .【答案】A【解析】由,4z a z z =+⋅=得,所以,故选A .【名师点睛】复数(,)a bi a b R +∈的共轭复数是i(,)a b a b -∈R ,据此结合已知条件,求得的方程即可.23.(2017·全国高考真题(文))(2017新课标全国卷II (文)) A . B . C . D .【答案】B【解析】由题意,故选B .【名师点睛】首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如(+)i(,,,)ad bc a b c d R ∈. 其次要熟悉复数相关基本概念,如复数+i(,)a b a b R ∈的实部为、虚部为、模为、对应点为、共轭复数为.24.(2017·全国高考真题(文))复平面内表示复数z=i(–2+i)的点位于 A .第一象限 B .第二象限 C .第三象限D .第四象限【答案】C【解析】i(2i)12i z =-+=--,则表示复数i(2i)z =-+的点位于第三象限. 所以选C .【名师点睛】对于复数的四则运算,首先要切实掌握其运算技巧和常规思路,如.其次要熟悉复数的相关基本概念,如复数i(,)a b a b +∈R 的实部为、虚部为、模为、对应的点为、共轭复数为25.(2017·全国高考真题(理))(2017高考新课标III ,理3)设复数z 满足(1+i)z =2i ,则∣z ∣= A . B . C . D .2【答案】C【解析】由题意可得,由复数求模的法则可得,则.故选C . 【名师点睛】共轭与模是复数的重要性质,运算性质有: (1)1212z z z z ±=±;(2)1212z z z z ⨯=⨯;(3); (4);(5);(6).26.(2018·全国高考真题(理)) A . B . C .D . 【答案】D【分析】根据复数除法法则化简复数,即得结果.【解析】212(12)341255i i ii ++-+==∴-选D .【名师点睛】本题考查复数除法法则,考查学生基本运算能力. 二、填空题1.(2017·天津高考真题(文))已知,为虚数单位,若为实数,则的值为________. 【答案】-2 【解析】为实数, 则.【名师点睛】复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可. 复数(,)z a bi a b R =+∈,当时,为虚数,当时,为实数,当0,0a b =≠时,为纯虚数. 2.(2019·江苏高考真题)已知复数的实部为0,其中为虚数单位,则实数a 的值是________. 【答案】2【分析】本题根据复数的乘法运算法则先求得,然后根据复数的概念,令实部为0即得a 的值. 【解析】, 令得.【名师点睛】本题主要考查复数的运算法则,虚部的定义等知识,意在考查学生的转化能力和计算求解能力.3.(2017·上海高考真题)已知复数满足,则________. 【答案】【分析】设(,)z a bi a b R =+∈,代入,由复数相等的条件列式求得的值得答案. 【解析】由,得,设(,)z a bi a b R =+∈, 由得,即,解得, 所以,则.【名师点睛】本题考查复数代数形式的乘除运算,考查了复数相等的条件以及复数模的求法,是基础题,着重考查了考生的推理与运算能力.4.(2019·浙江高考真题)复数(为虚数单位),则________. 【答案】【分析】本题先计算,而后求其模.或直接利用模的性质计算. 容易题,注重基础知识、运算求解能力的考查.【解析】1|||1|2z i ===+. 5.(2018·天津高考真题(理))i 是虚数单位,复数________. 【答案】4–i【分析】由题意结合复数的运算法则整理计算即可求得最终结果. 【解析】由复数的运算法则得.【名师点睛】本题主要考查复数的运算法则及其应用,意在考查学生的转化能力和计算求解能力.6.(2019·上海高考真题)设为虚数单位,,则的值为________. 【答案】【分析】把已知等式变形得,再由,结合复数模的计算公式求解即可.【解析】由365z i i -=+,得366z i =+,即 ,本题正确结果:【名师点睛】本题考查复数代数形式的乘除运算,考查复数模的求法,属于基础题. 7.(2019·天津高考真题(文))是虚数单位,则的值为________. 【答案】【分析】先化简复数,再利用复数模的定义求所给复数的模.【解析】5(5)(1)231(1)(1)i i i i i i i ---==-=++-. 8.(2018·上海高考真题)已知复数满足()117i z i +=-(是虚数单位),则________. 【答案】5【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.【解析】由(1+i )z=1﹣7i ,得()()()()1711768341112i i i iz i i i i -----====--++-,则|z|=5=.故答案为5.【名师点睛】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题. 9.(2020·江苏高考真题)已知是虚数单位,则复数(1i)(2i)z =+-的实部是________. 【答案】3【分析】根据复数的运算法则,化简即可求得实部的值. 【解析】因为复数,所以2223z i i i i =-+-=+, 所以复数的实部为3.故答案为3.10.(2020·天津高考真题)是虚数单位,复数________. 【答案】【分析】将分子分母同乘以分母的共轭复数,然后利用运算化简可得结果.【解析】()()()()8281510322225i i i ii i i i ----===-++-.故答案为. 11.(2020·全国高考真题(理))设复数,满足,,则=________. 【答案】【分析】方法一:令1,(,)z a bi a R b R =+∈∈,2,(,)z c di c R d R =+∈∈,根据复数的相等可求得2ac bd +=-,代入复数模长的公式中即可得到结果.方法二:设复数所对应的点为,12OP OZ OZ =+, 根据复数的几何意义及复数的模,判定平行四边形为菱形,,进而根据复数的减法的几何意义用几何方法计算.【解析】方法一:设1,(,)z a bi a R b R =+∈∈,2,(,)z c di c R d R =+∈∈,12()z z a c b d i i ∴+=+++=,,又,所以,,,2ac bd ∴+=-12()()z z a c b d i ∴-=-+-==.故答案为.方法二:如图所示,设复数所对应的点为,12OP OZ OZ =+,由已知,所以平行四边形为菱形,且都是正三角形,所以12Z 120OZ ∠=︒,222221212121||||||2||||cos12022222()122Z Z OZ OZ OZ OZ =+-︒=+-⋅⋅⋅-= 所以.【名师点睛】方法一:本题考查复数模长的求解,涉及到复数相等的应用;考查学生的数学运算求解能力,是一道中档题.方法二:关键是利用复数及其运算的几何意义,转化为几何问题求解12.(2017·江苏高考真题)已知复数z=(1+i )(1+2i ),其中i 是虚数单位,则z 的模是________.【答案】【分析】利用复数的运算法则、模的计算公式即可得出.【解析】复数z =(1+i )(1+2i )=1﹣2+3i =﹣1+3i ,所以|z |==【名师点睛】对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()a bi c di ++=.其次要熟悉复数相关概念,如复数(,)a bi a b R +∈的实部为、虚部为、模为、对应点为、共轭复数为.13.(2018·江苏高考真题)若复数满足,其中i 是虚数单位,则的实部为________.【答案】2【分析】先根据复数的除法运算进行化简,再根据复数实部概念求结果. 【解析】因为,则12i 2i iz +==-,则的实部为. 【名师点睛】本题重点考查复数相关基本概念,如复数+i(,)a b a b ∈R 的实部为、虚部为、模为、对应点为、共轭复数为.三、双空题1.(2017·浙江高考真题)已知a ,b ∈R ,2i 34i a b +=+()(i 是虚数单位)则________,ab =________.【答案】5, 2【解析】由题意可得,则,解得,则225,2a b ab +==.【名师点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为、虚部为、模为、对应点为(,)、共轭为等.。
高考复数专题及答案百度文库
一、复数选择题1.复数21i=+( ) A .1i --B .1i -+C .1i -D .1i + 2.复数11z i =-,则z 的共轭复数为( ) A .1i -B .1i +C .1122i +D .1122i - 3.在复平面内,复数534i i -(i 为虚数单位)对应的点的坐标为( ) A .()3,4B .()4,3-C .43,55⎛⎫- ⎪⎝⎭D .43,55⎛⎫- ⎪⎝⎭ 4.若()211z i =-,21z i =+,则12z z 等于( ) A .1i + B .1i -+ C .1i - D .1i --5.若复数z 为纯虚数,且()373z i m i -=+,则实数m 的值为( )A .97-B .7C .97D .7- 6.设()2211z i i =+++,则||z =( ) AB .1C .2 D7.已知复数512z i =+,则z =( ) A .1 BCD .5 8.已知复数()211i z i-=+,则z =( ) A .1i --B .1i -+C .1i +D .1i - 9.设2i z i +=,则||z =( ) ABC .2D .5 10.复数12i z i =+(i 为虚数单位)在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限11.复数11z =,2z 由向量1OZ 绕原点O 逆时针方向旋转3π而得到.则21arg()2z z -的值为( )A .6πB .3πC .23πD .43π 12.复数112z i =+,21z i =+(i 为虚数单位),则12z z ⋅虚部等于( ). A .1- B .3 C .3i D .i -13.已知(),a bi a b R +∈是()()112i i +-的共轭复数,则a b +=( )A .4B .2C .0D .1-14.已知()312++=+a i i bi (,a b ∈R ,i 为虚数单位),则实数+a b 的值为( ) A .3B .5C .6D .8 15.已知i 是虚数单位,2i z i ⋅=+,则复数z 的共轭复数的模是( )A .5BCD .3 二、多选题16.若复数351i z i -=-,则( )A .z =B .z 的实部与虚部之差为3C .4z i =+D .z 在复平面内对应的点位于第四象限17.下列四个命题中,真命题为( )A .若复数z 满足z R ∈,则z R ∈B .若复数z 满足1R z ∈,则z R ∈C .若复数z 满足2z ∈R ,则z R ∈D .若复数1z ,2z 满足12z z R ⋅∈,则12z z = 18.已知复数1cos 2sin 222z i ππθθθ⎛⎫=++-<< ⎪⎝⎭(其中i 为虚数单位),则( ) A .复数z 在复平面上对应的点可能落在第二象限B .z 可能为实数C .2cos z θ=D .1z 的实部为12- 19.已知i 为虚数单位,复数322i z i +=-,则以下真命题的是( ) A .z 的共轭复数为4755i - B .z 的虚部为75i C .3z = D .z 在复平面内对应的点在第一象限20.若复数z 满足(1i)3i z +=+(其中i 是虚数单位),复数z 的共轭复数为z ,则( )A .|z |=B .z 的实部是2C .z 的虚部是1D .复数z 在复平面内对应的点在第一象限21.下列关于复数的说法,其中正确的是( )A .复数(),z a bi a b R =+∈是实数的充要条件是0b =B .复数(),z a bi a b R =+∈是纯虚数的充要条件是0b ≠C .若1z ,2z 互为共轭复数,则12z z 是实数D .若1z ,2z 互为共轭复数,则在复平面内它们所对应的点关于y 轴对称22.下列结论正确的是( )A .已知相关变量(),x y 满足回归方程ˆ9.49.1yx =+,则该方程相应于点(2,29)的残差为1.1B .在两个变量y 与x 的回归模型中,用相关指数2R 刻画回归的效果,2R 的值越大,模型的拟合效果越好C .若复数1z i =+,则2z =D .若命题p :0x R ∃∈,20010x x -+<,则p ⌝:x R ∀∈,210x x -+≥23.已知复数122,2z i z i =-=则( )A .2z 是纯虚数B .12z z -对应的点位于第二象限C .123z z +=D .12z z =24.设i 为虚数单位,复数()(12)z a i i =++,则下列命题正确的是( )A .若z 为纯虚数,则实数a 的值为2B .若z 在复平面内对应的点在第三象限,则实数a 的取值范围是(,)122- C .实数12a =-是z z =(z 为z 的共轭复数)的充要条件 D .若||5()z z x i x R +=+∈,则实数a 的值为2 25.已知复数z 满足(1﹣i )z =2i ,则下列关于复数z 的结论正确的是( )A .||z =B .复数z 的共轭复数为z =﹣1﹣iC .复平面内表示复数z 的点位于第二象限D .复数z 是方程x 2+2x +2=0的一个根26.以下为真命题的是( )A .纯虚数z 的共轭复数等于z -B .若120z z +=,则12z z =C .若12z z +∈R ,则1z 与2z 互为共轭复数D .若120z z -=,则1z 与2z 互为共轭复数27.下面四个命题,其中错误的命题是( )A .0比i -大B .两个复数当且仅当其和为实数时互为共轭复数C .1x yi i +=+的充要条件为1x y ==D .任何纯虚数的平方都是负实数28.已知复数z a =+在复平面内对应的点位于第二象限,且2z = 则下列结论正确的是( ).A .38z =B .zC .z 的共轭复数为1D .24z =29.已知i 为虚数单位,下列说法正确的是( )A .若,x y R ∈,且1x yi i +=+,则1x y ==B .任意两个虚数都不能比较大小C .若复数1z ,2z 满足22120z z +=,则120z z == D .i -的平方等于130.给出下列命题,其中是真命题的是( )A .纯虚数z 的共轭复数是z -B .若120z z -=,则21z z =C .若12z z +∈R ,则1z 与2z 互为共轭复数D .若120z z -=,则1z 与2z 互为共轭复数【参考答案】***试卷处理标记,请不要删除一、复数选择题1.C【分析】根据复数的除法运算法则可得结果.【详解】.故选:C解析:C【分析】根据复数的除法运算法则可得结果.【详解】21i =+2(1)(1)(1)i i i -=+-2(1)12i i -=-. 故选:C2.D【分析】先由复数的除法化简该复数,再由共轭复数的概念,即可得出结果.【详解】因为,所以其共轭复数为.故选:D.解析:D【分析】先由复数的除法化简该复数,再由共轭复数的概念,即可得出结果.【详解】 因为()()11111111222i i z i i i i ++====+--+, 所以其共轭复数为1122i -. 故选:D.3.D【分析】运用复数除法的运算法则化简复数的表示,最后选出答案即可.【详解】因为,所以在复平面内,复数(为虚数单位)对应的点的坐标为.故选:D解析:D【分析】 运用复数除法的运算法则化简复数534i i -的表示,最后选出答案即可. 【详解】 因为55(34)15204334(34)(34)2555i i i i i i i i ⋅+-===-+--+, 所以在复平面内,复数534i i -(i 为虚数单位)对应的点的坐标为43,55⎛⎫- ⎪⎝⎭. 故选:D4.D【分析】由复数的运算法则计算即可.【详解】解:,.故选:D.解析:D【分析】由复数的运算法则计算即可.解:()2211122z i i i i =-=-+=-, ()()212222(1)2222111112z i i i i i i i z i i i i --⨯--+--∴=====--++--. 故选:D.5.B【分析】先求出,再解不等式组即得解.【详解】依题意,,因为复数为纯虚数,故,解得.故选:B【点睛】易错点睛:复数为纯虚数的充要条件是且,不要只写.本题不能只写出,还要写上.解析:B【分析】 先求出321795858m m z i -+=+,再解不等式组3210790m m -=⎧⎨+≠⎩即得解. 【详解】 依题意,()()()()3373321793737375858m i i m i m m z i i i i +++-+===+--+, 因为复数z 为纯虚数,故3210790m m -=⎧⎨+≠⎩,解得7m =. 故选:B【点睛】易错点睛:复数(,)z a bi a b R =+∈为纯虚数的充要条件是0a =且0b ≠,不要只写0b ≠.本题不能只写出790m +≠,还要写上3210m -=.6.D【分析】利用复数的乘除法运算法则将化简,然后求解.【详解】因为,所以,则.【点睛】本题考查复数的运算,解答时注意复数的乘法运算符合多项式乘法的运算法则,计算复数的除法时,解析:D【分析】利用复数的乘除法运算法则将z 化简,然后求解||z .【详解】 因为()()()()2221211211211111i z i i i i i i i i i -=++=+++=-++-=+++-,所以1z i =-,则z =故选:D .【点睛】本题考查复数的运算,解答时注意复数的乘法运算符合多项式乘法的运算法则,计算复数的除法时,需要给分子分母同乘以分母的共轭复数然后化简.7.C【分析】根据模的运算可得选项.【详解】.故选:C.解析:C【分析】根据模的运算可得选项.【详解】512z i ====+ 故选:C.8.B【分析】根据复数的除法运算法则求出复数,然后根据共轭复数的概念即可得解.【详解】由题意可得,则.故答案为:B解析:B【分析】根据复数的除法运算法则求出复数z ,然后根据共轭复数的概念即可得解.【详解】由题意可得()()()()()212111111i i i z i i i ii i ---===--=--++-,则1z i =-+. 故答案为:B 9.B【分析】利用复数的除法运算先求出,再求出模即可.【详解】,.故选:B .解析:B【分析】利用复数的除法运算先求出z ,再求出模即可.【详解】()22212i i i z i i i++===-,∴z ==故选:B .10.A【分析】对复数进行分母实数化,根据复数的几何意义可得结果.【详解】由,知在复平面内对应的点位于第一象限,故选:A.【点睛】本题主要考查了复数除法的运算以及复数的几何意义,属于基础题解析:A【分析】对复数z 进行分母实数化,根据复数的几何意义可得结果.【详解】 由()()()122112121255i i i z i i i i -===+++-,知在复平面内对应的点21,55⎛⎫⎪⎝⎭位于第一象限, 故选:A.【点睛】 本题主要考查了复数除法的运算以及复数的几何意义,属于基础题.11.C【分析】写出复数的三角形式,绕原点逆时针方向旋转得到复数的三角形式,从而求得的三角形式得解.【详解】,,所以复数在第二象限,设幅角为,故选:C【点睛】在复平面内运用复数的三解析:C【分析】写出复数11z =的三角形式1cos 0sin 0z i =+,绕原点O 逆时针方向旋转3π得到复数2z 的三角形式,从而求得212z z -的三角形式得解. 【详解】 11z =,1cos 0sin 0z i ∴=+,121(cossin )332Z i O OZ ππ=+=2111()2222z z i --∴=+所以复数在第二象限,设幅角为θ,tan θ=23πθ∴= 故选:C【点睛】在复平面内运用复数的三角形式是求得幅角的关键.12.B【分析】化简,利用定义可得的虚部.【详解】则的虚部等于故选:B解析:B【分析】化简12z z ⋅,利用定义可得12z z ⋅的虚部.【详解】()()1212113z z i i i ⋅=+⋅+=-+则12z z ⋅的虚部等于3故选:B13.A【分析】先利用复数的乘法运算法则化简,再利用共轭复数的定义求出a+bi ,从而确定a ,b 的值,求出a+b .【详解】,故选:A解析:A【分析】先利用复数的乘法运算法则化简()()112i i +-,再利用共轭复数的定义求出a +bi ,从而确定a ,b 的值,求出a +b .【详解】()()112i i +-1223i i i =-++=-3a bi i ∴+=+3,1a b ==,4a b +=故选:A14.D【分析】利用复数的乘法运算及复数相等求得a,b 值即可求解【详解】,故 则故选:D解析:D【分析】利用复数的乘法运算及复数相等求得a,b 值即可求解【详解】()312++=+a i i bi ,故332a i bi -+=+ 则32,38a b a b -==∴+=故选:D15.C【分析】首先求出复数的共轭复数,再求模长即可.【详解】据题意,得,所以的共轭复数是,所以.故选:C.解析:C【分析】首先求出复数z 的共轭复数,再求模长即可.【详解】 据题意,得22(2)12121i i i i z i i i ++-+====--,所以z 的共轭复数是12i +,所以z =.故选:C.二、多选题16.AD【分析】根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.【详解】解:,,z 的实部为4,虚部为,则相差5,z 对应的坐标为,故z 在复平面内对应的点位于第四象限,所以AD 正解析:AD【分析】根据复数的运算先求出复数z ,再根据定义、模、几何意义即可求出.【详解】解:()()()()351358241112i i i i z i i i i -+--====---+,z ∴==z 的实部为4,虚部为1-,则相差5,z 对应的坐标为()41-,,故z 在复平面内对应的点位于第四象限,所以AD 正确, 故选:AD. 17.AB【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数满足,设,其中,则,则选项A 正确;对选项B ,若复数满足,设,其中,且,则,则选项B 正确;对选项C ,若复数满足,设解析:AB【分析】利用特值法依次判断选项即可得到答案.【详解】对选项A ,若复数z 满足z R ∈,设z a =,其中a R ∈,则z R ∈,则选项A 正确; 对选项B ,若复数z 满足1R z ∈,设1a z =,其中a R ∈,且0a ≠, 则1z R a=∈,则选项B 正确; 对选项C ,若复数z 满足2z ∈R ,设z i ,则21z R =-∈,但z i R =∉,则选项C 错误;对选项D ,若复数1z ,2z 满足12z z R ⋅∈,设1z i =,2z i =,则121z z ⋅=-∈R , 而21z i z =-≠,则选项D 错误;故答案选:AB【点睛】本题主要考查复数的运算,同时考查复数的定义和共轭复数,特值法为解决本题的关键,属于简单题.18.BC【分析】由可得,得,可判断A 选项,当虚部,时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得,的实部是,可判断D 选项.【详解】因为,所以,所以,所以,所以A 选解析:BC【分析】 由22ππθ-<<可得2πθπ-<<,得01cos22θ<+≤,可判断A 选项,当虚部sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,可判断B 选项,由复数的模计算和余弦的二倍角公式可判断C 选项,由复数的运算得11cos 2sin 212cos 2i z θθθ+-=+,1z 的实部是1cos 2122cos 22θθ+=+,可判断D 选项.【详解】 因为22ππθ-<<,所以2πθπ-<<,所以1cos21θ-<≤,所以01cos22θ<+≤,所以A 选项错误;当sin 20θ=,,22ππθ⎛⎫∈- ⎪⎝⎭时,复数z 是实数,故B 选项正确;2cos z θ===,故C 选项正确:()()111cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 21cos 2sin 212cos 2i i z i i i θθθθθθθθθθθ+-+-===+++++-+,1z 的实部是1cos 2122cos 22θθ+=+,故D 不正确. 故选:BC【点睛】本题主要考查复数的概念,复数模的计算,复数的运算,以及三角恒等变换的应用,属于中档题.19.AD【分析】先利用复数的除法、乘法计算出,再逐项判断后可得正确的选项.【详解】,故,故A 正确.的虚部为,故B 错,,故C 错,在复平面内对应的点为,故D 正确.故选:AD.【点睛】本题考解析:AD【分析】先利用复数的除法、乘法计算出z ,再逐项判断后可得正确的选项.【详解】()()32232474725555i i i i i z i ++++====+-,故4755i z =-,故A 正确.z 的虚部为75,故B 错,3z ==≠,故C 错, z 在复平面内对应的点为47,55⎛⎫ ⎪⎝⎭,故D 正确. 故选:AD.【点睛】本题考查复数的概念、复数的运算以及复数的几何意义,注意复数(),z a bi a b R =+∈的虚部为b ,不是bi ,另外复数的除法运算是分子分母同乘以分母的共轭复数.20.ABD【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,求出复数,根据共轭复数概念得到,即可判断.【详解】,,,故选项正确,的实部是,故选项正确,的虚部是,故选项错误,复解析:ABD【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,求出复数z ,根据共轭复数概念得到z ,即可判断.【详解】(1i)3i z +=+,()()()()3134221112i i i i z i i i i +-+-∴====-++-,z ∴==,故选项A 正确,z 的实部是2,故选项B 正确,z 的虚部是1-,故选项C 错误, 复数2z i =+在复平面内对应的点为()2,1,在第一象限,故选项D 正确.故选:ABD .【点睛】本题主要考查的是复数代数形式的乘除运算,考查了复数的代数表示及几何意义,是基础题.21.AC【分析】根据复数的有关概念和充分条件和必要条件的定义进行判断即可.【详解】解:对于:复数是实数的充要条件是,显然成立,故正确;对于:若复数是纯虚数则且,故错误;对于:若,互为共轭复数解析:AC【分析】根据复数的有关概念和充分条件和必要条件的定义进行判断即可.【详解】解:对于A :复数(),z a bi a b R =+∈是实数的充要条件是0b =,显然成立,故A 正确;对于B :若复数(),z a bi a b R =+∈是纯虚数则0a =且0b ≠,故B 错误;对于C :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所以()()2122222z a bi a bi a b b z i a =+-=-=+是实数,故C 正确; 对于D :若1z ,2z 互为共轭复数,设()1,z a bi a b R =+∈,则()2,z a bi a b R =-∈,所对应的坐标分别为(),a b ,(),a b -,这两点关于x 轴对称,故D 错误;故选:AC【点睛】本题主要考查复数的有关概念的判断,利用充分条件和必要条件的定义是解决本题的关键,属于基础题.22.ABD【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.【详解】当时,,则该方程相应于点(2,29)的残差为,则A 正确;在两个变量解析:ABD【分析】根据残差的计算方法判断A ,根据相关指数的性质判断B ,根据复数的模长公式判断C ,根据否定的定义判断D.【详解】当2x =时,ˆ9.429.127.9y=⨯+=,则该方程相应于点(2,29)的残差为2927.9 1.1-=,则A 正确;在两个变量y 与x 的回归模型中,2R 的值越大,模型的拟合效果越好,则B 正确;1z i =-,z ==C 错误;由否定的定义可知,D 正确;故选:ABD【点睛】本题主要考查了残差的计算,求复数的模,特称命题的否定,属于中档题. 23.AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算及,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,对应的解析:AD【分析】利用复数的概念及几何有意义判断A 、B 选项是否正确,利用利用复数的四则运算法则计算12z z +及12z z ,并计算出模长,判断C 、D 是否正确.【详解】利用复数的相关概念可判断A 正确;对于B 选项,1223z z i -=-对应的点位于第四象限,故B 错;对于C 选项,122+=+z z i ,则12z z +==,故C 错;对于D 选项,()122224z z i i i ⋅=-⋅=+,则12z z ==D 正确. 故选:AD【点睛】本题考查复数的相关概念及复数的计算,较简单.24.ACD【分析】首先应用复数的乘法得,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】∴选项A :为纯虚数,有可得,故正确选项B解析:ACD【分析】首先应用复数的乘法得2(12)z a a i =-++,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】()(12)2(12)z a i i a a i =++=-++∴选项A :z 为纯虚数,有20120a a -=⎧⎨+≠⎩可得2a =,故正确 选项B :z 在复平面内对应的点在第三象限,有20120a a -<⎧⎨+<⎩解得12a <-,故错误 选项C :12a =-时,52z z ==-;z z =时,120a +=即12a =-,它们互为充要条件,故正确选项D :||5()z z x i x R +=+∈时,有125a +=,即2a =,故正确故选:ACD【点睛】本题考查了复数的运算及分类和概念,应用复数乘法运算求得复数,再根据复数的概念及性质、相等关系等确定参数的值或范围 25.ABCD【分析】利用复数的除法运算求出,再根据复数的模长公式求出,可知正确;根据共轭复数的概念求出,可知正确;根据复数的几何意义可知正确;将代入方程成立,可知正确.【详解】因为(1﹣i )z =解析:ABCD【分析】利用复数的除法运算求出1z i =-+,再根据复数的模长公式求出||z ,可知A 正确;根据共轭复数的概念求出z ,可知B 正确;根据复数的几何意义可知C 正确;将z 代入方程成立,可知D 正确.【详解】因为(1﹣i )z =2i ,所以21i z i =-2(1)221(1)(1)2i i i i i i +-+===-+-+,所以||z ==A 正确; 所以1i z =--,故B 正确;由1z i =-+知,复数z 对应的点为(1,1)-,它在第二象限,故C 正确;因为2(1)2(1)2i i -++-++22220i i =--++=,所以D 正确.故选:ABCD.【点睛】本题考查了复数的除法运算,考查了复数的模长公式,考查了复数的几何意义,属于基础题. 26.AD【分析】根据纯虚数的概念即可判断A 选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD 选项.【详解】解:对于A ,若为纯虚数,可设,则,即纯虚数的共轭复数等于,故A 正确;对于B解析:AD【分析】根据纯虚数的概念即可判断A 选项;根据实数、复数的运算、以及共轭复数的定义即可判断BCD 选项.【详解】解:对于A ,若z 为纯虚数,可设()0z bi b =≠,则z bi z =-=-,即纯虚数z 的共轭复数等于z -,故A 正确;对于B ,由120z z +=,得出12z z =-,可设11z i =+,则21z i =--, 则21z i =-+,此时12z z ≠,故B 错误;对于C ,设12,z a bi z c di =+=+,则()()12a c b d i R z z =++++∈,则0b d +=, 但,a c 不一定相等,所以1z 与2z 不一定互为共轭复数,故C 错误;对于D ,120z z -=,则12z z =,则1z 与2z 互为共轭复数,故D 正确.故选:AD.【点睛】本题考查与复数有关的命题的真假性,考查复数的基本概念和运算,涉及实数、纯虚数和共轭复数的定义,属于基础题. 27.ABC【分析】根据虚数不能比大小可判断A 选项的正误;利用特殊值法可判断B 选项的正误;利用特殊值法可判断C 选项的正误;利用复数的运算可判断D 选项的正误.【详解】对于A 选项,由于虚数不能比大小,解析:ABC【分析】根据虚数不能比大小可判断A 选项的正误;利用特殊值法可判断B 选项的正误;利用特殊值法可判断C 选项的正误;利用复数的运算可判断D 选项的正误.【详解】对于A 选项,由于虚数不能比大小,A 选项错误;对于B 选项,()()123i i ++-=,但1i +与2i -不互为共轭复数,B 选项错误; 对于C 选项,由于1x yi i +=+,且x 、y 不一定是实数,若取x i =,y i =-,则1x yi i +=+,C 选项错误;对于D 选项,任取纯虚数()0,ai a a R ≠∈,则()220ai a =-<,D 选项正确. 故选:ABC.【点睛】本题考查复数相关命题真假的判断,涉及共轭复数的概念、复数相等以及复数的计算,属于基础题.28.AB【分析】利用复数的模长运算及在复平面内对应的点位于第二象限求出 ,再验算每个选项得解.【详解】解:,且,复数在复平面内对应的点位于第二象限选项A:选项B: 的虚部是选项C:解析:AB【分析】利用复数2z =的模长运算及z a =+在复平面内对应的点位于第二象限求出a ,再验算每个选项得解.【详解】解:z a =+,且2z =224a +∴=,=1a ±复数z a =+在复平面内对应的点位于第二象限1a ∴=-选项A : 3323(1)(1)+3(1)+3())8-+=---+=选项B : 1z =-选项C : 1z =-的共轭复数为1z =--选项D : 222(1)(1)+2()2-+=--=--故选:AB .【点睛】本题考查复数的四则运算及共轭复数,考查运算求解能力.求解与复数概念相关问题的技巧:复数的分类、复数的相等、复数的模及共轭复数的概念都与复数的实部、虚部有关,所以解答与复数相关概念有关的问题时,需把所给复数化为代数形式,即()a bi a b R ∈+,的形式,再根据题意求解.29.AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,且,根据复数相等的性质,则,故正确;对于选项B ,解析:AB【分析】利用复数相等可选A ,利用虚数不能比较大小可选B ,利用特值法可判断C 错误,利用复数的运算性质可判断D 错误.【详解】对于选项A ,∵,x y R ∈,且1x yi i +=+,根据复数相等的性质,则1x y ==,故正确;对于选项B ,∵虚数不能比较大小,故正确;对于选项C ,∵若复数1=z i ,2=1z 满足22120z z +=,则120z z ≠≠,故不正确; 对于选项D ,∵复数()2=1i --,故不正确;故选:AB .【点睛】本题考查复数的相关概念,涉及复数的概念、复数相等、复数计算等知识,属于基础题. 30.AD【分析】A .根据共轭复数的定义判断.B.若,则,与关系分实数和虚数判断.C.若,分可能均为实数和与的虚部互为相反数分析判断.D.根据,得到,再用共轭复数的定义判断.【详解】A .根据共轭解析:AD【分析】A .根据共轭复数的定义判断.B.若120z z -=,则12z z =,1z 与2z 关系分实数和虚数判断.C.若12z z +∈R ,分12,z z 可能均为实数和1z 与2z 的虚部互为相反数分析判断.D. 根据120z z -=,得到12z z =,再用共轭复数的定义判断.【详解】A .根据共轭复数的定义,显然是真命题;B .若120z z -=,则12z z =,当12,z z 均为实数时,则有21z z =,当1z ,2z 是虚数时,21≠z z ,所以B 是假命题;C .若12z z +∈R ,则12,z z 可能均为实数,但不一定相等,或1z 与2z 的虚部互为相反数,但实部不一定相等,所以C 是假命题;D. 若120z z -=,则12z z =,所以1z 与2z 互为共轭复数,故D 是真命题. 故选:AD【点睛】本题主要考查了复数及共轭复数的概念,还考查了理解辨析的能力,属于基础题.。
复数—(2018-2022)高考真题汇编
复数—(2018-2022)高考真题汇编一、单选题(共35题;共70分)1.(2分)(2022·浙江)已知a,b∈R,a+3i=(b+i)i(i为虚数单位),则()A.a=1,b=−3B.a=−1,b=3C.a=−1,b=−3D.a=1,b=3【答案】B【解析】【解答】由题意得a+3i=bi−1,由复数相等定义,知a=−1,b=3.故答案为:B【分析】利用复数的乘法运算化简,再利用复数的相等求解.2.(2分)(2022·新高考Ⅱ卷)(2+2i)(1−2i)=()A.−2+4i B.−2−4i C.6+2i D.6−2i【答案】D【解析】【解答】(2+2i)(1−2i)=2+4−4i+2i=6−2i,故答案为:D【分析】根据复数代数形式的乘法法则即可求解.3.(2分)(2022·全国乙卷)设(1+2i)a+b=2i,其中a,b为实数,则()A.a=1,b=−1B.a=1,b=1C.a=−1,b=1D.a=−1,b=−1【答案】A【解析】【解答】易得(a+b)+2ai=2i,根据复数相等的充要条件可得a+b=0,2a=2,解得:a=1,b=−1.故选:A【分析】根据复数代数形式的乘法运算法则以及复数相等的充要条件即可求解.4.(2分)(2022·全国甲卷)若z=−1+√3i,则zzz̅−1=()A.−1+√3i B.−1−√3i C.−13+√33iD.−13−√33i【答案】C【解析】【解答】解:由题意得, z =−1−√3i ,则zz =(−1+√3i)(−1−√3i)=4 则z zz−1=−1+√3i 3=−13+√33i .故选:C【分析】由共轭复数的概念及复数的运算即可得解.5.(2分)(2022·全国甲卷)若 z =1+i .则 |iz +3z̅|= ( )A .4√5B .4√2C .2√5D .2√2【答案】D【解析】【解答】解:因为z=1+i ,所以iz +3z =i (1+i )+3(1−i )=2−2i ,所以 |iz +3z|=√4+4=2√2 . 故选:D【分析】根据复数代数形式的运算法则,共轭复数的概念先求得iz +3z =2−2i ,再由复数的求模公式即可求出.6.(2分)(2022·全国乙卷)已知 z =1−2i ,且 z +az̅+b =0 ,其中a ,b 为实数,则( )A .a =1,b =−2B .a =−1,b =2C .a =1,b =2D .a =−1,b =−2【答案】A【解析】【解答】易知 z̅=1+2i 所以 z +az̅+b =1−2i +a(1+2i)+b =(1+a +b)+(2a −2)i 由 z +az̅+b =0 ,得 {1+a +b =02a −2=0,即 {a =1b =−2 . 故选:A【分析】先求得 z̅ ,再代入计算,由实部与虚部都为零解方程组即可. 7.(2分)(2022·北京)若复数 z 满足 i ⋅z =3−4i ,则 |z|= ( )A .1B .5C .7D .25【答案】B【解析】【解答】由已知条件可知 z =3−4ii=−4−3i ,所以 |z|=√(−4)2+(−3)2=5 . 故答案为:B【分析】根据复数的代数运算以及模长公式,进行计算即可.8.(2分)(2022·新高考Ⅱ卷)若i(1−z)=1,则z+z̅=()A.-2B.-1C.1D.2【答案】D【解析】【解答】解:由题意得,z=1−1i=1−ii2=1+i,则z̅=1−i,则z+z̅=2,故选:D【分析】先由复数的四则运算,求得z,z̅,再求z+z̅即可.9.(2分)(2021·新高考Ⅱ卷)复数2−i1−3i在复平面内对应的点所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】【解答】解:2−i1−3i=(2−i)(1+3i)(1−3i)(1+3i)=5+5i10=12+12i,表示的点为(12,12),位于第一象限.故答案为:A【分析】根据复数的运算法则,及复数的几何意义求解即可10.(2分)(2021·北京)在复平面内,复数z满足(1−i)z=2,则z=()A.2+i B.2−i C.1−i D.1+i 【答案】D【解析】【解答】解:z=21−i=2(1+i)(1−i)(1+i)=1+i,故答案为:D【分析】根据复数的运算法则直接求解即可.11.(2分)(2021·浙江)已知a∈R,(1+ai)i=3+i,(i为虚数单位),则a=()A.-1B.1C.-3D.3【答案】C【解析】【解答】因为(1+ai)i=3+i,所以1+ai=3+ii=3i−1i·i=1−3i利用复数相等的充分必要条件可得:a=−3.故答案为:C.【分析】根据复数相等的条件,即可求得a的值。
历年(2019-2024)全国高考数学真题分类(复数)汇编(附答案)
历年(2019-2024)全国高考数学真题分类(复数)汇编考点01 求复数的实部与虚部1.(2020∙全国∙高考真题)复数113i-的虚部是( ) A .310-B .110-C .110D .3102.(2020∙江苏∙高考真题)已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是 .考点02 复数相等1.(2023∙全国甲卷∙高考真题)设()()R,i 1i 2,a a a ∈+-=,则=a ( ) A .‐1B .0 ∙C .1D .22.(2022∙浙江∙高考真题)已知,,3i (i)i a b a b ∈+=+R (i 为虚数单位),则( ) A .1,3a b ==-B .1,3a b =-=C .1,3a b =-=-D .1,3a b ==3.(2022∙全国乙卷∙高考真题)设(12i)2i a b ++=,其中,a b 为实数,则( ) A .1,1a b ==-B .1,1a b ==C .1,1a b =-=D .1,1a b =-=-4.(2022∙全国乙卷∙高考真题)已知12z i =-,且0z az b ++=,其中a ,b 为实数,则( ) A .1,2a b ==-B .1,2a b =-=C .1,2a b ==D .1,2a b =-=-5.(2021∙全国乙卷∙高考真题)设()()2346i z z z z ++-=+,则z =( ) A .12i -B .12i +C .1i +D .1i -考点03 共轭复数1.(2024∙全国甲卷∙高考真题)设z ,则z z ⋅=( )A .2-BC .D .22.(2024∙全国甲卷∙高考真题)若5i z =+,则()i z z +=( ) A .10iB .2iC .10D .23.(2023∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(-,则z 的共轭复数z =( )A .1B .1C .1-D .1-4.(2023∙全国乙卷∙高考真题)设252i1i i z +=++,则z =( )A .12i -B .12i +C .2i -D .2i +5.(2023∙全国新Ⅰ卷∙高考真题)已知1i22iz -=+,则z z -=( ) A .i -B .iC .0D .16.(2022∙全国甲卷∙高考真题)若1i z =+.则|i 3|z z +=( )A .B .C .D .7.(2022∙全国甲卷∙高考真题)若1z =-,则1zzz =-( )A .1-B .1-C .13-D .13-8.(2022∙全国新Ⅰ卷∙高考真题)若i(1)1z -=,则z z +=( ) A .2-B .1-C .1D .29.(2021∙全国乙卷∙高考真题)设()()2346i z z z z ++-=+,则z =( ) A .12i -B .12i +C .1i +D .1i -10.(2021∙全国新Ⅰ卷∙高考真题)已知2i z =-,则()i z z +=( )A .62i -B .42i -C .62i +D .42i +考点04 复数的模1.(2024∙全国新Ⅱ卷∙高考真题)已知1i z =--,则z =( )A .0B .1C D .22.(2023∙全国乙卷∙高考真题)232i 2i ++=( )A .1B .2CD .53.(2022∙全国甲卷∙高考真题)若1i z =+.则|i 3|z z +=( )A .B .C .D .4.(2022∙北京∙高考真题)若复数z 满足i 34i z ⋅=-,则z =( ) A .1B .5C .7D .255.(2020∙全国∙高考真题)若312i i z =++,则||=z ( ) A .0 B .1CD .26.(2020∙全国∙高考真题)若z=1+i ,则|z 2–2z |=( )A .0B .1CD .27.(2020∙全国∙高考真题)设复数1z ,2z 满足12||=||=2z z ,12i z z +=,则12||z z -= . 8.(2019∙全国∙高考真题)设3i12iz -=+,则z =A .2 BC D .19.(2019∙天津∙高考真题)i 是虚数单位,则51ii-+的值为 . 10.(2019∙浙江∙高考真题)复数11iz =+(i 为虚数单位),则||z = .考点05 复数的几何意义1.(2023∙全国新Ⅱ卷∙高考真题)在复平面内,()()13i 3i +-对应的点位于( ). A .第一象限B .第二象限C .第三象限D .第四象限2.(2023∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(-,则z 的共轭复数z =( )A .1B .1C .1-D .1-3.(2021∙全国新Ⅱ卷∙高考真题)复数2i13i--在复平面内对应的点所在的象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限4.(2020∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(1,2),则i z ⋅=( ). A .12i +B .2i -+C .12i -D .2i --5.(2019∙全国∙高考真题)设z =‐3+2i ,则在复平面内z 对应的点位于 A .第一象限 B .第二象限 C .第三象限D .第四象限6.(2019∙全国∙高考真题)设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则 A .22+11()x y += B .22(1)1x y -+=C .22(1)1y x +-=D .22(+1)1y x +=参考答案考点01 求复数的实部与虚部1.(2020∙全国∙高考真题)复数113i-的虚部是( ) A .310-B .110-C .110D .310【答案】D【详细分析】利用复数的除法运算求出z 即可. 【答案详解】因为1131313(13)(13)1010i z i i i i +===+--+, 所以复数113z i =-的虚部为310. 故选:D.【名师点评】本题主要考查复数的除法运算,涉及到复数的虚部的定义,是一道基础题. 2.(2020∙江苏∙高考真题)已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是 . 【答案】3【详细分析】根据复数的运算法则,化简即可求得实部的值. 【答案详解】∵复数()()12z i i =+-∴2223z i i i i =-+-=+ ∴复数的实部为3.故答案为:3.【名师点评】本题考查复数的基本概念,是基础题.考点02 复数相等1.(2023∙全国甲卷∙高考真题)设()()R,i 1i 2,a a a ∈+-=,则=a ( ) A .‐1 B .0 ∙ C .1 D .2【答案】C【详细分析】根据复数的代数运算以及复数相等即可解出.【答案详解】因为()()()22i 1i i i 21i 2a a a a a a a +-=-++=+-=,所以22210a a =⎧⎨-=⎩,解得:1a =. 故选:C.2.(2022∙浙江∙高考真题)已知,,3i (i)i a b a b ∈+=+R (i 为虚数单位),则( ) A .1,3a b ==-B .1,3a b =-=C .1,3a b =-=-D .1,3a b ==【详细分析】利用复数相等的条件可求,a b .【答案详解】3i 1i a b +=-+,而,a b 为实数,故1,3a b =-=, 故选:B.3.(2022∙全国乙卷∙高考真题)设(12i)2i a b ++=,其中,a b 为实数,则( ) A .1,1a b ==- B .1,1a b == C .1,1a b =-= D .1,1a b =-=-【答案】A【详细分析】根据复数代数形式的运算法则以及复数相等的概念即可解出.【答案详解】因为,a b ÎR ,()2i 2i a b a ++=,所以0,22a b a +==,解得:1,1a b ==-. 故选:A.4.(2022∙全国乙卷∙高考真题)已知12z i =-,且0z az b ++=,其中a ,b 为实数,则( ) A .1,2a b ==- B .1,2a b =-= C .1,2a b == D .1,2a b =-=-【答案】A【详细分析】先算出z ,再代入计算,实部与虚部都为零解方程组即可 【答案详解】12z i =-12i (12i)(1)(22)i z az b a b a b a ++=-+++=+++-由0z az b ++=,结合复数相等的充要条件为实部、虚部对应相等,得10220a b a ++=⎧⎨-=⎩,即12a b =⎧⎨=-⎩ 故选:A5.(2021∙全国乙卷∙高考真题)设()()2346i z z z z ++-=+,则z =( ) A .12i - B .12i + C .1i + D .1i -【答案】C【详细分析】设i z a b =+,利用共轭复数的定义以及复数的加减法可得出关于a 、b 的等式,解出这两个未知数的值,即可得出复数z .【答案详解】设i z a b =+,则i z a b =-,则()()2346i 46i z z z z a b ++-=+=+, 所以,4466a b =⎧⎨=⎩,解得1a b ==,因此,1i z =+. 故选:C.考点03 共轭复数1.(2024∙全国甲卷∙高考真题)设z ,则z z ⋅=( )A .2-BC .D .2【详细分析】先根据共轭复数的定义写出z ,然后根据复数的乘法计算.【答案详解】依题意得,z =,故22i 2zz =-=. 故选:D2.(2024∙全国甲卷∙高考真题)若5i z =+,则()i z z +=( ) A .10i B .2i C .10 D .2【答案】A【详细分析】结合共轭复数与复数的基本运算直接求解. 【答案详解】由5i 5i,10z z z z =+⇒=-+=,则()i 10i z z +=. 故选:A3.(2023∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(-,则z 的共轭复数z =( )A .1B .1C .1- D .1-【答案】D【详细分析】根据复数的几何意义先求出复数z ,然后利用共轭复数的定义计算.【答案详解】z 在复平面对应的点是(-,根据复数的几何意义,1z =-,由共轭复数的定义可知,1z =-. 故选:D4.(2023∙全国乙卷∙高考真题)设252i1i i z +=++,则z =( )A .12i -B .12i +C .2i -D .2i +【答案】B【详细分析】由题意首先计算复数z 的值,然后利用共轭复数的定义确定其共轭复数即可. 【答案详解】由题意可得()252i 2i 2i 2i2i 112i 1i i 11i i 1z +++-=====-++-+-,则12i z =+. 故选:B.5.(2023∙全国新Ⅰ卷∙高考真题)已知1i22iz -=+,则z z -=( ) A .i - B .i C .0D .1【答案】A【详细分析】根据复数的除法运算求出z ,再由共轭复数的概念得到z ,从而解出. 【答案详解】因为()()()()1i 1i 1i 2i 1i 22i 21i 1i 42z ----====-++-,所以1i 2z =,即i z z -=-.6.(2022∙全国甲卷∙高考真题)若1i z =+.则|i 3|z z +=( )A .B .C .D .【答案】D【详细分析】根据复数代数形式的运算法则,共轭复数的概念以及复数模的计算公式即可求出.【答案详解】因为1i z =+,所以()()i 3i 1i 31i 22i z z +=++-=-,所以i 3z z += 故选:D.7.(2022∙全国甲卷∙高考真题)若1z =-,则1zzz =-( )A .1- B .1- C .13-D .13-【答案】C【详细分析】由共轭复数的概念及复数的运算即可得解.【答案详解】1(1113 4.z zz =-=--=+=113z zz ==-- 故选 :C8.(2022∙全国新Ⅰ卷∙高考真题)若i(1)1z -=,则z z +=( ) A .2- B .1- C .1 D .2【答案】D【详细分析】利用复数的除法可求z ,从而可求z z +.【答案详解】由题设有21i1i i iz -===-,故1+i z =,故()()1i 1i 2z z +=++-=,故选:D9.(2021∙全国乙卷∙高考真题)设()()2346i z z z z ++-=+,则z =( ) A .12i - B .12i + C .1i + D .1i -【答案】C【详细分析】设i z a b =+,利用共轭复数的定义以及复数的加减法可得出关于a 、b 的等式,解出这两个未知数的值,即可得出复数z .【答案详解】设i z a b =+,则i z a b =-,则()()2346i 46i z z z z a b ++-=+=+, 所以,4466a b =⎧⎨=⎩,解得1a b ==,因此,1i z =+. 故选:C.10.(2021∙全国新Ⅰ卷∙高考真题)已知2i z =-,则()i z z +=( )A .62i -B .42i -C .62i +D .42i +【答案】C【详细分析】利用复数的乘法和共轭复数的定义可求得结果.【答案详解】因为2z i =-,故2z i =+,故()()()2222=4+42262z z i i i i i i i +=-+--=+故选:C.考点04 复数的模1.(2024∙全国新Ⅱ卷∙高考真题)已知1i z =--,则z =( )A .0B .1CD .2【答案】C【详细分析】由复数模的计算公式直接计算即可.【答案详解】若1i z =--,则z ==故选:C.2.(2023∙全国乙卷∙高考真题)232i 2i ++=( )A .1B .2CD .5【答案】C【详细分析】由题意首先化简232i 2i ++,然后计算其模即可. 【答案详解】由题意可得232i 2i 212i 12i ++=--=-,则232i 2i 12i ++=-=故选:C.3.(2022∙全国甲卷∙高考真题)若1i z =+.则|i 3|z z +=( )A .B .C .D .【答案】D【详细分析】根据复数代数形式的运算法则,共轭复数的概念以及复数模的计算公式即可求出.【答案详解】因为1i z =+,所以()()i 3i 1i 31i 22i z z +=++-=-,所以i 3z z += 故选:D.4.(2022∙北京∙高考真题)若复数z 满足i 34i z ⋅=-,则z =( ) A .1 B .5C .7D .25【答案】B【详细分析】利用复数四则运算,先求出z ,再计算复数的模.【答案详解】由题意有()()()34i i 34i 43i i i i z ---===--⋅-,故|5|z ==.故选:B .5.(2020∙全国∙高考真题)若312i i z =++,则||=z ( ) A .0 B .1C D .2【答案】C【详细分析】先根据2i 1=-将z 化简,再根据复数的模的计算公式即可求出.【答案详解】因为31+2i i 1+2i i 1i z =+=-=+,所以 z ==. 故选:C .【名师点评】本题主要考查复数的模的计算公式的应用,属于容易题.6.(2020∙全国∙高考真题)若z=1+i ,则|z 2–2z |=( )A .0B .1CD .2【答案】D【详细分析】由题意首先求得22z z -的值,然后计算其模即可.【答案详解】由题意可得:()2212z i i =+=,则()222212z z i i -=-+=-.故2222z z -=-=.故选:D.【名师点评】本题主要考查复数的运算法则和复数的模的求解等知识,属于基础题.7.(2020∙全国∙高考真题)设复数1z ,2z 满足12||=||=2z z ,12i z z +=,则12||z z -= .【答案】【详细分析】方法一:令1,(,)z a bi a R b R =+∈∈,2,(,)z c di c R d R =+∈∈,根据复数的相等可求得2ac bd +=-,代入复数模长的公式中即可得到结果.方法二:设复数12z ,z 所对应的点为12Z ,Z ,12OP OZ OZ =+, 根据复数的几何意义及复数的模,判定平行四边形12OZ PZ 为菱形,12OZ OZ 2OP ===,进而根据复数的减法的几何意义用几何方法计算12z z -. 【答案详解】方法一:设1,(,)z a bi a R b R =+∈∈,2,(,)z c di c R d R =+∈∈,12()z z a c b d i i ∴+=+++=+,1a cb d ⎧+=⎪∴⎨+=⎪⎩12||=||=2z z ,所以224a b +=,224cd +=, 222222()()2()4a c b d a c b d ac bd ∴+++=+++++=2ac bd ∴+=-12()()z z a c b d i ∴-=-+-===.故答案为:方法二:如图所示,设复数12z ,z 所对应的点为12Z ,Z ,12OP OZ OZ =+,由已知122OZ OZ OP ====,∴平行四边形12OZ PZ 为菱形,且12,OPZ OPZ 都是正三角形,∴12Z 120OZ ∠=︒,222221212121||||||2||||cos12022222()122Z Z OZ OZ OZ OZ =+-︒=+-⋅⋅⋅-=∴1212z z Z Z -==.【名师点评】方法一:本题考查复数模长的求解,涉及到复数相等的应用;考查学生的数学运算求解能力,是一道中档题.方法二:关键是利用复数及其运算的几何意义,转化为几何问题求解 8.(2019∙全国∙高考真题)设3i12iz -=+,则z =A .2 BC D .1【答案】C【详细分析】先由复数的除法运算(分母实数化),求得z ,再求z .【答案详解】因为312iz i -=+,所以(3)(12)17(12)(12)55i i z i i i --==-+-,所以z =,故选C . 【名师点评】本题主要考查复数的乘法运算,复数模的计算.本题也可以运用复数模的运算性质直接求解. 9.(2019∙天津∙高考真题)i 是虚数单位,则51ii-+的值为 .【详细分析】先化简复数,再利用复数模的定义求所给复数的模.【答案详解】5(5)(1)231(1)(1)i i i i i i i ---==-=++-. 【名师点评】本题考查了复数模的运算,是基础题. 10.(2019∙浙江∙高考真题)复数11iz =+(i 为虚数单位),则||z = .【答案】2【详细分析】本题先计算z ,而后求其模.或直接利用模的性质计算. 容易题,注重基础知识、运算求解能力的考查.【答案详解】1|||1|2z i ==+.【名师点评】本题考查了复数模的运算,属于简单题.考点05 复数的几何意义1.(2023∙全国新Ⅱ卷∙高考真题)在复平面内,()()13i 3i +-对应的点位于( ).A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【详细分析】根据复数的乘法结合复数的几何意义详细分析判断.【答案详解】因为()()213i 3i 38i 3i 68i +-=+-=+,则所求复数对应的点为()6,8,位于第一象限.故选:A.2.(2023∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(-,则z 的共轭复数z =( )A .1B .1C .1- D .1-【答案】D【详细分析】根据复数的几何意义先求出复数z ,然后利用共轭复数的定义计算.【答案详解】z 在复平面对应的点是(-,根据复数的几何意义,1z =-,由共轭复数的定义可知,1z =-.故选:D3.(2021∙全国新Ⅱ卷∙高考真题)复数2i13i --在复平面内对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【详细分析】利用复数的除法可化简2i13i --,从而可求对应的点的位置. 【答案详解】()()2i 13i 2i 55i 1i 13i 10102-+-++===-,所以该复数对应的点为11,22⎛⎫⎪⎝⎭,该点在第一象限,故选:A.4.(2020∙北京∙高考真题)在复平面内,复数z 对应的点的坐标是(1,2),则i z ⋅=( ).A .12i +B .2i -+C .12i -D .2i -- 【答案】B【详细分析】先根据复数几何意义得z ,再根据复数乘法法则得结果.【答案详解】由题意得12z i =+,2iz i ∴=-.故选:B.【名师点评】本题考查复数几何意义以及复数乘法法则,考查基本详细分析求解能力,属基础题. 5.(2019∙全国∙高考真题)设z =‐3+2i ,则在复平面内z 对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【详细分析】先求出共轭复数再判断结果.【答案详解】由32,z i =-+得32,z i =--则32,z i =--对应点(‐3,‐2)位于第三象限.故选C .【名师点评】本题考点为共轭复数,为基础题目.6.(2019∙全国∙高考真题)设复数z 满足=1i z -,z 在复平面内对应的点为(x ,y ),则A .22+11()x y +=B .22(1)1x y -+=C .22(1)1y x +-=D .22(+1)1y x += 【答案】C【详细分析】本题考点为复数的运算,为基础题目,难度偏易.此题可采用几何法,根据点(x ,y )和点(0,1)之间的距离为1,可选正确答案C .【答案详解】,(1),z x yi z i x y i =+-=+-1,z i -==则22(1)1y x +-=.故选C .【名师点评】本题考查复数的几何意义和模的运算,渗透了直观想象和数学运算素养.采取公式法或几何法,利用方程思想解题.。
高考数学真题汇编13 复数 (解析版)
复数1.复数z 满足i i i z +=-2)(,则 z =(A ) i --1 (B ) i -1(C ) i 31+- (D )i 21-【答案】B 【解析】2()21i z i i i z i i i+-=+⇔=+=-。
2.复数z =-3+i 2+i的共轭复数是 (A )2+i (B )2-i (C )-1+i (D )-1-i【答案】D 【解析】i i i i i i i i z +-=+--+-+-=++-=1555)2)(2()2)(3(23,所以其共轭复数为i z --=1,选D. 3.若复数z 满足(2)117i(i z i -=+为虚数单位),则z 为(A)3+5i (B)3-5i (C)-3+5i (D)-3-5i【答案】A 【解析】i i i i i i i i z 5352515)2)(2()2)(711(2711+=+=+-++=-+=.故选A. 4.已知i 是虚数单位,则31i i+-= A 1-2i B 2-i C 2+i D 1+2i【答案】D【解析】31i i +-(3)(1)2412(1)(1)2i i i i i i +++===+-+.5.若1i 是关于x 的实系数方程20x bx c ++=的一个复数根,则( )A 、2,3b c ==B 、2,1b c ==-C 、2,1b c =-=-D 、2,3b c =-=【答案】D【解析】因为i 21+是实系数方程的一个复数根,所以i 21-也是方程的根,则b i i -==-++22121,c i i ==-+3)21)(21(,所以解得2-=b ,3=c ,选D.6.设,a b R ∈,i 是虚数单位,则“0ab =”是“复数b a i+为纯虚数”的( )A.充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】B.【解析】00=⇔=a ab 或0=b ,而复数bi a i b a -=+是纯虚数00≠=⇔b a 且,ib a ab +⇐=∴0是纯虚数,故选B. 7.复数11i=+ (A) 1122i - (B)1122i + (C) 1i - (D) 1i + 【答案】A【解析】11111(1)(1)222i i i i i i --===-++-,故选A 8.若复数i z +=1 (i 为虚数单位) z -是z 的共轭复数 , 则2z +z -²的虚部为A 0B -1C 1D -2【答案】A【解析】因为i z +=1,所以i z -=1,所以022)1()1(2222=-=-++=+i i i i z z ,选A.9.复数z=i (i+1)(i 为虚数单位)的共轭复数是A.-1-iB.-1+iC.1-iD.1+i【答案】A【解析】由z=i (i+1)=1i -+,及共轭复数定义得1z i =--.【点评】本题考查复数代数形式的四则运算及复数的基本概念,考查基本运算能力.先把Z 化成标准的(,)a bi a b R +∈形式,然后由共轭复数定义得出1z i =--. 10.若=a+bi (a ,b 为实数,i 为虚数单位),则a+b=____________.【答案】3【解析】因为31bi a bi i+=+-,所以()()()31bi a bi i a b b a i +=+-=++-.又因为,a b 都为实数,故由复数的相等的充要条件得3,,a b b a b +=⎧⎨-=⎩解得0,3,a b =⎧⎨=⎩所以3a b +=. 11.设i 为虚数单位,则复数34i i+= A. 43i -- B. 43i -+ C. 43i + D. 43i -【答案】D【解析】法一:34(34)()43()i i i i i i i ++⨯-==-⨯-. 法二:234(34)34431i i i i i i i i i ++⨯-===-⨯- 12.复数(2+i )2等于A.3+4iB.5+4iC.3+2iD.5+2i【答案】A.【解析】i i i 43)22()14()2(2+=++-=+,故选A.13.在复平面内,复数103i i+对应的点的坐标为 A . (1 ,3) B .(3,1) C .(-1,3) D .(3 ,-1)【答案】A【解析】本题考查的是复数除法的化简运算以及复平面,实部虚部的概念。
(完整word版)高考真题:复数
高考真题:复数一、单选题1i (A )1+i (B )1−i (C )−1+i (D )−1−i2.若复数z 满足232i,z z +=- 其中i 为虚数单位,则z=(A )1+2i (B )1-2i (C )12i -+ (D )12i --3.设i 为虚数单位,则复数(1+i )2=(A )0 (B )2 (C )2i (D )2+2i4.设i 为虚数单位,则6(i)x +的展开式中含x 4的项为 (A )-15x 4 (B )15x 4 (C )-20i x 4 (D )20i x 45 (A )i (B )1+i (C )i - (D )1i -6.若43i z =+,则(A )1 (B )1- (C (D 7.若z=1+2i ,则41i zz =- A . 1 B . −1 C . i D . −i8.设复数z 满足3z i i +=-,则z =A . 12i -+B . 12i -C . 32i +D . 32i -9.已知()()31z m m i =++-在复平面内对应的点在第四象限,则实数m 的取值范围是A . ()31-,B . ()13-, C . ()1,+∞ D . ()3-∞-, 10.设(1+2i)(a +i)的实部与虚部相等,其中a 为实数,则a =( )A . −3B . −2C . 2D . 311.设(1i)1i x y +=+,其中x ,y(A )1 (B (C (D )212.(2017高考新课标III,理3)设复数z 满足(1+i)z =2i ,则∣z ∣=A . 12B . √22C . √2D . 213.若复数(1−i )(a +i )在复平面内对应的点在第二象限,则实数a 的取值范围是A . (−∞,1)B . (−∞,−1)C . (1,+∞)D . (−1,+∞)14.已知i 是虚数单位,若复数z 满足i 1i z =+,则2z =A . -2iB . 2iC . -2D . 215.若复数(1–i )(a +i )在复平面内对应的点在第二象限,则实数a 的取值范围是A . (–∞,1)B . (–∞,–1)C . (1,+∞)D . (–1,+∞)16.已知R a ∈, i 是虚数单位,若z a =, 4z z ⋅=,则a =()A . 1或1-B . 或C .D . 17.3+i 1+i =( )A . 1+2iB . 1−2iC . 2+iD . 2−i18.,2017新课标全国卷II 文科)(1+i )(2+i )=A . 1−iB . 1+3iC . 3+iD . 3+3i19.复平面内表示复数z=i(–2+i)的点位于A . 第一象限B . 第二象限C . 第三象限D . 第四象限20.设有下面四个命题p 1:若复数z 满足1z ∈R ,则z ∈R ,p 2:若复数z 满足z 2∈R ,则z ∈R ,p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2,p 4:若复数z ∈R ,则z̅∈R .其中的真命题为A . p 1,p 3B . p 1,p 4C . p 2,p 3D . p 2,p 421.下列各式的运算结果为纯虚数的是A . i(1+i)2B . i 2(1−i)C . (1+i)2D . i(1+i)二、填空题22,其中i 为虚数单位,则z 的虚部等于______________________.23.已知,a b ∈R ,i 是虚数单位,若(1+i )(1-bi )=a _______. 24.设a ∈R ,若复数(1i)(i)a ++在复平面内对应的点位于实轴上,则a =_______________.25.已知a R ∈,i 为虚数单位,若2a ii -+为实数,则a 的值为__________.参考答案1.B【来源】2016年全国普通高等学校招生统一考试文科数学(山东卷精编版)【解析】B. 2.B【来源】2016年全国普通高等学校招生统一考试理科数学(山东卷精编版)【解析】试题分析:设i z a b =+,则23i 32i z z a b +=+=-,故2,1-==b a ,则12i z =-,选B.3.C【来源】2016年全国普通高等学校招生统一考试文科数学(四川卷精编版)试题分析:22(1i)12i i 2i +=++=,故选C.【答案】A【来源】2016年全国普通高等学校招生统一考试理科数学(四川卷精编版)【解析】 试题分析:二项式6(i)x +的展开式的通项为616C i r r r r T x -+=,令64r -=,则2r =,故展开式中含4x 的项为24246C i 15x x =-,故选A.5.A【来源】2016年全国普通高等学校招生统一考试文科数学(北京卷精编版)【解析】A. 【考点】复数运算【名师点睛】复数代数形式的四则运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式的乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化.6.D【来源】2016年全国普通高等学校招生统一考试文科数学(新课标3卷精编版)【解析】D . 【考点】复数的运算、共轭复数、复数的模 【名师点睛】复数的加、减法运算中,可以从形式上理解为关于虚数单位“i ”的多项式合并同类项,复数的乘法与多项式的乘法相类似,只是在结果中把2i 换成−1.复数除法可类比实数运算的分母有理化.复数加、减法的几何意义可依平面向量的加、减法的几何意义进行理解.7.C【来源】2016年全国普通高等学校招生统一考试理科数学(新课标3卷精编版)【解析】试题分析: ()()44112121i i i zz i i ==-+--,故选C . 【考点】复数的运算、共轭复数.【举一反三】复数的加、减法运算中,可以从形式上理解为关于虚数单位“i ”的多项式合并同类项,复数的乘法与多项式的乘法相类似,只是在结果中把2i 换成−1.复数除法可类比实数运算的分母有理化.复数加、减法的几何意义可依照平面向量的加、减法的几何意义进行理解. 视频 8.C【来源】2016年全国普通高等学校招生统一考试文科数学(新课标2卷精编版)【解析】试题分析:由i 3i z +=-得32i z =-,所以32i z =+,故选C.【考点】 复数的运算,共轭复数【名师点睛】复数(),a bi a b R +∈的共轭复数是(),a bi a b R -∈,据此先化简再计算即可.视频9.A【来源】2016年全国普通高等学校招生统一考试理科数学(新课标2卷精编版)【解析】试题分析:要使复数z 对应的点在第四象限,应满足30{10m m +>-<,解得31m -<<,故选A.【考点】 复数的几何意义 【名师点睛】复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可. 复数z =a +bi 复平面内的点Z (a ,b )(a ,b∈R ).复数z =a +bi (a ,b ∈R )平面向量OZ uuu r . 视频 10.A 【来源】2016年全国普通高等学校招生统一考试文科数学(新课标1卷精编版)【解析】试题分析:(1+2i)(a +i)=a −2+(1+2a)i ,由已知,得,解得,选A.【考点】复数的概念及复数的乘法运算【名师点睛】复数题也是每年高考的必考内容,一般以客观题的形式出现,属得分题.高考中考查频率较高的内容有:复数相等、复数的几何意义、共轭复数、复数的模及复数的乘除运算.这类问题一般难度不大,但容易出现运算错误,特别是i 2=−1中的负号易忽略,所以做复数题时要注意运算的准确性.11.B【来源】2016年全国普通高等学校招生统一考试理科数学(新课标1卷精编版)【解析】试题分析:因为(1i)=1+i,x y +所以故选B.【考点】复数运算【名师点睛】复数题也是每年高考的必考内容,一般以客观题的形式出现,属得分题.高考中考查频率较高的内容有:复数相等、复数的几何意义、共轭复数、复数的模及复数的乘除运算.这类问题一般难度不大,但容易出现运算错误,特别是2i 1=-中的负号易忽略,所以做复数题时要注意运算的准确性.12.C【来源】2017年全国普通高等学校招生统一考试理科数学(新课标3卷精编版)【解析】由题意可得z =2i 1+i ,由复数求模的法则可得|z 1z 2|=|z 1||z 1|,则|z |=|2i ||1+i |=√2=√2.故选C.【名师点睛】共轭与模是复数的重要性质,运算性质有:(1)z 1±z 2=z 1±z 2,(2)z 1×z 2=z 1×z 2;(3)z ⋅z̅=|z |2=|z̅|2,(4)||z 1|−|z 2||≤|z 1±z 2|≤|z 1|+|z 2|,(5)|z 1z 2|=|z 1|×|z 2|,(6)|z 1z 2|=|z 1||z 1|. 13.B【来源】2017年全国普通高等学校招生统一考试文科数学(北京卷精编版)【解析】试题分析:设z =(1−i )(a +i )=(a +1)+(1−a )i ,因为复数对应的点在第二象限,所以{a +1<01−a >0,解得:a <−1,故选B. 14.A【来源】2017年全国普通高等学校招生统一考试文科数学(山东卷精编版)【解析】由i 1i z =+得()()22i 1i z =+,即22i z -=,所以22i z =-,故选A. 【名师点睛】复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化.注意下面结论的灵活运用:(1)(1±i)2∈±2i∈(2)∈i,∈∈i.15.B 【来源】2017年全国普通高等学校招生统一考试理科数学(北京卷精编版)【解析】试题分析:设()()()()1i i 11i z a a a =-+=++-,因为复数对应的点在第二象限,所以10{ 10a a +<->,解得: 1a <-,故选B.【考点】复数的运算【名师点睛】复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.复数z =a +b i 复平面内的点Z (a ,b )(a ,b ∈R).复数z =a +b i(a ,b ∈R) 平面向量OZ uuu v .16.A【来源】【全国百强校】河北省曲周县第一中学2016-2017学年高二下学期期末考试数学(理)试题【解析】由,4z a z z =⋅=得234a +=,所以1a =±,故选A.【名师点睛】复数(),a bi a b R +∈的共轭复数是(),a bi a b R -∈,据此结合已知条件,求得a 的方程即可.17.D【来源】江西省赣州厚德外国语学校2018届高三上学期第一次阶段测试数学(理)试题【解析】3+i 1+i =(3+i)(1−i)(1+i)(1−i)=3−3i+i+11+1=4−2i 2=2−i故选D18.B【来源】2017年全国普通高等学校招生统一考试文科数学(新课标2卷精编版)【解析】由题意(1+i )(2+i )=2+3i +i 2=1+3i ,故选B. 点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如(a +b i )(c +d i )=(ac −bd)+ (ad +bc)i (a,b,c,d ∈R). 其次要熟悉复数相关基本概念,如复数a +b i (a,b ∈R)的实部为a 、虚部为b 、模为√a 2+b 2、对应点为(a,b)、共轭复数为a −b i .19.C【来源】2017年全国普通高等学校招生统一考试文科数学(新课标3卷精编版)【解析】()i 2i 12i z =-+=--,则表示复数()i 2i z =-+的点位于第三象限. 所以选C.【名师点睛】对于复数的四则运算,首先要切实掌握其运算技巧和常规思路,如()()()()()i i i ,,,a b c d ac bd ad bc a b c d R ++=-++∈.其次要熟悉复数的相关基本概念,如复数()i ,a b a b R +∈的实部为a 、虚部为b 、对应的点为(),a b 、共轭复数为i.a b -20.B【来源】2017年全国普通高等学校招生统一考试理科数学(新课标1卷精编版)【解析】令z =a +b i (a,b ∈R),则由1z =1a+b i =a−b ia 2+b 2∈R 得b =0,所以z ∈R ,故p 1正确;当z =i 时,因为z 2=i 2=−1∈R ,而z =i ∉R 知,故p 2不正确;当z 1=z 2=i 时,满足z 1⋅z 2=−1∈R ,但z 1≠z 2,故p 3不正确;对于p 4,因为实数的共轭复数是它本身,也属于实数,故p 4正确,故选B. 点睛:分式形式的复数,分子、分母同乘以分母的共轭复数,化简成z =a +b i (a,b ∈R)的形式进行判断,共轭复数只需实部不变,虚部变为原来的相反数即可.21.C【来源】2017年全国普通高等学校招生统一考试文科数学(新课标1卷精编版)【解析】2i 1+i)i 2i=-2,=⋅( ()2i 1i 1i -=-+ , 2(1i)2i += , ()i 1i 1i +=-+ ,所以选C.22.-3【来源】2016年全国普通高等学校招生统一考试文科数学(上海卷精编版)【解析】z 的虚部等于−3. 【考点】复数的运算、复数的概念【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目来看,复数题目往往不难,有时运算与概念、复数的几何意义综合考查,也是考生必定得分的题目之一.23.2【来源】2016年全国普通高等学校招生统一考试理科数学(天津卷精编版)【解析】试题分析:由(1i)(1i)1(1)i b b b a +-=++-=,可得110b a b +=⎧⎨-=⎩,所以21a b =⎧⎨=⎩故答案为2.【考点】复数相等【名师点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如答案第7页,总7页 i i i()(a+b )(c+d )=(ac bd)+(ad +bc)a,b,c,d -∈R ,其次要熟悉复数的相关基本概念,如复数i(,)a+b a b ∈R 的实部为a 、虚部为b 、模为、共轭复数为i a b -.24.1-【来源】2016年全国普通高等学校招生统一考试理科数学(北京卷精编版)【解析】 试题分析:由题意得(1i)(i)1(1)i 1a a a a ++=-++∈⇒=-R .【考点】复数运算【名师点睛】复数代数形式的四则运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式的乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化.25.-2【来源】2017年全国普通高等学校招生统一考试理科数学(天津卷精编版) 【解析】()()()()()()2212212222555a i i a a i a i a a i i i i ----+--+===-++-为实数, 则20,25a a +==-. 【考点】 复数的分类【名师点睛】复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可. 复数(),z a bi a b R =+∈,当0b ≠时, z 为虚数,当0b =时, z 为实数,当0,0a b =≠时, z 为纯虚数.。
2024年高一数学真题分类汇编(天津专用)复数(解析版)
专题02复数考点一、复数的概念及几何意义考点二、复数的模和共轭复数考点三、复数的四则运算1、复数的综合应用复数的概念及几何意义1.(22-23高一下·天津·期中)若复数z 满足43i z =-,则z 的虚部是()A .3B .-3C .3iD .3i-【答案】B【分析】根据虚部的定义直接得到答案.【详解】复数z 满足43i z =-,则z 的虚部是3-.故选:B2.(22-23高一下·天津·期中)已知复数()34i 3i z -=-+,则z 在复平面内对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限3.(22-23高一下·天津·期中)已知i 为虚数单位,则复数23i+-在复平面内对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限4.(22-23高一下·天津·期中)已知复数iz +=,则()A .z 的虚部为1B . 2z =C .2z 为纯虚数D .z 在复平面内对应的点位于第二象限5.(22-23高一下·天津滨海新·阶段练习)若复数z 满足(34i)1z ++=,则z 的虚部是【答案】4-【分析】应用复数的减法运算求复数,即可确定其虚部.【详解】由题设1(34i)24i z =-+=--,故虚部为4-.故答案为:4-6.(19-20高一下·天津和平·期中)已知复数12z i =-,则复数1z的模为;复数1z的虚部为.的虚部,利用复数的模长公式7.(22-23高一下·天津·期中)已知复数z 满足()12i z i -=(其中i 为虚数单位),则z =()A B .2C .1D .48.(22-23高一下·天津·期中)已知()13z -=-i i ,其中i 为虚数单位,则z =()A B .5C .2D9.(22-23高一下·天津·期中)复数52i-的共轭复数是()A .2i --B .2i -+C .2i -D .2i+10.(22-23高一下·天津西青·期中)已知复数z 在复平面上对应的点为()2,1-,则()A .12i z =-+B .5z =C .2i z =--D .2z -是纯虚数11.(22-23高一下·天津西青·阶段练习)已知复数z 在复平面上对应的点为()2,1-,则()A .z 的虚部为i -B .5z =C .2i z =--D .2z -是纯虚数【答案】D【分析】根据题意得2i z =-,根据虚部的概念、模的求法、共轭复数的概念、纯虚数的概念依次判断选项,即可求解.【详解】A :因为复数z 在复平面上对应的点为()2,1-,则2i z =-,所以复数z 的虚部为-1,故A 错误;12.(22-23高一下·天津·期中)复数i 2-的共轭复数是()A .2i +B .2i-+C .2i--D .2i-13.(22-23高一下·天津·期中)若复数()1iz m R +=∈是纯虚数,则i m +=.14.(19-20高一下·天津滨海新·期末)若i 为虚数单位,复数1z i-=,则||z =.故答案为:5.【点睛】本题考查了复数代数形式的乘除运算,考查了复数模的求法,属于基础题.15.(22-23高一下·天津·期中)设复数z 满足()1234i z i +=-(i 为虚数单位),则z 的值为.点睛:本题考查复数的四则运算,意在考查学生的计算能力.16.(22-23高一下·天津西青·期中)已知复数z 满足42i1iz -=,则z =.17.(22-23高一下·天津河北·期中)已知i 是虚数单位,化简12i-+的结果为;113i12i-+的值为.18.(17-18高二下·河北张家口·阶段练习)若复数58z i =+,则4z i -=.【答案】13.;根据复数运算和模的定义即可求值.20.(22-23高一下·天津·期中)设复数1i z =--(i 为虚数单位),的共轭复数为z ,则z等于()A .12i --B .2i -+C .12i -+D .12i+21.(22-23高一下·天津·期中)若复数z 满足232,z z i +=-其中i 为虚数单位,则z=A .1+2iB .1-2iC .12i-+D .12i--,故,则【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目看,复数题目往往不难,有时对复数的运算与概念、复数的几何意义等进行综合考查,也是考生必定得分的题目之一.22.(22-23高一下·天津·期中)已知复数z 满足()i 12z -=,给出下列四个命题其中正确的是()A .2z =B .z 的虚部为1-C .1iz =+D .22iz =-23.(22-23高一下·天津·期中)设复数z 的共轭复数为z ,若22i 2z z +=+,则z =()A .12i -+B .12i +C .12i-D .122i+24.(2018·天津·高考真题)i 是虚数单位,复数12i+=.25.(22-23高一下·天津河西·期中)已知i 是虚数单位,化简23i1i+-的结果为.26.(20-21高一下·天津南开·期中)i 是虚数单位,则1i-=.27.(22-23高一下·天津南开·期中)若i 是虚数单位,复数32i +=.28.(22-23高一下·天津·期中)(22i)(12i)+-=.【答案】62i-【分析】利用复数乘法法则进行计算.【详解】2(22i)(12i)24i 2i 4i 62i +-=-+-=-故答案为:62i-29.(22-23高一下·天津·期中)i 是虚数单位,复数2i1i-=.复数的综合应用30.(22-23高一下·天津·期中)已知复数()22562i z m m m m =-++--(i 为虚数单位).(1)若z 是纯虚数,求实数m 的值;(2)若0z >,求实数m 的值.31.(22-23高一下·天津河北·期中)已知复数()()2212i z m m m =-+--,m ∈R .(1)若z 是实数,求m 的值;(2)若z 是纯虚数,求m 的值;(3)若z 在复平面内对应的点在第四象限,求m 的取值范围.【详解】(1)解:()()2212i z m m m =-+-- ,且z 是实数,220m m ∴--=,解得1m =-或2m =;(2)解: z 是纯虚数,221020m m m ⎧-=∴⎨--≠⎩,解得1m =;(3)解: z 在复平面内对应的点在第四象限,221020m m m ⎧->∴⎨--<⎩,解得12m <<.32.(20-21高一下·天津宁河·阶段练习)已知复数()()223243i z m m m m =-++-+,m ∈R .(1)若z 是实数,求m 的值.(2)若z 是纯虚数,求m 的值.(3)若z 对应复平面上的点在第四象限,求m 的范围;33.(22-23高一下·天津·期中)设复数()()21z a a a i a =---∈R .(1)若z 为纯虚数,求z z ⋅;(2)若z 在复平面内对应的点在第四象限,求a 的取值范围.法,是基础题.34.(22-23高一下·天津·期中)已知z 是复数,2z i +与2z i-均为实数.(1)求复数z ;(2)复数()2z ai +在复平面上对应的点在第一象限,求实数a 的取值范围.35.(22-23高一下·天津·期中)已知复数()()21i(R)z m m m m =-+-∈.(1)若z 为实数,求m 值:(2)若z 为纯虚数,求m 值;(3)若复数z 对应的点在第一象限,求m 的取值范围.【详解】(1)因为z 为实数,所以101m m -=⇒=;(2)因为z 为纯虚数,所以20010m m m m ⎧-=⇒=⎨-≠⎩;(3)因为复数z 对应的点在第一象限,所以20110m m m m ⎧->⇒>⎨->⎩.。
高三英语单复数练习题50题(答案解析)
高三英语单复数练习题50题(答案解析)1.The book has many interesting _____.A.storyB.storiesC.storysD.storyes答案解析:B。
选项A“story”是单数形式;选项B“stories”是复数形式,符合题干中“many”的要求;选项C 和D 拼写错误。
2.There are some _____ on the desk.A.penB.pensC.penesD.penss答案解析:B。
选项A“pen”是单数形式;选项B“pens”是复数形式,符合题干中“some”的要求;选项C 和D 拼写错误。
3.My sister has two _____ of shoes.A.pairB.pairsC.pairesD.pairss答案解析:B。
选项A“pair”是单数形式;选项B“pairs”是复数形式,符合题干中“two”的要求;选项C 和D 拼写错误。
4.There are a lot of _____ in the park.A.peopleB.peoplesC.peoplessD.peoplesses答案解析:A。
“people”本身就是复数形式,表示“人,人们”;选项B、C、D 都是错误的形式。
5.The teacher has several _____ to mark.A.paperB.papersC.paperesD.paperess答案解析:B。
选项A“paper”作“纸”讲时是不可数名词,作“试卷”讲时是可数名词,这里是“试卷”的意思,several 后接可数名词复数形式;选项C 和D 拼写错误。
6.There are many _____ in the library.A.bookB.booksC.bookesD.bookess答案解析:B。
选项A“book”是单数形式;选项B“books”是复数形式,符合题干中“many”的要求;选项C 和D 拼写错误。
复数十年高考题(带详细解析)
复 数●试题类编※1.设复数z 1=-1+i ,z 2=2321+i ,则arg 21z z 等于( ) A.-125π B.125π C.127π D.1213π2.复数z =iim 212+-(m ∈R ,i 为虚数单位)在复平面上对应的点不可能位于( )A.第一象限B.第二象限C.第三象限D.第四象限※3.如果θ∈(2π,π),那么复数(1+i )(cos θ+i sin θ)的辐角的主值是( )A.θ+49π B.θ+4πC.θ4π-D.θ+47π 4.复数(2321+i )3的值是( ) A. -i B.i C.-1 D.15.如图12—1,与复平面中的阴影部分(含边界)对应的复数集合是( )※6.已知复数z=i 62+,则arg z 1是( )A.6πB.611πC.3π D.35π图12—1※7.设复数z 1=-1-i 在复平面上对应向量1OZ ,将1OZ 按顺时针方向旋转65π后得到向量2OZ ,令2OZ 对应的复数z 2的辐角主值为θ,则tan θ等于( )A.2-3B.-2+3C.2+3D.-2-3※8.在复平面内,把复数3-3i 对应的向量按顺时针方向旋转3π,所得向量对应的复数是( )A.23B.-23iC.3-3iD.3+3i※9.复数z =)5sin5(cos3ππi --(i 是虚数单位)的三角形式是( )A.3[cos (5π-)+i sin (5π-)] B.3(cos5π+i sin5π)C.3(cos54π+i sin 54π)D.3(cos56π+i sin 56π) 10.复数z 1=3+i ,z 2=1-i ,则z =z 1·z 2在复平面内的对应点位于( )A.第一象限B.第二象限C.第三象限D.第四象限 11.设复数z 1=2sin θ+i cos θ(4π<θ<2π)在复平面上对应向量1OZ ,将1OZ 按顺时针方向旋转43π后得到向量2OZ ,2OZ 对应的复数为z 2= r (cos ϕ+i sin ϕ),则tan ϕ等于( )A.1tan 2tan 2-θθB.1tan 21tan 2+-θθC.1tan 21+θD.1tan 21-θ※12.复数-i 的一个立方根是i ,它的另外两个立方根是( )A.i 2123±B.i 2123±-C.±i 2123+ D.±i 2123- 13.复数54)31()22(i i -+等于( ) A.1+3i B.-1+3i C.1-3iD.-1-3i14.设复数z =-2321+i (i 为虚数单位),则满足等式z n =z 且大于1的正整数n 中最小的是( )A.3B.4C.6D.715.如果复数z 满足|z +i |+|z -i |=2,那么|z +i +1|的最小值是( )A.1B.2C.2D.5二、填空题16.已知z 为复数,则z +z >2的一个充要条件是z 满足 .17.对于任意两个复数z 1=x 1+y 1i ,z 2=x 2+y 2i (x 1、y 1、x 2、y 2为实数),定义运算“⊙”为:z 1⊙z 2=x 1x 2+y 1y 2.设非零复数w 1、w 2在复平面内对应的点分别为P 1、P 2,点O 为坐标原点.如果w 1⊙w 2=0,那么在△P 1OP 2中,∠P 1OP 2的大小为 .18.若z ∈C ,且(3+z )i =1(i 为虚数单位),则z = .19.若复数z 满足方程z i =i -1(i 是虚数单位),则z =_____. 20.已知a =ii213+--(i 是虚数单位),那么a 4=_____.21.复数z 满足(1+2i )z =4+3i ,那么z =_____. 三、解答题22.已知z 、w 为复数,(1+3i )z 为纯虚数,w =iz+2,且|w |=52,求w .23.已知复数z=1+i,求实数a,b使az+2b z=(a+2z)2.24.已知z7=1(z∈C且z≠1).(Ⅰ)证明1+z+z2+z3+z4+z5+z6=0;(Ⅱ)设z的辐角为α,求cosα+cos2α+cos4α的值.※25.已知复数z1=i(1-i)3.(Ⅰ)求arg z1及|z1|;(Ⅱ)当复数z满足|z|=1,求|z-z1|的最大值.26.对任意一个非零复数z ,定义集合M z ={w |w =z 2n -1,n ∈N }. (Ⅰ)设α是方程x +21=x的一个根,试用列举法表示集合M α; (Ⅱ)设复数ω∈M z ,求证:M ω⊆M z .27.对任意一个非零复数z ,定义集合M z ={w |w =z n ,n ∈N }. (Ⅰ)设z 是方程x +x1=0的一个根,试用列举法表示集合M z .若在M z 中任取两个数,求其和为零的概率P ;(Ⅱ)若集合M z 中只有3个元素,试写出满足条件的一个z 值,并说明理由.28.设复数z满足|z|=5,且(3+4i)z在复平面上对应的点在第二、四象限的角平分线上,|2z-m|=52(m∈R),求z和m的值.29.已知复数z0=1-mi(M>0),z=x+yi和ω=x′+y′i,其中x,y,x′,y′均为z·z,|ω|=2|z|.实数,i为虚数单位,且对于任意复数z,有ω=(Ⅰ)试求m的值,并分别写出x′和y′用x、y表示的关系式;(Ⅱ)将(x,y)作为点P的坐标,(x′,y′)作为点Q的坐标,上述关系式可以看作是坐标平面上点的一个变换:它将平面上的点P变到这一平面上的点Q.当点P在直线y=x+1上移动时,试求点P经该变换后得到的点Q的轨迹方程;(Ⅲ)是否存在这样的直线:它上面的任一点经上述变换后得到的点仍在该直线上?若存在,试求出所有这些直线;若不存在,则说明理由.※30.设复数z =3cos θ+i ·2sin θ.求函数y =θ-arg z (0<θ<2)的最大值以及对应的θ值.※31.已知方程x 2+(4+i )x +4+ai =0(a ∈R )有实数根b ,且z =a +bi ,求复数z (1-ci )(c >0)的辐角主值的取值范围.※32.设复数z满足4z+2z=33+i,ω=sinθ-i cosθ(θ∈R).求z的值和|z-ω|的取值范围.※33.已知复数z1满足(z1-2)i=1+i,复数z2的虚部为2,且z1·z2是实数,求复数z2的模.※34.已知向量OZ 所表示的复数z 满足(z -2)i =1+i ,将OZ 绕原点O 按顺时针方向旋转4π得1OZ ,设1OZ 所表示的复数为z ′,求复数z ′+2i 的辐角主值.※35.已知复数z =2321+i ,w =2222+i ,求复数zw +zw 3的模及辐角主值.36.已知复数z =2321+i ,ω=2222+i .复数z ω,z 2ω3在复数平面上所对应的点分别是P 、Q .证明:△OPQ 是等腰直角三角形(其中O 为原点).37.设虚数z 1,z 2满足z 12=z 2.(1)若z 1、z 2是一个实系数一元二次方程的两个根,求z 1、z 2; ※(2)若z 1=1+mi (m >0,i 为虚数单位),ω=z 2-2,ω的辐角主值为θ,求θ的取值范围.38.设z 是虚数,w =z +z1是实数,且-1<ω<2. (Ⅰ)求|z |的值及z 的实部的取值范围; (Ⅱ)设u =zz+-11,求证:u 为纯虚数; (Ⅲ)求w -u 2的最小值.39.已知复数z 1、z 2满足|z 1|=|z 2|=1,且z 1+z 2=2321+i .求z 1、z 2的值.※40.设复数z=cosθ+i sinθ,θ∈(π,2π).求复数z2+z的模和辐角.※41.在复平面上,一个正方形的四个顶点按照逆时针方向依次为Z1,Z2,Z3,O(其中O是原点),已知Z2对应复数z2=1+3i,求Z1和Z3对应的复数.※42.已知z =1+i ,(Ⅰ)设w =z 2+3z -4,求w 的三角形式.(Ⅱ)如果122+-++z z bax z =1-i ,求实数a ,b 的值.43.设w 为复数,它的辐角主值为43π,且ωω4)(2-为实数,求复数w .答案解析1.答案:B解析一:通过复数与复平面上对应点的关系,分别求出z 1、z 2的辐角主值.arg z 1=43π,arg z 2=3π.所以argπππ12534321=-=z z ∈[0,2π), ∴arg12521=z z π. 解析二:因为i i i i i z z )2123()2123()2321)(1(2321121++-=-+-=++-=. 在复平面的对应点在第一象限.故选B评述:本题主要考查复数的运算法则及几何意义、辐角主值等概念,同时考查了灵活运用知识解题的能力,体现了数形结合的思想方法.2.答案:A解析:由已知z =51)21)(21()21)(2(212=-+--=+-i i i i m i i m [(m -4)-2(m +1)i ]在复平面对应点如果在第一象限,则⎩⎨⎧<+>-0104m m 而此不等式组无解.即在复平面上对应的点不可能位于第一象限.3.答案:B解析:(1+i )(cos θ+i sin θ)=2(cos4π+i sin4π)(cos θ+i sin θ)=2[cos (θ+4π)+i sin (θ+4π)]∵θ∈(2π,π) ∴θ+4π∈(43π,45π) ∴该复数的辐角主值是θ+4π.4.答案:C解法一:(2321+i )3=(cos60°+i sin60°)3=cos180°+i sin180°=-1 解法二:i i 2321,2321+-=-=+ωω, ∴1)()()2321(333-=-=-=+ωωi 5.答案:D 6.答案:D 解法一:35arg 21arg ),3sin 3(cos 22)2321(22ππππ=-=+=+=z z i i z 解法二:)31(2i z +=∴22311iz -=∴z 1,0223,0221<->应在第四象限,tan θ=3-,θ=arg z 1. ∴argz 1是35π. 7.答案:C 解析:∵arg z 1=45π,arg z 2=125π ∴tan θ=tan125π=tan75°=tan (45°+30°)=323333+=-+. 8.答案:B解析:根据复数乘法的几何意义,所求复数是i i i i i 32)2321)(33()]3sin()3)[cos(33(-=--=-+--ππ.9.答案:C解法一:采用观察排除法.复数)5sin5(cos3ππi z--=对应点在第二象限,而选项A 、B 中复数对应点在第一象限,所以可排除.而选项D 不是复数的三角形式,也可排除,所以选C.解法二:把复数)5sin5(cos3ππi z --=直接化为复数的三角形式,即).54sin 54(cos 3)]5sin()5[cos(3)5sin5cos(3ππππππππi i i z +=-+-=+-= 10.答案:D 解析:ππππ1223arg 47,47arg ,6arg 02121<⋅<=<<z z z z . 11.答案:A解析:设z 1=2sin θ+i cos θ=|z 1|(cos α+i sin α), 其中|z 1|=||sin 2cos ,cos sin 4122z θαθθ=+, sin α=||cos 1z θ(24πθπ<<). ∴z 2=|z 1|·[cos (α43π-)+i sin (α43π-)] =r (cos ϕ+i sin ϕ).∴tan ϕ=1tan 21tan 2cos sin 2cos sin 2sin cos sin cos )43cos()43sin(cos sin -+=-+=-+=--=θθθθθθααααπαπαϕϕ12.答案:D 解法一:∵-i =cos23π+i sin 23π ∴-i 的三个立方根是cos 3223sin 3223ππππk i k +++(k =0,1,2)当k =0时,i i i =+=+2sin 2cos 323sin 323cos ππππ; 当k =1时,i i i 212367sin 67cos 3223sin 3223cos --=+=+++ππππππ;当k =2时,i i i 2123611sin 611cos 3423sin 3423cos-=+=+++ππππππ. 故选D.解法二:由复数开方的几何意义,i 与-i 的另外两个立方根表示的点均匀地分布在以原点为圆心,1为半径的圆上,于是另外两个立方根的虚部必为-21,排除A 、B 、C ,选D. 评述:本题主要考查了复数开方的运算,既可用代数方法求解,也可用几何方法求解,但由题干中的提示,几何法解题较简捷.13.答案:B解法一:)4sin4(cos2222ππi i +=+,故(2+2i )4=26(cos π+i sin π)=-26,1-)3sin3(cos23ππi i -=,故35sin35cos 2)31(55ππi i +=-.于是i i i i i 31)2321(22)35sin 35(cos2)31()22(5654+=--=+-=-+ππ, 所以选B.解法二:原式=i i i i i 23212)2321()2(21)2321(2)1(1622554--=+--=+--+i i i314)31(4314+-=--=+-=∴应选B解法三:2+2i 的辐角主值是45°,则(2+2i )4的辐角是180°;1-3i 的一个辐角是-60°,则(1-3i )5的辐角是-300°,所以54)31()22(i i -+的一个辐角是480°,它在第二象限,从而排除A 、C 、D ,选B.评述:本题主要考查了复数的基本运算,有一定的深刻性,尤其是选择项的设计,隐藏着有益的提示作用,考查了考生观察问题、思考问题、分析问题的综合能力.14.答案:B 解析:z =-2321+i 是z 3=1的一个根,记z =ω,ω4=ω,故选B. 15.答案:A解析:设复数z 在复平面的对应点为z ,因为|z +i |+|z -i |=2,所以点Z 的集合是y 轴上以Z 1(0,-1)、Z 2(0,1)为端点的线段.|z +1+λ|表示线段Z 1Z 2上的点到点(-1,-1)的距离.此距离的最小值为点Z 1(0,-1)到点(-1,-1)的距离,其距离为1.评述:本题主要考查两复数之差的模的几何意义,即复平面上两点间的距离. 16.答案:Rez >1解析:设z =a +bi ,如果z +z >2,即2a >2∴a >1反之,如果a >1,则z +z =2a >2,故z +z >2的一个充要条件为Rez >1. 评述:本题主要考查复数的基本概念、基本运算及充要条件的判断方法. 17.答案:2π解析:设i y x z i y x zOP OP 221121,+=+=∵w 1⊙w 2=0 ∴由定义x 1x 2+y 1y 2=0 ∴OP 1⊥OP 2 ∴∠P 1OP 2=2π.18.答案:z =-3-i解析:∵(3+z )i =1 ∴3+z =-i ∴z =-3-i 19.答案:1-i解析:∵z i =i -1,∴ii z 1-==(i -1)(-i )=1+i∴z =1-i . 20.答案:-4 解析:a 4=[(i i 213+--)2]2=[5)21)(3(i i ---]4=(555i +-)4=(-1+i )4=(-2i )2=-421.答案:2+i 解析:由已知i ii i i i z-=-++=+-+=++=25)83(6441)21)(34(2134,故z =2+i .22.解法一:设z =a +bi (a ,b ∈R ),则(1+3i )z =a -3b +(3a +b )i . 由题意,得a =3b ≠0.∵|ω|=25|2|=+iz, ∴|z |=10522=+b a . 将a =3b 代入,解得a =±15,b =±15. 故ω=±ii++2515=±(7-i ). 解法二:由题意,设(1+3i )z =ki ,k ≠0且k ∈R , 则ω=)31)((i i k ki++.∵|ω|=52,∴k =±50.故ω=±(7-i ). 23.解:∵z =1+i ,∴az +2b z =(a +2b )+(a -2b )i ,(a +2z )2=(a +2)2-4+4(a +2)i =(a 2+4a )+4(a +2)i , 因为a ,b 都是实数,所以由az +2b z =(a +2z )2得⎩⎨⎧+=-+=+).2(42,422a b a a a b a 两式相加,整理得a 2+6a +8=0, 解得a 1=-2,a 2=-4, 对应得b 1=-1,b 2=2.所以,所求实数为a =-2,b =-1或a =-4,b =2. 24.(Ⅰ)解法一:z ,z 2,z 3,…,z 7是一个等比数列.∴由等比数列求和公式可得:011171=--=--=--=zzz z z z z a q a a S n n ∴1+z +z 2+z 3+…+z 6=0解法二:S =1+z +z 2+…+z 6 ① zS =z +z 2+z 3+…+z 6+z 7 ②∴①-②得(1-z )S =1-z 7=0 ∴S =z-10=0 (Ⅱ)z 7=1,z =cos α+i sin α∴z 7=cos7α+i sin7α=1,7α=2k π z +z 2+z 4=-1-z 3-z 5-z 6=-1-[cos (2k π-4α)+i sin (2k π-4α)+cos (2k π-2α)+i sin (2k π-2α)+cos (2k π-α)+i sin (2k π-α)]=-1-(cos4α-i sin4α+cos2α-i sin2α+cos α-i sin α) ∴2(cos α+cos2α+cos4α)=-1,cos α+cos2α+cos4α=-21 解法二:z 2·z 5=1,z 2=551-=z z同理z 3=4-z ,z =6-z∴z +z 2+z 4=-1-4-z -2-z -z ∴z +z +2-z +z +4-z +z =-1 ∴cos2α+cos α+cos4α=21-25.(Ⅰ)解:z 1=i (1-i )3=i (-2i )(1-i )=2(1-i ) ∴|z 1|=222222=+,arg z 1=22(cos 47π+i sin 47π)∴arg z 1=47π (Ⅱ)解法一:|z |=1,∴设z =cos θ+i sin θ |z -z 1|=|cos θ+i sin θ-2+2i | =)4sin(249)2(sin )2(cos 22πθθθ-+=++-当sin (θ4π-)=1时|z -z 1|2取得最大值9+42 从而得到|z -z 1|的最大值22+1解法二:|z |=1可看成z 为半径为1,圆心为(0,0)的圆. 而z 1可看成在坐标系中的点(2,-2) ∴|z -z 1|的最大值可以看成点(2,-2)到圆上的点距离最大.由图12—2可知:|z -z 1|max=22+126.(Ⅰ)解:∵α是方程x 2-2x +1=0的根∴α1=22(1+i )或α2=22(1-i ) 图12—2当α1=22(1+i )时,∵α12=i ,α12n -1=1121)(αααnn i = ∴)}1(22),1(22),1(22),1(22{}1,,1,{11111i i i i i i M -+---+=--=ααααα 当α2=22(1-i )时,∵α22=-i ∴12}1,,1,{2222ααααααM i i M =--=∴M α=)1(22),1(22),1(22),1(22{i i i i -+---+} (Ⅱ)证明:∵ω∈M z ,∴存在M ∈N ,使得ω=z 2m -1于是对任意n ∈N ,ω2n -1=z (2m -1)(2n -1)由于(2m -1)(2n -1)是正奇数,ω2n -1∈M z ,∴M ω⊆M z . 27.解:(Ⅰ)∵z 是方程x 2+1=0的根, ∴z 1=i 或z 2=-i ,不论z 1=i 或z 2=-i , M z ={i ,i 2,i 3,i 4}={i ,-1,-i ,1} 于是P =31C 224=. (Ⅱ)取z =i 2321+-, 则z 2=2321--i 及z 3=1. 于是M z ={z ,z 2,z 3}或取z =2321--i .(说明:只需写出一个正确答案). 28.解:设z =x +yi (x 、y ∈R ), ∵|z |=5,∴x 2+y 2=25, 而(3+4i )z =(3+4i )(x +yi )=(3x -4y )+(4x +3y )i ,又∵(3+4i )z 在复平面上对应的点在第二、四象限的角平分线上, ∴3x -4y +4x +3y =0,得y =7x ∴x =±22,y =±227 即z =±(22+227i );2z =±(1+7i ).当2z =1+7i 时,有|1+7i -m |=52,即(1-m )2+72=50, 得m =0,m =2. 当2z =-(1+7i )时,同理可得m =0,m =-2.29.解:(Ⅰ)由题设,|ω|=|0z ·z |=|z 0||z |=2|z |, ∴|z 0|=2,于是由1+m 2=4,且m >0,得m =3,因此由x ′+y ′i =)31(i -·i y x y x yi x )3(3)(-++=+,得关系式⎪⎩⎪⎨⎧-='+='yx y y x x 33(Ⅱ)设点P (x ,y )在直线y =x +1上,则其经变换后的点Q (x ′,y ′)满足⎪⎩⎪⎨⎧--='++='1)13(3)31(x y x x 消去x ,得y ′=(2-3)x ′-23+2,故点Q 的轨迹方程为y =(2-3)x -23+2.(Ⅲ)假设存在这样的直线,∵平行坐标轴的直线显然不满足条件, ∴所求直线可设为y =kx +b (k ≠0).解:∵该直线上的任一点P (x ,y ),其经变换后得到的点Q (x +3y ,3x -y )仍在该直线上,∴3x -y =k (x +3y )+b ,即-(3k +1)y =(k -3)x +b ,当b ≠0时,方程组⎪⎩⎪⎨⎧=-=+-kk k 31)13(无解,故这样的直线不存在. 当b =0,由kk k 31)13(-=+-, 得3k 2+2k 3-=0,解得k =33或k =3-, 故这样的直线存在,其方程为y =33x 或y =3-x . 评述:本题考查了复数的有关概念,参数方程与普通方程的互化,变换与化归的思想方法,分类讨论的思想方法及待定系数法等.30.解:由0<θ<2π得tan θ>0.由z =3cos θ+i ·2sin θ,得0<arg z <2π及tan (arg z )=32cos 3sin 2=θθtan θ故tan y =tan (θ-arg z )=θθθθθtan 2tan 31tan 321tan 32tan 2+=+-∵θtan 3+2tan θ≥26 ∴θθtan 2tan 31+≤126 当且仅当θtan 3=2tan θ(0<θ<2π)时, 即tan θ=26时,上式取等号. 所以当θ=arctan26时,函数tan y 取最大值126 由y =θ-arg z 得y ∈(2,2ππ-).由于在(2,2ππ-)内正切函数是递增函数,函数y 也取最大值arctan126. 评述:本题主要考查复数的基本概念、三角公式和不等式等基础知识,考查综合运用所学数学知识解决问题的能力.明考复数实为三角.语言简练、情景新颖,对提高考生的数学素质要求是今后的命题方向.31.解:∵方程x 2+(4+i )x +4+ai =0(a ∈R )有实根b , ∴b 2+(4+i )b +4+ai =0, 得b 2+4b +4+(b +a )i =0,即有⎩⎨⎧=+=++00442a b b b∴⎩⎨⎧-==,22b a得z =a +bi =2-2i ,∴i c c ci i ci z )22(22)1)(22()1(-++=-+=-. 当0≤c ≤1时,复数z (1-ci )的实部大于0,虚部不小于0, ∴复数z (1-ci )的辐角主值在[0,2π) 范围内,有arg [z (1-ci )]=arctanc c 2222+-=arctan (c+12-1),∵0<c ≤1,∴0≤c+12-1<1, 有0≤arctan (c +12-1)<4π, ∴0≤arg [z (1-ci )]<4π.当c >1时,复数z (1-ci )的实部大于0,虚部小于0, ∴复数z (1-ci )的辐角主值在(23π,2π) 范围内,有arg [z (1-ci )]=2π+arctan c c 2222+-=2π+arctan (c+12-1).∵c >1,∴-1<c+12-1<0, 有4π-<arctan (c +12-1)<0,∴47π<arg [z (1-ci )]<2π. 综上所得复数z (1-ci )(c >0)的辐角主值的取值范围为[0,4π)∪(47π,2π).评述:本题主要考查复数的基本概念和考生的运算能力,强调了考生思维的严谨性. 32.解:设z =a +bi (a ,b ∈R ),则z =a -bi ,代入4z +2z =33+i得4(a +bi )+2(a -bi )=33+i .∴⎪⎪⎩⎪⎪⎨⎧==2123b a .∴z =2123+i . |z -ω|=|2123+i -(sin θ-i cos θ)| =)6sin(22cos sin 32)cos 21()sin 23(2πθθθθθ--=+-=-+- ∵-1≤sin (θ-6π)≤1,∴0≤2-2sin (θ-6π)≤4.∴0≤|z -ω|≤2.评述:本题考查了复数、共轭复数的概念,两复数相等的充要条件、复数的模、复数模的取值范围等基础知识以及综合运用知识的能力.33.解:由(z 1-2)i =1+i 得z 1=ii+1+2=(1+i )(-i )+2=3-i ∵z 2的虚部为2.∴可设z 2=a +2i (a ∈R ) z 1·z 2=(3-i )(a +2i )=(3a +2)+(6-a )i 为实数. ∴6-a =0,即a =6 因此z 2=6+2i ,|z 2|=1022622=+.34.解:由(z -2)i =1+i 得z =ii+1+2=3-i ∴z ′=z [cos (-4π)+i sin (-4π)]=(3-i )(2222-i )=2-22iz ′+2i =2-2i =2(2222-i )=2(cos 47π+i sin 47π) ∴arg (z 1+2i )=47π评述:本题考查复数乘法的几何意义和复数辐角主值的概念. 35.解法一:zw +zw 3=zw (1+w 2)=(2321+i )(2222+i )(1+i ) =22(1+i )2(2321+i )=)2123(2)2321(222i i i +-=+⋅ )65sin 65(cos2ππi += 故复数zw +zw 3的模为2,辐角主值为65π. 解法二:w =2222+i =cos 4π+i sin 4πzw +zw 3=z (w +w 3)=z [(cos4π+i sin4π)+(cos4π+i sin4π)3]=z [(cos4π+i sin4π)+(cos43π+i sin 43π)]=z (i i 22222222+-+) =)2123(22)2321(i i i +-=⨯+)65sin 65(cos 2ππi += 故复数zw +zw 3的模为2,辐角主值为65π.评述:本题主要考查复数的有关概念及复数的基本运算能力. 36.证法一:)6sin()6cos(2123ππ-+-=-=i i z ω=4sin 4cos 2222ππi i +=+于是z ω=cos12π+i sin 12π,ωz =cos (-12π)+i sin (-12π).z 2ω3=[cos (-3π)+i sin (-3π)]×(cos43π+i sin 43π)=cos 125π+i sin 125π 因为OP 与OQ 的夹角为125π-(-12π)=2π.所以OP ⊥OQ又因为|OP |=|ωz |=1,|OQ |=|z 2ω3|=|z |2|ω|3=1 ∴|OP |=|OQ |.由此知△OPQ 为等腰直角三角形. 证法二:∵z =cos (-6π)+i sin (-6π).∴z 3=-i 又ω=4sin 4cos 2222ππi i +=+. ∴ω4=-1于是i z z z z z z z z ===2433232||ωωωωωωωω 由此得OP ⊥OQ ,|OP |=|OQ |故△OPQ 为等腰直角三角形. 37.解:(1)因为z 1、z 2是一个实系数一元二次方程的两个根,所以z 1、z 2是共轭复数. 设z 1=a +bi (a ,b ∈R 且b ≠0),则z 2=a -bi于是(a +bi )2=(a -bi ),于是⎩⎨⎧-==-bab a b a 222解得⎪⎪⎩⎪⎪⎨⎧=-=2321b a 或⎪⎪⎩⎪⎪⎨⎧-=-=2321b a∴i z i z i z i z 2321,23212321,23212121+-=--=--=+-=或(2)由z 1=1+mi (m >0),z 12=z 2得z 2=(1-m 2)+2mi∴ω=-(1+m 2)+2mi tan θ=-mm m m 12122+-=+由m >0,知m +m1≥2,于是-1≤tan θ≤0 又 -(m 2+1)<0,2m >0,得43π≤θ<π 因此所求θ的取值范围为[43π,π). 38.解:(Ⅰ)设z =a +bi ,a 、b ∈R ,b ≠0 则w =a +bi +i ba bb b a a a bi a )()(12222+-+++=+ 因为w 是实数,b ≠0,所以a 2+b 2=1,即|z |=1.于是w =2a ,-1<w =2a <2,-21<a <1, 所以z 的实部的取值范围是(-21,1). (Ⅱ)i a bb a bi b a bi a bi a z z u 1)1(2111112222+=++---=++--=+-=. 因为a ∈(-21,1),b ≠0,所以u 为纯虚数. (Ⅲ)1212112)1(12)1(222222++-=+--=+-+=++=-a a a a a a a a a b a u w .3]11)1[(2-+++=a a . 因为a ∈(-21,1),所以a +1>0, 故w -u 2≥2·211)1(+⋅+a a -3=4-3=1. 当a +1=11+a ,即a =0时,w -u 2取得最小值1. 39.解:由|z 1+z 2|=1,得(z 1+z 2)(21z z +)=1,又|z 1|=|z 2|=1,故可得z 12z +1z z 2=-1,所以z 12z 的实部=1z z 2的实部=-21.又|1z z 2|=1,故1z z 2的虚部为±23, 1z z 2=-21±23i ,z 2=z 1)2321(i ±-. 于是z 1+z 1i i 2321)2321(+=±-, 所以z 1=1,z 2=i 2321+-或z 1=i 2321+-,z 2=1. 所以⎪⎩⎪⎨⎧+-==i z z 2321121,或⎪⎩⎪⎨⎧=+-=1232121z i z 40.解法一:z 2+z =(cos θ+i sin θ)2+cos θ+i sin θ=cos2θ+i sin2θ+cos θ+i sin θ =2cos23θcos 2θ+i ·2sin 23θcos 2θ=2cos 2θ(cos 23θ+i sin 23θ)=-2cos2θ[cos (π+23θ)+i sin (π+23θ)]∵θ∈(π,2π),∴2θ∈(2π,π),∴-2cos2θ>0 ∴复数z 2+z 的模为-2cos2θ,辐角为2k π+π+23θ(k ∈Z )解法二:z 2+z =z (1+z )=(cos θ+i sin θ)(1+cos θ+i sin θ) =(cos θ+i sin θ)(2cos 22θ+i ·2sin 2θcos 2θ) =2cos2θ(cos θ+i sin θ)(cos 2θ+i sin 2θ)=2cos 2θ(cos 23θ+i sin 23θ)以下同解法一.41.解法一:如图12—3,设Z 1、Z 3对应的复数分别为z 1、z 3,则由复数乘除法的几何意义有z 1=21z 2[cos (4π-)+i sin (4π-)]=i i i 213213)2222)(31(21-++=-+图12—3z 3=i i i i z 231231)2222)(31(21)4sin 4(cos 212++-=++=+ππ.注:求出z 1后,z 3=iz 1=i 231231++- 解法二:设Z 1、Z3对应的复数分别是z 1、z 3,根据复数加法和乘法的几何意义,依题意得⎩⎨⎧=-=+213231iz z z z z z∴z 1=21z 2(1-i )=21(1-3i )(1-i )=213231-++i z 3=z 2-z 1=(1+3i )-(213231-++i )=231231++-i 评述:本题主要考查复数的基本概念和几何意义,以及运算能力.此题以复平面上的简单几何图形为背景,借以考查复数的向量表示与复数运算的几何意义等基本知识,侧重概念、性质的理解与掌握,以及运算能力和转化的思想,对复数教学有良好的导向作用.42.解:(Ⅰ)由z =1+i ,有w =(1+i )2+3(1-i )-4=-1-i ,所以w 的三角形式是2(cos ππ45sin 45i +)(Ⅱ)由z =1+i ,有iia b a i i b i a i z z b az z )2()(1)1()1()1()1(12222+++=++-+++++=+-++ =(a +2)-(a +b )i由题设条件知,(a +2)-(a +b )i =1-i .根据复数相等的定义,得⎩⎨⎧-=+-=+1)(12b a a解得⎩⎨⎧=-=21b a所以实数a ,b 的值分别为-1,2.评述:本题考查了共轭复数、复数的三角形式等基础知识及运算能力. 43.解:因为w 为复数,arg w =π43,所以设w =r (cos π43+i sin π43), 则R,])4(4[22)4)(1(22)4)(2222(1]4)23sin 23(cos )[43sin 43(cos 14)(222222∈-++=-+=---=---=-i r r ri r i r i r i r i r i r w w ππππ,从而4-r 2=0,得r =2. 因此w =2(cos )43sin 43ππi +=-2+2i .。
高考数学真题分项汇编专题11 复数(理科)(解析版)
十年(2014-2023)年高考真题分项汇编—复数目录题型一:复数的有关概念 ........................................................................... 1 题型二:复数的几何意义 ........................................................................... 4 题型三:复数的四则运算 ........................................................................... 7 题型四:复数的其他问题 . (16)题型一:复数的有关概念一、选择题1.(2023年北京卷·第2题)在复平面内,复数z对应的点的坐标是(−,则z 的共轭复数z =( )A 1+ B.1C.1− D.1−【答案】D解析:z在复平面对应的点是(−,根据复数的几何意义,1z =−+,由共轭复数的定义可知,1z =−. 故选:D2.(2023年新课标全国Ⅰ卷·第2题)已知1i22iz −=+,则z z −=( )A .i −B .iC .0D .1【答案】A 解析:因为()()()()1i 1i 1i 2i 1i 22i 21i 1i 42z −−−−====−++−,所以1i 2z =,即i z z −=−. 故选:A .3.(2023年全国乙卷理科·第1题)设252i1i iz +=++,则z = ( )A .12i −B .12i +C .2i −D .2i +【答案】B解析:由题意可得()252i 2i 2i 2i2i 112i 1i i 11i i 1z +++−=====−++−+−, .则12i z =+.故选:B .4.(2021年高考浙江卷·第2题)已知a R ∈,()13ai i i +=+,(i 为虚数单位),则a = ( )A .1−B .1C .3−D .3【答案】C解析:()1ai i i a a i +=−=−+,利用复数相等的充分必要条件可得:3,3a a −=∴=−,故选C . 5.(2020年浙江省高考数学试卷·第2题)已知a ∈R ,若a –1+(a –2)i (i 为虚数单位)是实数,则a = ( )A .1B .–1C .2D .–2【答案】C解析:因为(1)(2)a a i −+−为实数,所以202a a −=∴=,,故选:C6. (2015高考数学新课标2理科·第2题)若a 为实数且(2)(2)4ai a i i +−=−,则a =( )A .1−B .0C .D .2【答案】B解析:由已知得24(4)4a a i i +−=−,所以240,44a a =−=−,解得0a =,故选B . 7.(2015高考数学新课标1理科·第1题)设复数z 满足1+z1i z =−,则z = ( )A .1BC D .2【答案】A 解析:由11zi z +=−得,11i z i −+=+=(1)(1)(1)(1)i i i i −+−+−=,故|z|=1,故选A . 8.(2015高考数学湖北理科·第1题)i 为虚数单位,607i的共轭复数....为 ( )A .iB .i −C .1D .1−【答案】A 解析:i i i i−=⋅=×31514607,所以607i 的共轭复数....为,选A .9.(2015高考数学广东理科·第2题)若复数(32)z i i =−(i 是虚数单位),则z =A .23i −B .23i +C .32i +D .32i −【答案】A解析:因为(32)23z i i i =−=+,所以23z i =−,故选A . 10.(2017年高考数学新课标Ⅰ卷理科·第3题)设有下面四个命题:若复数满足,则;:若复数满足,则;:若复数满足,则;:若复数,则.其中的真命题为 ( )A .B .C .D .【答案】 B【解析】令,则由得,所以,正确; 1p z 1z∈R z ∈R 2p z 2z ∈R z ∈R 3p 12,z z 12z z ∈R 12z z =4p z ∈R z ∈R 13,p p 14,p p 23,p p 24,p p (,)z a bi a b =+∈R 2211a bi z a bi a b −==∈++R 0b =z ∈R 1p当时,因为,而知,不正确;由知不正确;对于,因为实数没有虚部,所以它的共轭复数是它本身,也属于实数,故正确,故选B .11.(2017年高考数学课标Ⅲ卷理科·第2题)设复数z 满足,则 ( ).A .BCD .2【答案】 C【解析】法一:由可得,所以,故选C .法二:由可得,故选C .【考点】复数的模12.(2016高考数学课标Ⅰ卷理科·第2题)设(1i)1i x y +=+,其中,x y是实数,则i =x y +( )(D)2【答案】B【解析】由()11i x yi +=+可知:1x xi yi +=+,故1x x y == ,解得:11x y = =. 所以,x yi +.故选B .二、填空题1.(2019·浙江·第11题)复数11iz =+(i 为虚数单位),则z = . 【解析】解法一:由于11i 1i 11i 1i (1i)(1i)222z−−====−++−, . 解法二:11iz ==+ 2.(2019·天津·理·第9题)i 是虚数单位,则5i1i−+的值为 . 解析:解法1:5i (5i)(1i)46i 23i,1i (1i)(1i)25i23i 1i−−−−===−∴−−+++−解法2:5i5i 1i 1i−−==++3.(2019·江苏·第2题)已知复数()()21a i i ++的实部为0,其中i 为虚数单位,则实数a 的值是______.z i =221z i ==−∈R i ∉R 2p 1212,1z z i z z R ==⋅=−∈3p 4p 4p ()1i 2i z +=z =12()12i z i +=()2111iz i i i i==−=++z ()12i z i +=()1212i z i i z +=⇒+=z ⇒==【答案】2【解析】因为()()21(2)(2)a i i a a i ++=−++的实部为0,2a =.4.(2018年高考数学江苏卷·第2题)若复数z 满足i 12i z ⋅=+,其中i 是虚数单位,则z 的实部为 . 【答案】2解析:因为i 12i z ⋅=+,则122iz i i+==−,则z 的实部为2. 5.(2018年高考数学上海·第5题)已知复数z 满足(1i)17i z +=−(i 是虚数单位),则z = .【答案】5解析:17i17i 17i ,51i 1i 1iz z −−−=∴===+++. 6.(2017年高考数学江苏文理科·第2题)已知复数其中i 是虚数单位,则的模是________.【答案】.解析:,【考点】复数的模7.(2016高考数学天津理科·第9题)已知,,a b R i ∈是虚数单位,若(1)(1)i bi a +−=,则ab的值为_____________.【答案】2解析:()()11i bi a +−=,1b i bi a ++−=,∴1,10b a b +=−=,12b a = = ,2ab=8.(2016高考数学上海理科·第2题)设iiZ 23+=,期中i 为虚数单位,则Im z =______________________. 【答案】3−解析:32i23,Im z=3iz i +==−−.9.(2020江苏高考·第2题)已知i 是虚数单位,则复数(1i)(2i)z =+−的实部是_____. 【答案】3【解析】 复数()()12z i i =+−2223z i i i i ∴=−+−=+,∴复数的实部为3.故答案为:3. 10.(2019·上海·第2题)已知C z ∈且满足i z=−51,求=z ________. 【答案】512626i − 【解析】i z+=51,i i i i i z 261265)5)(5(551−=−+−=+=. 题型二:复数的几何意义一、选择题(1i)(12i),z =++z (1)(12)112z i i i i =++=++=1.(2021年新高考全国Ⅱ卷·第1题)复数2i13i−−在复平面内对应的点所在的象限为 ( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 解析:()()2i 13i 2i 55i 1i13i10102−+−++===−,所以该复数对应的点为11,22 ,该点在第一象限,故选A . 2.(2022高考北京卷·第2题)若复数z 满足i 34i z ⋅=−,则z =( )A .1B .5C .7D .25【答案】B 解析:由题意有()()()34i i 34i 43i i i i z −−−===−−⋅−,故|5|z =.故选,B .3.(2019·全国Ⅱ·理·第2题)设32z i =−+,则在复平面内z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】∵32z i =−+,∴32z i =−−,对应坐标()3,2−−,是第三象限. 4.(2023年新课标全国Ⅱ卷·第1题)在复平面内,()()13i 3i +−对应的点位于( ).A .第一象限B .第二象限C .第三象限D .第四象限【答案】A解析:因为()()213i 3i 38i 3i 68i +−=+−=+,则所求复数对应的点为()6,8,位于第一象限. 故选:A .5.(2018年高考数学北京(理)·第2题)在复平面内,复数11i−的共轭复数对应的点位于 ( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D 解析:11i 11i 1i (1i)(1+i)22z +===+−− ,则11i 22z =− ,其对应的点为11,22−,位于第四象限.6.(2014高考数学重庆理科·第1题)复平面内表示复数)21(i i −的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限【答案】A解析:根据复数的乘法分配律可得,因此该复数在复平面内所对应的坐标为,它在第一象限。
复数高考题分类总汇编
复数高考真题分类汇编题型一 复数的概念及分类1.(2015·卷)i 是虚数单位,若复数))(21(i a i +-是纯虚数,则=a . 2.(2016·卷)复数)3)(21(i i z -+=,i 为虚数单位,则z 的实部是 .3.(2016·卷)设iiz 23+=,其中i 为虚数单位,则其虚部为 . 4.(2017·卷)已知R a ∈,i 为虚数单位,若i ia +-2为实数,则a 的值为 .5.(2017·全国卷)设有下面四个命题::1p 若复数满足R z∈1,则R z ∈;:2p 若复数满足R z ∈2,则R z ∈;:3p 若复数1z 、2z 满足R z z ∈21,则21z z =; :4p 若复数R z ∈,则R z ∈;其中真命题为( ) A .1p ,3pB .1p ,4pC .2p ,3pD .2p ,4p题型二 与共轭复数、复数相等有关的问题1.(2013·卷)复数满足5)2)(3(=--i z (i 为虚数单位),则z 的共轭复数为( )A .i +2B .i -2C .i +5D .i -52.(2013·卷)设i 是虚数单位,若z i z z 22=+⋅,则=z ( )A .i +1B .i -1C .i +-1D .i --13.(2013·卷)已知复数的共轭复数i z 21+=(i 为虚数单位),则z 在复平面对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.(2013·卷)在复平面,复数iiz +=12(i 为虚数单位)的共轭复数对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限5.(2013·卷)如图,在复平面,点A 表示复数,则图中表示的共轭复数的点是_____6.(2013·卷)已知R b a ∈、,i 是虚数单位,若bi i i a =++)1)((,则=+bi a .7.(2014·卷)原命题为“若21,z z 互为共轭复数,则21z z =”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真假真B .假假真C .真真假D .假假假8.(2014·卷)已知R b a ∈、,i 是虚数单位,若i a -与bi +2互为共轭复数,则=+2)(bi a ( )A .i 45-B .i 45+C . i 43-D .i 43+9.(2014·卷)z 是z 的共轭复数.若2=+z z ,2)(=-i z z ,i 为虚数单位,则=z ( )A .i +1B .i --1C .i +-1D . i -110.(2014·卷)设i 是虚数单位,z 表示复数z 的共轭复数.若i z +=1,则=⋅+z i iz ( )A .2-B .i 2-C .2D .i 211.(2014·全国卷)设iiz +=310,则z 的共轭复数为( ) A .i 31+-B .i 31--C .i 31+D .i 31-12.(2014·卷)复数i i z )23(-=的共轭复数为( )A .i 32--B .i 32+-C .i 32-D . i 32+13.(2015·卷)若复数)23(i i z -=(i 是虚数单位),则=z ( )A .i 32-B .i 32+C .i 23+D .i 23-14.(2015·卷)i 为虚数单位,607i 的共轭复数为( )A .iB .i -C .1D .1-15.(2015·全国卷Ⅱ)若a 为实数,且i i a ai 4)2)(2(-=-+,则=a ( )A .1-B .0C . 1D . 216.(2015·卷)若复数满足i iz=-1,其中i 为虚数单位,则=z ( ) A .i -1B .i +1C .i --1D .i +-117.(2016·卷)若复数满足i z z 232-=+,其中i 为虚数单位,则=z ( )A .i 21+B .i 21-C .i 21+-D .i 21--18.(2016·卷)已知R b a ∈、,i 是虚数单位,若a bi i =-+)1)(1(,则ba的值为______.19.(2017·卷)已知R a ∈,i 是虚数单位,若i a z 3+=,4=⋅z z ,则=a ( )A .1或1-B .3或3-C .3-D .320.(2017·卷)已知R b a ∈、,i bi a 43)(2+=+(i 是虚数单位),则=+22b a ______,=ab ________.题型三 复数的模 1.(2013·卷)复数11-=i z 的模为( ) A .21B .22 C .2 D .22.(2013·卷)设2)2(i z -=(i 为虚数单位),则复数z 的模为______. 3.(2013·卷)设21z z 、是复数,则下列命题中的假命题是( )A .若021=-z z ,则21z z =B .若21z z =,则21z z =C .若21z z =,则2211z z z z ⋅=⋅D .若21z z =,则2221z z =4.(2013·卷)已知复数iiz 215+=(i 是虚数单位),则=z _____. 5.(2015·全国卷)设复数z 满足i zz=-+11,则=z ( )A .1B .2C .3D .26.(2015·卷)设复数满足i z 432+=(i 是虚数单位),则z 的模为_____. 7.(2015·卷)设复数bi a +(R b a ∈,)的模为3,则=-+))((bi a bi a ____. 8.(2016·全国卷)设yi x i +=+1)1(,其中y x 、是实数,则=+yi x ( )A .1B .2C .3D .29.(2017·卷)已知复数)21)(1(i i z ++=,曲终i 是虚数单位,则z 的模是______. 10.(2017·全国卷Ⅲ)设复数z 满足i z i 2)1(=+,则=z ( )A .21B .22 C .2 D .2题型四 复数的四则运算1.(2013·全国卷)设复数满足i z i 2)1(=-,则=z ( )A .i +-1B .i --1C .i +1D .i -12.(2013·卷)已知i 是虚数单位,则=-+-)2)(1(i i ( )A .i +-3B .i 31+-C .i 33+-D .i +-13.(2013·卷)若复数满足i z i 42+=⋅,则在复平面,z 对应的点的坐标是( )A .)4,2(B .)4,2(-C .)2,4(-D .)2,4(4.(2014·卷)复数=-+2)11(ii ______. 5.(2014·卷)已知复数2)25(i z -=(i 为虚数单位),则z 的实部为____.6.(2014·卷)复数=+-ii122______. 7.(2014·卷)i 是虚数单位,复数=++ii437( )A .i -1B .i +-1C .i 25312517+D .i 725717+-8.(2014·全国卷)=-+23)1()1(i i ( ) A .i +1 B .i -1 C .i +-1 D .i --19.(2014·卷)设复数满足5)2)(2(=--i i z ,则=z ( )A .i 32+B .i 32-C .i 23+D .i 23-10.(2014·卷)i 为虚数单位,则=+-2)11(ii ( )A .1-B .1C .i -D .i11.(2014·卷)满足i ziz =+(i 是虚数单位)的复数=z ( ) A .i2121+B .i 2121-C .i 2121+-D .i 2121--12.(2014·卷)已知复数满足25)43(=+z i ,则=z ( )A .i 43+-B .i 43--C .i 43+D .i 43-13.(2015·卷)复数=-)2(i i ( )A .i 21+B .i 21-C .i 21+-D .i 21--14.(2015·卷)若集合{}432,,,i i i i A =(i 是虚数单位),{}1,1-=B ,则=B A ( )A .{}1-B .{}1C .{}1,1-D .Ø15.(2015·卷)已知i zi +=-1)1(2(i 为虚数单位),则复数=z ( ) A .i +1 B .i -1 C .i +-1 D .i --116.(2015·卷)设i 是虚数单位,则复数=-ii 23( ) A .i -B .i 3-C .iD .i 317.(2016·全国卷Ⅲ)若i z 21+=,则=-14z z i( ) A .1B .1-C .iD .i -18.(2016·卷)设i 为虚数单位,则6)(i x +的展开式中含4x 的项为( )A .415x -B .415xC .420ix -D .420ix19.(2017全国卷Ⅱ)=++ii13( ) A .i 21+B .i 21-C .i +2D .i -2题型五 复数的几何意义1.(2013·卷)复数)1(i i z +=(i 为虚数单位)在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.(2013·卷)已知复数的共轭复数i z 21+=(i 为虚数单位),则z 在复平面对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.(2013·卷)在复平面,复数iiz +=12(i 为虚数单位)的共轭复数对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限5.(2013·卷)如图,在复平面,点A 表示复数,则图中表示的共轭复数的点是_____5.(2014·全国卷Ⅱ)设复数21,z z 在复平面的对应点关于虚轴对称,i z +=21,则=21z z ( )A .5-B .5C .i +-4D .i --46.(2014·卷)在复平面表示复数)21(i i -的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限7.(2015·卷)设i 是虚数单位,则复数ii-12在复平面所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限8.(2016·卷)设R a ∈,若复数))(1(i a i ++在复平面对应的点位于实轴上,则=a ________.9.(2017·卷)若复数))(1(i a i +-在复平面对应的点在第二象限,则实数a 的取值围是( )A .)1,(-∞B .)1,(--∞C .),1(+∞D .),1(+∞-。
高考英语语法填空名词单复数练习题40题(带答案)
高考英语语法填空名词单复数练习题40题(带答案)1. In the museum, there are many ____ (painting / paintings).Answer: paintings.解析:many后接可数名词复数形式,painting是可数名词,所以要用复数paintings。
2. The ____ (information / informations) about the new technology is very useful.Answer: information.解析:information是不可数名词,没有复数形式,所以这里用information。
3. There are several ____ (book / books) on the desk.Answer: books.解析:several表示几个,后接可数名词复数,book是可数名词,复数形式为books。
4. The ____ (deer / deers) in the forest are very beautiful.Answer: deer.解析:deer单复数同形,这里表示复数概念,所以用deer。
5. She has a lot of ____ (homework / homeworks).Answer: homework.解析:homework是不可数名词,没有复数形式,所以用homework。
6. The ____ (leaf / leaves) on the tree turn yellow in autumn.Answer: leaves.解析:leaf的复数形式是leaves,这里表示树上的叶子,是复数概念,所以用leaves。
7. There are two ____ (child / children) in the room.Answer: children.解析:child的复数形式是children,这里表示两个孩子,所以用children。
高考英语语法填空名词单复数练习题40题含答案解析
高考英语语法填空名词单复数练习题40题含答案解析1.There are many ( ) on the desk.A.bookB.booksC.a bookD.the book答案解析:B。
A 选项“book”是单数形式,题干中“many”表明后面要用可数名词复数形式,所以A 错误。
B 选项“books”是book 的复数形式,符合语法规则。
C 选项“a book”是单数形式,不符合题意。
D 选项“the book”特指某一本书,是单数形式,也不符合要求。
本题考查可数名词复数的用法,many 后面接可数名词复数是常见语法规则,易错点在于容易忽略many 的用法而误选单数形式。
2.In our school, there are several ( ) teachers.A.womanB.womenC.womansD.the woman答案解析:B。
A 选项“woman”是单数形式,当“woman”修饰名词复数时,也要变成复数形式“women”,所以 A 错误。
B 选项“women”正确。
C 选项形式错误。
D 选项“the woman”是单数形式,不符合要求。
本题考查复合名词的复数形式,“woman teacher”的复数是“women teachers”,易错点是容易直接在“woman”后加s。
3.I have two ( ) in my pencil case.A.penB.pensC.a penD.the pen答案解析:B。
A 选项“pen”是单数形式,题干中“two”表明要用复数形式,A 错误。
B 选项“pens”是复数形式,符合要求。
C 选项“a pen”是单数形式,不符合题意。
D 选项“the pen”特指某一支笔,是单数形式,也不行。
本题考查基数词后接可数名词复数的用法,易错点是容易忘记根据数字来判断名词的单复数形式。
4.There are some ( ) in the park.A.childB.childrenC.childsD.the child答案解析:B。
(完整版)高考真题:复数
高考真题:复数一、单选题1i (A )1+i (B )1−i (C )−1+i (D )−1−i2.若复数z 满足232i,z z +=- 其中i 为虚数单位,则z=(A )1+2i (B )1-2i (C )12i -+ (D )12i --3.设i 为虚数单位,则复数(1+i )2=(A )0 (B )2 (C )2i (D )2+2i4.设i 为虚数单位,则6(i)x +的展开式中含x 4的项为 (A )-15x 4 (B )15x 4 (C )-20i x 4 (D )20i x 45 (A )i (B )1+i (C )i - (D )1i -6.若43i z =+,则(A )1 (B )1- (C (D 7.若z=1+2i ,则41i zz =- A . 1 B . −1 C . i D . −i8.设复数z 满足3z i i +=-,则z =A . 12i -+B . 12i -C . 32i +D . 32i -9.已知()()31z m m i =++-在复平面内对应的点在第四象限,则实数m 的取值范围是A . ()31-,B . ()13-, C . ()1,+∞ D . ()3-∞-, 10.设(1+2i)(a +i)的实部与虚部相等,其中a 为实数,则a =( )A . −3B . −2C . 2D . 311.设(1i)1i x y +=+,其中x ,y(A )1 (B (C (D )212.(2017高考新课标III,理3)设复数z 满足(1+i)z =2i ,则∣z ∣=A . 12B . √22C . √2D . 213.若复数(1−i )(a +i )在复平面内对应的点在第二象限,则实数a 的取值范围是A . (−∞,1)B . (−∞,−1)C . (1,+∞)D . (−1,+∞)14.已知i 是虚数单位,若复数z 满足i 1i z =+,则2z =A . -2iB . 2iC . -2D . 215.若复数(1–i )(a +i )在复平面内对应的点在第二象限,则实数a 的取值范围是A . (–∞,1)B . (–∞,–1)C . (1,+∞)D . (–1,+∞)16.已知R a ∈, i 是虚数单位,若z a =, 4z z ⋅=,则a =()A . 1或1-B . 或C .D . 17.3+i 1+i =( )A . 1+2iB . 1−2iC . 2+iD . 2−i18.,2017新课标全国卷II 文科)(1+i )(2+i )=A . 1−iB . 1+3iC . 3+iD . 3+3i19.复平面内表示复数z=i(–2+i)的点位于A . 第一象限B . 第二象限C . 第三象限D . 第四象限20.设有下面四个命题p 1:若复数z 满足1z ∈R ,则z ∈R ,p 2:若复数z 满足z 2∈R ,则z ∈R ,p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z 2,p 4:若复数z ∈R ,则z̅∈R .其中的真命题为A . p 1,p 3B . p 1,p 4C . p 2,p 3D . p 2,p 421.下列各式的运算结果为纯虚数的是A . i(1+i)2B . i 2(1−i)C . (1+i)2D . i(1+i)二、填空题22,其中i 为虚数单位,则z 的虚部等于______________________.23.已知,a b ∈R ,i 是虚数单位,若(1+i )(1-bi )=a _______. 24.设a ∈R ,若复数(1i)(i)a ++在复平面内对应的点位于实轴上,则a =_______________.25.已知a R ∈,i 为虚数单位,若2a ii -+为实数,则a 的值为__________.参考答案1.B【来源】2016年全国普通高等学校招生统一考试文科数学(山东卷精编版)【解析】B. 2.B【来源】2016年全国普通高等学校招生统一考试理科数学(山东卷精编版)【解析】试题分析:设i z a b =+,则23i 32i z z a b +=+=-,故2,1-==b a ,则12i z =-,选B.3.C【来源】2016年全国普通高等学校招生统一考试文科数学(四川卷精编版)试题分析:22(1i)12i i 2i +=++=,故选C.【答案】A【来源】2016年全国普通高等学校招生统一考试理科数学(四川卷精编版)【解析】 试题分析:二项式6(i)x +的展开式的通项为616C i r r r r T x -+=,令64r -=,则2r =,故展开式中含4x 的项为24246C i 15x x =-,故选A.5.A【来源】2016年全国普通高等学校招生统一考试文科数学(北京卷精编版)【解析】A. 【考点】复数运算【名师点睛】复数代数形式的四则运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式的乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化.6.D【来源】2016年全国普通高等学校招生统一考试文科数学(新课标3卷精编版)【解析】D . 【考点】复数的运算、共轭复数、复数的模 【名师点睛】复数的加、减法运算中,可以从形式上理解为关于虚数单位“i ”的多项式合并同类项,复数的乘法与多项式的乘法相类似,只是在结果中把2i 换成−1.复数除法可类比实数运算的分母有理化.复数加、减法的几何意义可依平面向量的加、减法的几何意义进行理解.7.C【来源】2016年全国普通高等学校招生统一考试理科数学(新课标3卷精编版)【解析】试题分析: ()()44112121i i i zz i i ==-+--,故选C . 【考点】复数的运算、共轭复数.【举一反三】复数的加、减法运算中,可以从形式上理解为关于虚数单位“i ”的多项式合并同类项,复数的乘法与多项式的乘法相类似,只是在结果中把2i 换成−1.复数除法可类比实数运算的分母有理化.复数加、减法的几何意义可依照平面向量的加、减法的几何意义进行理解. 视频 8.C【来源】2016年全国普通高等学校招生统一考试文科数学(新课标2卷精编版)【解析】试题分析:由i 3i z +=-得32i z =-,所以32i z =+,故选C.【考点】 复数的运算,共轭复数【名师点睛】复数(),a bi a b R +∈的共轭复数是(),a bi a b R -∈,据此先化简再计算即可.视频9.A【来源】2016年全国普通高等学校招生统一考试理科数学(新课标2卷精编版)【解析】试题分析:要使复数z 对应的点在第四象限,应满足30{10m m +>-<,解得31m -<<,故选A.【考点】 复数的几何意义 【名师点睛】复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可. 复数z =a +bi 复平面内的点Z (a ,b )(a ,b∈R ).复数z =a +bi (a ,b ∈R )平面向量OZ uuu r . 视频 10.A 【来源】2016年全国普通高等学校招生统一考试文科数学(新课标1卷精编版)【解析】试题分析:(1+2i)(a +i)=a −2+(1+2a)i ,由已知,得,解得,选A.【考点】复数的概念及复数的乘法运算【名师点睛】复数题也是每年高考的必考内容,一般以客观题的形式出现,属得分题.高考中考查频率较高的内容有:复数相等、复数的几何意义、共轭复数、复数的模及复数的乘除运算.这类问题一般难度不大,但容易出现运算错误,特别是i 2=−1中的负号易忽略,所以做复数题时要注意运算的准确性.11.B【来源】2016年全国普通高等学校招生统一考试理科数学(新课标1卷精编版)【解析】试题分析:因为(1i)=1+i,x y +所以故选B.【考点】复数运算【名师点睛】复数题也是每年高考的必考内容,一般以客观题的形式出现,属得分题.高考中考查频率较高的内容有:复数相等、复数的几何意义、共轭复数、复数的模及复数的乘除运算.这类问题一般难度不大,但容易出现运算错误,特别是2i 1=-中的负号易忽略,所以做复数题时要注意运算的准确性.12.C【来源】2017年全国普通高等学校招生统一考试理科数学(新课标3卷精编版)【解析】由题意可得z =2i 1+i ,由复数求模的法则可得|z 1z 2|=|z 1||z 1|,则|z |=|2i ||1+i |=√2=√2.故选C.【名师点睛】共轭与模是复数的重要性质,运算性质有:(1)z 1±z 2=z 1±z 2,(2)z 1×z 2=z 1×z 2;(3)z ⋅z̅=|z |2=|z̅|2,(4)||z 1|−|z 2||≤|z 1±z 2|≤|z 1|+|z 2|,(5)|z 1z 2|=|z 1|×|z 2|,(6)|z 1z 2|=|z 1||z 1|. 13.B【来源】2017年全国普通高等学校招生统一考试文科数学(北京卷精编版)【解析】试题分析:设z =(1−i )(a +i )=(a +1)+(1−a )i ,因为复数对应的点在第二象限,所以{a +1<01−a >0,解得:a <−1,故选B. 14.A【来源】2017年全国普通高等学校招生统一考试文科数学(山东卷精编版)【解析】由i 1i z =+得()()22i 1i z =+,即22i z -=,所以22i z =-,故选A. 【名师点睛】复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化.注意下面结论的灵活运用:(1)(1±i)2∈±2i∈(2)∈i,∈∈i.15.B 【来源】2017年全国普通高等学校招生统一考试理科数学(北京卷精编版)【解析】试题分析:设()()()()1i i 11i z a a a =-+=++-,因为复数对应的点在第二象限,所以10{ 10a a +<->,解得: 1a <-,故选B.【考点】复数的运算【名师点睛】复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.复数z =a +b i 复平面内的点Z (a ,b )(a ,b ∈R).复数z =a +b i(a ,b ∈R) 平面向量OZ uuu v .16.A【来源】【全国百强校】河北省曲周县第一中学2016-2017学年高二下学期期末考试数学(理)试题【解析】由,4z a z z =⋅=得234a +=,所以1a =±,故选A.【名师点睛】复数(),a bi a b R +∈的共轭复数是(),a bi a b R -∈,据此结合已知条件,求得a 的方程即可.17.D【来源】江西省赣州厚德外国语学校2018届高三上学期第一次阶段测试数学(理)试题【解析】3+i 1+i =(3+i)(1−i)(1+i)(1−i)=3−3i+i+11+1=4−2i 2=2−i故选D18.B【来源】2017年全国普通高等学校招生统一考试文科数学(新课标2卷精编版)【解析】由题意(1+i )(2+i )=2+3i +i 2=1+3i ,故选B. 点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如(a +b i )(c +d i )=(ac −bd)+ (ad +bc)i (a,b,c,d ∈R). 其次要熟悉复数相关基本概念,如复数a +b i (a,b ∈R)的实部为a 、虚部为b 、模为√a 2+b 2、对应点为(a,b)、共轭复数为a −b i .19.C【来源】2017年全国普通高等学校招生统一考试文科数学(新课标3卷精编版)【解析】()i 2i 12i z =-+=--,则表示复数()i 2i z =-+的点位于第三象限. 所以选C.【名师点睛】对于复数的四则运算,首先要切实掌握其运算技巧和常规思路,如()()()()()i i i ,,,a b c d ac bd ad bc a b c d R ++=-++∈.其次要熟悉复数的相关基本概念,如复数()i ,a b a b R +∈的实部为a 、虚部为b 、对应的点为(),a b 、共轭复数为i.a b -20.B【来源】2017年全国普通高等学校招生统一考试理科数学(新课标1卷精编版)【解析】令z =a +b i (a,b ∈R),则由1z =1a+b i =a−b ia 2+b 2∈R 得b =0,所以z ∈R ,故p 1正确;当z =i 时,因为z 2=i 2=−1∈R ,而z =i ∉R 知,故p 2不正确;当z 1=z 2=i 时,满足z 1⋅z 2=−1∈R ,但z 1≠z 2,故p 3不正确;对于p 4,因为实数的共轭复数是它本身,也属于实数,故p 4正确,故选B. 点睛:分式形式的复数,分子、分母同乘以分母的共轭复数,化简成z =a +b i (a,b ∈R)的形式进行判断,共轭复数只需实部不变,虚部变为原来的相反数即可.21.C【来源】2017年全国普通高等学校招生统一考试文科数学(新课标1卷精编版)【解析】2i 1+i)i 2i=-2,=⋅( ()2i 1i 1i -=-+ , 2(1i)2i += , ()i 1i 1i +=-+ ,所以选C.22.-3【来源】2016年全国普通高等学校招生统一考试文科数学(上海卷精编版)【解析】z 的虚部等于−3. 【考点】复数的运算、复数的概念【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目来看,复数题目往往不难,有时运算与概念、复数的几何意义综合考查,也是考生必定得分的题目之一.23.2【来源】2016年全国普通高等学校招生统一考试理科数学(天津卷精编版)【解析】试题分析:由(1i)(1i)1(1)i b b b a +-=++-=,可得110b a b +=⎧⎨-=⎩,所以21a b =⎧⎨=⎩故答案为2.【考点】复数相等【名师点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如答案第7页,总7页 i i i()(a+b )(c+d )=(ac bd)+(ad +bc)a,b,c,d -∈R ,其次要熟悉复数的相关基本概念,如复数i(,)a+b a b ∈R 的实部为a 、虚部为b 、模为、共轭复数为i a b -.24.1-【来源】2016年全国普通高等学校招生统一考试理科数学(北京卷精编版)【解析】 试题分析:由题意得(1i)(i)1(1)i 1a a a a ++=-++∈⇒=-R .【考点】复数运算【名师点睛】复数代数形式的四则运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式的乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化.25.-2【来源】2017年全国普通高等学校招生统一考试理科数学(天津卷精编版) 【解析】()()()()()()2212212222555a i i a a i a i a a i i i i ----+--+===-++-为实数, 则20,25a a +==-. 【考点】 复数的分类【名师点睛】复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可. 复数(),z a bi a b R =+∈,当0b ≠时, z 为虚数,当0b =时, z 为实数,当0,0a b =≠时, z 为纯虚数.。
高考数学压轴专题《复数》难题汇编
一、复数选择题1.212ii+=-( ) A .1B .−1C .i -D .i2.已知复数()123z i i +=- (其中i 是虚数单位),则z 在复平面内对应点在( ) A .第一象限 B .第二象限C .第三象限D .第四象限3.已知复数31iz i -=,则z 的虚部为( ) A .1B .1-C .iD .i -4.已知复数z 满足()311z i i +=-,则复数z 对应的点在( )上A .直线12y x =- B .直线12y x = C .直线12x =-D .直线12y5.已知复数5i5i 2iz =+-,则z =( )A B .C .D .6.若复数1211iz i+=--,则z 在复平面内的对应点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限7.若复数z 满足()322iz i i-+=+,则复数z 的虚部为( ) A .35B .35i -C .35D .35i8.在复平面内,复数z 对应的点是()1,1-,则1zz =+( ) A .1i -+B .1i +C .1i --D .1i -9.已知复数z 满足22z z =,则复数z 在复平面内对应的点(),x y ( ) A .恒在实轴上 B .恒在虚轴上C .恒在直线y x =上D .恒在直线y x=-上10.3( )A .i -B .iC .iD .i -11.已知()312++=+a i i bi (,a b ∈R ,i 为虚数单位),则实数+a b 的值为( ) A .3 B .5C .6D .812.复数22(1)1i i-+=-( )A .1+iB .-1+iC .1-iD .-1-i13.若复数()()1i 3i a +-(i 为虚数单位)的实部和虚部互为相反数,则实数a =( ) A .1-B .12-C .13D .114.设复数z 满足(1)2i z -=,则z =( )A .1 BC D .215.若复数11iz i,i 是虚数单位,则z =( ) A .0B .12C .1D .2二、多选题16.已知复数Z 在复平面上对应的向量(1,2),OZ =-则( ) A .z =-1+2iB .|z |=5C .12z i =+D .5z z ⋅=17.已知复数202011i z i+=-(i 为虚数单位),则下列说法错误的是( )A .z 的实部为2B .z 的虚部为1C .z i =D .||z =18.已知复数(),z x yi x y R =+∈,则( ) A .20zB .z 的虚部是yiC .若12z i =+,则1x =,2y =D .z =19.复数z 满足233232iz i i+⋅+=-,则下列说法正确的是( )A .z 的实部为3-B .z 的虚部为2C .32z i =-D .||z =20.已知1z ,2z 为复数,下列命题不正确的是( ) A .若12z z =,则12=z z B .若12=z z ,则12z z =C .若12z z >则12z z >D .若12z z >,则12z z >21.已知i 为虚数单位,则下列选项中正确的是( ) A .复数34z i =+的模5z =B .若复数34z i =+,则z (即复数z 的共轭复数)在复平面内对应的点在第四象限C .若复数()()2234224m m m m +-+--i 是纯虚数,则1m =或4m =- D .对任意的复数z ,都有20z22.设i 为虚数单位,复数()(12)z a i i =++,则下列命题正确的是( )A .若z 为纯虚数,则实数a 的值为2B .若z 在复平面内对应的点在第三象限,则实数a 的取值范围是(,)122-C .实数12a =-是z z =(z 为z 的共轭复数)的充要条件 D .若||5()z z x i x R +=+∈,则实数a 的值为223.已知复数12ω=-,其中i 是虚数单位,则下列结论正确的是( )A .1ω=B .2ω的虚部为C .31ω=-D .1ω在复平面内对应的点在第四象限24.已知复数z 满足(2i)i z -=(i 为虚数单位),复数z 的共轭复数为z ,则( )A .3||5z = B .12i5z +=-C .复数z 的实部为1-D .复数z 对应复平面上的点在第二象限 25.下面四个命题,其中错误的命题是( )A .0比i -大B .两个复数当且仅当其和为实数时互为共轭复数C .1x yi i +=+的充要条件为1x y ==D .任何纯虚数的平方都是负实数26.若复数21iz =+,其中i 为虚数单位,则下列结论正确的是( )A .z 的虚部为1-B .||z =C .2z 为纯虚数D .z 的共轭复数为1i --27.以下命题正确的是( )A .0a =是z a bi =+为纯虚数的必要不充分条件B .满足210x +=的x 有且仅有iC .“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件D .已知()f x =()1878f x x '=28.复数21iz i+=-,i 是虚数单位,则下列结论正确的是( )A .|z |=B .z 的共轭复数为3122i + C .z 的实部与虚部之和为2D .z 在复平面内的对应点位于第一象限29.对任意1z ,2z ,z C ∈,下列结论成立的是( ) A .当m ,*n N ∈时,有m n m n z z z +=B .当1z ,2zC ∈时,若22120z z +=,则10z =且20z = C .互为共轭复数的两个复数的模相等,且22||||z z z z ==⋅ D .12z z =的充要条件是12=z z30.已知i 为虚数单位,下列命题中正确的是( ) A .若x ,y ∈C ,则1x yi i +=+的充要条件是1x y == B .2(1)()a i a +∈R 是纯虚数C .若22120z z +=,则120z z == D .当4m =时,复数22lg(27)(56)m m m m i --+++是纯虚数【参考答案】***试卷处理标记,请不要删除一、复数选择题 1.D 【分析】利用复数的除法运算即可求解. 【详解】 , 故选:D 解析:D 【分析】利用复数的除法运算即可求解. 【详解】()()()()2221222255121212145i i i i i i i i i i i +++++====--+-, 故选:D2.D 【分析】先由复数的运算化简复数z ,再运用复数的几何表示可得选项. 【详解】 由已知得,所以复数z 在复平面上所对应的点为,在第四象限, 故选:D.解析:D 【分析】先由复数的运算化简复数z ,再运用复数的几何表示可得选项. 【详解】 由已知得()()()()312317171+21+212555i i i i z i i i i ----====--,所以复数z 在复平面上所对应的点为17,55⎛⎫- ⎪⎝⎭,在第四象限, 故选:D.3.B 【分析】化简复数,可得,结合选项得出答案. 【详解】则,的虚部为 故选:B解析:B 【分析】化简复数z ,可得z ,结合选项得出答案. 【详解】()311==11i iz i i i i i--=-=+- 则1z i =-,z 的虚部为1- 故选:B4.C 【分析】利用复数的乘法和除法运算求得复数z 的标准形式,得到对应点的坐标,然后验证即可. 【详解】解:因为,所以复数对应的点是,所以在直线上. 故选:C. 【点睛】本题考查复数的乘方和除法运解析:C 【分析】利用复数的乘法和除法运算求得复数z 的标准形式,得到对应点的坐标,然后验证即可. 【详解】解:因为33111(1)1(1)2(1)2i i z i i z i i --+=-⇔===-+-,所以复数z 对应的点是1,02⎛⎫- ⎪⎝⎭,所以在直线12x =-上. 故选:C. 【点睛】本题考查复数的乘方和除法运算,复数的坐标表示,属基础题.注意:()()()()()3211i 12121i i i i i +=++=-+=-.5.B【分析】根据复数的四则运算法则及模的计算公式,即可得到选项. 【详解】 由题,得,所以. 故选:B.解析:B 【分析】根据复数的四则运算法则及模的计算公式,即可得到选项. 【详解】由题,得()()()5i 2+i 5i5i 5i 1+7i 2i 2i 2+i z =+=+=---,所以z == 故选:B.6.B 【分析】利用复数的运算法则和复数的几何意义求解即可 【详解】 ,所以,在复平面内的对应点为,则对应点位于第二象限 故选:B解析:B 【分析】利用复数的运算法则和复数的几何意义求解即可 【详解】()()12i 1i 12i33i 33i 111i 2222z +++-+=-=-==-+-, 所以,z 在复平面内的对应点为33,22⎛⎫- ⎪⎝⎭,则对应点位于第二象限 故选:B7.A 【分析】由复数的除法法则和乘法法则计算出,再由复数的定义得结论. 【详解】 由题意,得,其虚部为, 故选:A.解析:A 【分析】由复数的除法法则和乘法法则计算出z ,再由复数的定义得结论. 【详解】 由题意,得()()()()()23343313343434552i i ii z ii i i i ----====-++-+, 其虚部为35, 故选:A.8.A 【分析】由得出,再由复数的四则运算求解即可. 【详解】 由题意得,则. 故选:A解析:A 【分析】由()1,1-得出1i z =-+,再由复数的四则运算求解即可. 【详解】由题意得1i z =-+,则1i 1i i 111i 1i i i 1z z -----+==⋅==-++-. 故选:A9.A 【分析】先由题意得到,然后分别计算和,再根据得到关于,的方程组并求解,从而可得结果. 【详解】由复数在复平面内对应的点为得,则,, 根据得,得,.所以复数在复平面内对应的点恒在实轴上, 故解析:A 【分析】先由题意得到z x yi =+,然后分别计算2z 和2z ,再根据22z z =得到关于x ,y 的方程组并求解,从而可得结果.由复数z 在复平面内对应的点为(),x y 得z x yi =+,则2222z x y xyi =-+,222z x y =+,根据22z z =得222220x y x yxy ⎧-=+⎨=⎩,得0y =,x ∈R .所以复数z 在复平面内对应的点(),x y 恒在实轴上, 故选:A .10.B 【分析】首先,再利用复数的除法运算,计算结果. 【详解】 复数. 故选:B解析:B 【分析】首先3i i =-,再利用复数的除法运算,计算结果. 【详解】133i ii +====. 故选:B11.D 【分析】利用复数的乘法运算及复数相等求得a,b 值即可求解 【详解】 ,故 则 故选:D解析:D 【分析】利用复数的乘法运算及复数相等求得a,b 值即可求解 【详解】()312++=+a i i bi ,故332a i bi -+=+ 则32,38a b a b -==∴+=故选:D12.C 【分析】直接根据复数代数形式的乘除运算法则计算可得;解: 故选:C解析:C 【分析】直接根据复数代数形式的乘除运算法则计算可得; 【详解】 解:22(1)1i i-+- ()()()()2211211i i i i i +=-++-+12i i =+- 1i =-故选:C13.B 【分析】利用复数代数形式的乘法运算化简,再由实部加虚部为0求解. 【详解】解:,所以复数的实部为,虚部为,因为实部和虚部互为相反数,所以,解得 故选:B解析:B 【分析】利用复数代数形式的乘法运算化简,再由实部加虚部为0求解. 【详解】解:()()()()21i 3i 33331a i ai ai a a i +-=-+-=++-,所以复数()()1i 3i a +-的实部为3a +,虚部为31a -,因为实部和虚部互为相反数,所以3310a a ++-=,解得12a =-故选:B 14.B 【分析】由复数除法求得,再由模的运算求得模. 【详解】 由题意,∴.解析:B 【分析】由复数除法求得z ,再由模的运算求得模. 【详解】由题意22(1)11(1)(1)i z i i i i +===+--+,∴z == 故选:B .15.C 【分析】由复数除法求出,再由模计算. 【详解】 由已知, 所以. 故选:C .解析:C 【分析】由复数除法求出z ,再由模计算. 【详解】由已知21(1)21(1)(1)2i i i z i i i i ---====-++-, 所以1z i =-=. 故选:C .二、多选题 16.AD 【分析】因为复数Z 在复平面上对应的向量,得到复数,再逐项判断. 【详解】因为复数Z 在复平面上对应的向量, 所以,,|z|=,, 故选:AD解析:AD 【分析】因为复数Z 在复平面上对应的向量(1,2)OZ =-,得到复数12z i =-+,再逐项判断. 【详解】因为复数Z 在复平面上对应的向量(1,2)OZ =-,所以12z i =-+,12z i =--,|z 5z z ⋅=,故选:AD17.AC【分析】根据复数的运算及复数的概念即可求解.【详解】因为复数,所以z 的虚部为1,,故AC 错误,BD 正确.故选:AC解析:AC【分析】根据复数的运算及复数的概念即可求解.【详解】 因为复数2020450511()22(1)11112i i i z i i i i +++=====+---,所以z 的虚部为1,||z =故AC 错误,BD 正确.故选:AC18.CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取,则,A 选项错误;对于B 选项,复数的虚部为,B 选项错误;解析:CD【分析】取特殊值可判断A 选项的正误;由复数的概念可判断B 、C 选项的正误;由复数模的概念可判断D 选项的正误.【详解】对于A 选项,取z i ,则210z =-<,A 选项错误;对于B 选项,复数z 的虚部为y ,B 选项错误;对于C 选项,若12z i =+,则1x =,2y =,C 选项正确;对于D 选项,z =D 选项正确.【点睛】本题考查复数相关命题真假的判断,涉及复数的计算、复数的概念以及复数的模,属于基础题.19.AD【分析】由已知可求出,进而可求出实部、虚部、共轭复数、复数的模,进而可选出正确答案.【详解】解:由知,,即,所以的实部为,A 正确;的虚部为-2,B 错误;,C 错误;,D 正确;故选:A解析:AD【分析】由已知可求出32z i =--,进而可求出实部、虚部、共轭复数、复数的模,进而可选出正确答案.【详解】 解:由233232i z i i +⋅+=-知,232332i z i i +⋅=--,即()()()2233232232313i i i z i i ---=-=+ 39263213i i --==--,所以z 的实部为3-,A 正确;z 的虚部为-2,B 错误;32z i =-+,C 错误;||z ==D 正确; 故选:AD.【点睛】 本题考查了复数的除法运算,考查了复数的概念,考查了共轭复数的求解,考查了复数模的求解,属于基础题.20.BCD【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.【详解】因为两个复数之间只有等与不等,不能比较大小解析:BCD【分析】根据两个复数之间不能比较大小,得到C 、D 两项是错误的,根据复数的定义和复数模的概念,可以断定A 项正确,B 项错误,从而得到答案.因为两个复数之间只有等与不等,不能比较大小,所以C 、D 两项都不正确;当两个复数的模相等时,复数不一定相等, 比如11i i -=+,但是11i i -≠+,所以B 项是错误的;因为当两个复数相等时,模一定相等,所以A 项正确;故选:BCD.【点睛】该题考查的是有关复数的问题,涉及到的知识点有两个复数之间的关系,复数模的概念,属于基础题目.21.AB【分析】求解复数的模判断;由共轭复数的概念判断;由实部为0且虚部不为0求得值判断;举例说明错误.【详解】解:对于,复数的模,故正确;对于,若复数,则,在复平面内对应的点的坐标为,在第四解析:AB【分析】求解复数的模判断A ;由共轭复数的概念判断B ;由实部为0且虚部不为0求得m 值判断C ;举例说明D 错误.【详解】解:对于A ,复数34z i =+的模||5z ==,故A 正确;对于B ,若复数34z i =+,则34z i =-,在复平面内对应的点的坐标为(3,4)-,在第四象限,故B 正确;对于C ,若复数22(34)(224)m m m m i +-+--是纯虚数,则223402240m m m m ⎧+-=⎨--≠⎩,解得1m =,故C 错误; 对于D ,当z i 时,210z =-<,故D 错误.故选:AB .【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数模的求法,属于基础题. 22.ACD【分析】首先应用复数的乘法得,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误∴选项A :为纯虚数,有可得,故正确选项B解析:ACD【分析】首先应用复数的乘法得2(12)z a a i =-++,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】()(12)2(12)z a i i a a i =++=-++∴选项A :z 为纯虚数,有20120a a -=⎧⎨+≠⎩可得2a =,故正确 选项B :z 在复平面内对应的点在第三象限,有20120a a -<⎧⎨+<⎩解得12a <-,故错误 选项C :12a =-时,52z z ==-;z z =时,120a +=即12a =-,它们互为充要条件,故正确 选项D :||5()z z x i x R +=+∈时,有125a +=,即2a =,故正确故选:ACD【点睛】本题考查了复数的运算及分类和概念,应用复数乘法运算求得复数,再根据复数的概念及性质、相等关系等确定参数的值或范围23.AB【分析】求得、的虚部、、对应点所在的象限,由此判断正确选项.【详解】依题意,所以A 选项正确;,虚部为,所以B 选项正确;,所以C 选项错误;,对应点为,在第三象限,故D 选项错误.故选解析:AB【分析】 求得ω、2ω的虚部、3ω、1ω对应点所在的象限,由此判断正确选项.【详解】依题意1ω==,所以A 选项正确;2211312442ω⎛⎫=-+=-=- ⎪ ⎪⎝⎭,虚部为,所以B 选项正确;22321111222ωωω⎛⎫⎛⎫⎛⎫=⋅=--⋅-+=-+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以C 选项错误;22111122212ω---====-⎛⎫-+ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,对应点为1,22⎛⎫-- ⎪ ⎪⎝⎭,在第三象限,故D 选项错误. 故选:AB【点睛】本小题主要考查复数的概念和运算,考查复数对应点所在象限,属于基础题.24.BD【分析】因为复数满足,利用复数的除法运算化简为,再逐项验证判断.【详解】因为复数满足,所以所以,故A 错误;,故B 正确;复数的实部为 ,故C 错误;复数对应复平面上的点在第二象限解析:BD【分析】因为复数z 满足(2i)i z -=,利用复数的除法运算化简为1255z i =-+,再逐项验证判断. 【详解】因为复数z 满足(2i)i z -=, 所以()(2)1222(2)55i i i z i i i i +===-+--+所以z ==,故A 错误;1255z i =--,故B 正确; 复数z 的实部为15- ,故C 错误; 复数z 对应复平面上的点12,55⎛⎫- ⎪⎝⎭在第二象限,故D 正确. 故选:BD【点睛】本题主要考查复数的概念,代数运算以及几何意义,还考查分析运算求解的能力,属于基础题. 25.ABC【分析】根据虚数不能比大小可判断A 选项的正误;利用特殊值法可判断B 选项的正误;利用特殊值法可判断C 选项的正误;利用复数的运算可判断D 选项的正误.【详解】对于A 选项,由于虚数不能比大小,解析:ABC【分析】根据虚数不能比大小可判断A 选项的正误;利用特殊值法可判断B 选项的正误;利用特殊值法可判断C 选项的正误;利用复数的运算可判断D 选项的正误.【详解】对于A 选项,由于虚数不能比大小,A 选项错误;对于B 选项,()()123i i ++-=,但1i +与2i -不互为共轭复数,B 选项错误; 对于C 选项,由于1x yi i +=+,且x 、y 不一定是实数,若取x i =,y i =-,则1x yi i +=+,C 选项错误;对于D 选项,任取纯虚数()0,ai a a R ≠∈,则()220ai a =-<,D 选项正确. 故选:ABC.【点睛】本题考查复数相关命题真假的判断,涉及共轭复数的概念、复数相等以及复数的计算,属于基础题.26.ABC【分析】首先利用复数代数形式的乘除运算化简后得:,然后分别按照四个选项的要求逐一求解判断即可.【详解】因为,对于A :的虚部为,正确;对于B :模长,正确;对于C :因为,故为纯虚数,解析:ABC【分析】首先利用复数代数形式的乘除运算化简z 后得:1z i =-,然后分别按照四个选项的要求逐一求解判断即可.【详解】 因为()()()2122211i 1i 12i i z i i --====-++-, 对于A :z 的虚部为1-,正确;对于B :模长z =对于C :因为22(1)2z i i =-=-,故2z 为纯虚数,正确;对于D :z 的共轭复数为1i +,错误.故选:ABC .【点睛】本题考查复数代数形式的乘除运算,考查复数的有关概念,考查逻辑思维能力和运算能力,侧重考查对基础知识的理解和掌握,属于常考题.27.AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式解析:AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A 选项的正误;解方程210x +=可判断B 选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C 选项的正误;利用基本初等函数的导数公式可判断D 选项的正误.综合可得出结论.【详解】对于A 选项,若复数z a bi =+为纯虚数,则0a =且0b ≠,所以,0a =是z a bi =+为纯虚数的必要不充分条件,A 选项正确;对于B 选项,解方程210x +=得x i =±,B 选项错误;对于C 选项,当(),x a b ∈时,若()0f x '>,则函数()f x 在区间(),a b 内单调递增, 即“在区间(),a b 内()0f x '>”⇒“()f x 在区间(),a b 内单调递增”.反之,取()3f x x =,()23f x x '=,当()1,1x ∈-时,()0f x '≥,此时,函数()y f x =在区间()1,1-上单调递增,即“在区间(),a b 内()0f x '>”⇐/“()f x 在区间(),a b 内单调递增”.所以,“在区间(),a b 内()0f x '>”是“()f x 在区间(),a b 内单调递增”的充分不必要条件.C 选项正确;对于D 选项,()11172488f x x x ++===,()1878f x x -'∴=,D 选项错误. 故选:AC.【点睛】本题考查命题真假的判断,涉及充分条件与必要条件的判断、实系数方程的根以及导数的计算,考查推理能力与计算能力,属于中等题. 28.CD【分析】根据复数的四则运算,整理复数,再逐一分析选项,即得.【详解】由题得,复数,可得,则A 不正确;的共轭复数为,则B 不正确;的实部与虚部之和为,则C 正确;在复平面内的对应点为,位于第一解析:CD【分析】根据复数的四则运算,整理复数z ,再逐一分析选项,即得.【详解】 由题得,复数22(2)(1)13131(1)(1)122i i i i z i i i i i ++++====+--+-,可得||z ==,则A 不正确;z 的共轭复数为1322i -,则B 不正确;z 的实部与虚部之和为13222+=,则C 正确;z 在复平面内的对应点为13(,)22,位于第一象限,则D 正确.综上,正确结论是CD.故选:CD【点睛】本题考查复数的定义,共轭复数以及复数的模,考查知识点全面.29.AC【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取,进行判断;D 中的必要不充分条件是.【详解】解:由复数乘法的运算律知,A 正确;取,;,满足,但且不【分析】根据复数乘法的运算律和复数的模及共轭复数的概念可判断出答案A 和C 正确;C 中可取11z =,2z i =进行判断;D 中12z z =的必要不充分条件是12=z z .【详解】解:由复数乘法的运算律知,A 正确;取11z =,;2z i =,满足22120z z +=,但10z =且20z =不成立,B 错误; 由复数的模及共轭复数的概念知结论成立,C 正确;由12z z =能推出12=z z ,但12||||z z =推不出12z z =,因此12z z =的必要不充分条件是12=z z ,D 错误. 故选:AC【点睛】本题主要考查复数乘法的运算律和复数的基本知识以及共轭复数的概念,属于基础题.30.BD【分析】选项A :取,满足方程,所以错误;选项B :,恒成立,所以正确;选项C :取,,,所以错误;选项D :代入,验证结果是纯虚数,所以正确.【详解】取,,则,但不满足,故A 错误;,恒成解析:BD【分析】选项A :取x i =,y i =-满足方程,所以错误;选项B :a ∀∈R ,210a +>恒成立,所以正确;选项C :取1z i =,21z =,22120z z +=,所以错误;选项D :4m =代入 22lg(27)(56)m m m m i --+++,验证结果是纯虚数,所以正确.【详解】取x i =,y i =-,则1x yi i +=+,但不满足1x y ==,故A 错误;a ∀∈R ,210a +>恒成立,所以2(1a i +)是纯虚数,故B 正确;取1z i =,21z =,则22120z z +=,但120z z ==不成立,故C 错误; 4m =时,复数2212756=42g m m m m i i --+++()()是纯虚数,故D 正确.【点睛】本题考查复数有关概念的辨析,特别要注意复数的实部和虚部都是实数,解题时要合理取特殊值,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《复数》高考真题汇编
1、(2017北京文)若复数在复平面内对应的点在第二象限,则实数的取值范围是( )
(A ) (B ) (C ) (D )
2、(2017新课标Ⅱ理).
3i 1i +=+ A .12i + B .12i - C .2i + D .2i -
3、(2017新课标Ⅲ理数)设复数z 满足(1+i)z =2i ,则∣z ∣=
A .12 B
. C
D .2
4、(2017山东理)已知a R ∈,i
是虚数单位,若,4z a z z =⋅=,则a=
(A )1或-1 (B
(C )
(D
5、(2017新课标Ⅰ理数)设有下面四个命题
1p :若复数z 满足1z
∈R ,则z ∈R ; 2p :若复数z 满足2z ∈R ,则z ∈R ; 3p :若复数12,z z 满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R . 其中的真命题为( )
A.13,p p B .14,p p C .23,p p D .24,p p 6、(2017新课标Ⅱ文).(1i)(2i)++=( )
A .1i -
B .13i +
C .3i +
D .33i +
7、(2017北京理)若复数(1–i )(a +i )在复平面内对应的点在第二象限,则实数a 的取值范围是
A (–∞,1)
B (–∞,–1)
C (1,+∞)
D (–1,+∞)
8、(2017新课标Ⅲ文数)复平面内表示复数z=i(–2+i)的点位于( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限 9、(2017新课标Ⅰ文数)下列各式的运算结果为纯虚数的是( ) A .i(1+i)2
B .i 2(1-i)
C .(1+i)2
D .i(1+i)
(1i)(i)a -+a (,1)-∞(,1)-∞-(1,)+∞(1,)-+∞
10、(2017山东文)已知i 是虚数单位,若复数z 满足i 1i z =+,则2z =
(A )-2i (B )2i (C )-2 (D )2
11、(2017浙江)已知(i 是虚数单位)则 ,ab = .
12、(2017天津文)已知a ∈R ,i 为虚数单位,若
i 2i a -+为实数,则a 的值为________ 13、(2017天津理)已知a ∈R ,若i 2i
a -+为实数,则a 的值为 . 14、(2017江苏)已知复数,其中i 是虚数单位,则的模是 .
15、(2016北京理数)设a R ∈,若复数(1)()i a i ++在复平面内对应的点位于实轴
上,则a =____-1___.
16、(2016江苏)复数(12)(3)z i i =+-,其中i 为虚数单位,则z 的实部是___5_____.
17、(2016上海理数)设32i z i
+=
,其中i 为虚数单位,则Im z =___3_____. 18、(2016上海文数)设32i z i
+=,其中i 为虚数单位,则z 的虚部等于__-3______. 19、(2016天津理数)已知,a b R ∈,i 是虚数单位,若(1)(1)i bi a +-=,则a b
的值为 2 . 20、(2016天津文数)复数z 满足(1)2i z +=,则z 的实部为 1 .
21、(2016北京文数)复数122i i
+=-( A ) .A i .B 1i + .C i - .D 1i -
22、(2016山东理数)若复数z 满足232z z i +=-,其中i 为虚数单位,则z =( B )
A .12i +
B .12i -
C .12i -+
D .12i --
23、(2016山东文数)若复数21z i
=-,其中i 为虚数单位,则z =( B ) A .1i + B .1i - C .1i -+ D .1i --
24、(2016四川理数)设i 为虚数单位,则6()x i +的展开式中含4x 的项为( A )
A .415x -
B .415x
C .420ix -
D .420ix
25、(2016四川文数)设i 为虚数单位,则复数2(1)i +=( C )
A .0
B .2
C .2i
D .22i +
26、(2016新课标I 理数)设(1)1i x yi +=+,其中x ,y 是实数,
则||x yi +=( B ) .A 1 .
B .
C .
D 2
2i 34i a b +=+()22a b +=(1i)(12i)z =++z
27、(2016新课标I 文数)设(12i)(i)a ++的实部与虚部相等,则a =( A )
.A 3- .B 2- .C 2 .D 3
28、(2016新课标II 理数)已知(3)(1)z m m i =++-在复平面内对应的点在第四
象限,则实数m 的取值范围是( A )
.A (3,1)- .B (1,3)- .C (1,)+∞ .D (,3)-∞-
29、(2016新课标II 文数)设复数z 满足3z i i +=-,则z =( C )
.A 12i -+ .B 12i - .C 32i + .D 32i - 30、(2016新课标III 理数)若12z i =+,则41
i zz =-(C ) .A 1 .B 1- .C i .D i -
31、(2016新课标III 文数)若43z i =+,则||
z z =( D ) .A 1 .B 1- .C 4355i + .D 4355
i - 32、[2015新课标Ⅰ文]已知复数z 满足(z -1)i=i +1,则z =( ) A. -2-i B. -2+i C. 2-i D. 2+i
33、[2015新课标Ⅰ理]设复数z 满足z
z -+11=i ,则|z |= A. 1 B.2 C.
3 D. 2 34、[2015新课标Ⅱ文]若为实数,且,则( ) A . B . C . D .
35、[2015新课标Ⅱ理]若a 为实数且(2+a i)(a -2i)=-4i,则a =( )
A. -1
B. 0
C. 1
D. 2
36、[2014·新课标Ⅰ文] 设z =11+i
+i ,则|z |=( ) A.12 B.22 C.32 D .2
37、[2014·新课标Ⅰ理]3
2(1)(1)
i i +-=( ) A .1i + B .1i - C .1i -+ D .1i --
38、[2014·新课标Ⅱ理]设复数1z ,
2z 在复平面内的对应点关于虚轴对称,12i z =+,则12z z =( )
A .5-
B .5
C .4i -+
D . 4i --
a 2i 3i 1i
a +=++a =4-3-34。