变容二极管调频电路

合集下载

变容二极管直接调频电路

变容二极管直接调频电路

只有在 2 时为理想线性调制,可得到输出信号是一调频波,其余 都是非线性。因此,在变容管作为振荡回路总电容的情况下,必须 选用 2 的超突变结变容管。否则,频率调制器产生的调频波不仅 出现非线性失真,而且还会出现中心频率不稳定的情况。
小结:
本节课我们主要给大家讲解了变容二极管的直接调频电 路,通过学习,可知其工作原理如下:
近开路。为防止振荡回路L对UQ和短路,必须在变容二极管和L之间加入隔直电容 C1和C2,它们对于高频接近短路,对于调制频率接近开路。综上所述,对于高频 而言,由于L1开路、C3短路,可得高频通路,如图(b)所示。
3.原理电路
C1
L Cj C2
L1
uΩ C3
UQ
L Cj
L1
Cj

UQ
(a)
(b)
(c)
UQ
L Cj
L1
Cj

UQ
(a)
(a)原理电路
(b)
(c)
(b)高频振荡通路 (c)低频控制电路
将变容二极管接入LC正弦振荡器的谐振回路中(VCO),图(a)原理电路中 ,L和变容二极管组成谐振回路,虚方框为变容二极管的控制电路。UQ用来 提供变容二极管的反向偏压,其取值应保证变容二极管在调制信号电压的变 化范围内,始终工作在反向偏置状态,同时还应保证由UQ值决定的振荡频 率等于所要求的载波频率。通常调制电压比振荡回路的高频振荡电压大得多 ,所以变容二极管的反向电压随调制信号变化,即
将调制信号作为压控振荡器的控制电压,直接控制主振荡 回路元件的变容二极管 Cj 的值,使其产生的振荡频率随调制 信号规律而变化,从而实现直接调频的目的。
通信技术专业教学资源库 四川信息职业技术学院

高频课程设计--变容二极管调频电路

高频课程设计--变容二极管调频电路

摘要本设计基于LC振荡器原理,通过改变变容二极管两端的电压来改变电容,以达到改变频率,从而实现设计的要求。

整个设计由三点式振荡器模块、变容二极管调频模块组成,完成了调频电路设计的要求。

关键字:LC振荡器变容二极管调频目录1方案选择: (3)2调频电路设计原理分析 (4)2.1FM调制原理: (4)2.2变容二极管直接频率调制的原理: (4)2.3三极管的参数 (6)3单元电路设计分析 (6)3.1LC振荡电路 (6)3.2调制灵敏度 (7)3.3增加稳定度的措施: (8)3.3.1震荡回路参数LC (8)3.3.2温度补偿法 (9)3.3.3回路电阻 (9)3.3.4加缓冲级 (10)3.3.5有源器件的参数 (10)4 各单元电路元器件参数设置: (11)4.1LC震荡电路直流参数设置: (11)4.2调频电路的直流参数设置 (11)4.3交流电路参数设置: (11)4.4计算调制信号的幅度 (13)元器件清单 (14)设计体会 (15)参考文献 (16)附录 (17)1方案选择:产生调频信号的电路叫做调频器,对他有4个主要的要求:已调波的瞬时频率与调制信号成比例变化。

未调制时的载波频率即已调波的中心频率具有一定的稳定度。

最大频偏与调制频率无关。

无寄生调幅或寄生调幅尽量小。

产生调频的方法主要归纳为两类:1 用调制信号直接控制载波的瞬时频率——直接调频。

2先将调制信号积分,然后对载波进行调相,结果得到调频波——间接调频。

变容二极管调频的主要优点是能够获得较大的频移(相对于间接调频而言),线路简单,并且几乎不需要调制功率,其主要缺点是中心频率的稳定度低。

在满足设计的各项参数的基础上尽量简化电路。

因此本次课程设计采用2CC1C变容二极管进行直接调频电路设计。

2调频电路设计原理分析2.1 FM 调制原理:FM 调制是靠信号使频率发生变化,振幅可保持一定,所以噪声成分易消除。

设载波t w Vcm Vc c cos =,调制波t w Vsm Vs s cos =。

变容二极管调频实验报告

变容二极管调频实验报告

变容二极管调频实验报告变容二极管调频实验报告引言调频(Frequency Modulation,简称FM)是一种常见的无线通信技术,其基本原理是通过改变载波信号的频率来传输信息。

变容二极管是一种特殊的二极管,具有随电压变化而改变电容的特性。

本次实验旨在探究变容二极管在调频中的应用,并分析其原理和实验结果。

实验步骤1. 实验器材准备:准备一个变容二极管、一个信号发生器、一个示波器和一根连接线。

2. 连接实验电路:将变容二极管的正极连接到信号发生器的输出端,将其负极连接到示波器的输入端。

3. 调节信号发生器:将信号发生器的频率调节到一个较低的值,例如100 Hz。

4. 观察示波器波形:在示波器上观察到一个稳定的正弦波信号。

5. 调节信号发生器频率:逐渐增加信号发生器的频率,观察示波器上波形的变化。

6. 记录实验结果:记录不同频率下示波器上的波形变化。

实验原理变容二极管的电容值随着电压的变化而变化,当电压增大时,电容值减小,反之亦然。

在调频中,我们可以利用这一特性来改变载波信号的频率。

当变容二极管的电压变化时,其电容值也随之变化,从而导致载波信号的频率发生变化。

实验结果及分析在实验过程中,我们逐渐增加信号发生器的频率,观察到示波器上波形的变化。

实验结果显示,随着频率的增加,波形的周期变短,频率也随之增大。

这是因为变容二极管的电容值随着电压的增加而减小,导致载波信号的频率增大。

通过实验结果,我们可以看出变容二极管在调频中起到了关键作用。

通过改变变容二极管的电压,我们可以实现对载波信号频率的调节。

这对于无线通信系统中的频率调节非常重要,可以实现更高效的数据传输和信号传播。

结论本次实验通过观察变容二极管在调频中的应用,探究了其原理和实验结果。

实验结果表明,变容二极管的电容值随电压变化而变化,通过改变电压可以实现对载波信号频率的调节。

这为无线通信系统中的频率调节提供了一种有效的解决方案。

通过本次实验,我们深入了解了变容二极管在调频中的应用,为进一步研究和应用该技术奠定了基础。

可采用变容二极管晶体直接调频电路

可采用变容二极管晶体直接调频电路
高 频 电 子 线 路
5.3
5.3.1
直接调频电路
变容二极管直接调频电路
一、变容二极管的特性
变容二极管的符号和结电容 C j 随外加偏压
变化的关系如图5.3.1所示,其表达式为
Cj
(1
C j (0) VB )n
式中: :为加到变容管两端的电压;
VB :变容管的势垒电位差(锗管为0.2V,硅管
主讲 元辉
四、电路实例分析
高 频 电 子 线 路
用在卫星通信地面站调 频发射机中。
图5.3.6 140 MHz的变容管作回路总电容的直接调频电路
主讲
元辉
高 频 电 子 线 路
调频电路的高频通路、变容管的直流通路和音频控 制电路分别如图(b)、(d)、(c)所示。
注意: 画高频通路时,忽略了接在集电极上的75Ω小电阻。 画音频控制通路时,忽略了直流通路中的各个电阻。 由图(b)高频通路知,这是一个变容二极管作回路总电
3、变容二极管的控制电路
图(c)为变容二极管的控制电路。 C1 的作用使 结电容不 受振荡回路的影响。
图5.3.2 变容二极管作为回路总电容的直接调频原理电路
主讲
元辉
高 频 电 子 线 路
4、调频原理分析 由于振荡回路中仅包含一个电感L和一个变容二极管
等效电容 C j,在单频调制信号 (t ) Vm cos t 的作用下 回路振荡角频率,即调频特性方程为
osc (t )
1 LC j
1 LC jQ (1 m cos t )n
c (1 m cos t )
n 2
1 式中 c 为 0 时的振荡角频率,即调频电路 LC jQ
中心角频率(载波角频率),其值由VQ 控制。

变容二极管调频实验报告(高频电子线路实验报告)

变容二极管调频实验报告(高频电子线路实验报告)

变容二极管调频实验一、实验目的1、掌握变容二极管调频电路的原理。

2、了解调频调制特性及测量方法。

3、观察寄生调幅现象,了解其产生及消除的方法。

二、实验内容1、测试变容二极管的静态调制特性。

2、观察调频波波形。

3、观察调制信号振幅时对频偏的影响。

4、观察寄生调幅现象。

三、实验仪器1、信号源模块1块2、频率计模块1块3、 3 号板1块4、双踪示波器1台5、万用表1块6、频偏仪(选用)1台四、实验原理及电路1、变容二极管工作原理调频即为载波的瞬时频率受调制信号的控制。

其频率的变化量与调制信号成线性关系。

常用变容二极管实现调频。

变容二极管调频电路如图1所示。

从P3处加入调制信号,使变容二极管的瞬时反向偏置电压在静态反向偏置电压的基础上按调制信号的规律变化,从而使振荡频率也随调制电压的规律变化,此时从P2处输出为调频波(FM)。

C15为变容二级管的高频通路,L2为音频信号提供低频通路,L2可阻止外部的高频信号进入振荡回路。

本电路中使用的是飞利浦公司的BB910型变容二极管,其电压-容值特性曲线见图12-4,从图中可以看出,在1到10V的区间内,变容二极管的容值可由35P到8P左右的变化。

电压和容值成反比,也就是TP6的电平越高,振荡频率越高。

图2表示出了当变容二极管在低频简谐波调制信号作用情况下,电容和振荡频率的变化示意图。

在(a )中,U 0是加到二极管的直流电压,当u =U 0时,电容值为C 0。

u Ω是调制电压,当u Ω为正半周时,变容二极管负极电位升高,即反向偏压增大;变容二极管的电容减小;当u Ω为负半周时,变容二极管负极电位降低,即反向偏压减小,变容二极管的电容增大。

在图(b )中,对应于静止状态,变容二极管的电容为C 0,此时振荡频率为f 0。

因为LCf π21=,所以电容小时,振荡频率高,而电容大时,振荡频率低。

从图(a )中可以看到,由于C-u 曲线的非线性,虽然调制电压是一个简谐波,但电容随时间的变化是非简谐波形,但是由于LCf π21=,f 和C 的关系也是非线性。

变容二极管调频电路设计

变容二极管调频电路设计

摘要变容二极管调频电路包含有主振电路和调频电路两部分。

主振电路有LC正弦波振荡器构成,调频电路有变容二极管和电容、电阻构成。

该设计给出变容二极管调频电路的工作原理和设计电路图,并对电路的主要性能参数进行分析。

介绍了变容二极管的性质和各部分组成电路,最后还附有元器件清单和参考文献。

第一章变容二极管调频电路的基本原理第二章元器件及各部分电路的介绍变容二极管的特性概述变容二极管是根据PN结的结电容随反向电压大小而变化的原理设计的一种二极管。

它的极间结构、伏安特性与一般检波二极管没有多大差别。

不同的是在加反向偏压时,变容二管呈现较大的结电容。

这个结电容的大小能灵敏地随反向偏压而变化。

正是利用了变容二极管这一特性,将变容二极管接到振荡器的振荡回路中,作为可控电容元件,则回路的电容量会随调制信号电压而变化,从而改变振荡频率,达到调频的目的。

三极管VT——起放大作用。

在输入信号的控制之下,通过三极管将直流电源的能量,转换为输出信号的能量。

负载电阻Rc、RL——将变化的集电极电流转换为电压输出。

偏置电路Rb1、Rb2、Re——提供合适的偏置,保证三极管工作在线性区,使信号不产生失真。

这种由上下两个电阻Rb1,Rb2提供偏置的形式也称为分压偏置,或称为射极偏置。

耦合电容C1、C2——输入耦合电容C1保证交流信号加到发射结,但又不影响发射结偏置。

输出耦合电容C2保证信号输送到负载,不影响集电结偏置。

直流电源VCC——为放大电路提供工作电源,给三极管放大信号提供能源变容二极管偏置电路电源V1、电阻R12,电位器R13,以及电阻R14为变容二极管工作提供合适的静态工作点,并保证变容二极管工作在反向偏压的情况下。

由于变容二极管的静态电容会随温度、偏置电压的变化而变化,造成中心频率的不稳定,在电路中电容C16 、C17 的加入可以提高振荡电路的中心频率稳定度,也可以减少高频振荡信号对变容二极管的影响,但C3 ,C4 的接入电路,其调制灵敏度和最大偏频都会受到影响。

调频电路,变容二极管

调频电路,变容二极管

变容二极管一、实验目的1.了解变容二极管调频器的电路结构与电路工作原理2.掌握调频器的调制特性及其测量方法3.观察寄生调幅现象和了解其产生的原因及其消除方法 二、实验预习要求实验前,预习“电子线路非线性部分”第5章:角度调制与解调电路;“高频电子线路”第八章:角度调制与解调;“高频电子技术”第9章:角度调制与解调—非线性频率变换电路等有关章节的内容。

三、实验原理1.变容二极管直接调频电路:变容二极管实际上是一个电压控制的可变电容元件。

当外加反向偏置电压变化时,变容二极管PN 结的结电容会随之改变,其变化规律如图3-1所示。

图3-1变化规律直接调频的基本原理是用调制信号直接控制振荡回路的参数,使振荡器的输出频率随调制信号的变化规律呈线性改变,以生成调频信号的目的。

若载波信号是由LC 自激振荡器产生,则振荡频率主要由振荡回路的电感和电容元件决定。

因而,只要用调制信号去控制振荡回路的电感和电容,就能达到控制振荡频率的目的。

¿¿¿¿¿¿若在LC 振荡回路上并联一个变容二极管,如图3-2所示,并用调制信号电压来控制变容二极管的电容值,则振荡器的输出频率将随调制信号的变化而改变,从而实现了直接调频的目的。

2.电容耦合双调谐回路相位鉴频器:相位鉴频器的组成方框图如3-3示。

图中的线性移相网络就是频—相变换网络,它将输入调频信 号u1 的瞬时频率变化转换为相位变化的信号u2,然后与原输入的调频信号一起加到相位检波器,检出反映频率变化的相位变化,从而实现了鉴频的目的。

图3-4的耦合回路相位鉴频器是常用的一种鉴频器。

这种鉴频器的相位检波器部分是由两个包络检波器组成,线性移相网络采用耦合回路。

为了扩大线性鉴频的范围,这种相位鉴频器通常都接成平衡和差动输出。

图3-4 耦合回路相位鉴频器图3-5(a )是电容耦合的双调谐回路相位鉴频器的电路原理图,它是由调频—调相变换器和相位检波器两部分所组成。

变容二极管调频电路

变容二极管调频电路

未知驱动探索,专注成就专业
变容二极管调频电路
变容二极管调频电路是一种常用于无线通信系统中的调频电路。

这种电路使用变容二极管作为频率调谐元件,通过改变二极管的偏置电压来调节电路的工作频率。

变容二极管是一种特殊的二极管,其结构中包含具有可变电容的介质。

当对变容二极管施加不同的偏置电压时,其电容值会相应地改变。

这样,通过改变二极管的电压,可以调节电路中的共振电感和变容二极管之间的共振频率。

在变容二极管调频电路中,常用的电路结构是将变容二极管与一个电感和一个固定电容构成谐振电路。

根据调谐需要,改变变容二极管的电压,可以改变谐振电路的共振频率。

从而实现对电路的调频功能。

变容二极管调频电路被广泛应用于无线通信系统中,例如无线电广播、移动通信等领域。

其优点是调谐范围广、调谐速度快、结构简单等。

1。

变容二极管调频实验

变容二极管调频实验

实验十二 变容二极管调频实验一、实验目的1.掌握变容二极管调频电路的原理。

2.了解调频调制特性及测量方法。

3.观察寄生调幅现象,了解其产生及消除的方法。

二、实验内容1.观察测试变容二极管的静态调制特性。

2.观察调频波波形。

3.观察调制信号振幅时对频偏的影响。

4.观察寄生调幅现象。

三、实验原理1.变容二极管工作原理调频即为载波的瞬时频率受调制信号的控制。

其频率的变化量与调制信号成线性关系。

常用变容二极管实现调频。

)(2121j N C C L LCf +==ππC-u 曲线可表示为n Bu C -=2222)2(1-==Bu u LA C π在1到10V 的区间内,变容二极管的容值可由35P 到8P 左右的变化调频灵敏度调频灵敏度定义为每单位调制电压所产生的频偏,以Sf 表示,单位为kHz/V 。

LBnu u f S nfπ412-=∂∂= 0U f S f =S f =|Δf| /m u Ωm u Ω为调制信号的幅度(峰值)2.电路原理图)14(1210CC C L f +=π设调制信号:υΩ(t)= V Ωcos Ωt , 载波振荡电压为:a ( t ) = A ocos ωot根据定义,调频时载波的瞬时频率ω(t)随υΩ(t)成线性变化,即 ω(t)= ωo + KfV Ωcos Ωt =ωo + Δωcos Ωt 则调频波的数字表达式如下: af (t) = Aocos(ωot + sin Ωt)或 af (t) = Aocos(ωot + mf sin Ωt)四、实验步骤1、静态调制特性测量将3号板SW1拨置“LC ”,P3端先不接音频信号,将频率计接于P2处。

调节电位器W2,记下变容二极管测试点TP6电压和对应输出频率,并记于下表中。

2.动态测试将电位器W2置于某一中值位置,将峰-峰值为4V ,频率为1kHz 的音频信号(正弦波)从P2输入。

在TP6用示波器观察,可以看到调频信号特有的疏密波。

变容二极管调谐电路

变容二极管调谐电路

变容二极管调谐电路变容二极管调谐电路是一种常见的电路,用于改变电路中的频率响应。

它广泛应用于收音机、电视机、音响系统等电子设备中。

在本文中,将介绍变容二极管调谐电路的基本原理、电路图和工作原理,并讨论其应用和优缺点。

变容二极管调谐电路的基本原理是利用二极管的电容特性来改变电路中的频率响应。

当二极管的阳极加正偏电压时,二极管上会形成一个可变的电容。

这个电容的大小与二极管的偏置电流、阳极电压以及二极管中的耗尽带宽有关。

通过调节这些参数,可以实现对电路中的频率响应进行调整。

变容二极管调谐电路的电路图通常由电容、电阻和二极管组成。

其中,电容用于控制频率响应的范围,电阻用于控制电路的增益,二极管起到频率调谐的作用。

当信号通过电容时,其频率响应会被调整,从而实现对特定频率范围内信号的放大和滤波。

变容二极管调谐电路的工作原理如下:当输入信号经过电容和二极管时,二极管的电容会改变输入信号的相位和幅度。

具体来说,当输入信号的频率较高时,二极管的电容较小,模拟信号能够有效地通过二极管,并得到放大。

而当输入信号的频率较低时,二极管的电容较大,模拟信号将被滤波。

变容二极管调谐电路的应用十分广泛。

在收音机中,它被用于接收不同频段的无线电信号。

通过调节二极管的电容,可以选择收听的频率范围。

在电视机中,变容二极管调谐电路用于调整图像和声音的频率响应,以提供清晰的图像和声音效果。

在音响系统中,它通常用来调整音频信号的频率响应,以满足不同音乐风格和音效的需求。

变容二极管调谐电路有一些优点和缺点。

首先,它具有较高的频率响应范围,可以满足不同频率信号的需求。

其次,它体积小、功耗低、价格便宜,适用于大规模生产。

然而,变容二极管调谐电路也存在一些缺点。

例如,由于二极管的电容是通过偏置电流来控制的,所以在实际应用中需要注意电容的稳定性和可靠性。

此外,频率调谐时,会导致一定的信号衰减和失真。

总之,变容二极管调谐电路是一种常用的电路,通过调节二极管的电容来改变电路中的频率响应。

实验八 变容二极管调频电路

实验八 变容二极管调频电路

实验八 变容二极管调频电路一、实验目的1. 进一步学习掌握频率调制相关理论。

2. 掌握用变容二极管调频振荡器实现FM 的方法。

3. 理解静态调制特性、动态调制特性概念和测试方法。

二、实验使用仪器1.变容二极管调频电路实验板2.谱分析仪、低频信号源、100MHz 双踪示波器、万用表 三、实验基本原理与电路1. 变容二极管调频原理变容二极管的调频原理可用图8-1所示。

在变容二极管上加一固定的反向直流偏压UR和调制电压Ωu (图a),则变容二极管电容量j C 将随Ωu 改变,通过二极管的变容特性(图b)可以找出电容C随时间的变化曲线(图c)。

此电容C由两部分组成,一部分是0C 为固定值;另一部分近似为t C m Ωcos ,为变化值,m C 是变化部分的幅度,则有t C C C m j j Ω+=cos 0 (8-1)将变容二极管接入振荡器的谐振回路,若调制信号的幅度不大,即在窄带调制时,可实现线性调频。

ff图8-1 变容二极管调频原理3. 变容二极管调频实验电路变容二极管调频实验电路如图8-2,置于本实验讲义末。

实验电路的交流谐振回路如图8-3(a )。

若65C C <<、75C C <<、2C C j <<,则图8-3(a )可近似为图7-4(b )。

四、实验内容1.变容二极管调频静态调制特性测试。

2.变容二极管调频动态调制特性测试。

3.变容二极管的Cj ~V 特性曲线的测量。

五、实验步骤1.变容二极管调频静态调制特性测试在实验箱主板上插上变容二极管调频实验电路模块。

接通实验箱上电源开关,电源指标灯点亮。

断开J2,连接J1。

调整电位器RW1,在测试点TP2测电压为+5V ,即变容二极管的反向偏压为-5V 。

连接J1、J2。

调整微调电容CV1、电位器RW2、RW3在TP3得到频率为10.7MHz 的最大不失真正弦信号(频率由OUT 端测试)。

调整RW1,改变变容二极管两端的反向电压V D ,测量变容二极管调频实验电路的输出频率,得到变容二极管调频静态调制特性。

变容二极管调频电路

变容二极管调频电路

变容二极管调频电路实现调频的法很多,大致可分为两类,一类是直接调频,另一类是间接调频。

直接调频是用调制信号电压直接去控制自激振荡器的振荡频率〔实质上是改变振荡器的定频元件〕,变容二极管调频便属于此类。

间接调频那么是利用频率和相位之间的关系,将调制信号进展适当处理〔如积分〕后,再对高频振荡进展调相,以到达调频的目的。

两种调频法各有优缺点。

间接调频器间接调频的优点是载波频率比拟稳定,但电路较复杂,频移小,且寄生调幅较大,通常需屡次倍频使频移增加。

对调频器的根本要调频频移大,调频特性好,寄生调幅小。

调频器广泛用于调频播送、电视伴音、微波通信、锁相电路和扫频仪等电子设备直接调频的稳定性较差,但得到的频偏大,线路简单,故应用较广;间接调频稳定性较高,但不易获得较大的频偏。

常用的变容二极管直接调频电路如图Z0916〔a〕所示。

图中D为变容二极管,C2、L1、和C3组成低通滤滤器,以保证调制信号顺利加到调频级上,同时也防止调制信号影响高频振荡回路,或高频信号反串入调制信号电路中。

调制级本身由两组电源供电。

对高频振荡信号来说,L1可看作开路,电源EB的交流电位为零,R1与C3并联;如果将隔直电容C4近似看作短路,R2看作开路,那么可得到图〔b〕所示的高频等效电路。

不难看出,它是一个电感三点式振荡电路。

变容二极管D的结电容Cj,充当了振荡回路中的电抗元件之一。

所以振荡频率取决于电感L2和变容二极变容二极管的正极直流接地〔L2对直流可视为短路〕,负极通过R1接+EB,使变容二极管获得一固定的反偏压,这一反偏压的大小与稳定,对调频信号的线性和中心频率的稳定性及精度,起着决定性作用。

对调制信号来说,L2可视为短路,调制信号通过隔直流电容C1和L1加到变容二极管D的负极,因此,当调制信号为正半时,变容二极管的反偏电压增加,其结电容减小,使振荡频率变高;调制信号为负半时,变容二极管的反偏压减小,其结电容增大,使振荡频率变低。

实验六 变容二极管调频精选全文完整版

实验六  变容二极管调频精选全文完整版

可编辑修改精选全文完整版《高频电子线路实验》实验六变容二极管调频一、实验目的1、掌握变容二极管调频的工作原理;2、学会测量变容二极管的C j ~V 特性曲线;3、学会测量调频信号的频偏及调制灵敏度。

二、实验内容1、 调节电路,观察调频信号输出波形。

2、 观察并测量LC 调频电路输出波形。

3、 观察频偏与接入系数的关系。

4、 测量变容二极管的C j ~V 特性曲线;5、 测量调频信号的频偏及调制灵敏度。

三、实验仪器1、双踪示波器 一台2、频率特性扫频仪(选项) 一台四、实验原理1、实验原理(1)变容二极管调频原理所谓调频,就是把要传送的信息(例如语言、音乐)作为调制信号去控制载波(高频振荡信号)的瞬时频率,使其按调制信号的规律变化。

设调制信号: ()t V t Ω=ΩΩcos υ,载波振荡电压为:()t A t a o o ωcos =根据定义,调频时载波的瞬时频率()t ω随()t Ωυ成线性变化,即()t t V K t o f o Ω∆+=Ω+=Ωcos cos ωωωω (6-1)则调频波的数字表达式如下:()⎪⎪⎭⎫ ⎝⎛ΩΩ+=Ωt V K t A t a f o o f sin cos ω 或 ()()t m t A t a f o o f Ω+=sin cos ω(6-2)式中: Ω=∆V K f ω是调频波瞬时频率的最大偏移,简称频偏,它与调制信号的振幅成正比。

比例常数K f 亦称调制灵敏度,代表单位调制电压所产生的频偏。

式中:F f V K m f f ∆=∆=Ω=Ωω称为调频指数,是调频瞬时相位的最大偏移,它的大小反映了调制深度。

由上公式可见,调频波是一等幅的疏密波,可以用示波器观察其波形。

如何产生调频信号?最简便、最常用的方法是利用变容二极管的特性直接产生调频波,其原理电路如图6—1所示。

图6-1 变容二极管调频原理电路变容二极管j C 通过耦合电容1C 并接在N LC 回路的两端,形成振荡回路总电容的一部分。

变容二极管调频

变容二极管调频

10pF
20pF
(a) 图8-11 变容管直接调频实例
(b)
由振荡器的等效电路可见,这是电容三点式电路,
变容管部分接入振荡回路,它的固定反偏电压由+9V电源
经电阻56k和22k分压后取得,调制信号v经高频扼流 圈47H加至变容管起调频作用。图中各个1000pF电容对高 频均呈短路作用,振荡管接成共基极组态。
2
2
由以上各式可知,若选取=1,则二次、三次非线性失 真以及中心频率偏移均可为零。
CC CC C (t ) C C CC 1 m cos t C0 C0 C0 当 CC CC 时上式近似为 m cost 1 C0 C0 2 CC C0 C (t ) m cost CC 2 (1 ) C0
2
CC
通常 CC (m, ) 1 CC 成立
C0 C0

C C C0 C(t ) (m, ) C (1 C ) 2 C0
2
(8-33)
说明了振荡回路电容的变化量△C(t)与调制信号 [体现在函数 (m, ) 中]之间的关系
根据频率稳定度的概念可知,当<<0时
CC C j
Cc (8-32) Cc C 1 (1 m cost ) 1 c C0 C0 ( 1 m cos t ) 从上式看出,△C(t)中与时间有关的部分是 。 将其在 m cos t =0附近展开成泰勒级数(参看附录8.1),得
图中 C (t ) C (t ) C
f 1 C L 1 C 2 C L 2 C (8-34) f0 0
式中0是未调制时载波角频率;C是调制信号为零时的回路 总电容。 由于△C/C很小,所以f/ f很小,属于小频偏的情况 调频时,△C随调制信号变化,因而△f随时间变化,以 △f(t)表示 f(t)=Kf0[A0+A1cost+A2cos2t+……] =f0+f1+f2+f3+…… (8-35)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要调频广播具有抗干扰性能强、声音清晰等优点,获得了快速的发展。

调频电台的频带通常大约是200~250kHz,其频带宽度是调幅电台的数十倍,便于传送高保真立体声信号。

由于调幅波受到频带宽度的限制,在接收机中存在着通带宽度与干扰的矛盾,因此音频信号的频率局限于30~8000Hz的范围内。

在调频时,可以将音频信号的频率范围扩大至30~15000Hz,使音频信号的频谱分量更为丰富,声音质量大为提高。

目前,变容二极管直接调频电路是目前应用最广泛的直接调频电路,它是利用变容二极管反向所呈现的可变电容特性实现调频的,具有工作频率高固有损耗小等特点。

现有的对于调频电路的研究与仿真主要集中在锁相环电路,变容二极管直接调频电路研究较少,对于变容二极管静态调制特性的研究更是几乎无人涉及。

变容二极管为特殊二极管的一种。

当外加顺向偏压时,有大量电流产生,PN(正负极)接面的耗尽区变窄,电容变大,产生扩散电容效应;当外加反向偏压时,则会产生过渡电容效应。

但因加顺向偏压时会有漏电流的产生,所以在应用上均供给反向偏压。

在变容二极管直接调频电路中,变容二极管作为一压控电容接入到谐振回路中,有所学的正弦波振荡器章节中,我们知道振荡器的振荡频率由谐振回路的谐振频率决定。

因此,当变容二极管的结电容随加到变容二极管上的电压变化时,由变容二极管的结电容和其他回路元件决定的谐振回路的谐振频率也就随之变化,若此时谐振回路的谐振频率与加到变容二极管上的调制信号呈线性关系,就完成了调频的功能,这也是变容二极管调频的原理。

关键词:LC振荡电路、变容二极管、调频1.设计要求(1)主振频率=8MHZ(2)频率稳定度/≤0.0005/h(3)主振级的输出电压(4)最大频偏(5)电源电压= 5V2.电路原理分析变容二极管为特殊二极管的一种。

当外加顺向偏压时,有大量电流产生,PN(正负极)接面的耗尽区变窄,电容变大,产生扩散电容效应;当外加反向偏压时,则会产生过渡电容效应。

但因加顺向偏压时会有漏电流的产生,所以在应用上均供给反向偏压。

变容二极管直接调频电路由于变容二极管的电容变化范围大,因而工作频率变化就大,可以得到较大的频偏,且调制灵敏度高、固有损耗小、使用方便、构成的调频器电路简单。

在变容二极管直接调频电路中,变容二极管作为一压控电容接入到谐振回路中,有所学的正弦波振荡器章节中,我们知道振荡器的振荡频率由谐振回路的谐振频率决定。

因此,党变容二极管的结电容随加到变容二极管上的电压变化时,由变容二极管的结电容和其他回路元件决定的谐振回路的谐振频率也就随之变化,若此时谐振回路的谐振频率与加到变容二极管上的调制信号呈线性关系,就完成了调频的功能,这也是变容二极管调频的原理。

3.电路设计3.1 主振电路设计本文中所用电路采用常见的电容三点式振荡电路实现LC振荡,简便易行。

式中,L为LC振荡电路的总电感量,C为振荡电路中的总电容,主要取决于C3、C7、C8、Cc1及变容二极管反偏时的结电容Cj。

,变容二极管电容Cj作为组成LC振荡电路的一部分,电容值会随加在其而端的电压的变化而变化,从而达到变频的目的。

R4、R5、R6、R7和W2调节并设置电容三点式振荡器中T1管的静态工作点,R8、R9、R10调节并设置T2管的静态工作点,C7、C9、C10以及L4、CC1、C8构成LC 振荡电路。

电容三点式振荡器电路等效电路如下图所示。

T33DG12CC9100pFC10330pFL 1.2uH 6117图1 电容三点式振荡器等效电路3.2 谐振回路总电容CjC CjC Ca C ++=∑33 回路总电容变化量j2C p C ∆=∆∑3.3调制电路设计单位调制电压所引起的最大频偏称为调制灵敏度,以Sf 表示,单位为 kHz/V ,即Sf = △f m / V ΩmV Ωm 为调制信号的幅度;△fm 为变容管的结电容变化△Cj 时引起的最大频偏。

在频偏较小时,△fm 与△C ∑的关系可采用下面近似公式,即∑∑∆⋅-≈∆Q o m 21C Cf f调制灵敏度调制灵敏度Sf 可以由变容二极管Cj-v 特性曲线上VQ 处的斜率kc 计算。

Sf 越mΩQ o 2V C C f S f ∑∑∆⋅=大,说明调制信号的控制作用越强,产生的频偏越大。

改变CC1的值可以使变容二极管的工作点调节到最佳状态。

3.4 总电路设计变容二极管调频电路主要是由主振电路和变容二极管直接调频电路构成,电路如图所示。

图2 未加入调制信号电路图图3 未加入调制信号仿真波形图4 加入调制信号电路图5 加入调制信号仿真波形4.电路元器件参数设置4.1 LC 震荡电路直流参数设置ICQ 一般为1~4mA 。

若ICQ 偏大,振荡幅度增加,但波形失真加重,频率稳定性变差。

取I CQ1=2mA 。

取V CEQ1=(1/2)V CC =6V 。

可以求出R4+R5=3K Ω,取R4=2K Ω,R5=1K Ω;β=60,I BQ =β×I BQ ,为使减小IBQ 对偏执电阻的电位偏执效果的影响,取R6和R7上流过的电流IB>>IBQ ,取R6=15K Ω,R7=8.2K Ω,W2的可调最大阻值为20K 。

实验实际测得T1管Vc1=7.8V ,Vce1=5.6V ,Vbe=0.64V ,基本接近理论值。

4.2 变容管调频电路参数设置由LC 震荡频率的计算公式可求出LCf π210=,若取C=()718C CC C Ca +=,本次实验中可调电容CC1规格为5~120pF ,计算时取5pF ,C7=24pF 。

L4≈1.2μH 。

实验中可适当调整CC1的值。

电容C9、C10由反馈系数 F 及电路条件C7<<C9,C7<<C10 所决定,若取C9=100pF ,由2/1~8/1/32==C C F ,则取 C10=330 pF ,取耦合电容 C1=4.7μF ,C14=0.1uF 。

图1为变容二极管部分接入振荡回路的等效电路,接入系数p 及回路总电容C ∑分别为CjC C p +=33CjC CjC Ca C ++=∑33为减小振荡回路高频电压对变容管的影响, p 应取小,但p 过小又会使频偏达不到指标要求。

可以先取p=0.2,然后在实验中调试。

取C3=30pF ,C82=330pF ,电位器W1规格为5K 。

R1与R2为变容二极管提供静态时的反向直流偏置电压V Q ,电阻R3称为隔离电阻,常取R3>>R2,R3>>R1,以减小调制信号V Ω对VQ 的影响。

取 R2=3.9k Ω ,隔离电阻R3=180k Ω,R1=20K Ω。

实际调试时,L1用1.2uH 代替,测得C3与L1之间节点对地电压为0.5V,较理论值偏小。

R1与R2之间节点对地电压为2.7V 。

4.3 T2管参数设置对输出电路,为保证T2管正常工作,可取R8=8.2K ,R9=10K ,R10=1.5K ,实验实测得R8与R9间节点对地电压为6.4V,Ve2=5.69V,则Vbe2≈0.7V ,基本符合理论值。

取耦合电容C12=33pF ,C13=0.01uF4.4 调制信号的幅度计算为达到最大频偏△fm 的要求,调频信号的主振频率和最大频偏△fm ,可由下列关系式求出。

LCf π210=∑∑∆-=∆Q om 21C C f f计算以上各式可得MHz f 945.200≈,△fm ≈±20KHz ,满足实验要求。

5.PCB 图图6 原理图图7 PCB图6.元器件清单名称规格数量备注电阻20K,3.9K,180K,2K,1K,15K,8.2K,10K,1.5K8.2K 2个其余各一个电位器5K,20K 各一个电容4.7UF,30PF,0.1UF,330PF,5PF,24PF,100PF,33PF,0.01UF5-120PF30PF二个;0.01UF二个其余电容各一个4.7UF为耦合电容5-120PF为可调电容电感 1.2UH 2 变容二极管BB910 1 三极管3DG6C 27.心得与体会通过对变容二极管调频电路的设计与研究,我们不仅对变容二极管的调频原理有了更深刻的了解,还对调频电路的应用进行了一定的了解,调频电路在无线电通信中是非常重要的调制方式,应用非常广泛,特别是在数字调制中应用更广,频率调制简称调频,是指用调制信号去控制高频载波的频率,,使之随调制信号的规律变化,确切的讲,是使载波信号的频率随调制信号线性变化,而振幅保持不变。

这在示波器上能明显观察到双峰调频波。

变容二极管调频电路是直接调频电路的一种,主要是因为变容二极管直接调频电路简单、性能良好。

同时变容二极管的电容变化范围大,因而工作频率就达,可以得到较大的频偏,而且调制灵敏度高、固有损耗小,因而变容二极管直接调频电路时一种应用非常广泛的调频电路。

在课程设计的整个过程中,当我们明确了目的和要求后,电路就变得简单了,而且在图书馆和网上,我们查阅了大量的资料,最终确定了电路连接图,在仿真软件中我们对电路图进行了准确的仿真,保证了电路图的准确性,焊接过程是调试前的最主要的准备工作。

不过事实证明我们是成功的。

通过两周的课程设计,我认识到了知识与实践的重要性,只有牢记所学的专业知识,才会有清晰的设计思路,如果没有熟练地专业知识和技能,不单单在设计过程中会一筹莫展,将来步入社会了什么都不懂,这是大学生最忌讳的事情,当然细节决定成败,在课程设计过程中哪怕一个细节都会决定你的实验成功与否。

无论出现什么问题,只要你耐心的去面对和改进,你就会慢慢成功。

所以这次课程设计不仅仅让我明白了专业知识的重要性,更让我明白了理论与实际结合的重要性。

8.主要参考文献【1】谢佳奎.电子线路(非线性部分).北京:高等教育出版社,2002 【2】宋树祥.高频电子线路.北京:北京大学出版社,2007【3】高吉祥.高频电子线路设计.北京:电子工业出版社,2007【4】张肃文.高频电子线路.北京:高等教育出版社,2002【5】曹兴雯.高频电子线路.北京:北京大学出版,200411。

相关文档
最新文档