(完整版)Matlab程序Gauss列主元消去法
Gauss列主元素消去法实验
Lab06.Gauss 列主元素消去法实验【实验目的和要求】1.使学生深入理解并掌握Gauss 消去法和Gauss 列主元素消去法步骤; 2.通过对Gauss 消去法和Gauss 列主元素消去法的程序设计,以提高学生程序设计的能力;3.对具体问题,分别用Gauss 消去法和Gauss 列主元素消去法求解。
通过对结果的分析比较,使学生感受Gauss 列主元素消去法优点。
【实验内容】1.根据Matlab 语言特点,描述Gauss 消去法和Gauss 列主元素消去法步骤。
2.编写用不选主元的直接三角分解法解线性方程组Ax=b 的M 文件。
要求输出Ax=b 中矩阵A 及向量b ,A=LU 分解的L 与U ,det A 及解向量x 。
3.编写用Gauss 列主元素消去法解线性方程组Ax=b 的M 文件。
要求输出Ax=b 中矩阵A 及向量b 、PA=LU 分解的L 与U 、det A 及解向量x ,交换顺序。
4.给定方程组(1) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--11134.981.4987.023.116.427.199.103.601.3321x x x(2) ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----15900001.582012151********.23107104321x x x x 先用编写的程序计算,再将(1)中的系数3.01改为3.00,0.987改为0.990;将(2)中的系数2.099999改为2.1,5.900001改为9.5,再用Gauss 列主元素消去法解,并将两次计算的结果进行比较。
【实验仪器与软件】1.CPU 主频在1GHz 以上,内存在128Mb 以上的PC ;2.Matlab 6.0及以上版本。
实验讲评:实验成绩:评阅教师:200 年 月 日Lab06.Gauss 列主元素消去法实验第一题:1、算法描述:Ⅰ、Gauss 消去法由书上定理5可知 设Ax=b ,其中A ∈R^(n(1)如果()0(1,2,....,1)k kka k n ≠=-,则可通过高斯消去法将Ax=b 约化为等价的 角形线性方程组,且计算公式为:① 消元计算(k=1,2,….,n-1)()()(1)()()(1)()()/,1,...,,,,1,...,,,1,...,.k k ik ik kk k k k ij ij ik kj k k k iiik k m a a i k n a a m a i j k n b b m b i k n ++==+=-=+=-=+② 回带公式()()()()()1/,()/,1,...,2,1.n n n n nn ni i i i iii j ii j i x b a x ba x a i n =+==-=-∑(2)如果A 为非奇异矩阵,则可通过高斯消去法将方程组Ax=b 约化方程组为上三角矩阵以上消元和回代过程总的乘除法次数为332333nn nn +-≈,加减法次数为32353263nnn n+-≈以上过程就叫高斯消去法。
Gauss消去法等matlab程序
huidai.M文件:
functionx=huidaini(a)
n=length(a)-1;
x=zeros(n,1);
s=0;
fori=1:1:n
ifi==1
orj=1:1:i-1
s=s+a(i,j)*x(j)
end
x(i)=(a(i,n+1)-s)/a(i,i)
2.)列主元消去法:
functionx=GaussL(A,b)
a=[A b];
x=[];
n=length(a)-1;
fork=1:n
A=a(k:n,k);
h=max(A);
[u,v]=find(A==h);
u=u+k-1;
B=a;
a(k,:)=B(u,:);
a(u,:)=B(k,:);
fori=k+1:n
L(j+1,i)=A(j+1,i)/A(i,i)
A(j+1,:)=A(j+1,:)-L(j+1,i)*A(i,:)
end
end
U=A(:,1:n)
a1=[L b]
y=zeros(n,1)
y=huidaini(a1)
a2=[U y]
x=huidai(a2)
4:实验结果:
1.)Gauss消去法:
>> A=[2 2 3;4 7 7;-2 4 5];b=[3;1;-7];
>> Gauss(A,b)
ans =
2 -2 1
2.)列主元消去法:
>> A=[2 2 3;4 7 7;-2 4 5];b=[3;1;-7];
GaussL(A,b)
列主元消去法matlab实验报告
列主元消去法matlab实验报告列主元消去法是一种常用的线性方程组求解方法,它通过选取主元元素来消去其他元素,从而简化方程组的求解过程。
本文将以Matlab为工具,对列主元消去法进行实验研究,并给出相应的实验报告。
我们需要明确列主元消去法的基本原理。
列主元消去法的核心思想是选取每一列的主元素,通过消去其他元素,从而将方程组转化为上三角形或下三角形的形式。
具体来说,通过选取第一列的主元素,将第一列下方的元素消去;然后选取第二列的主元素,将第二列下方的元素消去;依此类推,直到最后一列。
这样,我们就得到了一个上(下)三角形的方程组,可以通过回代(代入)的方法求解。
接下来,我们使用Matlab编写代码,实现列主元消去法。
首先,我们需要输入一个线性方程组的系数矩阵A和常数向量b,其中A 是一个n×n的矩阵,b是一个n×1的向量。
然后,我们通过选取主元素的方式进行消去操作,得到一个上三角形的方程组。
最后,我们通过回代(代入)的方法求解方程组的解。
具体实现的代码如下所示:```matlabfunction x = gauss_elimination(A, b)n = size(A, 1); %方程组的个数% 消元过程for k = 1:n-1[~, p] = max(abs(A(k:n, k))); %选取主元素 p = p + k - 1;% 交换第k行和第p行temp = A(k, :);A(k, :) = A(p, :);A(p, :) = temp;temp = b(k);b(k) = b(p);b(p) = temp;% 消去操作for i = k+1:nfactor = A(i, k) / A(k, k);A(i, :) = A(i, :) - factor * A(k, :);b(i) = b(i) - factor * b(k);endend% 回代(代入)过程x = zeros(n, 1);x(n) = b(n) / A(n, n);for i = n-1:-1:1x(i) = (b(i) - A(i, i+1:n) * x(i+1:n)) / A(i, i);endend```接下来,我们将使用一个具体的例子来说明列主元消去法的求解过程。
高斯列主元消去法
如果在高斯顺序消去法消去过程进行到第i 步时,现选取ri a )(n r i ≤≤中绝对值最大的元素,设为第j 行的元素ji a ,把矩阵的第i 行和第j 行互换,这时ii a 变为ji a ,然后将第i+1行至第n 行中的每一行减去第i 行乘以ii ki a a (k 代表行号),依次进行消元。
Gauss 列主元消去法的算法步骤如下:将方程组写成以下的增广矩阵的形式:⎪⎩⎪⎪⎨⎧43212423222114131211............n n n n a a a a a a a a a a a a对k=1,2,3,...,n-1,令∑==nks sk pk a a max ;交换增广矩阵的第k 行与第p 行;对j=k+1,k+2,...,n,计算kk jkkm jm jm a a a a a ⋅-=(m=看,k+1,...,n )kk jkk j j a a b b b ⋅-=算法结束。
三角分解法程序如下:建立相应的M 文件,其函数名为LU,程序如下:function y=LU(A,B);n=length(A);A=[A B];for k=1:n-1;for i=k:n;if (abs(A(i,k))==max(abs(A(k:n,k)))) P(k)=i;temp=A(k,:);A(k,:)=A(i,:);A(i,:)=temp;endendfor j=k+1:n;A(j,k)=A(j,k)/A(k,k);A(j,k+1:n+1)=A(j,k+1:n+1)-A(j,k)*A(k,k+1:n+1);endendP(n)=n;L(1,1)=1;L(2:n,1)=A(2:n,1);L(1,2:n)=0;U(1,1)=A(1,1);U(2:n,1)=0;U(1,2:n)=A(1,2:n);for i=2:n;L(i,1:i-1)=A(i,1:i-1);L(i,i)=1;L(i,i+1:n)=0;U(i,1:i-1)=0;U(i,i:n)=A(i,i:n);endx(n) = A(n,n+1)/U(n,n);for k = n-1:-1:1x(k)=A(k,n+1);for p=n:-1:k+1;x(k) = x(k)-U(k,p)*x(p); endx(k)=x(k)/U(k,k);endxLUPend在程序命令行输入:a=[0.101 2.304 1.5355;-1.347 3.712 4.623;-2.835 1.072 5.643];b=[1.183,2.137,3.035]';LU(a,b)运行结果为:x =3.1160 -1.1960 2.3305 L =1.0000 0 00.4751 1.0000 0-0.0356 0.7313 1.0000 U =-2.8350 1.0720 5.64300 3.2027 1.94180 0 0.3359 P =3 2 3。
高斯消元法 主元消去法
实验内容1.编写用高斯消元法解线性方程组的MATLAB程序,并求解下面的线性方程组,然后用逆矩阵解方程组的方法验证.(1)1231231230.101 2.304 3.555 1.1831.347 3.712 4.6232.1372.835 1.072 5.6433.035x x xx x xx x x++=⎧⎪-++=⎨⎪-++=⎩(2)12312312352828321361x x xx x xx x x++=⎧⎪+-=⎨⎪--=⎩MATLAB计算源程序1. 用高斯消元法解线性方程组bAX=的MATLAB程序输入的量:系数矩阵A和常系数向量b;输出的量:系数矩阵A和增广矩阵B的秩RA,RB, 方程组中未知量的个数n 和有关方程组解X及其解的信息.function [RA,RB,n,X]=gaus(A,b)B=[A b]; n=length(b); RA=rank(A);RB=rank(B);zhica=RB-RA;if zhica>0,disp('请注意:因为RA~=RB,所以此方程组无解.')returnendif RA==RBif RA==ndisp('请注意:因为RA=RB=n,所以此方程组有唯一解.')X=zeros(n,1); C=zeros(1,n+1);for p= 1:n-1for k=p+1:nm= B(k,p)/ B(p,p); B(k,p:n+1)= B(k,p:n+1)-m* B(p,p:n+1);endendb=B(1:n,n+1);A=B(1:n,1:n); X(n)=b(n)/A(n,n);for q=n-1:-1:1X(q)=(b(q)-sum(A(q,q+1:n)*X(q+1:n)))/A(q,q);endelsedisp('请注意:因为RA=RB<n,所以此方程组有无穷多解.')EndEnd2.列主元消元法及其MATLAB程序用列主元消元法解线性方程组bAX=的MA TLAB程序输入的量:系数矩阵A和常系数向量b;输出的量:系数矩阵A和增广矩阵B的秩RA,RB, 方程组中未知量的个数n和有关方程组解X及其解的信息.function [RA,RB,n,X]=liezhu(A,b)B=[A b]; n=length(b); RA=rank(A);RB=rank(B);zhica=RB-RA;if zhica>0,disp('请注意:因为RA~=RB,所以此方程组无解.')returnendif RA==RBif RA==ndisp('请注意:因为RA=RB=n,所以此方程组有唯一解.')X=zeros(n,1); C=zeros(1,n+1);for p= 1:n-1[Y,j]=max(abs(B(p:n,p))); C=B(p,:);B(p,:)= B(j+p-1,:); B(j+p-1,:)=C;for k=p+1:nm= B(k,p)/ B(p,p); B(k,p:n+1)= B(k,p:n+1)-m* B(p,p:n+1);endendb=B(1:n,n+1);A=B(1:n,1:n); X(n)=b(n)/A(n,n);for q=n-1:-1:1X(q)=(b(q)-sum(A(q,q+1:n)*X(q+1:n)))/A(q,q);endelsedisp('请注意:因为RA=RB<n,所以此方程组有无穷多解.') endend三.实验过程:1(1)编写高斯消元法的MATLAB文件如下:clear;A=[0.101 2.304 3.555;-1.347 3.712 4.623;-2.835 1.072 5.643];b=[1.183;2.137;3.035];[RA,RB,n,X] =gaus (A,b)运行结果为:请注意:因为RA=RB=n,所以此方程组有唯一解.RA =3RB =3n =3X =-0.39820.01380.3351(2)编写高斯消元法MATLAB文件如下:clear;A=[5 2 1;2 8 -3;1 -3 -6];b=[8;21;1;];[RA,RB,n,X] =gaus (A,b)运行结果为:请注意:因为RA=RB=n,所以此方程组有唯一解.RA =3RB =3n =3X =12-1在MATLAB中利用逆矩阵法检验结果:(1) 在command windows中直接运行命令:A=[0.101 2.304 3.555;-1.347 3.712 4.623;-2.835 1.072 5.643];b=[1.183;2.137;3.035];X=A\b运行结果为:X =-0.39820.01380.3351(2) 在command windows中直接运行命令:A=[5 2 1;2 8 -3;1 -3 -6];b=[8;21;1;];X=A\b运行结果为:X =12-1两小题所得结果相同,检验通过2(1)编写列组高斯消元法MATLAB文件如下:clear;A=[0.101 2.304 3.555;-1.347 3.712 4.623;-2.835 1.072 5.643];b=[1.183;2.137;3.035];[RA,RB,n,X] =liezhu(A,b)运行结果:请注意:因为RA=RB=n,所以此方程组有唯一解.RA =3RB =3n =3X =-0.39820.01380.3351(2)编写列组高斯消元法的MATLAB文件如下:clear;A=[5 2 1;2 8 -3;1 -3 -6];b=[8;21;1;][RA,RB,n,X] =liezhu(A,b)运行结果为:请注意:因为RA=RB=n,所以此方程组有唯一解.RA =3RB =3n =3X =12-1与题 1 中逆矩阵计算所得结果相同,检验通过。
Guass列主元消去法
0.077715611723761
-0.162370117351429
0.144328993201270
0.675332065747000 0.770159728608609 0.341124607049109 0.287498173066131 0.635786710514084 0.661944751905652 0.582249164527227 0.639316961040108 0.109697464523194
Guass列主元消去法
(已验证过,保证可用正确)
function y=Guass(A,b)
n=length(A);
u=zeros(1,n);
for k=1:n-1
p=find(abs(A(k:n,k))==max(abs(A(k:n,k))));%
p(1)=p(1)+k-1;
u(k)=p(1);
dd=A(p(1),1:n); %中间变量
求9阶的axb的解xs为用guass列主元消去法得到的近似解可以看出在这种情况guass列主元消去法得到解与精确解的误差1014左右因为本例才用的是随机数所以数据和误差会不同在matlab命令窗口中输入08443921565272050462449159242329072175803339110202690615866860180644442781431336060730394068563508329168190752160939829470344921099370462412085203444624113010420424349039815375047348599296532007655000166214380647617630172684045013769696589602564409922291470645551874972524021867663239963407805196527313580460916366028964015272120043823201886619767914910679016754093202045872549364886806134607368128750479463224948888010579827325022806753320657470000770159728608609034112460704910902874981730661310635786710514084066194475190565205822491645272270639316961040108010969746452319400067153143184770322471807186779060738921376834700911134636865350945174113109401077028551480366005407393371244100544716110526763006359137097510606021704875817950784739294760742019174525546179805762093806630070208934922426023035021801344110508699410323580070647311480293128040457999585762603867711945209850471357153710612073842683997694206833632432
matalab怎么用高斯消去法解方程组
matalab怎么用高斯消去法解方程组高斯消去法(Gaussian Elimination)是一种解线性方程组的常用方法,其中包括了高斯消元和回代两个步骤。
通过高斯消去法,我们可以将一个线性方程组转化为简化的上三角矩阵,从而简化求解过程。
要使用高斯消去法解决线性方程组,首先需要将方程组写成矩阵形式。
假设有一个n个方程和n个未知数的线性方程组,可以表示为Ax = b,其中A是一个n×n的系数矩阵,x是一个n×1的未知数向量,b是一个n×1的常数向量。
下面我们将详细介绍高斯消去法的步骤:步骤1:将系数矩阵A和常数向量b合并为增广矩阵[Ab],即在A的右边添加一个列向量b。
步骤2:选取主元素(pivot),通常选择第一行的首个非零元素作为主元素。
如果第一行的首个元素为零,则选择下一行的首个非零元素。
步骤3:将主元素所在的行交换到第一行,以确保主元素位于第一行。
步骤4:除以主元素,使主元素变为1。
这可以通过将主元素所在的行除以主元素的值来实现。
步骤5:用第一行的主元素消去其它行。
对于第i行,将其乘以第一行的主元素的负倒数,并加到第一行上。
步骤6:重复步骤2至步骤5,直到最后一行或最后一列为零。
如果最后一行或最后一列为零,则说明方程组无解或有无穷多解。
步骤7:回代。
从最后一行开始,将求得的解代入每一行的方程中,依次求解未知数。
下面我们将通过一个具体的例子来说明高斯消去法的过程。
假设有以下线性方程组:2x + y - z = 8-3x - y + 2z = -11-2x + y + 2z = -3我们首先将方程组转化为增广矩阵形式:[2 1 -1 | 8][-3 -1 2 | -11][-2 1 2 | -3]首先我们选择第一行的主元素,即第一行第一个非零元素2。
然后将第一行与第二行交换,使主元素位于第一行:[-3 -1 2 | -11][2 1 -1 | 8][-2 1 2 | -3]接下来我们将主元素化为1,即将第一行除以-3:[1 1/3 -2/3 | 11/3][2 1 -1 | 8][-2 1 2 | -3]然后用第一行的主元素消去第二行和第三行:[1 1/3 -2/3 | 11/3][0 1/3 1/3 | 2/3][0 5/3 4/3 | 2/3]此时我们得到了上三角矩阵形式的增广矩阵。
gauss列主元素消去法matlab
高斯列主元素消去法是一种解线性方程组的常用方法,特别在数值分析和线性代数中应用广泛。
在Matlab中,我们可以使用该方法来解决大规模的线性方程组,包括矩阵的求解和矩阵的反转。
一、高斯列主元素消去法的基本原理高斯列主元素消去法是一种基于矩阵消元的方法,它通过一系列的矩阵变换将原始的线性方程组转化为上三角形式,然后再进行回代求解。
这个方法的核心就是通过矩阵的变换来简化原始的线性方程组,使得求解过程更加简单高效。
在Matlab中,我们可以利用矩阵运算和函数来实现高斯列主元素消去法,如`lu`分解函数和`\"`运算符等。
通过这些工具,我们能够快速地求解各种规模的线性方程组并得到准确的结果。
二、高斯列主元素消去法在Matlab中的实现在Matlab中,我们可以通过调用`lu`函数来实现高斯列主元素消去法。
该函数返回一个上三角矩阵U和一个置换矩阵P,使得PA=LU。
通过对U进行回代求解,我们可以得到线性方程组的解。
除了`lu`函数之外,Matlab还提供了一些其他的函数和工具来帮助我们实现高斯列主元素消去法,比如`\"`运算符和`inv`函数等。
通过这些工具的组合使用,我们能够更加灵活地进行线性方程组的求解,并且可以方便地处理特殊情况和边界条件。
三、高斯列主元素消去法的应用与局限性高斯列主元素消去法在实际应用中具有广泛的适用性,特别是对于大规模的线性方程组或者稀疏矩阵的求解。
通过Matlab中的工具和函数,我们可以快速地求解各种规模的线性方程组,并得到高精度的数值解。
然而,高斯列主元素消去法也存在一些局限性,比如对于奇异矩阵或者接近奇异矩阵的情况时,该方法的求解精度可能会下降。
在实际应用中,我们需要结合具体的问题和矩阵特性来选择合适的求解方法,以确保得到准确的结果。
四、个人观点和总结作为一种经典的线性方程组求解方法,高斯列主元素消去法在Matlab 中具有较好的实现和应用效果。
通过对其原理和实现细节的深入理解,我们能够更加灵活地应用该方法,并且能够更好地理解其适用性和局限性。
gauss消去法matlab
gauss消去法matlabGauss消去法是一种常用的线性方程组求解方法,它可以通过消元和回代的方式,将一个复杂的线性方程组转化为一个简化的三角形方程组,从而得到方程组的解。
在MATLAB中,我们可以使用高斯消去法函数来求解线性方程组。
我们需要明确线性方程组的形式。
一个典型的线性方程组可以表示为:Ax = b其中,A是一个n×n的系数矩阵,x是一个n×1的未知向量,b是一个n×1的常数向量。
接下来,我们可以使用MATLAB中的高斯消去法函数来求解线性方程组。
在MATLAB中,我们可以使用“[L,U,P] = lu(A)”函数来进行高斯消去法的分解,其中L是单位下三角矩阵,U是上三角矩阵,P 是置换矩阵。
通过高斯消元法的分解,我们可以得到三角形方程组:L(Ux) = b然后,我们可以使用“y = L\b”函数来求解下三角方程Ly = b,再使用“x = U\y”函数来求解上三角方程Ux = y。
最终,我们可以得到线性方程组的解x。
除了使用MATLAB中的高斯消去法函数,我们还可以手动实现高斯消去法。
首先,我们可以通过消元操作将系数矩阵A转化为上三角矩阵U。
消元操作的基本步骤如下:1.选择主元:选择第一列中绝对值最大的元素作为主元,并将其所在的行交换到第一行。
2.消元操作:对于第一行以下的每一行,将其第一列元素消为0。
具体操作是,将第一行乘以一个适当的倍数,然后从当前行中减去第一行的倍数。
3.重复以上步骤,直到所有的主元都不为0或者所有的行都消元结束。
接下来,我们可以使用回代操作将上三角矩阵U转化为解向量x。
回代操作的基本步骤如下:1.确定最后一个未知量:将最后一行的最后一个元素设为1。
2.回代计算:从最后一行开始,依次计算每个未知量的值。
具体操作是,将当前行的右侧元素减去已知的未知量的倍数,然后除以当前行对角线上的系数。
通过手动实现高斯消去法,我们可以更好地理解高斯消去法的原理和过程。
(完整版)2.3高斯列主元消去法
2.3高斯列主元消去法解线性方程组一:问题的提出我们都知道,高斯列主元素消去法是计算机上常用来求解线性方程组的一种直接的方法。
就是在不考虑舍入误差的情况下,经过有限步的四则运算可以得到线性方程组的准确解的一类方法。
实际运算的时候因为只能有限小数去计算,因此只能得到近似值。
在实际运算的时候,我们很多时候也常用高斯消去法。
但是高斯消去法在计算机中运算的时候常会碰到两个问题。
1.一旦遇到某个主元等于0,消元过程便无法进行下去。
2.在长期使用中还发现,即使消元过程能进行下去,但是当某个主元的绝对值很小时,求解出的结果与真实结果相差甚远。
为了避免高斯消去法消元过程中出现的上述两个问题,一般采用所谓的选择主元法。
其中又可以分为列选主元和全面选主元两种方法。
目前计算机上常用的按列选主元的方法。
因此我在这里做的也是列选主元高斯消去法。
二、算法的基本思想大家知道,如果一个线性方程组的系数矩阵是上三角矩阵时,即这种方程组我们称之为上三角方程组,它是很容易求解的。
我们只要把方程组的最下面的一个方程求解出来,在把求得的解带入倒数第二个方程,求出第二个解,依次往上回代求解。
然而,现实中大多数线性方程组都不是上面所说的上三角方程组,所以我们有可以把不是上三角的方程通过一定的算法化成上三角方程组,由此我们可以很方便地求出方程组的解。
高斯消元法的目的就是把一般线性方程组简化成上三角方程组。
于是高斯消元法的基本思想是:通过逐次消元将所给的线性方程组化为上三角形方程组,继而通过回代过程求解线性方程组。
三、算法的描述1、设有n 元线性方程组如下:1111n n nn a a a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭K M OM L1n x x ⎛⎫ ⎪ ⎪ ⎪⎝⎭M =1n b b ⎛⎫ ⎪ ⎪ ⎪⎝⎭M 2、 第一步:如果a 11!=0, 令l i1= ai1/a11, I= 2,3,……,n用(-li1)乘第一个方程加到第i 个方程上,得同解方程组:a (1)11 a (1)12 . . . a (1)1nx 1 b (1)1a (1)21 a (1)22 . . . a (1)2n x 2b (1)2. . . . . . . = .a (1)n-11 a (1)n-12 . . a (1)n-1n x n-1b (1)n-1a (1)n1 a (1)n2 . . . a (1)nn x nb (1)n简记为:A (2) x = b (2)其中a (2)ij = a (1)ij – l i1 * a (1)1j , I ,j = 2,3,..,nb(2)I = b(1)I– l i1 * b(1)1 , I = 2,3,...,n第二步:如果a(2)22 != 0,令l i2= a(2)i2/a(2)22, I= 3,……,n依据同样的原理,对矩阵进行化间(省略),依次下去,直到完成!最后,得到上三角方程组:a(1)11a(1)12 . . . a(1)1n x1b(1)10 a(1)22 . . . a(1)2n x2b(1)2. . . . . . . = .0 0 . . a(n-1)n-1n x n-1b(n-1)n-10 0 . . . a(n)nn x n b(n)n简记为:A(n) x = b(n)最后从方程组的最后一个方程进行回代求解为:X n = b(n) / a(n)nnX i = ( b(k)k - a(k)kj x j ) / a(k)kk以上为高斯消去法的基本过程。
Gauss全主元消去法
Gaussian elimination with complete pivotingTo keep the Gaussian elimination method smooth operation,We must ensure that the pivot element 0)1(≠-a k kk and a k kk )1(-can not too small in each operation.So the selection of appropriate pivot elements in every step of elimination.,the maximum absolute value or the major elements as the pivot element ,this improved Gaussian elimination method named Gauss pivot element elimination. There have 3 methods to select pivot element,Gaussian elimination with partial pivoting 、scaled partial pivoting 、complete pivoting.Through access to some data,I introduce the Gaussian elimination with complete pivoting briefly.Completepivoting at the k th step searches all the entries ),()1(k j k i a k ij ≥≥-,to find the entry to the largest magnitude.Both row and column interchanges are performed to bring this entry to the pivot position.The specific steps :⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++=+++=++++++a x a x a x a a x a x a x a a x a x a x a n n n nn n n n n n n n n )0(1,)0(2)0(21)0(1)0(1,2)0(22)0(221)0(21)0(1,1)0(12)0(121)0(11,, The k th elimination,find all ak ij )1(-(i=k ,k+1,,n; j=k,k+1 n),thea k )1(-μν is the pivot element.a a k ij k )1()1(max --=μνBoth row and column interchanges are performed to bring this entry to the pivot position.Move a k )1(-μν to (k,k).Until the n-1 step, the original equation into the same equations on triangular solution: ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧==++=+++=++++-+-+++,,,,)1(1,)1()2(1,3)2(33)2(33)1(1,2)1(23)1(232)1(22)0(1,1)0(13)0(132)0(121)0(11a x a a x a x a a x a x a x a a x a x a x a x a n n n n n nn n n n n n n n n nBackward substitution :Backward substitution is the solution of triangular systems .If 0)1(≠-a n nn ,then⎪⎪⎩⎪⎪⎨⎧--=⎥⎦⎤⎢⎣⎡-==∑+=-----+-.1,,2,,1,11)1()1(1,)1()1(1,)1(, n i n i n i j j i ij i n i i ii i n n n n n n n x a a a x a a x Algorithm :function x=Gauss(A,b)B=[A,b];n=length(A);x=zeros(n,2);for i=1:nx(i,1)=i; %x 第一列数字i 代表x (i )endfor i=1:n-1[m,p]=max(abs(B(i:n,i:n)));%求绝对值最大系数所在行号和列号[l,q]=max(m);if m==0;disp('A 奇异')returnif p(q)+i-1>i %行变换pm=p(q)+i-1;C(i:n+1)=B(i,i:n+1);B(i,i:n+1)=B(pm,i:n+1);B(pm,i:n+1)=C(i:n+1);endif q+i-1>i %列变换q=q+i-1;D(1:n)=B(1:n,q);B(1:n,q)=B(1:n,i);B(1:n,i)=D(1:n);E(1:2)=x(q,:);%调换解的顺序x(q,:)=x(i,:);x(i,:)=E(1:2);endfor k=i+1:n %消元am=B(k,i)/B(i,i);B(k,i:n+1)=B(k,i:n+1)-am*B(i,i:n+1);endendx(n,2)=B(n,n+1)/B(n,n);for i=n-1:-1:1 %回代xx(i+1:n)=x(i+1:n,2);x(i,2)=(B(i,n+1)-B(i,i+1:n)*xx(i+1:n)')/B(i,i);endfor i=1:n-1 % 调换解的顺序[u,r]=min(x(i:n,1));if r+i-1>ir=r+i-1;xf(1:2)=x(i,1:2);x(i,1:2)=x(r,1:2);x(r,1:2)=xf(1:2);endendendFor example P89,Exercises2>> A=[1.19 2.11 -100 1;14.2 -0.122 12.2 -1;0 100 -99.9 1;15.3 0.110 -13.1 -1];b=[1.12;3.44;2.15;4.16]; x=Gauss(A,b)1.0000 0.17682.0000 0.01273.0000 -0.02074.0000 -1.1826。
用Gauss列主元消去法求解方程组
\\本程序适用于n个方程,n个未知数的线性代数方程组# include "stdio.h"# include"math.h"# define eps 1e-8# define n 2\\以上为定义部分main(){int t,i,j,k;double T,m[3][3],x[3];double A[3][3]={{2,2,3},{4,7,7},{-2,4,5}};double b[3]={3,1,-7};\\以上为输入部分for(k=0;k<n;k++){t=k;for(i=k+1;i<=n;i++){if(fabs(A[t][k])<fabs(A[i][k]))t=i;}\\寻找第k列的主元素(绝对值最大的数)for(j=k;j<=n;j++){T=A[t][j];A[t][j]=A[k][j];A[k][j]=T;}T=b[k];b[k]=b[t];b[t]=T;\\把主元素及其所在的行与第k行交换if(fabs(A[k][k])<=eps){printf("fail!");exit();}\\判断系数矩阵的行列式的值是否为0,确定是否有唯一解for(i=k+1;i<=n;i++){m[i][k]=A[i][k]/A[k][k];for(j=k+1;j<=n;j++){A[i][j]=A[i][j]-m[i][k]*A[k][j];}b[i]=b[i]-m[i][k]*b[k];A[i][k]=0.000000;}\\消元,把第k列对角线以下的系数通过矩阵变换化为0 for(i=0;i<=n;i++){for(j=0;j<=n;j++)printf("%f\t",A[i][j]);printf("%f\n",b[i]);}printf("\n");}\\输出消元后的系数矩阵和右端项\\上述过程为消元过程,以下为回代过程if(fabs(A[n][n])<=eps){printf("A[%d][%d]=0,fail!",n,n);exit(); }\\判断是否有唯一解elsex[n]=b[n]/A[n][n];\\最后一行求解xnfor(i=n-1;i>=0;i--){for(j=i+1;j<=n;j++){ b[i]=b[i]-A[i][j]*x[j];}x[i]=b[i]/A[i][i];}\\从n-1行依次求解x(n-1) (x1)printf("Result is:\n");for(i=0;i<=n;i++)printf("X%d=%f\t",i,x[i]);}\\输出结果。
高斯消元法,列主元素消元法及LU分解法的matlab程序
§2.2.1高斯消元法的MATLAB程序f unction [RA,RB,n,X]=gaus(A,b)B=[A b]; n=length(b); RA=rank(A);RB=rank(B);zhica=RB-RA;if zhica>0,disp('请注意:因为RA~=RB,所以此方程组无解.')returnendif RA==RBif RA==ndisp('请注意:因为RA=RB=n,所以此方程组有唯一解.')X=zeros(n,1); C=zeros(1,n+1);for p= 1:n-1for k=p+1:nm= B(k,p)/ B(p,p);B(k,p:n+1)= B(k,p:n+1)-m* B(p,p:n+1);endendb=B(1:n,n+1);A=B(1:n,1:n); X(n)=b(n)/A(n,n);for q=n-1:-1:1X(q)=(b(q)-sum(A(q,q+1:n)*X(q+1:n)))/A(q,q);endelsedisp('请注意:因为RA=RB<n,所以此方程组有无穷多解.') endend运行命令及结果a=[2.51 1.48 4.53;1.48 0.93 -1.30 ;2.68 3.04 -1.48];b=[0.05;1.03;-0.53];[RA,RB,n,X] =gaus (A,b)请注意:因为RA=RB=n,所以此方程组有唯一解.RA =3RB =3n =3X =1.4531-1.5892-0.2749§2.2.2 列主元素消元法的MATLAB程序function [RA,RB,n,X]=liezhu(A,b)B=[A b]; n=length(b); RA=rank(A);RB=rank(B);zhica=RB-RA;if zhica>0,disp('请注意:因为RA~=RB,所以此方程组无解.')returnendif RA==RBif RA==ndisp('请注意:因为RA=RB=n,所以此方程组有唯一解.')X=zeros(n,1); C=zeros(1,n+1);for p= 1:n-1[Y,j]=max(abs(B(p:n,p))); C=B(p,:);B(p,:)= B(j+p-1,:); B(j+p-1,:)=C;for k=p+1:nm= B(k,p)/ B(p,p);B(k,p:n+1)= B(k,p:n+1)-m* B(p,p:n+1);endendb=B(1:n,n+1);A=B(1:n,1:n); X(n)=b(n)/A(n,n);for q=n-1:-1:1X(q)=(b(q)-sum(A(q,q+1:n)*X(q+1:n)))/A(q,q);endelsedisp('请注意:因为RA=RB<n,所以此方程组有无穷多解.') endend运行命令及结果a=[2.51 1.48 4.53;1.48 0.93 -1.30 ;2.68 3.04 -1.48];b=[0.05;1.03;-0.53];[RA,RB,n,X]=liezhu(A,b)请注意:因为RA=RB=n,所以此方程组有唯一解.RA =3RB =3n =3X =1.4531-1.5892-0.2749§2.2.3 LU分解法的MATLAB程序function hl=zhjLU(A)[n n] =size(A); RA=rank(A);if RA~=ndisp('请注意:因为A的n阶行列式hl等于零,所以A不能进行LU分解.A的秩RA如下:'), RA,hl=det(A);returnendif RA==nfor p=1:nh(p)=det(A(1:p, 1:p));endhl=h(1:n);for i=1:nif h(1,i)==0disp('请注意:因为A的r阶主子式等于零,所以A不能进行LU分解.A的秩RA和各阶顺序主子式值hl依次如下:'), hl;RAreturnendendif h(1,i)~=0disp('请注意:因为A的各阶主子式都不等于零,所以A能进行LU分解.A的秩RA和各阶顺序主子式值hl依次如下:')for j=1:nU(1,j)=A(1,j);endfor k=2:nfor i=2:nfor j=2:nL(1,1)=1;L(i,i)=1;if i>jL(1,1)=1;L(2,1)=A(2,1)/U(1,1);L(i,1)=A(i,1)/U(1,1);L(i,k)=(A(i,k)- L(i,1:k-1)*U(1:k-1,k))/U(k,k);elseU(k,j)=A(k,j)-L(k,1:k-1)*U(1:k-1,j);endendendendhl;RA,U,Lendend运行命令及结果a=[2.51 1.48 4.53;1.48 0.93 -1.30 ;2.68 3.04 -1.48];hl=zhjLU(A)请注意:因为A的各阶主子式都不等于零,所以A能进行LU分解.A的秩RA和各阶顺序主子式值hl依次如下:RA =3U =2.5100 1.4800 4.53000 0.9300 -3.97110 0 -0.0837L =1.0000 0 00.5896 1.0000 01.0677 1.5696 1.0000hl =2.5100 0.1439 13.6410>> U=[2.5100 1.4800 4.53000 0.9300 -3.97110 0 -0.0837];>>L= [1.0000 0 00.5896 1.0000 01.0677 1.5696 1.0000];>> b=[0.05;1.03;-0.53];U1=inv(U); L1=inv(L); X=U1*L1*b,x=A\bX =-111.8440110.953125.7324x =1.4531-1.5892-0.2749例2.1: 用高斯消元法求解下面的非齐次线性方程组。