透析器膜材料的研究进展

合集下载

血液透析膜的应用及其改性研究进展

血液透析膜的应用及其改性研究进展

综述CHINESE COMMUNITY DOCTORS 中国社区医师2019年第35卷第20期对于急慢性肾功能衰竭患者来说,比较有效的替代疗法就是血液透析。

临床上所使用的血液透析设备是由透析机、水处理系统、透析液系统以及透析器等组成,其是通过代替人体的肾脏功能来达到血液净化的目的。

在血液透析的过程中,其分离介质是选择性透过膜,其有效借助了膜两侧血液与透析液之间的浓度梯度、渗透压梯度、压力梯度等,促进了患者血液中尿素、肌肝酸、尿酸等毒素向透析液的扩散,为了保证患者机体电解质和酸碱度的平衡,透析液还要向血液中补充一些离子,因此,血液透析治疗的效果与血液透析膜的质量有着极大的关系。

血液透析膜主要应用在对急慢性肾功能衰竭患者的治疗中,其也是血液透气设备中极其重要的一部分。

随着医疗技术的不断发展,临床上对血液透析膜的要求也在不断提高。

本文对血液透析膜的应用以及改性处理措施进行了详细的综述,希望能够为后期血液透析膜的研究和开发提供一定的参考价值。

血液透析膜的应用及改性研究纤维素膜与CA 膜:纤维素膜和CA 膜均有着较为完整的结构,并且其通透性较好,价格比较低,有着较好的物理弹性,将其应用在血液透析中有着较好的效果。

但是其化学稳定性比较差,对其进行清洗、低温消毒等操作后,就会对其化学稳定性造成破坏。

正是因为其具有这个缺陷,在不影响其选择性通透性、血液相容性等特性的前提下,提高其化学稳定性对其在临床上的应用有着非常重要的意义。

目前比较有效的方法就是改进其制膜工艺,或加入其他辅料来改善膜的性能等。

研究人员采用了增加PEG 比例、提高凝固浴温度等方法对膜的透水率进行了改善。

然后又用干/湿法纺丝过程制备了不对称的纤维膜,结果发现自然干燥的膜变得越发致密[1]。

对膜的微观结构进行改变后发现,膜的交联截面和表面上的空隙大小与分离蛋白的浓度有关,而与凝固剂无关。

对膜的相容性进行改变时,也可采用在膜的表面接枝生物活性分子,虽然改变了膜的形象,但是却有效保存了膜的机械性能,改变了膜的转运速率,极大地提高了膜的渗透性,降低了蛋白的吸附能力。

血液透析器膜的材料研究

血液透析器膜的材料研究

血液透析器膜的材料研究血液透析是一种常见的治疗肾脏疾病的方法。

在透析过程中,血液在透析器中通过一种特殊的膜,将身体中的废物和过多水分过滤出来。

因此,透析器膜的材料研究是十分重要的。

透析器膜的材料可以分为两类:人造膜和天然膜。

人造膜包括聚合物膜和无机材料膜。

聚合物膜主要由聚乙烯、聚氨酯、聚氨酯醚、聚丙烯等材料组成。

这些材料的物理化学性质和结构特点不同,对透析器的透析性质产生了很大的影响。

例如,聚乙烯的透水性能比较好,但对蛋白质的透过性不够理想;聚氨酯醚材料适用于高分子质量较大的血液成分分离;聚丙烯则是一种透析器膜材料的基础材料,可拓展用于高透析速率和免疫学涂层等新功能领域。

无机材料膜主要是以纳米级尺寸的银、氧化锗、氧化铝等物质为基础,利用下场热处理、溶胶-凝胶、电化学-光化学等新技术制备而成。

这些材料的特殊结构体现了一定的生化活性,可以促进透析过程的特定分子选通,所以透析器膜的性能可以进一步拓展。

相较于人造膜,天然膜具有天然疏水性、良好生物相容性和生物相关性等优势。

天然膜的主要来源于动物的血管网络,如肠道粘膜、肝脏血管、角膜等。

天然膜还可以通过海藻、鱼皮等方式获得,如之前发表的一篇文章提到的十种透析器膜材料之一:聚糖膜, 阐述其其性质独特的特点,满足了膜材料生物相容性、生物医用性、稳定性等要求。

然而,天然膜适用性受到生物相互作用、制备工艺、成本等因素的限制。

总的来说,透析器膜材料的研究需要考虑到许多方面,如透析器的物理化学性质、耐久性和生物相容性等。

各种不同类型的透析器膜都有其特定的优势和局限性,因而不同的透析器膜材料可以在特定的透析条件下发挥不同的作用,从而满足人们对透析器要求的不同应用需求。

血液透析器的生物相容性研究及其临床应用现状

血液透析器的生物相容性研究及其临床应用现状

Bic m p t i t fHe o i l z r n i i a p ia o o o a i l y o m d a y e sa d Cl c l b i n Ap l t n ci
Y GL eg K AN in , E f
Y ANLn XUH nli i, oge
【 ywo d 】 H mo il es Di y e mb n s Bi o p t it, mo o p t it Ke r s e da z r; a z r me r e ; o m ai ly He c m ai ly y l s a c bi bi
血液透析器俗称人 工肾 ,其作用是替代 肾清 除体 内蓄积 的 2 血 液透 析膜 的 生物 相容 性
b o o a i i t n i l g c l v l a in o il ssme r n sh v e n c re t e e r h f c s s I i a e , e me r n t r l i c mp t l y a d b o o i a a u t fd ay i mb a e a eb e u r n s a c o u e . n t sp p r t mb a ema e i bi e o r h h a n l c l p i t f a y e s b o o a i l y a d b o o ia a u o f ay e s a d c i ia p l ai n o il z r, i c mp t i t n i l gc l v l ̄i n o il z r mb a e r to u e d s mma i e . n a c o d bi e d me r n swe e i r d c d a u n n rz d

生物医用抗凝性材料的研究进展

生物医用抗凝性材料的研究进展

生物医用抗凝性材料的研究进展摘要:在我国,重症肝病、肾功能不全患者都要经历接受血浆置换或血液滤过等治疗手段,血液需由体内引出经过置换装置或透析膜才能达到疗效。

目前还没有成功研制出抗凝血透析膜,但是血液在体外接触透析膜会诱发凝血机制导致治疗无法进行,临床医师会根据患者情况输注抗凝血药物,重症肝病及肾功能不全患者自身抗凝血功能已经很差,如果继续输注抗凝药物,可能会导致患者因出血而死亡。

因此,临床对抗凝血性的生物医用透析膜的需求十分紧迫,结合多年来抗凝血材料的研究发展,这一问题将会最终得到解决,为提高患者生命质量和保障患者健康发挥重大作用。

本文主要分析生物医用抗凝性材料的研究进展。

关键词:生物医用材料;血液相容性;凝血机制;抗凝血引言生物医用材料是一种与生物系统接触,对生物体病损组织、器官进行诊断,治疗、修复及诱导再生或增强其功能的高新技术材料。

生物医用材料可用于治疗心血管疾病患者,为其提供人工心脏或人工血管;还可用于控制药物和生物活性物质的释放;也能用于骨和牙齿等硬组织的更替和修复。

按照材料功能性,生物医用材料分为可降解材料、组织工程材料与人工器官、齿科材料、控释材料、仿生智能材料、临床诊断及生物传感器等。

最初生物医用材料的研究需满足治疗疾病的目的,而现在着重于改善材料生物相容性,从而减少并发症的发生,提高患者生命质量及医院医疗水平。

尽管功能性机械心脏瓣膜、血管支架、血液充氧器和血泵已经在临床上被广泛使用,但合成材料与血液之间产生的影响,如破坏红细胞、血小板,吸附血液中的蛋白和电解质,造成血栓形成和血栓栓塞事件,成为临床需要解决的难点。

1、与血液接触的生物医用材料的安全性能要点在临床应用和生物技术中,多数生物医用材料会涉及到与血液接触,如冠状动脉支架、生物心脏瓣膜、血液透析器、人工肺、导管等。

这些材料与血液接触后可能会产生一系列安全问题,例如诱导血栓形成,引起感染或其他并发症。

因此,涉及与血液接触的生物医用材料,需要重点关注材料的安全性能,主要包括抗菌性能、生物相容性、血液相容性等。

血液透析治疗中透析器膜的应用研究

血液透析治疗中透析器膜的应用研究

血液透析治疗中透析器膜的应用研究一、研究背景慢性肾衰竭是一种严重的疾病,其病程长、病情复杂,需要长期的治疗和监测。

血液透析是目前最常用的肾替代治疗方法之一,其在去除体内废物和水分方面具有较好的疗效。

血液透析治疗中透析器膜作为治疗的重要部分,不仅影响着治疗的效果,还直接影响着患者的生命安全。

二、透析器膜的种类透析器膜按材料可分为纤维素膜、聚酰胺膜、聚砜膜、聚碳酸酯膜、聚丙烯膜等几种。

1.纤维素膜纤维素膜是一种较早研制的透析器膜,其主要来源于棉质材料或淀粉糊化产物。

纤维素膜的优点是价格便宜,但其分子量截留范围有限,只适用于中小分子的废物清除,不能有效清除大分子物质。

2.聚酰胺膜聚酰胺膜是一种以三聚氰胺为主链的合成树脂,具有良好的化学稳定性和高分子量。

其在透析过程中分子量分布较为均匀,可以有效清除各种分子大小的废物,是目前透析器膜的主要材料之一。

3.聚砜膜聚砜膜是一种高温高压下聚合的合成材料,具有较高的力学强度和化学稳定性。

其分子量截留范围广,可以有效清除大分子物质,但其造价较高。

4.聚碳酸酯膜聚碳酸酯膜是一种用碳酸二甲酯和二酚经过聚合反应制得的合成材料,具有较好的力学性能和生物相容性。

其透析效果较优,但其成本较高。

5.聚丙烯膜聚丙烯膜是一种适用范围较广的材料,具有较好的生物相容性和良好的抗菌性能。

三、透析器膜的选择在临床应用中,透析器膜的选择是根据患者的透析治疗需要和实际透析情况而定的。

当患者需要较高的透析效果时,应选用分子量截留范围较广的透析器膜,例如聚酰胺膜、聚砜膜等;当患者透析治疗时间较长时,应选用生物相容性好的透析器膜,例如聚碳酸酯膜;当患者存在较严重的感染风险时,应选用抗菌性能好的透析器膜,例如聚丙烯膜。

四、透析器膜的改良研究目前,随着新材料的不断涌现和研究技术的不断提高,透析器膜的研究也在不断发展与改良中。

1.表面改性表面改性是对透析器膜外表进行处理以改变其特性。

例如,对聚酰胺膜表面进行改性可使其生物相容性更好、抗炎性更高等。

不同膜材料透析器在单次透析治疗中的临床对比研究

不同膜材料透析器在单次透析治疗中的临床对比研究

不同膜材料透析器在单次透析治疗中的临床对比研究丛慧;牟倡骏;宋旭红;于亚楠;徐艳华;季伟伶【期刊名称】《中国血液净化》【年(卷),期】2022(21)10【摘要】目的探究高通量聚砜膜透析器(威高HF15)和三醋酸纤维素膜透析器(尼普洛FB-150U,简称150U)在单次透析治疗中的临床效果,包括透析器的清除有效性及生物相容性对比。

方法选取威高血液净化中心维持性血液透析患者20例,分为HF15组和150U组,每组10例。

分别在透析治疗前、透析15min、透析60min 及透析治疗结束后采集患者血样并进行检测。

对比HF15和150U对应的透析前后溶质下降率和清除率,以及血细胞和补体因子(C3a)等指标的差异。

结果2组患者的年龄、性别、体质量和透析龄等差异无统计学意义(P>0.05),使用HF15和150U 透析治疗前,组间透析血流量、中小分子毒素、血细胞及补体因子等基线数据差异无统计学意义(P>0.05)。

4小时常规血液透析治疗后:①2组间小分子毒素尿素氮、肌酐和血磷下降率(t=0.932、1.799、0.878,P=0.376、0.106、0.403)和清除率(t=-1.892、1.500、-2.211,P=0.091、0.168、0.056)无显著性差异;②对中分子毒素的清除效果,HF15组对应的β2微球蛋白下降率(t=7.821,P<0.001)和清除率(t=2.686,P=0.013)均显著高于150U;③在透析治疗过程中,2组患者的血细胞和C3a变化差异无统计学意义(P>0.05)。

结论在单次血液透析治疗过程中,HF15对毒素分子的清除效果优于150U,2款透析器生物相容性等同。

【总页数】5页(P780-784)【作者】丛慧;牟倡骏;宋旭红;于亚楠;徐艳华;季伟伶【作者单位】山东威高血液净化制品股份有限公司研发管理部;威高血液净化中心【正文语种】中文【中图分类】R459.5【相关文献】1.不同血液透析膜材料在重症胰腺炎治疗中的生物相容性分析2.不同血液透析膜材料在重症胰腺炎治疗中的生物相容性分析3.一次性根管治疗中不同填充材料的临床研究4.不同透析器对维持性血液透析患者贫血治疗影响的临床研究5.不同镍钛器械用于单根管一次性治疗的临床对比研究因版权原因,仅展示原文概要,查看原文内容请购买。

高截留量血液透析膜在多发性骨髓瘤肾病治疗中的研究进展

高截留量血液透析膜在多发性骨髓瘤肾病治疗中的研究进展

高截留量血液透析膜在多发性骨髓瘤肾病治疗中的研究进展徐丰博(综述);孙懿(审校)【摘要】高截留量血液透析( HCO)是近年来血液透析领域重要的研究进展之一,其可有效清除相对分子质量为65000的物质,主要用于治疗骨髓瘤管型肾病、脓毒症、横纹肌溶解征等疾病。

骨髓瘤患者由于游离轻链被近曲小管吸收后沉积在上皮细胞胞质内,使肾小管细胞变性,导致急性肾衰竭。

大量临床试验证明,HCO可有效清除游离轻链,促进肾功能恢复,改善患者预后。

该文就 HCO在多发性骨髓瘤管型肾病中的临床应用进展作一简述。

%High cut-off hemodialysis( HCO) is one of the important studies in field of hemodialysis in recentyears,which can effectively remove substances of relative molecular 65 000,mainly used in the treat-ment of myeloma cast nephropathy,sepsis andrhabdomyolysis syndrome.In myeloma patients,free light chain ( FLC) uptake by proximal tubule cells and deposition in the epithelial cell cytopiasm ,lead to renal tubular cell degeneration and acute renal failure.A large number of clinical trials have demonstrated that HCO can effectively remove FLC ,promote the recovery of renal function and improve the prognosis of the patients .Here is to summarize the application of HCO in myeloma cast nephropathy.【期刊名称】《医学综述》【年(卷),期】2015(000)016【总页数】4页(P2935-2938)【关键词】骨髓瘤管型肾病;高截留量血液透析;游离轻链【作者】徐丰博(综述);孙懿(审校)【作者单位】首都医科大学附属复兴医院肾内科,北京100038;首都医科大学附属复兴医院肾内科,北京100038【正文语种】中文【中图分类】R459.5管型肾病是导致多发性骨髓瘤(multiple myeloma,MM)患者肾功能损害甚至血液透析的一个主要原因,而依赖血液透析患者常常预后较差。

不同透析器膜材料对维持性血液透析患者体内双酚A暴露情况的影响

不同透析器膜材料对维持性血液透析患者体内双酚A暴露情况的影响
卷第4期 Chin J Blood Purif,April,2021,Vol.20,No.4
ly as compared with that of the value (t=1.721, P=0.095); after switching to hemodialysis using PES membrane dialyzer for 3 months, serum level decreased significantly as compared with that of the value and the value at the third month of the treatment (t=-4.690, P<0.001; t=-6.378, P<0.001). In group B after hemodialysis using PES membrane dialyzer for 3 months, serum level decreased significantly as compared with that of the value (t=-3.604, P=0.001); after switching to hemodialysis using PS membrane dialyzer for 3 months, serum level increased significantly as compared with that before 3 months (t=4.412, P<0.001) and similar to that of the baseline level (t=-0.679, P=0.502). After the treatment for 3 months, serum BPA was statistically different between the two groups (t=3.367, P=0.002). Correlation analysis showed that serum BPA was positively correlated with dialysis age (r=0.391, P=0.001), body mass index (r=0.355, P=0.003), diabetes (r= 0.364, P=0.003), and hyperlipidemia (r=0.405, P=0.001), and negatively correlated with residual urine volume (r=-0.721, P<0.001). Conclusions MHD patients are at the high risk of BPA accumulation, potentially causing damage to multiple systems and affecting long- term prognosis. Long- term application of PS membrane dialyzer for hemodialysis increases the accumulation of BPA, while the application of PES membrane dialyzer for hemodialysis decreases this risk.

血液透析膜在血液相容性和毒素强化清除方面的研究进展

血液透析膜在血液相容性和毒素强化清除方面的研究进展

㊀第41卷㊀第7期2022年7月中国材料进展MATERIALS CHINAVol.41㊀No.7Jul.2022收稿日期:2020-11-22㊀㊀修回日期:2021-02-21基金项目:国家重点研发计划项目(2017YFC0404001);国家自然科学基金资助项目(21978217,21706189,21676201)第一作者:叶㊀卉,女,1984年生,副教授,硕士生导师通讯作者:张玉忠,男,1963年生,教授,博士生导师,Email:zhangyz2004cn@DOI :10.7502/j.issn.1674-3962.202011030血液透析膜在血液相容性和毒素强化清除方面的研究进展叶㊀卉,侯笑洋,黄莉兰,安㊀珂,李㊀泓,张玉忠(天津工业大学材料科学与工程学院省部共建分离膜与膜过程国家重点实验室,天津300387)摘㊀要:慢性肾脏疾病患者体内内源性㊁外源性毒素的积累会加重肾脏负担甚至导致尿毒症,这些致病毒素被称为尿毒症毒素㊂血液透析是一种常见的终末期肾病治疗手段,可以清除血液中游离的小分子尿毒症毒素,但对中分子毒素和蛋白质结合化合物毒素的清除能力有限㊂血液透析膜材料的血液不相容往往会对患者健康造成影响,严重的会造成患者的病变甚至死亡㊂因此,改善血液透析膜的血液相容性和尿毒症毒素的强化清除成为了该领域的研究热点㊂传统改性方法中,通过膜表面亲水改性和表面带负电可以改善其血液相容性,在扩散基础上引入对流或吸附机制可以强化尿毒症毒素的清除㊂除传统改性方法外,一些新型血液透析膜也被开发用于改善血液透析膜的血液相容性以及尿毒症毒素的强化清除,如蛋白质仿生膜㊁纳米通道定向传输膜㊁三维模板多层纤维膜㊁抗凝生物膜以及自抗凝膜㊂介绍了血液透析膜在血液相容性和毒素强化清除方面的研究进展,为血液透析膜改性工作提供参考㊂关键词:血液透析膜;血液相容性;尿毒症毒素;中分子毒素;蛋白质结合化合物毒素中图分类号:R318.08㊀㊀文献标识码:A㊀㊀文章编号:1674-3962(2022)07-0520-05引用格式:叶卉,侯笑洋,黄莉兰,等.血液透析膜在血液相容性和毒素强化清除方面的研究进展[J].中国材料进展,2022,41(7):520-524.YE H,HOU X Y,HUANG L L,et al .A State of Art of Hemodialysis Membranes in Hemocompatibility and Enhanced Removal of Toxins[J].Materials China,2022,41(7):520-524.A State of Art of Hemodialysis Membranes in Hemocompatibility and Enhanced Removal of ToxinsYE Hui,HOU Xiaoyang,HUANG Lilan,AN Ke,LI Hong,ZHANG Yuzhong(State Key Laboratory of Separation Membranes and Membrane Processes,School of Material Science andEngineering,Tiangong University,Tianjin 300387,China)Abstract :Accumulation of endogenous and exogenous toxins in patients with chronic kidney disease will increase the bur-den on the kidneys and even lead to uremia.These substances are called uremic toxins.Hemodialysis is a common treatment for end-stage renal disease.This treatment can remove free small molecule uremic toxins in the blood,but it is limited to re-move middle molecular toxins and protein-binding compound toxins.Moreover,the blood incompatibility of hemodialysis mem-brane materials often affects the health of patients,and even cause disease or even death.Therefore,improving the hemocom-patibility of hemodialysis membranes and strengthening their elimination performance have become hotspots in this field.In tra-ditional modification methods,the hemocompatibility of hemodialysis membranes can be improved by hydrophilic modification and negative charge on the membrane surface,and the removal of uremia toxin can be enhanced by adding convection or ad-sorption mechanism on the basis of diffusion.Moreover,several novel hemodialysis membranes have also been developed to im-prove the biocompatibility and enhance removal of uremic toxins,such as protein bionic membranes,nanochannel directional transport membranes,3D template multilayer fiber membranes,anticoagulant membranes and self-anticoagulation membranes.This article introduces the research progress of hemodialysis membranes in terms of hemocompatibility and enhanced removal of toxins,which provides references for the modifi-cation of hemodialysis membranes.Key words :hemodialysis membrane;hemocompatibili-ty;uremic toxins;middle molecular toxin;protein-binding compound toxin㊀第7期叶㊀卉等:血液透析膜在血液相容性和毒素强化清除方面的研究进展1㊀前㊀言慢性肾脏疾病(chronic kidney disease,CKD)患者随着肾功能的下降,体内内源性和外源性毒素无法正常排出而在血液中积累,这些积累的毒素会影响各个组织或器官的功能,从而导致尿毒症综合症[1,2]㊂血液透析(hemodialysis,HD)是一种体外血液净化技术,是以半透膜分隔血液和透析液,以膜两侧毒素物质浓度差作为驱动力,通过扩散作用使小分子毒素(如尿素㊁肌酐等)进入透析液中,从而实现血液中毒素清除和多余水分过滤,其原理示意图如图1所示㊂血液透析膜是血液透析器的核心组件,在商用血液透析器中,由于纤维素膜血液相容性较低,已经被聚合物材料所取代,如聚砜(polysul-fone,PSF)㊁聚醚砜(polyethersulfone,PES)㊁聚甲基丙烯酸甲酯(polymethyl methacrylate,PMMA)㊁乙烯乙烯醇共聚物(ethylene vinyl alcohol,EVOH)和聚丙烯腈(polyacrylo-nitrile,PAN)[3-5]㊂目前,血液透析膜材料使用的合成聚合物中有93%来自聚砜家族,其中71%为PSF㊁22%为PES [6]㊂图1㊀血液透析原理示意图Fig.1㊀Schematic diagram of hemodialysis principle目前,血液透析膜材料主要存在两大问题:①血液透析膜与血液接触时发生一系列反应从而引起氧化应激,导致血液不相容;②透析膜对中分子毒素(如β2-微球蛋白)和蛋白质结合化合物毒素(如对甲酚㊁马尿酸等)的清除能力有限㊂现有的综述文章主要对血液透析膜生物相容性改性方法进行介绍,并未对其毒素强化清除改性工作进行介绍㊂本文主要综述血液透析膜在改善血液相容性及中分子㊁蛋白质结合化合物毒素强化清除方面的研究进展,并介绍了一些新型血液透析膜,为血液透析膜的改性工作提供参考㊂2㊀改善血液相容性血液相容性是血液透析膜的重要评价指标之一㊂当血液与外源性材料接触时,蛋白质在材料表面的粘附㊁凝血因子的激活会引起一系列不良反应,从而引起凝血㊁炎症和血栓等[7]㊂因此,提升血液透析膜表面的亲水性㊁使膜表面带适量的负电荷是改善血液透析膜血液相容性的关键㊂目前,血液透析膜表面改性的方法主要有接枝㊁共混㊁自由基聚合等,改性物质主要有肝素㊁维生素E㊁氧化石墨烯和聚丙烯酰吗啉(PACMO)等㊂2.1㊀肝素改性肝素作为抗凝剂,可以在血小板因子Ⅲ协同作用下作用于凝血酶,抑制纤维蛋白原向纤维蛋白转化,起到抗凝血作用㊂肝素自身带负电荷,通过静电排斥原理也可以抑制带负电的血小板在材料表面粘附㊁聚集㊂Gao 等[8]利用聚多巴胺将肝素固定在聚乳酸(polylactic acid,PLA)膜上,制备了肝素固定化的PLA 血液透析平板膜㊂结果表明,肝素固定化的PLA 膜可以抑制血小板粘附,延长血浆复钙时间,降低溶血率㊂Santous 等[9]用聚乙烯亚胺作为连接剂,将肝素固定在聚醚酰亚胺(polyetherim-ide,PEI)表面,制备了肝素固定化的PEI 血液透析膜㊂肝素固定化的PEI 膜表面更亲水,带有更多的负电荷,可以减少蛋白质吸附和血小板粘附㊂此外,膜表面的肝素延迟了活化部分凝血活酶的时间,有较好的抗血栓特性㊂2.2㊀维生素E 改性维生素E 是广泛使用的抗氧化剂,临床实验表明维生素E 可以有效降低炎症反应[10]和氧化应激[11]㊂由于材料的疏水性会引起蛋白质的粘附,进一步导致凝血级联和补体激活,Teotia 等[12]将维生素E 聚乙二醇琥珀酸酯(一种水溶性的维生素E 衍生物)接枝在PSF 膜表面提高膜的亲水性㊂与纯PSF 膜相比,维生素E 改性的PSF膜表面结构呈网状多孔结构,孔隙率和亲水性均有所提高,可以延长凝血时间,降低补体激活㊂Verma 等[13]以纳米沸石作为填充物㊁维生素E 聚乙二醇琥珀酸酯作为添加剂制备了PES 维生素E 聚乙二醇琥珀酸酯-沸石中空纤维膜,由于维生素E 聚乙二醇琥珀酸酯的加入可以降低溶血率㊁减少血小板粘附和活化㊁延长凝血时间,从而降低血液透析过程中产生的副作用㊂2.3㊀氧化石墨烯改性氧化石墨烯表面富含丰富的羧基㊁羟基和环氧基团,可以为膜表面提供负电荷,提高膜的亲水性,增强血液透析膜的血液相容性㊂Fahmi 等[14]将氧化石墨烯与PES 共混,通过沉浸相转化法制备了氧化石墨烯/PES 混合基质膜,提高了PES 膜表面的亲水性㊂Ma 等[15]将多巴胺接枝在羧基化氧化石墨烯(GOCOOH)上,制备了多巴胺改性的羧基化氧化石墨烯(DA-g -GOCOOH)纳米片,然后将纳米片沉积在PLA 膜表面,得到PLA /(DA-g -GO-COOH)复合血液透析膜㊂DA-g -GOCOOH 纳米片带有大量亲水基团,如 COOH ㊁ OH㊁ NH 2,可以提高膜表面的亲水性㊂另外,羧基化氧化石墨烯上的 COOH 在溶125中国材料进展第41卷液中易发生电离,使得复合膜表面带有更多的负电荷,抑制了带负电的血小板在膜表面的吸附㊂膜表面亲水性和电负性的共同作用,提高了PLA/(DA-g-GOCOOH)膜的血液相容性㊂2.4㊀聚丙烯酰吗啉改性血液透析膜表面亲水性的提高可以降低蛋白质在膜表面的吸附,获得良好的抗血栓性能㊂An等[16]将亲水性的PACMO作为侧链接枝在聚偏氟乙烯(PVDF)主链上,制备了聚偏氟乙烯聚合物(PVDF-g-PACMO),然后将PVDF-g-PACMO与PVDF共混,制备了PVDF/ (PVDF-g-PACMO)中空纤维膜㊂利用偏析效应使亲水性的PVDF-g-PACMO聚集在中空纤维膜的表面,提高膜表面的亲水性,使蛋白质吸附减少,凝血时间延长,改善了血液相容性㊂3㊀尿毒症毒素强化清除欧洲尿毒症毒素工作组(EUTox)曾对尿毒症毒素进行研究[17],并将其分为3类:①游离水溶性小分子化合物,②中分子物质,③蛋白质结合化合物㊂血液透析膜可以清除游离的小分子化合物,对中分子物质和蛋白质结合化合物的清除有限,所以很长一段时间人们都在寻求一种新的机制来清除这些难以清除的化合物㊂通过构建超薄功能层降低传质阻力㊁调控膜表面孔径可使中分子物质透过,或在膜中引入吸附剂以强化蛋白质结合化合物毒素的清除,本节主要介绍对流㊁吸附机制在尿毒症毒素强化清除中起到的作用㊂3.1㊀中分子毒素强化清除通过构建超薄的功能层,结合孔隙弯曲度更低的纳米纤维层可以降低毒素传质阻力,提高中分子毒素的清除率㊂薄膜纳米纤维复合膜(thin-film nanofibrous compos-ite membrane,TFNC)是由超薄功能层和纳米纤维微滤支撑层组成的复合膜㊂Yu等[18]利用静电纺丝制备了具有PAN纳米纤维支撑层和化学交联聚乙烯醇(polyvinyl alco-hol,PVA)超薄分离层的薄膜纳米纤维复合膜(PVA/PAN TFNC)㊂超薄的PVA亲水层和开孔结构的PAN纳米纤维支撑层有更小的传质阻力,超薄的选择层使得PVA/PAN TFNC对水㊁小分子尿素和中分子毒素的透过率更高㊂实验表明,PVA/PAN TFNC可以清除82.6%的尿素(一种典型的小分子毒素)㊁45.8%的溶菌酶(一种典型的中分子模拟物),保留98.8%的牛血清白蛋白㊂Zhu等[19]在PAN纳米纤维膜表面涂覆了一层磺化聚乙烯醇/聚乙烯醇(s-PVA/PVA)的混合水凝胶隔层制备了一种s-PVA/ PVA TFNC㊂通过控制s-PVA/PVA混合比例可调节膜表面凝胶层的网格大小,使得更多的中分子毒素得到清除㊂在4h透析实验中,84.2%的尿素和60.9%的溶菌酶被清除,95.0%以上的牛血清白蛋白得到保留㊂无机纳米材料填充在高分子基质膜中可以提高膜的渗透性和选择性㊂Said等[20]将无机纳米粒子氧化铁(Fe2O3)掺入PSF中制备了中空纤维式的Fe2O3/PSF混合基质膜㊂由于Fe2O3的掺入使PSF膜表面的孔径增大,提高了PSF 膜对水的渗透性,纯水通量达到110.47L㊃m-2㊃h-1㊂膜表面孔径的提高使分子尺寸较大的中分子毒素可以通过透析膜,提高血液透析膜对中分子毒素的清除能力㊂实验结果表明,该膜对尿素的清除率为82%㊁对溶菌酶的清除率达到46.7%,牛血清白蛋白保留率为99.9%㊂3.2㊀蛋白质结合化合物毒素强化清除用于血液净化的吸附剂材料众多,利用纳米孔结构的吸附材料可以将蛋白质结合化合物毒素从血浆中吸附分离出来㊂因此,将吸附剂与透析膜的优势相结合,制备具有吸附功能的血液透析膜,可以提高其对蛋白质结合化合物毒素的清除[21],这种膜通常被称为混合基质膜(mixed matrix membranes,MMMs)㊂Tijink等[22]将活性炭吸附剂与PES共混制备了双层MMMs㊂在吸附剂/PES共混层利用 吸附+对流 的方式可以清除蛋白质结合化合物毒素,而无吸附剂层又可防止吸附剂颗粒泄露㊂与PES膜相比,加入活性炭吸附剂的血液透析膜对肌酸酐和马尿酸(2种蛋白质结合化合物毒素)有更高的清除率㊂随后,他们又将活性炭与PES共混制备了中空纤维MMMs,该膜在4h静态吸附条件下,从人血浆中吸附了57.0%的对甲氧基硫酸盐㊁82.0%的吲哚氧基硫酸盐和94.0%的马尿酸(3种蛋白质结合化合物毒素)[23]㊂4㊀新型血液透析膜除传统改性方法外,蛋白质仿生膜㊁纳米通道定向传输膜㊁三维模板多层纤维膜㊁抗凝生物大分子层层自组装膜和自抗凝膜等也被应用于开发新型血液透析膜㊂新型血液透析膜致力于通过构建独特的膜结构来改善血液透析膜的生物相容性并强化尿毒症毒素的清除㊂本节主要介绍这些新材料㊁新技术㊁新方法在血液透析膜中的应用㊂4.1㊀蛋白质仿生膜生物膜能够使生命系统正常工作,为细胞的生命活动创造稳定的内环境,蛋白质仿生膜的灵感就来源于自然界中的生物膜㊂Yang等[24]制备的蛋白质自支撑膜具有非常好的中分子毒素清除能力㊂这种蛋白质自组装薄膜是由α-螺旋结构的溶菌酶在还原剂作用下快速伸展㊁聚合形成β-层状堆叠低聚物,随后在水/空气界面上团聚,形成的自支撑蛋白质薄膜㊂该膜的厚度在30~250nm范围225㊀第7期叶㊀卉等:血液透析膜在血液相容性和毒素强化清除方面的研究进展内可控,平均孔径可根据蛋白质浓度在1.8~3.2nm范围内调控㊂溶菌酶颗粒间形成大小可控的纳米级通道,可以保留粒径大于3nm的分子和粒子,允许小分子的快速迁移和中分子毒素的清除㊂模拟透析实验表明,所制备的蛋白质膜可以清除(81.3ʃ2.3)%的肌酸酐,(50.3ʃ3.7)%的溶菌酶,牛血清白蛋白保留率为99.7%㊂4.2㊀纳米通道定向传输膜纳米通道的概念提供了一种调控物质转运的新策略,近年来引起了学者的广泛关注㊂这一概念的灵感来自于自然界中的水通道蛋白,纳米材料的发展使这一灵感能够应用于各个领域,包括过滤㊁能源利用和生物医学等㊂Xu等[25]将肝素固定在多层碳纳米管(Hep-g-pMWCNTs)上,将其填充在化学交联的PVA上,然后将混有Hep-g-pMWCNTs的PVA涂覆在PAN纤维上,制备了Hep-g-pMWCNTs/PVA/PAN TFNC㊂Hep-g-pMWCNTs与PVA在界面处形成的间隙为毒素的运输提供了定向纳米通道,缩短了传质路径的长度,开孔结构的PAN纤维层有更小的传质阻力,二者共同作用加快了小分子毒素和中分子毒素的传输㊂在4h模拟透析中,88.2%的尿素和58.6%的溶菌酶得到清除,98.4%的牛血清白蛋白得到保留㊂4.3㊀三维模板多层纤维膜对于肾病患者,家庭护理血液透析仪是必要的,而便携式设备需要高比表面积㊁高效率的血液透析膜㊂3D打印技术可以制作三维图形,通过3D打印技术制备的具有三维压纹的血液透析膜有更大的表面积,可用于便携式和可穿戴血液透析仪㊂Koh等[26]利用3D打印技术开发了具有菱形孔的三维立体结构的聚对苯二甲酸二乙酯(polyethylene terephathalate,PET)支撑模板,然后分别将聚酰胺(PA6)㊁聚酰胺和Y型沸石混合物㊁聚甲基丙烯酸甲酯-接枝-聚二甲基硅氧烷(PMMA-g-PDNA)纳米纤维丝缠绕在三维PET模板上制成印花结构的纳米纤维层,将这3种纳米纤维层复合在一起制备了具有3层结构的印花纳米纤维复合血液透析膜㊂底层PA6纳米纤维层增强了纳米纤维复合膜的机械性能和渗透性;中间层具有纳米孔结构的沸石的填充提高了纳米纤维复合膜对肌酸酐的吸附;海藻酸钠(sodium alginate,SA)与聚乙二醇(polyethylene glycol,PEG)改性的PMMA-g-PDMA纳米纤维层由于发生酯化反应,使膜表面呈现电负性,使其与带负电的血细胞㊁血小板产生静电互斥,减少血细胞㊁血小板在膜表面的粘附,改善了血液相容性㊂3D打印印花结构纳米纤维层最大的优势是具有凹凸的三维立体结构,使其具有更高的比表面积,约为平面膜的2.5倍㊂这种具有高比表面积㊁高效能的血液透析膜可适用于便携式和可穿戴血液透析仪㊂4.4㊀抗凝生物大分子层层自组装膜新型㊁低成本㊁高效的抗血栓形成生物大分子的合成及其在生物界面修饰中的应用已成为接触血液生物材料研究的热点㊂层层自组装是一种简便实现膜表面功能化的修饰方法㊂Deng等[27]利用原子转移自由基聚合法以环糊精为核心分别制备了星状超支化水溶性阳离子聚合物和和阴离子聚合物㊂通过静电作用将阴离子聚合物和阳离子聚合物交替沉积在聚乙烯亚胺(polyethylenimine, PEI)膜表面形成三维多孔状3层功能层,这种功能层是以星状超分子中心核延伸出来的线性壁连接而成,立体结构大大增加了生物活性基团或功能化基团的密度,使得环糊精改性的超分子基团可以更大地发挥抗凝血功能㊂与纯PEI膜相比,改性膜静态水接触角更低㊁亲水性更高,减少了蛋白质吸附,抑制血小板粘附,延长凝血时间,且星形超分子层沉积的三维多孔多层膜对内皮细胞的粘附和生长具有积极作用㊂4.5㊀自抗凝膜由于注射肝素代谢困难,长期使用会造成血小板减少等不良反应,人工合成的仿肝素化合物促进了自抗凝血液透析膜的发展㊂Nie等[28]利用苯乙烯磺酸钠和聚乙二醇甲基丙烯酸酯制备了仿肝素的功能聚合物,然后通过自由基聚合将这种仿肝素聚合物接枝在碳纳米管上,最后通过液-液相转化法制备了仿肝素的高分子刷接枝碳纳米管/PES复合膜㊂血液相容性评价实验表明,与纯PES膜相比,所制备的复合膜减少了蛋白吸附,延长了凝血时间,血小板粘附率更低㊂Liu等[29]还利用SA与丙烯酸(acrylic acid,AA)制备了水凝胶网络皮层用于修饰PSF血液透析膜表面㊂SA和AA的抗凝机理是通过二者交联生成一种具有丰富羧酸基团的聚合物(P(SA-AA)),羧酸基团与血液中的Ca2+发生螯合反应,从而抑制血小板粘附和蛋白激活,通过内在和外在的级联有效地抑制了凝血㊂与纯PSF膜相比,改性膜溶血率更低,凝血时间(活化部分凝血活酶时间APTT和凝血酶时间TT)长,降低了补体活化(C3a和C5a)㊂Liu等[30]采用自由基聚合的方法合成了一种两性的带长烷基疏水侧链的聚(甲基丙烯酸月桂酯-对苯乙烯磺酸钠-丙烯酸)的仿肝素聚合物,并通过疏水-疏水相互作用将这种两性仿肝素聚合物固定在PLA的表面㊂合成的两性聚合物代替肝素的作用,抑制血小板粘附,降低补体激活(C3a和C5a),延长凝血时间,降低溶血率㊂APTT和TT的延长(APTT>600s, TT>140s)表明其具有良好的自抗凝特性㊂5㊀结㊀语血液透析是终末期肾病的有效治疗手段,血液透析325中国材料进展第41卷膜是血液透析器的核心组件㊂高分子聚合物膜是目前广泛使用的血液透析膜材料,高分子血液透析膜材料的改性也成为了该领域的研究热点㊂传统改性方法中,通过在膜表面固定亲水性基团或带负电荷的基团可以提高膜表面亲水性,改善膜血液相容性;通过构建超薄功能层或调节孔径使传质阻力降低㊁引入吸附功能粒子可实现毒素的强化清除㊂针对新型透析膜,开发蛋白质自支撑膜为仿生材料设计提供了新思路,纳米通道定向传输更有利于毒素的强化清除,三维模板多层纤维膜的高比表面积则更适用于可穿戴式血液透析仪,人工合成生物大分子有望取代传统抗凝物在材料改性方面的应用㊂未来,无论传统高分子血液透析膜的改性还是新型血液透析膜的开发都将围绕血液相容性的改善和毒素的强化清除进行,以实现血液透析治疗过程的优化㊂参考文献㊀References[1]㊀VANHOLDER R,PLETINCK A,SCHEPERS E,et al.Toxins[J],2018,10(1):33.[2]㊀BIKBOV B,PURCELL C,LEVEY A,et al.The Lancet[J],2020,395(10225):709-733.[3]㊀王丹丹,杨宁,贾雪梦,等.膜科学与技术[J],2018,38(2):22-28.WANG D D,YANG N,JIA X M,et al.Membrane Science and Technology[J],2018,38(2):22-28.[4]㊀IRFAN M,IDRIS A.Materials Science and Engineering C[J],2015,56:574-592.[5]㊀MICHAELA K,GOMES A,ALBERTO A,et al.Journal of Artifi-cial Organs[J],2019,22(1):14-28.[6]㊀MOLLAHOSSEINI A,ABDELRASOUL A,SHOKER A.MaterialsChemistry and Physics[J],2020,248:122911.[7]㊀王志刚.血液净化学[M].北京:北京科学技术出版社,2016.WANG Z G.Blood Purification[M].Beijing:Beijing Science and Technology Press,2016.[8]㊀GAO A,LIU F,XUE L.Journal of Membrane Science[J],2014,452:390-399.[9]㊀SANTOUS A,HABERT A,FERRAZ H.Journal of Materials Sci-ence:Materials in Medicine[J],2017,28(9):131. [10]SEPE V,GREGORINI M,RAMPINO T,et al.BMC Nephrology[J],2019,20(1):412.[11]RIBERA L,CORREDOR Z,SILVA I,et al.Mutation Research-Genetic Toxicology and Environmental Mutagenesis[J],2017,815: 16-21.[12]TEOTIA R,VERMA S,KALITA D,et al.Journal of Materials Sci-ence[J],2017,52:12513-12523.[13]VERMA S,MODI A,SINGH A,et al.Journal of Biomedical Mate-rials Research Part B-Applied Biomaterials[J],2018,106(3): 1286-1298.[14]FAHMI M Z,WATHONIYYAH M,KHASANAH M,et al.RSCAdvances[J],2018,8(2):931-937.[15]MA L,HUANG L,ZHANG Y,et al.RSC Advances[J],2018,8(1):153-161.[16]AN Z,XU R,DAI F,et al.RSC Advances[J],2017,7(43):26593-26600.[17]VANHOLDER R,DE R,GLORIEUX G.Kidney International[J],2020,98(5):1354.[18]YU X,SHEN L,ZHU Y,et al.Journal of Membrane Science[J],2017,523:173-184.[19]ZHU Y,YU X,ZHANG T,et al.Applied Surface Science[J],2019,465:950-963.[20]SAID N,ABIDIN M,HASBULLAH H,et al.Journal of AppliedPolymer Science[J],2019,136(48):48234.[21]TIJINK M,KOOMAN J,WESTER M,et al.Blood Purification[J],2014,37(1):1-3.[22]TIJINK M,WESTER M,SUN J,et al.Acta Biomaterialia[J],2012,8(6):2279-2287.[23]TIJINK M,WESTER M,GLORIEUX G,et al.Biomaterials[J],2013,34(32):7819-7828.[24]YANG F,TAO F,LI C,et al.Nature Communications[J],2018,9:5443.[25]XU Y,ZHU Y,CHENG C,et al.Journal of Membrane Science[J],2019,582:151-163.[26]KOH E,LEE Y T.Separation and Purification Technology[J],2020,241:116657.[27]DENG J,LIU X,MA L,et al.ACS Applied Materials&Interfaces[J],2014,6(23):21603-21614.[28]NIE C,MA L,XIA Y,et al.Journal of Membrane Science[J],2015,475:455-468.[29]LIU Y,LI G,HAN Q,et al.Journal of Membrane Science[J],2020,604:118082.[30]LIU Y,HAN Q,LI T,et al.Journal of Membrane Science[J],2020,595:117593.(编辑㊀吴㊀锐)425。

关于高分子血液透析方向的文献

关于高分子血液透析方向的文献

关于高分子血液透析方向的文献摘要:1.高分子血液透析技术简介2.高分子血液透析材料的研究进展3.高分子血液透析的应用领域及前景4.我国在高分子血液透析领域的研究成果5.未来高分子血液透析技术的发展趋势与挑战正文:高分子血液透析技术作为一种非生物体内的人工肾,已经成为尿毒症患者维持生命的重要手段。

近年来,随着高分子科学的发展,高分子血液透析材料的研究取得了显著进展,为提高透析治疗效果和降低并发症提供了有力支持。

本文将围绕高分子血液透析技术的发展及其在我国的研究现状进行探讨。

一、高分子血液透析技术简介高分子血液透析技术是利用高分子膜材料对血液中的废物和多余水分进行筛选和分离,从而达到清除体内毒素、维持电解质平衡和改善肾功能的目的。

高分子血液透析器的核心部分是高分子膜,其结构和性能对透析效果具有重要影响。

二、高分子血液透析材料的研究进展随着科学技术的进步,高分子血液透析材料的研究取得了长足的发展。

目前,研究和应用较多的高分子透析材料主要有聚醚砜(PES)、聚丙烯腈(PAN)和聚乙烯醇(PEG)等。

这些材料具有良好的生物相容性、高透析效率和低膜阻等优点。

此外,研究者还在开发新型复合材料,如聚合物- 无机物纳米复合材料,以期进一步提高透析器的性能。

三、高分子血液透析的应用领域及前景高分子血液透析技术在临床上的应用范围越来越广泛,不仅可用于治疗尿毒症,还可应用于急性肾衰竭、顽固性水肿等症状的治疗。

随着高分子血液透析材料的不断改进和优化,透析治疗的效果和患者的生活质量得到了显著提高。

未来,高分子血液透析技术在肾脏病治疗领域仍具有巨大的发展潜力和广阔的市场前景。

四、我国在高分子血液透析领域的研究成果我国在高分子血液透析领域的研究取得了举世瞩目的成果。

近年来,我国研究者成功研发了一系列具有自主知识产权的高分子透析器,如聚醚砜高分子血液透析器等,其性能达到国际先进水平。

同时,国产高分子血液透析器在价格上具有明显优势,为我国尿毒症患者提供了更多的治疗选择。

医用透析器及其材料的研究与开发

医用透析器及其材料的研究与开发

医用透析器是一种可以过滤血液、去除毒素和废物,同时保留有益物质的医疗设备。

它主要应用于肾脏衰竭等疾病的治疗中,帮助患者清除排泄不出去的体内废物和水分,维持体内电解质和酸碱平衡,改善生命质量和延长生命。

目前,医用透析器的研究和开发主要集中在以下三个方面:
1. 材料开发:透析器需要承受高压、高温和化学药品等多种因素的作用,因此需要具有耐腐蚀性、耐高温性、抗压强度高等优良性能的材料。

目前常用的透析器材料包括聚丙烯、聚酰胺、聚氟乙烯等。

近年来,也有研究人员开发了新型材料,如生物相容性更好的聚合物、碳纳米管复合材料等,在提高透析器过滤效率的同时减少对人体的损伤。

2. 结构设计:透析器的结构设计需要考虑透析膜的选择、透析室的大小和形状、流体动力学等多个因素。

目前,一些研究人员通过仿生学设计,将透析器结构优化,使其更加符合人体生理结构,从而提高过滤效率和治疗效果。

3. 自动化控制:传统的手动透析需要医生或护士不断地监测和调整治疗参数,工作强度大、误差大。

因此,自动化控制技术逐渐应用于透析器的开发中。

自动化控制技术可以实现治疗参数的自动调整、实时数据监测和反馈等功能,从而提高治疗的安全性和可靠性。

总的来说,随着科技的不断进步和医学技术的不断发展,医用透析器的研究和开发将会越来越重要。

未来,我们可以预见到透析器材料和结构将会更加先进、治疗效果将会更加精准、自动化控制技术将会更加普及,从而为肾脏衰竭等疾病的患者提供更加人性化、高效的治疗手段。

生物基聚合物血液透析膜研究方面取得进展

生物基聚合物血液透析膜研究方面取得进展

在 前期 工作 中, 为 了满 足现 代 水 下吸声材料对 宽频吸声频 谱可 以被任 意剪裁 的需要 , 课 题组 通过 将二 维 局 域 共振 单元 与木 堆结 构相 结 合 , 提 出
2 0 1 2 年, 苏 州久美成功 为A. P. 穆勒一 马士基 集团的 l Y Y T E U 集 装箱船 “ 阿诺 德” 号和“ 索诺 ” 号替 换 了机舱 管道 ; 为 中海 油 田服务 股 份有 限公 司 “ 南海 二号 ” 海 洋石油 平 台替 换 了管道 ; 为渤海 装备 辽河 重工有 限公 司建造 的C P 3 0 0 自 升 式
海洋 平台提供 配套 。 苏州久 美总 经理 陈和 龙介绍 , 目前他们正 与 中国纳米材料研
了一 种被称作局 域共振声子木 堆的水
下 吸声 材料 , 这 种材 料 可 以拓 宽和 控 制吸声频谱 。 相应的研究成果发表于。
究 院共 同研 究 纳米材 料在 玻璃钢 管领 域 的应用 。 他 坚信 在不 久的将 来会 有一 种
应 用 的膜 材料 非常少 , 只有醋 酸纤维 素膜和 聚砜膜 , 而血 液透析膜 的制备 技术主 要被 国外企业 所垄 断 , 如德 国 的费 森尤斯 、 瑞典 的金宝公 司、 美 国的百特 这 3 家公 司 占据世 界上 9 1 %以上 的市 场 。 与现有 的聚砜 基血 液透析 膜材料相 比, 聚乳酸 具
中空纤维膜 , 并制备成血 液透析 膜组件 。 该 生物基 聚合物 中空纤维透 析膜 的制备
根据 实验 结 果 , 新研 制 的太 阳能 电池最高光 电转化 效率超 过 9 %, 但是 白天发 电, 晚上怎么办 呢?“ 我们就在 想 能不 能把 发 电和储 能集 成起 来 , 想 用 的时候用它 , 不想用就放 到那里 , 把 剩 下的储 存 下来 。 ” 于是, 利用 同一 纤

慢性肾衰竭患者血液透析护理研究进展

慢性肾衰竭患者血液透析护理研究进展

慢性肾衰竭患者血液透析护理研究进展慢性肾衰竭(chronic kidney disease, CKD)是一种逐渐进展的肾脏疾病,常见于老年人和有慢性疾病史的人。

血液透析(hemodialysis, HD)是CKD患者的主要治疗方式之一,它通过将患者的血液引入透析器中,除去体内的废物和过多的液体,然后将清洗过的血液输回体内,以维持体内平衡。

随着慢性肾衰竭患者人数的增加,血液透析的护理也变得越来越重要。

本文将从以下几个方面对慢性肾衰竭患者血液透析护理的研究进展进行综述。

1. 透析器材料的选择与改进透析器是血液透析的核心设备,其材料的选择和改进对透析效果和患者治疗效果具有重要影响。

近年来,各种新型透析材料如低蛋白吸附透析器、高效过滤透析器和新型纤维等不断涌现,它们具有降低透析膜污染、增加透析效率和减轻不良反应等优点。

2. 血流量的合理控制透析过程中,血流量的合理控制对患者的治疗效果和生命质量具有至关重要的作用。

过低的血流量会导致废物清除不彻底,过高的血流量则容易造成血管和心脏的损伤。

因此,合理的血流量控制是血液透析护理中不可忽视的重要环节。

3. 按时更换透析器和血管通路透析器的使用寿命有限,一般需要每周更换一次,以保证透析效果的稳定和患者的安全。

同时,由于血液透析需要通过人体血管通路进行,血管通路的维护和检查也十分重要。

血管通路的不良情况如堵塞、感染等会对血液透析的效果和患者的生命安全带来严重影响。

4. 营养支持的管理慢性肾衰竭常伴随着营养不良,血液透析对营养支持的管理也十分重要。

患者应该按时进食,并注意摄入足够的蛋白质、脂肪和维生素等营养物质,否则会引起肌肉萎缩、免疫力下降等不良后果。

在血液透析过程中,还应注重饮食卫生,避免食品中毒或传染疾病。

总之,慢性肾衰竭患者的血液透析护理涉及很多细节和难点,需要由专业的医护人员进行管理和操作。

未来,随着科技的不断发展和进步,相信血液透析护理将会越来越成熟和规范,为患者带来更好的治疗效果和生活质量。

血液净化技术新进展与发展设想

血液净化技术新进展与发展设想

血液净化技术新进展与发展设想一、引言血液净化技术是现代医学中一项重要的治疗手段,它涉及到肾脏病、中毒、重症肝炎等多种疾病的救治。

近年来,随着科技的不断进步,血液净化技术也在不断发展和完善,为临床治疗提供了更多可能。

本文将就血液净化技术的新进展、未来发展方向等方面进行探讨。

二、技术进步1. 高效能透析器的研发:目前,高效能透析器已成为临床治疗的主流选择。

通过改进透析器的膜材料、提高膜通透性和增加表面积,可以更好地清除体内的毒素和多余水分,提高患者的生存质量。

2. 血液滤过技术的推广:血液滤过技术具有更接近生理状态的优点,能够更好地维持机体内环境的稳定。

目前,血液滤过技术已经在危重患者的救治中得到广泛应用,成为重症医学领域的重要治疗手段。

3. 新型吸附材料的研发:新型吸附材料能够选择性清除血液中的有害物质,具有较高的吸附率和较短的吸附时间,为血液净化治疗提供了更多可能性。

三、临床应用拓展1. 免疫吸附疗法的应用:免疫吸附疗法是近年来发展起来的一种新型血液净化技术,通过将体内致病因子吸附在体外循环回路中,从而达到清除体内致病因子的目的。

目前,免疫吸附疗法在自身免疫性疾病、器官移植等领域已得到广泛应用。

2. 体外膜氧合技术的应用:体外膜氧合技术是一种生命支持技术,可以为重症患者提供心肺功能支持。

近年来,随着体外膜氧合技术的不断发展,其应用范围已从最初的呼吸衰竭患者扩大到心肌梗死、重症肺炎等患者。

四、未来发展方向1. 个体化血液净化治疗:随着基因组学、蛋白质组学等生物技术的发展,个体化血液净化治疗将成为未来的发展方向。

通过对患者基因、蛋白质等方面的检测和分析,制定出最合适的治疗方案,实现个体化的精准治疗。

2. 远程智能监测:随着物联网和人工智能技术的发展,远程智能监测将成为可能。

通过智能监测设备对患者进行实时监测,并将数据传输至远程医疗中心进行分析和处理,实现远程诊疗和护理。

这将为患者提供更加便捷和高效的治疗服务。

血液透析膜材料的研究进展

血液透析膜材料的研究进展

Ke r s e d ay i ;m e b a a e il i c mpa i i t y wo d :h mo il ss m r nem t ra ;b o o tbl y;h g flx m e r n i i h— u mb a e;lw — fu e b a o l x m m r ne
( a j u iia n e t u sa e s i l Tini 0 12 hn ) Tini M ncp l fci s e ssHo pt , a j 3 0 9 ,C ia n I o Di a n
Ab t a t s r c :Re i w s t e r s a c he c a s fc t n o e o i l ss m e b a a e i 1 omm o e b a nd is v e h e e r h on t l s ii a i f h m d a y i o m r ne m t r a .c n m m r ne a t b o o p t b lt i c m a i i y,c e r n e a b o p i n o o u e n u ma i e h a e i l n t n l e c n h m o i l s s i l a a c nd a s r to f s l t ,a d s m r z s t e m t ra d is i f u n e o e a da y i.
对血液透析的影响。
[ 关键词 】 血液透析 ; 透析膜 ; 生物相容性 ; 高通量膜 ; 低通量膜 [ 中图分类号 】 3 8 0 ; 4 9 5 R 1 .8 R 5 . [ 文献标 志码 】 A [ 章编号 】0 7—7 1 (0 7 0 文 10 5 0 2 0 )8—04 0 9—0 3

透析膜的生物相容性

透析膜的生物相容性
透析膜的生物相容性
一:什么是生物相容性? 二:膜的生物相容性会引起什么问题? 三:膜材料的分类及进展 四:什么是好的透析膜?
一 什么是生物相容性?
生物相容性(biocompatibility):是指材料与生物 体之间相互作用后产生的各种生物、物理、化学等 反应的一种概念。一般地讲,就是材料与人体相容 程度,和要表现为二个方面: 1 是指生物材料植入体内后机体对植入物发生的反 应 ,即实际应用中引起的宿主反应。 2 即宿主对材料的作用,包括生物环境对材料的腐蚀、 降解、磨损和性质退化,甚至破坏 。
透析膜的生物相容性(6)
合成膜具有吸附功能,大分子物质如白介素
I(IL-1)、肿瘤坏死因子(TNF-a)、多肽、白介素 6(IL-6)和β2微球蛋白(β2 -MP)的清除主要与吸附作
用相关。合成膜的吸附作用不完全相同,聚 甲基丙烯酸甲酯膜和AN69膜的吸附能力最强, 聚酰胺膜和聚砜膜次之。
二:膜的生物相容性引起什么问题?
透析膜的生物相容性(5)

对透析液中污染物的通透性透析液中的细菌可产生脂多糖、 肽聚糖和DNA等炎性产物,其中的中、小分子部分可穿越透 析膜进入血液,导致白细胞活化。当存在返超时,出现炎症 反应的概率更高,即在透析器的静脉端(透析液入口),为了 补偿净超滤导致的血液侧压力下降,透析液以对流方式进入 血液。令人关注的是,细菌产物更易穿透小孔径的纤维素膜, 大孔径的合成膜具有吸附作用,细菌产物反而不易穿透。聚 砜膜和聚酰胺膜还可制成滤菌器,用于滤除污染透析液中诱 导细胞因子产生的物质。使用超纯透析液可以避免透析液污 染,而使用合成膜透析器能提供额外的保护。

生物安全性原则 生物安全性原则,即消除生物材料对人体器官的 破坏性,比如细胞毒性和致癌性。 生物学评价:生物材料对于宿主是异物.在体 内必定会产生某种应答或出现排异现象。生物材料 如果要成功,至少要使发生的反应被宿主接受,不 产生有害作用。因此要对生物材料进行生物安全性 评价,即生物学评价。

聚砜类血液透析膜材料和结构研究进展

聚砜类血液透析膜材料和结构研究进展

聚砜类血液透析膜材料和结构研究进展徐天成;夏列波;牟倡骏【摘要】综述国内外聚砜类血液透析膜的研究现状及发展方向.介绍制膜材料、制膜工艺条件、成膜机理;阐述聚砜类血液透析膜制备的基本方法.对比不同厂家聚砜类血液透析膜在组成成分、几何尺寸、膜孔径大小和磷酸盐清除性能等方面的差异,并分析这些差异对临床应用的影响,展望聚砜类血液透析膜制备技术和应用领域的发展趋势.%In this article,a review on the current research and development of polysulfone hemodialysis membranes was demonstrated,and the membrane preparation method,materials,fabricating parameters and formation mechanism etc.were introduced,and the difference of membrane composition,geometric shapes,pore size and phosphate clearance were discussed.Furthermore,the effects of these difference to the clinical applications were evaluated.Finally,the preparation technology and applications of polysulfone hemodialysis membranes were prospected.【期刊名称】《膜科学与技术》【年(卷),期】2018(038)001【总页数】7页(P129-135)【关键词】聚砜;血液透析;超滤;研究进展【作者】徐天成;夏列波;牟倡骏【作者单位】威海威高血液净化制品有限公司研发部,威海264210;威海威高血液净化制品有限公司研发部,威海264210;威海威高血液净化制品有限公司研发部,威海264210【正文语种】中文【中图分类】TQ028.3我国每年有近400万人患急性肾病,且人数还在逐年攀升.危重症急性肾损伤发病后的死亡率高达60.3%.目前肾脏疾病患者中,约两成患者是急性肾损伤所致,在所有急性肾损伤患者中又有相当一部分患者因救治不及时而导致肾功能衰竭(俗称“尿毒症”),需要终身接受血液透析治疗.目前,按照全国各大医院登记在册的血液透析治疗患者人数50万人进行估算,每人每年平均透析150次左右,血液透析治疗每年的市场规模将达数百亿元.随着国家大病医保政策的普及,血液透析技术也迅速发展,透析患者已经不能满足于仅清除小分子毒素的低通量血液透析,对显著提升中大分子毒素清除能力的高通量血液透析需求日益迫切.然而,由于患者个体差异和国内血透中心硬件配置的现状,对高通量血液透析膜的内表面孔径范围、亲疏水结构、荷电属性、内毒素拦截能力、中大分子毒素清除能力及超滤率等方面提出了更高的多样化需求.因此国内外各大厂商陆续研发了品种繁多的血液透析膜种类.1 聚砜类血液透析膜的发展血液透析膜自上世纪初问世以来,制膜材料的发展经历了由铜氨纤维素到再生纤维素,再到醋酸纤维素,以及生物相容性较好且通透性较高的合成膜,如聚砜、聚醚砜、聚甲基丙烯酸甲酯、聚丙烯腈 - 丙烯磺酸盐共聚物、聚乳酸、聚乙烯 - 乙烯醇共聚物等[1].其中,传统纤维素透析膜由于含有大量羟基官能团易激活补体[2],导致一系列生理反应及临床病症的问题,市场迫切需要血液相容性更佳的膜材料.1983年,Stericher和Schneider两位德国科学家首次将聚砜材料应用于血液透析膜制备;1991年日本日机装株式会社将聚醚砜与多芳基聚合物共混制备血液透析膜;1999年,日本尼普洛使用聚醚砜与PVP共混制备血液透析膜.从膜性能来看,聚砜类材料制备的血液透析膜具有中分子毒素清除率高、血液相容性好、机械强度和化学稳定性高等优点,是目前合成高分子材料制成的透析器中销量最大的品种[3],国内外越来越多的厂家投入到相关膜材料和膜结构的研发.2 聚砜类血液透析膜的材料特点聚砜类材料普遍具有疏水性,单独作为制膜材料使用存在超滤率低、残凝血严重、易吸附蛋白、难清洗复用等缺点,因此,往往需要通过改性的方法进行改善.常用的改性方法包括本体改性、表面改性和共混改性.例如,通过化学合成的方法将功能片段引入聚砜高分子链[4],将具有特定功能的新型高分子材料用于制膜(本体改性).或者将维生素E、聚乙烯吡咯烷酮(PVP)等改性材料[5]溶解在纺丝芯液中,随着水洗和烘干过程沉积在膜内表面(表面改性),并取得了显著效果[6-7].此外,还可以将丙烯和甲磺酸钠聚合物(AN69)、PVP等亲水改性材料与聚砜先后加入有机溶剂中制成纺丝液直接进行纺丝(共混改性)[8].从改性方法的复杂程度和大规模工业化的经济效益角度来看,共混改性是研究最多和工业化应用最广泛的改性方法.例如,Ouradi[9]将聚砜与AN69共混制备平板膜,结果表明膜表面亲水性和电负性随着AN69含量的增加而增强.膜通量提高的同时对聚乙二醇的截留率也有明显上升.Heilmann[10]将高分子量的PVP与聚砜共混制膜,相对分子质量较小的PVP往往被洗脱,而相对高分子质量的PVP则部分保留在膜内.作为亲水改性材料的PVP与聚砜类材料相容性良好,被越来越多厂商使用.但随着膜中加入PVP的量过大,洗脱后明显残留的PVP会增大膜对血液中补体的激活,且激活程度与PVP的含量正相关,从而影响膜材料固有的生物相容性.此外,灭菌方式也对PVP溶出产生重要影响.蒸汽灭菌可以较好地维持PVP高分子链稳定性,而γ射线灭菌,不同灭菌剂量下PVP有发生降解和交联的两种趋势,从而增加PVP溶出或者减少PVP溶出[11].Hayama[8]通过XPS表征了聚砜膜内表面PVP含量,结果表明,膜表面生物相容性不仅取决于膜表面PVP含量,也取决于膜表面形态结构.采用PVP含量较少但表面形态结构更佳的膜与PVP含量较多但表面形态结构稍差的膜可以获得相近的生物相容性.Yang[12]研究了不同分子量PVP对聚醚砜膜孔结构和性能的影响,并使用次氯酸钠进行后处理进一步增大膜孔径、孔隙率和表面电负性.此外,在膜制备过程中,随着非溶剂(水)温度的增加,膜孔径也会相应增大[13].Barzin[14]通过原子力显微镜(AFM)研究了不同PVP含量和热处理温度下膜内表面的形貌,结果表明,较低的PVP含量和较高的热处理温度可以获得较高的超滤性能和较平滑的内表面.在成膜过程中,膜内表面与芯液接触发生剧烈的溶剂 - 非溶剂双扩散作用而形成致密皮层,膜内PVP向内表面移动,相对分子质量较大的PVP组分被“锁钉”其中,相对分子质量较小的PVP则被洗脱;膜外表面先与湿态空气接触发生温和的溶剂 - 非溶剂双扩散作用而形成延伸至支撑层的疏松贯穿孔三维网络结构,更多的PVP在成膜外部条件作用下被洗脱.表1 国内外部分企业聚砜血液透析膜PVP含量和内表面平均孔径Table 1 Inner surface pore size and membrane PVP(polyvinyl pyrrolidone) concentration of some hemodialysis membrane manufacturing companies at home and abroad膜生产厂家及型号内表面PVP质量分数/%整体PVP质量分数/%内表面平均孔径/nm中国威高F1526.85.023.6中国威高HF1523.94.464.6德国费森F7HPS19.1[8]3.556.6日本旭化成APS-150E30.3[8]5.564.5日本东丽PS-1.6UW23.0[8]4.227.93 聚砜类血液透析膜的结构特点商品聚砜类血液透析膜内径通常为185~220 μm,壁厚为35~45 μm.内径和壁厚继续增大,则会显著降低装填密度,但随着膜厚度增加,内毒素拦截能力有所增加[15].内径进一步降低,则会显著增加血流阻力和残凝血发生的风险,壁厚进一步降低则会增加破膜风险和透析过程中内毒素进入血液侧的风险.从表1分析可知,膜内PVP主要在内表面富集以强化膜表面亲水性能,而膜内其他部位PVP含量较低则可以凸显聚砜类材料的疏水性.表2列举了膜面积相近的各型透析器膜结构及对应磷酸盐清除率(来自产品说明书).可见,低通量透析器磷酸盐清除率明显低于高通量透析器.高通量透析膜相比低通量透析膜除了更加卓越的小分子毒素清除能力,还具有更高的超滤率及显著的中分子毒素(例如β2 - 微球蛋白)清除能力.膜丝宏观波浪结构可以强化小分子毒素清除效果,而相比传统大波浪结构,振幅更小、周期更短的微波浪结构使小分子毒素清除效果进一步强化[16].膜内表面致密层厚度仅1 μm左右.图1分别展示了威高F15(低通量)和HF15(高通量)膜内表面和外表面膜孔结构;图2分别展示了费森尤斯FX8(低通量)和FX80(高通量)膜内表面和外表面膜孔结构.两者内表面孔径范围只有几纳米到十几纳米,是物质跨膜运动的主要阻力来源,也对不同分子量物质起到关键的筛分作用.高通量膜内表面孔径明显更大,孔隙率更高.表2 国内外部分企业血液透析膜结构及磷酸盐清除率Table 2 Structure amd phosphate removal of hemodialysis membrane manufacturing company at home and abroad生产厂家及型号膜材料类型膜内径/壁厚/μm膜面积/m2膜丝结构磷酸盐清除率*/(mL·min-1)中国威高F15PSU(聚砜)+PVP低通量200/401.5微波浪159中国威高HF15PSU+PVP高通量200/401.5微波浪178中国贝恩B-16PPES+PVP低通量200/351.6微波浪99中国贝恩B-16HPES+PVP高通量200/351.6微波浪155德国费森FX8PSU+PVP低通量185/351.4微波浪160德国费森FX60PSU+PVP高通量185/351.4微波浪177德国贝朗HI15PSU+PVP高通量195/351.5微波浪191日本东丽TS-1.6ULPSU+PVP高通量200/401.6纤维编织193尼普洛ELISIO-15HPES+PVP高通量200/401.5微波浪184注:*按照相关标准[28]在200 mL/min血液侧流速和500 mL/min透析液侧流速下进行评价.图1 低通量膜(F15)和高通量膜(HF15)表面形貌Fig.1 Surface morphology of low flux and high flux membrane高通量血液透析膜具有中大分子毒素清除能力的同时,也面临相比低通量透析膜更严重的内表面蛋白质吸附,从而造成膜通透性下降和毒素清除能力衰减[17].高通量血液透析膜[18]显著提升了以β2 - 微球蛋白为代表的中大分子毒素清除率,但分子量更大的蛋白质毒素清除明显不足,例如,α1 - 微球蛋白等.为了应对不同透析患者的差异化需求,切割分子量更大的血液透析膜被研发出来,旨在提升大分子量蛋白质毒素的清除[19].然而,由于膜孔径的增大,往往使更多的白蛋白等大分子有益物质被同时清除.如何将纳米技术应用于血液透析膜制备,提高膜孔均一性和表面孔隙率,是未来血液透析膜的重要发展方向之一[20].图2 低通量膜(FX8)和高通量膜(FX80)表面形貌Fig.2 Surface morphology of low flux and high flux membrane4 聚砜类血液透析膜的制备方法目前实验室研究及工业应用的聚砜类血液透析膜主要采用干 - 湿相转化法制备.该方法主要经历非溶剂蒸汽诱导的膜外表面附近相转化和非溶剂液体诱导的膜内表面附近相转化.由于膜外表面气液界面和膜内表面液液界面溶剂与非溶剂的双扩散速率相差悬殊,成膜动力学迥异,导致最终形成内表面致密皮层结构和外表面大孔疏松层结构.如图3所示,绝大多数聚砜类血液透析膜的制备经历了以下主要工艺流程为:纺丝溶液配制→真空脱泡→铸膜液过滤→计量泵调速→喷丝板挤出→凝固浴成膜→水洗脱除小分子物质→烘干脱水→卷绕收集→切割、包裹丝束.在制膜过程中,聚合物浓度、添加剂种类及含量、纺丝速率、凝固体系组成等诸多因素共同作用,影响膜结构的形成,进而影响膜性能.下面分别对这些因素加以分析.图3 血液透析膜纺丝工艺过程示意图Fig.3 Diagram of hemodialysis membrane spinning process4.1 聚合物浓度聚砜类材料由于分子量较大,在溶液中的浓度直接影响铸膜液的黏度和相转化过程中皮层和支撑层的形成.在其他条件基本相同时,降低纺丝溶液中聚合物(聚醚砜)浓度,制备的膜超滤性能明显增加[21].4.2 添加剂Barzin等[18]采用PVP为添加剂,考察了不同添加量时的膜性能,结果表明,将PVP含量(质量分数)从5%降至2.8%时可以获得最佳的毒素清除性能.添加剂的引入,成膜体系由三元变为四元,将使研究变得十分复杂,可以通过将聚合物与添加剂并入一元或者固定聚合物与添加剂的配比[22]简化处理.Sadrzadeh等[22]比较了在PES/NMP体系中不同分子量的PVP和PEG的成膜热力学和动力学.由图4可知,PEG和PVP由分子结构和分子量不同造成其与聚合物PES、溶剂NMP之间的溶解度参数差异大小区别(表3),是使体系不稳定性增加、双节线发生迁移的重要原因.图4 不同相对分子质量PVP或PEG(聚乙二醇)对制膜液体系[PES(聚醚砜)/NMP(N - 甲基吡咯烷酮)/水]双节线的影响[22]Fig.4 Experimental bimodal curve data for water/NMP(N-methyl pyrrolidone)/PES(polyether sulphone)/additive system表3 制膜液体系组成及热力学性质[22]Table 3 Preparation variables and their thermodynamic properties[22]PES质量分数/%添加剂质量分数/%种类相对分子质量/103体系黏度*/(Pa·s)双节线迁移率/%溶解度参数差异/MPa1/2NMP/添加剂添加剂/PES150--0.50--155PEG0.40.6310.92.11.21515PEG0.40.9749.72.11.2155PEG100.9416.95.04. 1155PEG351.7248.45.44.5155PVP100.9213.84.43.5155PVP13007.9825.74.73 .81510PVP130012.7538.34.23.8注:*温度T=298 K;剪切速率50 s-1.4.3 纺丝速率Qin等[23]通过研究纺丝液在喷丝板出口附近的剪切速率,考察了不同纺丝速率下膜微观结构和机械性能.结果表明,随着纺丝速率的增加,膜通量下降,截留率升高,机械强度也明显增大.这是由于剪切速率的作用使得膜孔在形成过程中受到轴向力的作用产生的收窄效应和高分子链的取向作用.纺丝速率是指卷绕毂收集初生膜丝的线速度,通过纺丝速率及喷丝板外形尺寸,可以计算出单位时间内从喷丝板挤出铸膜液的量及芯液流量.由于制膜体系的差异,具体工艺参数也不尽相同.为了获得内径和壁厚相同的血液透析膜,在改变纺丝速率的同时,纺丝液、芯液供给量、空气间隙、凝胶时间、水洗强度等工艺参数也要同步改变.4.4 凝固浴体系组成凝固浴体系可以是单一物质,也可以是多种物质的混合[24].通过调控凝固浴体系组成,改变体系的相互作用参数,影响混合凝固浴体系对纺丝溶液中聚合物及溶剂的相互作用强度,从而调控成膜速率和微孔结构.在纺丝过程中,凝固浴体系分为内凝固浴体系(芯液)和外凝固浴体系(空气间隙和凝固浴槽).Roesink等[25-26]通过向芯液中加入一定比例的溶剂,从而调控膜内表面孔结构,例如增加膜内表面平均孔径和孔隙率.然而,芯液或外凝固浴中的溶剂含量并非越多越好,随着溶剂含量的增加,膜孔径增大的同时,孔径分布更宽,膜对特定分子量区间物质的筛分作用下降,且芯液或外凝固浴中溶剂添加量通常存在一个临界值[27],而这个临界值被认为是能够稳定纺制中空纤维膜的最大溶剂组成.高于该最大组成,纺丝溶液将难以成膜.4.5 聚砜类血液透析膜制备的特点和难点1) 膜表面孔径调控:聚砜类材料制备血液透析膜时需要通过纺丝液配方、纺丝工艺等多方面调控.例如,纺丝液配方调控可以在优化后的基础配方上将相对分子质量大的亲水添加剂和相对分子质量小的亲水添加剂配合使用,从配方上调控膜亲疏水性和孔隙率;纺丝工艺调控可以在优化后的基础工艺上将芯液非溶剂强度(调节芯液组成)与纺丝速率联动调节,从工艺上调控膜孔径大小和均一性.2) 膜机械强度:从透析耗材高效化和集约化的角度考虑,更薄的壁厚有利于降低耗材成本和提高患者治疗效果,然而,过薄的壁厚会增加使用过程中破膜的风险,因此,在膜制备过程中需要兼顾考虑.3) 膜内亲疏水结构设计:根据聚砜类血液透析膜的使用特点,内表面一定程度的亲水化处理和诱导交联是增加膜表面生物相容性和降低添加剂溶出进入患者体内风险的主要措施之一,而通过一定的外部条件降低膜支撑层亲水添加剂含量,体现疏水特性则有利于拦截来自透析液侧的内毒素等有害物质.5 聚砜类血液透析膜的表征方法血液透析膜是通过透析器来体现其性能的.因此,血液透析膜的表征可以通过组装而成的透析器,按照行业标准[28]进行表征.主要评价指标包括牛血浆超滤率、小分子(尿素、肌酐、磷酸盐、VB12)清除率、中大分子蛋白质(β2 - 微球蛋白、肌红蛋白、白蛋白等)筛选系数等.6 展望聚砜类血液透析膜以良好的热稳定性、化学稳定性和机械强度,自20世纪80年代问世以来已经使用了30多年,目前市场占有率超过60%.未来聚砜类血液透析膜的发展可以从以下3个方面推进:(1)膜内表面孔结构设计.为了提高膜对溶质的清除效率,需要设计更薄的内表面功能分离层和更高的内表面孔隙率,同时限制能透过白蛋白等对人体有益的大分子物质膜孔的生成.(2)提高膜机械强度.为了提高透析器清除效率并降低耗材成本,降低膜壁厚逐渐成为未来的发展趋势,因此需要研发分子量更高的聚砜类制膜原材料并用于血液透析膜的制备,以满足使用过程中对机械强度的要求,避免破膜现象的发生.(3)膜内亲疏水结构设计.高通量血液透析和血液透析滤过未来将逐渐取代低通量血液透析成为国内血液透析的主流治疗模式,膜内表面亲水性不佳则容易在使用过程中产生残凝血、跨膜压异常升高等问题,而显著的内滤过和补液的排出带来膜两侧更强的液体交换量,不仅考验膜表面抗污染能力,也对膜拦截内毒素等热原物质的能力提出了更高要求.因此需要进一步优化膜功能分离层和支撑层的结构,以保证使用的安全性和有效性.参考文献:[1] Mineshima M. The past, present and future of the dialyzer[J]. Contrib Nephrol, 2015, 185:8-14.[2] 卞书森, 张福港, 李晓东. 血液透析膜的生物相容性研究进展[J]. 中国血液净化2006,4(5):205-207.[3] Sakai K. 血液浄化器のこれまでとこれから[J]. Jpn J Artif Organs. 2014,43 :214-227.[4] 牟倡骏,何红星,徐天成,等. 一种聚砜空心纤维膜及其制备方法:CN,103301759A[P]. 2013-09-18.[5] 鸟田美和子,川上淳也. 血液处理用中空纤维膜、血液净化器及其制造方法: 中国专利:CN,104001427B[P]. 2016-11-09.[6] D’Arrigo G, Baggetta R, Tripepi G, et al. Effects of vitamin E-coated versus conventional membranes in chronic hemodialysis patients: A systematic review and meta-analysis[J]. Blood Purif, 2017, 43:101-122. [7] Kirmizis D, Papagianni A, Efstratiadis G, et al. Impact of inflammation onanti-oxidative effects of vitamin E-coated membrane dialyzer in patients on chronic hemodialysis[J]. Hemodial Int, 2014 ,18(4) :751-757.[8] Hayama M, Yamamoto K I, Kohori F, et al. How polysulfone dialysis membranes containing polyvinylpyrrolidone achieve excellent biocompatibility[J]. J Membr Sci, 2004 , 234(1/2):41-49.[9] Ouradi A, Nguyen Q T, Benaboura A. Polysulfone-AN69 blend membranes and its surface modification by polyelectrolyte-layer deposit-preparation and characterization[J]. J Membr Sci, 2014 ,454:20-35.[10] Heilmann K, Keller T. Polysulfone: the development of a membrane for convective therapies[J]. Contrib Nephrol, 2011, 175(5):15.[11] Masato M, Taiji Y, Kiyotaka S. Effect of γ-irradiation on the surface properties of wet polysulfone films containing poly(vinylpyrrolidone)[J]. Surf Interf Anal, 2011, 43(6):976-983.[12] Yang Q, Chung T S, Weber M. Microscopic behavior of polyvinylpyrrolidone hydrophilizing agents on phase inversion polyethersulfone hollow fiber membranes for hemofiltration[J]. J Membr Sci, 2009, 326(2):322-331.[13] Bakhshayeshi M, Teella A, Zhou H, et al. Development of an optimized dextran retention test for large pore size hollow fiber ultrafiltration membranes[J]. J Membr Sci, 2012, 421/422:32-38.[14] Barzin J, Feng C, Khulbe K C, et al. Characterization of polyethersulfone hemodialysis membrane by ultrafiltration and atomic force microscopy[J]. J Membr Sci, 2004, 237(1/2):77-85.[15] Carpi A, Donadio C, Tramonti G. Progress in hemodialysis - Fromemergent biotechnology to clinical practice[M]//Croatia: In Tech, 2011:197-216.[16] Leypoldt J K, Cheung A K, T Chirananthavat, et al. Hollow fiber shape alters solute clearances in high flux hemodialyzers[J]. ASAIO J, 2003, 49(1): 81-87.[17] Sakiyama R, Ishimori I, Akiba T, et al. Effect of blood flow rate on internal filtration in a high-flux dialyzer with polysulfone membrane[J]. J Artif Organs, 2012, 15(3):266.[18] Barzin J, Madaeni S S, Mirzadeh H, et al. Effect of polyvinylpyrrolidone on morphology and performance of hemodialysis membranes prepared from polyether sulfone[J]. J Membr Sci, 2004 , 92(6): 3804-3813.[19] Boschettidefierro A, Voigt M, Storr M, et al. Extended characterization of a new class of membranes for blood purification: The high cut-off membranes[J]. Int J Artif Organs, 2013 ,36(7): 455-463.[20] Ronco C, Nissenson A R. Does nanotechnology apply to dialysis[J]. Blood Purif, 2001, 19(4):347.[21] 大野仁,山本勇,相良誉仁,等. 中空丝膜及其制造方法和血液净化组件: CN,102307603B[P]. 2015-04-22.[22] Sadrzadeh M, Bhattacharjee S. Rational design of phase inversion membranes by tailoring thermodynamics and kinetics of casting solution using polymer additives[J]. J Membr Sci, 2013, 441(16): 31-44.[23] Qin J J, Wang R, Chung T S. Investigation of shear stress effect within a spinneret on flux, separation and thermomechanical properties of hollow fiber ultrafiltration membranes[J]. J Membr Sci, 2000, 175(2):197-213.[24] Wijmans J G,Kant J,Mulder M H V,et al. Phase separation phenomena in solutions of polysulfone in mixtures of a solvent and a nonsolvent: relationship with membrane formation[J]. Polymer, 1985, 26: 1539-1545.[25] Roesink H D W,Koenhen D M,Mulder M H V,et al. Process for preparing a microporous membrane and such a membrane:US, 5076925[P]. 1991-12-03.[26] Roesink H D W, Smolders C A, Mulder M H V, et al. Process for the preparation of hydrophilic membranes and such membranes: US, 4798847[P]. 1989-01-07.[27] Li X M, He T. Does more solvent in bore liquid create more open inner surface in hollow fiber membranes[J]. Polym[J]. Adv Technol, 2008, 19:801-806.[28] 国家食品药品监督管理总局. YY 0053—2016, 血液透析及相关治疗血液透析器、血液透析滤过器、血液滤过器和血液浓缩器[S].北京:中国标准出版社,2016.。

新型血液透析膜摆脱石油基材料依赖

新型血液透析膜摆脱石油基材料依赖

5中国产业用纺织品行业协会市场与行情技术纺织品新型血液透析膜摆脱石油基材料依赖近日,中科院宁波材料技术与工程研究所高分子事业部功能膜团队,首次研发出生物基聚合物中空纤维血液透析膜。

该膜材料具有良好的血液透析性能、生物相容性及可控降解性能,有望用于血液透析领域,替代目前传统的石油基聚合物透析膜材料。

血液透析是维持末期肾脏病患者生命的重要手段,而透析膜是血液透析器的核心部分。

由于对血液净化用材料的要求非常苛刻,实际获得广泛临床应用的膜材料非常少,主要有醋酸纤维素膜和聚砜膜两大类。

聚乳酸来源于玉米秸秆、稻草等,减少对石油基材料的依赖,且材料成本只有聚砜的5左右。

聚乳酸膜的成型、制备技术亦可利用现有纺丝设备进行改进。

与现有的聚砜基血液透析膜材料相比,聚乳酸具有更好的生物相容性。

宁波材料所副研究员刘富介绍:“现在用的聚砜膜,应用过程中可能出现凝血现象,因此需要后续的生物相容性改性;而聚乳酸天然的生物相容性使其和人体血管表面性质更加相近,应用过程不会发生凝血现象。

”可控降解性能是聚乳酸的另一个突出优点,这有利于一次性透析器用品的用后处理,可减少环境污染。

该生物基聚合物中空纤维透析膜的制备方法已经申请了国家发明专利,有望用于新一代的血液透析器。

相关产业化工作将随后展开。

目前,血液透析膜的制备技术主要被国外企业垄断,德国费森尤斯、瑞典金宝公司和美国百特3家公司占据世界91%以上的市场。

聚乳酸透析膜的产业化,将有望打破国外垄断,并以低廉的价格和良好的生物相容性使血液透析患者受益。

(转载《中国科学报》)生物基聚合物中空纤维血液透析膜。

该膜材料具有良好的血液透析性能、生物相容性及可控降解性能,有望用于血液透析领域,替代目前传统的石油基聚合物透析膜材料。

1/。

血液透析膜的生物相容性研究进展

血液透析膜的生物相容性研究进展

・205・・综述・血液透析膜的生物相容性研究进展1卞书森 1张福港 2李晓东中图分类号:R318.021 文献标识码:A血液透析作为肾脏替代治疗的主要措施,随着世界各国终末期肾病患者数量的逐年增加,这项技术不仅发展迅速,而且逐渐成熟,正在从个体化透析和透析充分性的基础上,逐步转移到如何提高血液透析膜的生物相容性方面。

本文就当今血液透析膜的生物相容性研究进展作一综述。

1 血液透析膜的种类1.1 根据透析膜的材料分类主要有两种 ①纤维素膜(cellulose):又称纤维素,是将天然纤维(棉、麻、木材等)溶解,再生后制成的再生纤维素及其衍生物,可分为两种:一种是再生纤维素膜,特点是亲水性高,物质通透性也较高,机械强度较大,如铜氨纤维素膜、皂化纤维素膜、粘胶纤维素膜;一种是纤维素膜衍生物,如醋酸纤维素膜(cellulose acetate,CA),血仿膜(homephane),这种膜特点是对小分子物质和磷的清除能力较强,为高效透析器的材料。

②合成膜(synthetic):一般为疏水性膜,超滤系数较高,生物相容性较好,如聚丙烯腈膜(PAN),聚甲基丙烯酸甲酯膜(PMMA),聚砜膜(PS),聚酰胺膜(PA)。

1.2 根据透析膜超滤系数分类有两种 ①高通量透析膜:平均孔径为2.9nm,最大直径为3.5nm;②低通量透析膜平均孔径为1.3nm,最大直径为2.5nm。

2 血液透析膜的生物相容性生物相容性是指所有设备材料,制作工艺或系统对宿主不引起明显的临床反应,即无血栓形成、无毒性、无过敏或炎症反应、无破坏血细胞作用、不激活补体。

生物不相容性是指血液透析时,循环的血液与透析膜相接触,引起补体激活、细胞因子的释放、凝血、β2-微球蛋白的沉积和血细胞的活化以及其他方面的变化,在临床上出现相应的临床症状。

理想的透析膜应该同血管内皮细胞接近,但目前尚不能达到这一要求,所以血液透析时,血液与透析膜接触,或多或少会引起一些临床症状,表现为生物相容性好的透析膜引起的变化轻微,而生物相容性差的透析膜则引起显著的变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新颖 - 3层构造
3-Layer Structure
附能力最强
• 聚酰胺膜(PA)和聚砜膜(PS)次之 • 铜仿膜的吸附能力最差
临床益处
透析膜和死亡率
Krane V et al. Am J Kidney Dis (2007); 49:267-275
透析膜和死亡率
High-flux vs. low-flux (Hornberger et al.)
Polysulfone (F80) 50 Cellulose Acetate 5 0
(CA 110)
4-9
10-15
Therapy month
16-21
22-24
45
46
43
39
40
43
39
36
Mc Carthy et al, Am J Kidney Dis, 29: 576-583 (1997)
1057
High flux Ps
40
55.5 7.1
567 80
Polyflux110 Polyamide
42
61.1 10.8
352 123
Source: Weber et al. Int J Artif Organs 1997, 20: 144-152
高通量透析器的吸附功能不完全相同:
• 聚甲基丙烯酸甲酯膜(PMMA)、AN69膜吸
合成膜
聚砜(PS)—费森、贝朗、威高、 旭化成、朗生等
聚酰胺 (PA)—金宝
聚丙烯晴 (PAN)—AN69(金宝) 聚甲基丙烯酸甲酯(PMMA)—东丽
聚醚砜 (PES) —贝尔克、尼普洛等
膜材料的特性
原材料 特性
亲水性
再生纤维素 改良纤维素
合成膜
纤维素 纤维素的衍生物 高分子聚合物
带有大量的羟基
通过对羟基的各 种改性
血液相容性, 可抑制铜绿假单孢菌活性
• 肝素+聚醚砜,既保持了聚醚砜的力学性能,
又能提高透析膜的抗凝血性能
• 醋酸纤维膜+亚油酸膜或聚丙烯酸+亚油酸
+聚砜膜, 更好的生物相容性和抗凝血效果
3.利用低温等离子体等技术
对聚合物表面改性是赋予膜材料新 性能的常用方法改变膜表面的亲疏 水性
利用SO2 等离子体对涂在血管金属 内支架表层的聚氯二甲苯进行处理, 亲水性和其血液相容性也得到了显 著提高
Tight pore size in the inside (blood contact)
• 非对称膜的主要阻力是最内层
膜的壁厚度,其余的膜是起到 支撑的作用
• 因此当膜的形状接近标准的圆
形,膜的本身阻力就非常小
亲水-疏水微区域限制了血液中蛋白质 细胞与膜表面的相互作用
疏水性和表面电荷使其能吸附炎症介质
4 3.5
3 2.5
2 1.5
1 0.5
0
淀粉样变性
囊性骨病
腕管综合症
低通量,纤维膜 低通量,合成膜 高通量,合成膜
关节病
b2m MD=11,800D
Schiffl et al. Nephrol Dial Transplant 15:1399-1409, 2000
Improvement of lipid profile
*p<0.05 vs time 0 and 4 weeks
保存残余肾功能
In trin s ic u rea cle aran c e (K r) m l/m in
Renal Function and Dialysis M em branes
8
6
4
2
CA 110
PSu F80
0 B e g in
Patients (No.)
透析膜材料的研究进展
武汉大学中南医院 肾内科 & 血液净化中心
司晓芸
什么是透析膜
一种以浓度差为推动力的分离膜 根据分离的溶质的粒径,要求透析 膜上有相适应的孔径均匀的微孔
透析膜的原理
纳米级微孔
透析器膜的历史
1940
膜 形状
蟠管型
“旋转式鼓桶”
膜 材料
纤维素
治疗 方式
低通量血液透析
50s
lipid concentration [mg/dl] ratio LDL/HDL
LDL HDL LDL/HDL
120 100 80 60 40 20
00
4.0
3.5
3.0
*
2.5
2.0
* * * 1.5 1.0
0.5
4
12
20
28 0
time [weeks]
Modified Cellulose
Polyflux S
Inflammatory markers and dialysis membrane
randomized cross-over study in 18 patients, 3 x 8 weeks
Ref: Schindler et al, 2000
白蛋白水平
生存率 死亡率
对血清白蛋白的影响 (Hemo study)
Symmetric membrane structure
对称膜壁薄
为了减少膜 的阻力
会导致膜形 状变成 ‘ 非圆型’
• 溶质通过半透膜需要克服自身的
阻力
• 对称膜有着均一的膜孔大小,因
此降低阻力的唯一办法就是使得 膜壁变薄或者增加膜孔的数量
非对称膜
Open pore size on the outside
通过对多聚体的 物化改变
亲水性强
亲水性弱 较强的疏水性
对称性 超滤率 补体激活
对称 低 多
对称 适中 较多
不对称 高 少
Adapted from Am J Kidney Dis 1998; 13 (s.3) 115
生物相容性
--判定透析膜优劣的主要指标
膜材料与血液接触后的生物反应模式图
激活 XII因子
Non-woven polyester sheet
透析器 / 膜的筛系数
Low-Flux
Urea
1
Creatinine
1
Vitamin B12
0.65
Inulin
0.05
ß2-microglobulin
0
Albumin
0
HighFlux
Urea
1
Creatinine
1
Vitamin B12
1
Inulin
1
ß2-microglobulin
0.65 & 0.8
Albumin
< 0.001
提高的中大分子清除能力
透析膜的吸附能力
-脂蛋白A和脂多糖
透析器 E3
膜材料 Cuprophane
UF coeff
ml/hr/mmHg
5.8
Adsorbed LpdA g/m2
4.5 3.4
Adsorbed LPS ng/m2
40%
2000
65 % 35 %
透析膜材料的未来发展方向
• 传统透析膜的改进 • 研发新型透析膜 • 发展生物活性膜
透析膜的制造工艺
聚砜膜纤维内壁的比较
透析器的封装与切割
切割工艺比较
基于通透性的膜的分类
• 高通量(HIGH FLUX)-KUF>20 ml/hr.mmHg
用于HDF/HF 和HIGH FLUX HD CTA/TRICEA, AN69, Nephral ST, Polyflux, DIAPES, Xenium, Polysulfone, PMMA.
新型高通量血滤器
独特膜结构
具有微孔梯度结构的第三代聚砜膜。 与血液直接接触的内表面具有细小精密的 薄层,保证了优秀滤出特点和性能。
高清除率
能高效清除达66000道尔顿的分子
内表 面平 滑: 减少 血膜 激活
透析液侧泡沫状膜 :吸附内毒素
合成膜的结构 聚醚砜膜
纯聚碸
聚胺 + 聚碸+PVP
均一海绵体构造
通常采用氯甲基化、催化剂、臭氧处理等 利用醇化、酯化等化学反应把目标基团引
入到基膜材料的表面 常引入的高分子材料包括PVP、PEG、人
血白蛋白、壳聚糖、磷脂以及某些具有抗 凝血作用的物质
• 肝素+聚丙烯腈/聚乙烯亚胺膜,透析效果良
好,并可减少透析期间的过敏反应
• 固化壳聚糖+肝素+聚丙烯腈膜显示良好的
激活修饰的补体通道 产生 C5a , C3a 以及过敏毒素
激活 缓激肽释放酶
释放缓激肽
低血压
肥大细胞
释放组胺, 白细胞三烯
血管舒张, 支气管收缩
中性粒细胞
粘附受体 LTB4
单核细胞 IL-1,TNF
β2-微球蛋白 低血压,发热
血小板 PG等
血小板 减少症
纤维素膜的基础单元
改良纤维素膜
提高生物相容性-性能最为优越的纤维素膜
Modified cellulose versus Polyflux S
43 patients
Polyflux:
Improvements in lipid profile may help to reduce the lipid lowering medications
Pitone J et al, ISBP, 2003
血清白蛋白 (g/dl)
4.2
4
* ** **
*
3.8
* P<0.05
3.6
** P<0.01
Low-Fux
3.4
相关文档
最新文档