2019-2020中考数学选择填空与大题压轴题精选
2019年全国各地中考数学压轴题汇编:选择、填空(湖南专版)(解析卷)

2019年全国各地中考数学压轴题汇编(湖南专版)选择、填空参考答案与试题解析一.选择题(共11小题)1.(2019•长沙)如图,△ABC中,AB=AC=10,tan A=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+BD的最小值是()A.2B.4C.5D.10解:如图,作DH⊥AB于H,CM⊥AB于M.∵BE⊥AC,∴∠AEB=90°,∵tan A==2,设AE=a,BE=2a,则有:100=a2+4a2,∴a2=20,∴a=2或﹣2(舍弃),∴BE=2a=4,∵AB=AC,BE⊥AC,CM⊥AB,∴CM=BE=4(等腰三角形两腰上的高相等))∵∠DBH=∠ABE,∠BHD=∠BEA,∴sin∠DBH===,∴DH=BD,∴CD+BD=CD+DH,∴CD+DH≥CM,∴CD+BD≥4,∴CD+BD的最小值为4.故选:B.2.(2019•株洲)从﹣1,1,2,4四个数中任取两个不同的数(记作a k,b k)构成一个数组M K={a k,b k}(其中k=1,2…S,且将{a k,b k}与{b k,a k}视为同一个数组),若满足:对于任意的M i={a i,b i}和M j={a j,b j}(i≠j,1≤i≤S,1≤j≤S)都有a i+b i≠a j+b j,则S的最大值()A.10B.6C.5D.4解:∵﹣1+1=0,﹣1+2=1,﹣1+4=3,1+2=3,1+4=5,2+4=6,∴a i+b i共有5个不同的值.又∵对于任意的M i={a i,b i}和M j={a j,b j}(i≠j,1≤i≤S,1≤j≤S)都有a i+b i≠a j+b j,∴S的最大值为5.故选:C.3.(2019•衡阳)如图,在直角三角形ABC中,∠C=90°,AC=BC,E是AB的中点,过点E作AC和BC的垂线,垂足分别为点D和点F,四边形CDEF沿着CA方向匀速运动,点C与点A重合时停止运动,设运动时间为t,运动过程中四边形CDEF与△ABC的重叠部分面积为S.则S关于t的函数图象大致为()A.B.C.D.解:∵在直角三角形ABC中,∠C=90°,AC=BC,∴△ABC是等腰直角三角形,∵EF⊥BC,ED⊥AC,∴四边形EFCD是矩形,∵E是AB的中点,∴EF=AC,DE=BC,∴EF=ED,∴四边形EFCD是正方形,设正方形的边长为a,如图1当移动的距离<a时,S=正方形的面积﹣△EE′H的面积=a2﹣t2;当移动的距离>a时,如图2,S=S△AC′H=(2a﹣t)2=t2﹣2at+2a2,∴S关于t的函数图象大致为C选项,故选:C.4.(2019•邵阳)如图,在Rt△ABC中,∠BAC=90°,∠B=36°,AD是斜边BC上的中线,将△ACD沿AD对折,使点C落在点F处,线段DF与AB相交于点E,则∠BED等于()A.120°B.108°C.72°D.36°解:∵在Rt△ABC中,∠BAC=90°,∠B=36°,∴∠C=90°﹣∠B=54°.∵AD是斜边BC上的中线,∴AD=BD=CD,∴∠BAD=∠B=36°,∠DAC=∠C=54°,∴∠ADC=180°﹣∠DAC﹣∠C=72°.∵将△ACD沿AD对折,使点C落在点F处,∴∠ADF=∠ADC=72°,∴∠BED=∠BAD+∠ADF=36°+72°=108°.故选:B.5.(2019•岳阳)对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是()A.c<﹣3B.c<﹣2C.c<D.c<1解:由题意知二次函数y=x2+2x+c有两个相异的不动点x1、x2是方程x2+2x+c=x的两个实数根,且x1<1<x2,整理,得:x2+x+c=0,则.解得c<﹣2,故选:B.6.(2019•常德)观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72019的结果的个位数字是()A.0B.1C.7D.8解:∵70=1,71=7,72=49,73=343,74=2401,75=16807,…,∴个位数4个数一循环,∴(2019+1)÷4=505,∴1+7+9+3=20,∴70+71+72+…+72019的结果的个位数字是:0.故选:A.7.(2019•张家界)如图,在平面直角坐标系中,将边长为1的正方形OABC绕点O顺时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2019次得到正方形OA2019B2019C2019,那么点A2019的坐标是()A.(,﹣)B.(1,0)C.(﹣,﹣)D.(0,﹣1)解:∵四边形OABC是正方形,且OA=1,∴A(0,1),∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,∴A1(,),A2(1,0),A3(,﹣),…,发现是8次一循环,所以2019÷8=252 (3)∴点A2019的坐标为(,﹣)故选:A.8.(2019•益阳)已知二次函数y=ax2+bx+c的图象如图所示,下列结论:①ac<0,②b﹣2a<0,③b2﹣4ac<0,④a﹣b+c<0,正确的是()A.①②B.①④C.②③D.②④解:①图象开口向下,与y轴交于正半轴,能得到:a<0,c>0,∴ac<0,故①正确;②∵对称轴x<﹣1,∴﹣<﹣1,a>0,∴b﹣2a<0,故②正确.③图象与x轴有2个不同的交点,依据根的判别式可知b2﹣4ac>0,故③错误.④当x=﹣1时,y>0,∴a﹣b+c>0,故④错误;故选:A.9.(2019•郴州)我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知∠A=90°,BD=4,CF=6,则正方形ADOF的边长是()A.B.2C.D.4解:设正方形ADOF的边长为x,由题意得:BE=BD=4,CE=CF=6,∴BC=BE+CE=BD+CF=10,在Rt△ABC中,AC2+AB2=BC2,即(6+x)2+(x+4)2=102,整理得,x2+10x﹣24=0,解得:x=2,或x=﹣12(舍去),∴x=2,即正方形ADOF的边长是2;故选:B.10.(2019•怀化)为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户1只;若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则有一户可分得母羊但不足3只.这批种羊共()只.A.55B.72C.83D.89解:设该村共有x户,则母羊共有(5x+17)只,由题意知,解得:<x<12,∵x为整数,则这批种羊共有11+5×11+17=83(只),故选:C.11.(2019•湘西州)如图,在△ABC中,∠C=90°,AC=12,AB的垂直平分线EF交AC于点D,连接BD,若cos∠BDC=,则BC的长是()A.10B.8C.4D.2解:∵∠C=90°,cos∠BDC=,设CD=5x,BD=7x,∴BC=2x,∵AB的垂直平分线EF交AC于点D,∴AD=BD=7x,∴AC=12x,∵AC=12,∴x=1,∴BC=2;故选:D.二.填空题(共11小题)12.(2019•长沙)如图,函数y=(k为常数,k>0)的图象与过原点的O的直线相交于A,B两点,点M是第一象限内双曲线上的动点(点M在点A的左侧),直线AM分别交x轴,y轴于C,D两点,连接BM分别交x轴,y轴于点E,F.现有以下四个结论:①△ODM与△OCA的面积相等;②若BM⊥AM于点M,则∠MBA=30°;③若M点的横坐标为1,△OAM为等边三角形,则k=2+;④若MF=MB,则MD=2MA.其中正确的结论的序号是①③④.(只填序号)解:①设点A(m,),M(n,),则直线AC的解析式为y=﹣x++,∴C(m+n,0),D(0,),∴S△ODM=n×=,S△OCA=(m+n)×=,∴△ODM与△OCA的面积相等,故①正确;∵反比例函数与正比例函数关于原点对称,∴O是AB的中点,∵BM⊥AM,∴OM=OA,∴k=mn,∴A(m,n),M(n,m),∴AM=(n﹣m),OM=,∴AM不一定等于OM,∴∠BAM不一定是60°,∴∠MBA不一定是30°.故②错误,∵M点的横坐标为1,∴可以假设M(1,k),∵△OAM为等边三角形,∴OA=OM=AM,1+k2=m2+,∵m>0,k>0,∴m=k,∵OM=AM,∴(1﹣m)2+=1+k2,∴k2﹣4k+1=0,∴k=2,∵m>1,∴k=2+,故③正确,如图,作MK∥OD交OA于K.∵OF∥MK,∴==,∴=,∵OA=OB,∴=,∴=,∵KM∥OD,∴==2,∴DM=2AM,故④正确.故答案为①③④.13.(2019•株洲)如图所示,在平面直角坐标系xOy中,在直线x=1处放置反光镜Ⅰ,在y轴处放置一个有缺口的挡板Ⅱ,缺口为线段AB,其中点A(0,1),点B在点A上方,且AB=1,在直线x=﹣1处放置一个挡板Ⅲ,从点O发出的光线经反光镜Ⅰ反射后,通过缺口AB照射在挡板Ⅲ上,则落在挡板Ⅲ上的光线的长度为 1.5.解:当光线沿O、G、B、C传输时,过点B作BF⊥GH于点F,过点C作CE⊥GH于点E,则∠OGH=∠CGE=α,设GH=a,则GF=2﹣a,则tan∠OGH=tan∠CGE,即:,即:,解得:a=1,则α=45°,∴GE=CE=2,y C=1+2=3,当光线反射过点A时,同理可得:y D=1.5,落在挡板Ⅲ上的光线的长度=CD=3﹣1.5=1.5,故答案为1.5.14.(2019•衡阳)在平面直角坐标系中,抛物线y=x2的图象如图所示.已知A点坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线于点A2,过点A2作A2A3∥x 轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线于点A4……,依次进行下去,则点A2019的坐标为(﹣1010,10102).解:∵A点坐标为(1,1),∴直线OA为y=x,A1(﹣1,1),∵A1A2∥OA,∴直线A1A2为y=x+2,解得或,∴A2(2,4),∴A3(﹣2,4),∵A3A4∥OA,∴直线A3A4为y=x+6,解得或,∴A4(3,9),∴A5(﹣3,9)…,∴A2019(﹣1010,10102),故答案为(﹣1010,10102).15.(2019•邵阳)如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(4,0),点B在第一象限,将等边△AOB绕点O顺时针旋转180°得到△A′OB′,则点B′的坐标是(﹣2,﹣2).解:作BH⊥y轴于H,如图,∵△OAB为等边三角形,∴OH=AH=2,∠BOA=60°,∴BH=OH=2,∴B点坐标为(2,2),∵等边△AOB绕点O顺时针旋转180°得到△A′OB′,∴点B′的坐标是(﹣2,﹣2).故答案为(﹣2,﹣2).16.(2019•岳阳)如图,AB为⊙O的直径,点P为AB延长线上的一点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE的垂线AC、BD,垂足分别为C、D,连接AM,则下列结论正确的是①②④.(写出所有正确结论的序号)①AM平分∠CAB;②AM2=AC•AB;③若AB=4,∠APE=30°,则的长为;④若AC=3,BD=1,则有CM=DM=.解:连接OM,∵PE为⊙O的切线,∴OM⊥PC,∵AC⊥PC,∴OM∥AC,∴∠CAM=∠AMO,∵OA=OM,∠OAM=∠AMO,∴∠CAM=∠OAM,即AM平分∠CAB,故①正确;∵AB为⊙O的直径,∴∠AMB=90°,∵∠CAM=∠MAB,∠ACM=∠AMB,∴△ACM∽△AMB,∴,∴AM2=AC•AB,故②正确;∵∠APE=30°,∴∠MOP=∠OMP﹣∠APE=90°﹣30°=60°,∵AB=4,∴OB=2,∴的长为,故③错误;∵BD⊥PC,AC⊥PC,∴BD∥AC,∴,∴PB=,17.(2019•常德)规定:如果一个四边形有一组对边平行,一组邻边相等,那么称此四边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M、N的坐标分别为(0,1),(0,﹣1),P是二次函数y=x2的图象上在第一象限内的任意一点,PQ垂直直线y=﹣1于点Q,则四边形PMNQ是广义菱形.其中正确的是①④.(填序号)解:①根据广义菱形的定义,正方形和菱形都有一组对边平行,一组邻边相等,①正确;②平行四边形有一组对边平行,没有一组邻边相等,②错误;③由给出条件无法得到一组对边平行,③错误;④设点P(m,m2),则Q(m,﹣1),∴MP==,PQ=+1,∵点P在第一象限,∴m>0,∴MP=+1,∴MP=PQ,又∵MN∥PQ,∴四边形PMNQ是广义菱形.④正确;故答案为①④;18.(2019•张家界)如图:正方形ABCD的边长为1,点E,F分别为BC,CD边的中点,连接AE,BF交于点P,连接PD,则tan∠APD=2.解:连接AF,∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,,在△ABE和△BCF中,,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BPE=∠APF=90°,∵∠ADF=90°,∴∠ADF+∠APF=180°,∴A、P、F、D四点共圆,∴∠AFD=∠APD,∴tan∠APD=tan∠AFD==2,故答案为:2.19.(2019•益阳)观察下列等式:①3﹣2=(﹣1)2,②5﹣2=(﹣)2,③7﹣2=(﹣)2,…请你根据以上规律,写出第6个等式13﹣2=(﹣)2.解:写出第6个等式为13﹣2=(﹣)2.故答案为13﹣2=(﹣)2.20.(2019•郴州)如图,点A,C分别是正比例函数y=x的图象与反比例函数y=的图象的交点,过A点作AD⊥x轴于点D,过C点作CB⊥x轴于点B,则四边形ABCD的面积为8.解:∵A、C是两函数图象的交点,∴A、C关于原点对称,∵CD⊥x轴,AB⊥x轴,∴OA=OC,OB=OD,∴S△AOB=S△BOC=S△DOC=S△AOD,又∵反比例函数y=的图象上,∴S△AOB=S△BOC=S△DOC=S△AOD=×4=2,∴S四边形ABCD=4S△AOB=4×2=8,故答案为:8.21.(2019•怀化)探索与发现:下面是用分数(数字表示面积)砌成的“分数墙”,则整面“分数墙”的总面积是n﹣1.解:由题意“分数墙”的总面积=2×+3×+4×+…+n×=n﹣1,故答案为n﹣1.22.(2019•湘西州)阅读材料:设=(x1,y1),=(x2,y2),如果∥,则x1•y2=x2•y1,根据该材料填空,已知=(4,3),=(8,m),且∥,则m=6.解:∵=(4,3),=(8,m),且∥,∴4m=3×8,∴m=6;故答案为6;。
中考数学——填空压轴题模型(题目版)

填空压轴题一、勾股定理1.(2019方向卷一)如图在平行四边形ABCD 中,点E,F,C,H 分别在边AB,BC,CD,DA 上,AE=CG,AH=CF,且EG 平分∠HEF,EF=4,∠HEF=60°,则EG 的长是2.(2019方向卷二)如图,在矩形ABCD 中,AB=8,AD=6,P ,Q 分别是AB 和CD 上的点,且AP=CQ=3,线段EF 是PQ 的垂直平分线,交BC 于点F,交PQ 于点E,则BF 的长为3.(2019方向卷三)如图,在四边形ABCD 中,AC BAD ABC ,,︒=∠︒=∠6090平分BAD ∠,AD AC =,N M ,分别为CD AC ,的中点,1=AM ,连接BN MN ,,则BN 的长为 .4.(2019定心卷)如图,在等腰Rt △ABC 中,点D 是AB 的中点,点F 在BC 上,且BF=3CF ,过点D 作DE 丄AC 交AC 于点E ,连接EF ,若AB=8,则EF 的长为__________.5.(山西2018中考方向卷(一))如图,在△ABC 中,90C ∠=︒,AC=BC ,AB=5,点D在AB上,AD=1,过点D作DE⊥AC于点E,点F为BD的中点,连接EF,则EF= .6.(2016黑卷)如图,在△ABC中,AB=AC,∠BAC=45°,BD⊥AC于点D,AE平分∠BAC,交BD于点F,交BC于点E,若BC=6,则AE 的长为.7.(2016白卷)如图,现有一张矩形纸片ABCD,其中4BC cm=,点E是BC的=,6AB cm中点,将纸片沿直线AE折叠,点B落在四边形ABCD内,记B'.则线段B C'的长为cm.8.(2018定心卷).如图,在等边△ABC中,点D是AB的中点,点E在BC上,且BE=3CE,过点D作DF⊥AC于点F,连接DE并延长交AC的延长线于点G,连接EF,若AB=4,则EF= .∠=∠,BH交AC于9.(18山西百校联考3)如图,在正方形ABCD中,H为AD上一点,ABH DBH点G.若HD=2,则线段AD的长为_________.10.(15百校联考1)如图,在矩形ABCD 中,AB=3,E ,F 为AD ,BC 上的点,且ED=BF ,连接EF 交对角线BD 于点O ,连接CE ,且CE=CF ,∠EFC=2∠DBC ,则BC 的长为 _________ .11.(15百校联考3)如图,四边形ABCD 是矩形,点E 在线段BC 的延长线上,连接AE 交CD 于点F ,∠AED=2∠AEB ,点G 是AF 的中点.若CE=1,AG=8,则AB 的长为 .12.(18太原模拟一)如图,在Rt ABC ∆中,90BAC ∠=︒,4AB AC ==,D 是BC 的中点,点E 在BA 的延长线上,连接ED . 若2AE =,则DE 的长为 _________ .13.(18太原模拟三)如图,将一对直角三角形卡片的斜边AC 重合摆放,直角顶点B ,D 在AC 的两侧,连接BD ,交AC 于点O ,取AC ,BD 的中点E ,F ,连接EF .若AB=12,BC=5,且AD=CD ,则EF 的长为_____.14.(2019年太原模拟一)如图,在矩形ABCD 中,点E,F 分别在BC,CD 边上,且CE=3,CF=4.若△AEF 是等边三角形,则AB 的长为_________ .二、相似1.(2019实战演练卷(一)如图,一块直角三角形木板ABC,∠C=90° ,AC=8cm,BC=6cm,现要用其加工出矩形DEFG,点D,G分别在AC,BC上,点E,F在AB边上,且EF=2DE,则加工出的矩形DEFG的周长是_______cm.2.(2019白卷).如图,在Rt∆ABC中,∠ACB=90°,∠A=30°,BC=3,点D在AB上,与AC相切于点E,连接DE并延长交BC的延长线于点F,则CF的长以BD为直径的O为.3.(2019冲刺卷).矩形ABCD中,AD=9 cm,AB=3 cm,将其沿EF翻折,使点C与点A重合,则折痕EF的长为▲cm.(第15题图)4.(山西2018中考方向卷(三))已知:四边形ABCD中,AD∥BC,∠A=∠B=90°,AB=7,AD=2,BC=3,点P从点A出发沿AB方向以每秒1个单位长度的速度向点B运动,在运动过程中,当PA的长度为时,△PAD与△PBC相似.5.(2017黑卷)如图,在矩形ABCD中,点E是AD的中点,连接BE,将△ABE沿着BE 翻折得到△FBE,EF交BC于点H,延长BF.DC相交于点G,若DG=16,BC=24,则BH=______6.(2017定心卷).如图,在菱形ABCD中,点P是对角线BD上的动点,连接CP并延长交AD于点E,交BA的延长线于点F,已知PE=2,EF=4,则PC的长为.7.(2018冲刺卷)如图,在Rt ABC中,∠ABC=90°,AB=BC=3 .点D是BC 边的中点,过点B作BE⊥AD,垂足为E,延长BE交AC于点F,则CF的长是.8.(2017冲刺卷)如图,已知点D、E分别是△ABC的边AB、AC上的点,且BD=AC, DE//BC,过点A作AF//BC交CD的延长线于点 F.若AD=5、AE=4、BC=16,则线段AF的长为.9.(19山西百校联考2)如图,在Rt △ABC 中,∠ACB =90°,AC =BC =6,点D 是AC 边上的一点,且AD =2,以AD 为直角边作等腰直角△ADE ,连接BE 并取BE 的中点F ,连接CF ,则CF 的长为 .10.(19山西百校联考3)如图,平行四边形ABCD 的边长AD =3,AB =2,∠BAD =120°,E 为AB 的中点,F 在边BC 上,且BF =2FC .AF 与DE 交于点G ,则AG 的长为 .11.(16百校联考1)如图,已知四边形ABCD 与四边形CFGE 都是矩形,点E 在CD 上,点H 为AG 的中点,AB=3,BC=2,CE=1.5,CF=1,则DH 的长为 _________ .12.(16百校联考4)如图,为一块面积为1.5m2的直角三角形模板,其中90B ∠=︒,AB=1.5m ,现要把它加工成正方形DEFG 木板(EF 在AC 上,点D 和点G 分别在AB 和BC 上),则该正方形木板的边长为 _________m .13.(18太原模拟二)如图,在△ABC中,AB=AC=25,BC=4.点E为BC边上一动点,连接AE,作∠AEF=∠B,EF与△ABC的外角∠ACD的平分线交于点F.当EF⊥AC时,EF的长为____________.14.(17太原模拟三)如图,在Rt△ABC中,AB=AC=4,∠BAC=90°,点E为AB的中点,以AE为对角线作正方形ADEF,连接CF并延长,交BD于G,则线段CG的长等于15.(16太原模拟一)如图,直角三角形纸片ABC,按如下方式裁剪后,所得的图形恰好是一个正方体的平面展开图.如果AB=10,则该正方体的棱长为.16.(15太原模拟二)如图,△ABC中,AB=AC,BC=6,D是AB上的一点,且AD=23AB,DF∥BC,E为BC的中点,若EF⊥AC,则线段EF的长为.三、三角函数1.(2018黑卷).矩形ABCD 中,BC=8,点E 在CD 边上,把△BCE 沿BE 折叠,点C 的对应点C’恰好落在矩形边AD 的中垂线MN 上时,设BE 与MN 交于点G,则CE 的长为 .2.(2017白卷)如图,△ABC 是等边三角形,点D,E 分别是BC.AC 上一点,且AE=CD ,连接AD,BE,AD 与BE 相较于点P,过点B 作BQ ⊥AD 于点Q ,PQ=3,PE=1,则AD 的长为 .3.(17百校联考2)如图是带支架功能的某品牌手机壳,将其侧面抽象为如图2所示的几何图形,已知AC=5.46 cm ,75ABC ∠=︒,45C ∠=︒,则点B 到AC 的距离为 _________cm (结果精确到0.1cm ,3»1.73)4.(15山西百校联考4)如图,ΔABC 是边长为6的等边三角形,点D 为AB 上一点,且AD=4,DE ⊥AC 于点E ,点F,G 分别为DE ,CD 的中点,则FG 的长为 _________.5.(18太原模拟一)太极揉推器是一种常见的健身器材,基本结构包括支架和转盘.数学兴趣小组的同学对某太极揉推器的部分数据进行了测量:如图,立柱AB 的长为125cm ,支架CD .CE 的长分别为60cm.40cm ,支点C 到立柱顶点B 的距离为25cm ,支架CD ,CE 与立柱AB 的夹角︒=∠=∠45BCE BCD ,转盘的直径cm 60==MN FG .D ,E 分别是FG ,MN 的中点,且FG CD ⊥,MN CE ⊥.则两个转盘的最低点F ,N 距离地面的高度差为__________cm .(结果保留根号)四、转化1.(2019黑卷)如图,在Rt ABC ∆中,90BAC ∠=,AB AC =,AD BC ⊥于点D ,过B 点作ABC ∠的平分线BG 分别交AD ,AC 于点E ,F ,过点C 作CH BG ⊥交BA 的延长线于点H ,若EG=4,则BF 的长为2.(2017省适应)如图,D ABC 中,BD 平分ÐABC ,且AD ^BD ,E 为AC 的中点,AD=6cm,BD=8cm,BC=16cm,则DE 的长为 cm.E D B C A3.(2018白卷)如图,△CDE 与△CAB 是以C 为顶点的等腰三角形,其中CD=CE ,CA=CB ,且120DCE ACB ∠=∠=︒,A.D.E 三点在同一条直线上,连接BE ,若CE=2,BE=3,则AE 的长为 .4.(2016定心卷)如图,在△ABC 中,AB=9,BC=3,BD 平分∠ABC ,且AD ⊥BD 于点D ,点E 为AC 的中点,连接DE ,则DE 的长为 .5.(19山西百校联考4)在ABC ∆中,AB=10,AC=8,45BAC ∠=︒,AD 是BAC ∠的平分线,DE AB ⊥于点E ,则DE 的长是______.6.(16太原模拟三)如图,过平行四边形ABCD 对角线交点O 的直线分别交AB 的延长线于点E ,交CD 的延长线于点F ,若AB=4,AE=6,则DF 的长等于五.最值1.线段最值(2019年太原模拟二)如图,在Rt△ABC中,∠ABC=90°,∠BAC=30°,BC=2,点D是AC边的中点,E是直线BC上一动点,将线段DE绕点D逆时针旋转90°得到线段DF,连接AF,EF.在点E的运动过程中,线段AF的最小值为______.2.线段最值(15太原模拟三)如图,在边长为2的正方形ABCD中,E是AB的中点,F是AD边上的一个动点,将△AEF沿EF所在直线折叠得到△GEF,连接GC,则GC长度的最小值是3.(18山西百校联考1)如图,在平面直角坐标系中,圆A的圆心A的坐标为(1,0),半径为1,点P为直线y =34x+3上的动点,过点P作圆A的切线,切点为B,则PB的最小值是_________.11/ 11。
人教版中考数学中考压轴题突破 一、选填题压轴题突破 重难点突破六 多结论选填题

B.②④
C.③④
D.②③
3.★(2022·广元)二次函数y=ax2+bx+c(a≠0)的部分图象如图所
示,图象过点(-1, 0),对称轴为直线x=2,下列结论:①abc<0;② 1
4a+c>2b;③ 3b- 2c>0;④若点A(-2,y1),点B -2,y2 ,点 7
C 2,y3 在该函数图象上,则y1<y3<y2;⑤ 4a+2b≥m (am+b) (m为常 数).
2.(2022·临沂)二次函数y=ax2+bx+c (a≠0)的部分图象如图所示,
1 其对称轴为直线x=- 2 ,且与x轴的一个交点坐标为(-2,0).下列结
论:①abc>0;②a=b;③2a+c=0;④关于x的一元二次方程ax2+bx+
c-1=0有两个相等的实数根.其中正确结论的序号是
( D)
A.①③
其中正确的结论有 A.5个 B.4个 C.3个 D.2个
(C)
4.★(2021·荆门)抛物线y=ax2+bx+c(a,b,c为常数)开口向下且过
点A(1,0),B(m,0)(-2<m<-1),下列结论:① 2b+c>0;② 2a+
c<0;③ a(m+1)-b+c>0;④若方程a(x-m)(x-1)-1=0有两个不等
对称轴x=-
b 2a
=1,得b=-2a,∴y=ax2-
2ax-1,
确 当x=-1时,
y>0,∴aa++2a2-a-1>0, 1
11 ∴a>33
,故②正正确;当m=1时,m(am+b)= 确
aa++b,故③错错误 ;∵点(-2, y1)到对称轴的距离大大于点(2, y3)到
2019-2020学年天津市中考易错题归纳——填空压轴题

2019-2020学年天津市中考易错题归纳一、选择题1.如图,在菱形ABCD中,∠ABC=60°,E为BC边的中点,M为BM最小值对角线BD上的一个动点.则下列线段的长等于AM+12的是()A. ADB. AEC. BDD. BE2.对于二次函数y=x2+mx+1,当0<x≤2时的函数值总是非负数,则实数m的取值范围为()A. m≥−2B. −4≤m≤−2C. m≥−4D. m≤−4或m≥−23.如图,点O是等边三角形ABC内的一点,∠BOC=150°,将△BCO绕点C按顺时针旋转60°得到△ACD,则下列结论不正确的是()A. BO=ADB. ∠DOC=60°C. OD⊥ADD. OD//AB4.如图,已知菱形ABCD,AB=4,∠BAD=120°,E为BC的中点,P为对角线BD上一点,则PE+PC的最小值等于()A. 2√2B. 2√3C. 2√5D. 85.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点E,F分别是边AB,BC的中点,则EP+PF的最小值是()A. 12B. 1C. √3D. 26.如图,在Rt△ABC中,∠ABC=90°,AB=BC=√2,将△ABC绕点C逆时针转60°,得到△MNC,则BM的长()A. 1B. √3C. 2D. 1+√37.如图所示,将纸片△ABC沿着DE折叠压平,则()A. ∠A=∠1+∠2(∠1+∠2)B. ∠A=12(∠1+∠2)C. ∠A=13(∠1+∠2)D. ∠A=148.如图,MN是正方形ABCD的一条对称轴,点P是直线MN上的一个动点,当PC+PD最小时,∠PCD=()A. 60°B. 90°C. 45°D. 75°9.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A. 55°B. 60°C. 65°D. 70°10.如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是()A. 1B. 1.5C. 2D. 2.511.如图,在矩形ABCD中,AB=4,BC=6,点E为边BC上一点,且EC=2BE,点F是CD的中点,点G为EF的中点,则AG的长为______.12.如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.(Ⅰ)△ABC的面积等于______;(Ⅱ)点P为边BC上的动点,当√5AP+BP取得最小值时,请在如图所示的网格中,用无刻度的直尺,画出线段AP,并简要说明点P的位置是如何找到的(不要求证明)______.13.如图,在等边△ABC中,D是BC延长线上一BC,E,F分别是BC,AD的中点,CD=12点,若AB=2,则线段EF的长是______.14.如图,在△ABC中,AC=BC,∠C=90°,点D,E,F分别在边BC,AC,AB上,四边形DCEF为矩形,P,Q分别为DE,AB的中点,若BD=1,DC=2,则PQ=______.15.如图,在由边长都为1的小正方形组成的网格中,点A,B,C均为格点,点P,Q为线段AB上的动点,且满足PQ=1.(Ⅰ)当点Q为线段AB中点时CQ的长度等于______.(Ⅱ)当线段CQ+CP取得最小值时,请借助无刻度直尺在给定的网格中画出点Q,并简要说明你是怎么画出点Q的:______.16.如图,Rt△ABC中,∠ACB=90°,AC=CB=4√2,∠BAD=∠ADE=60°,AD=5,CE平分∠ACB,DE与CE相交于点E,则DE的长等于______.17.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为______度.18.在每个小正方形的边长为1的网格中,有△ABC,点A,B,C都在格点上(Ⅰ)△ABC的面积等于______.(Ⅱ)求作其内接正方形,使其一边在BC上,另两个顶点各在AB,AC上.在如图所示的网格中,请你用无刻度的直尺,画出该正方形,并简要说明画图的方法(不要求证明)______.19.如图,在矩形ABCD中,AB=4,BC=7,E为CD的中点,若P、Q为BC边上的两个动点,且PQ=2,若想使得四边形APQE的周长最小,则BP的长度应为______.20.如图,Rt△ABC,∠ACB=90°,AC=4,BC=3,将边BC沿CE翻折,使点B落在AB上的点D处,再将边AC沿CF翻折,使点A落在CD的延长线上的点A′处,两条折痕与斜边AB分别交于点E、F,则线段A′F的长为______.21.如图,在每个边长都为1的小正方形组成的网格中,A为格点,B,P为小正方形的中点.(I)线段AB的长为______.(Ⅱ)在线段AB上存在一个点Q,使得点Q满足∠PQB=45°,请你借助给定的网格,用无刻度的直尺作出∠PQB,并简要说明你是怎么找到点Q的______.22.如图,正方形ABCD的边长为4,MN//BC分别交AB,CD于点M、N,在MN上任取两点P、Q,那么图中阴影部分的面积是______.23.如图,在由边长都为1的小正方形组成的网格中,点A,B,C,D均为格点(1)线段BC的长度等于______(2)若K为线段CD上一点,且满足S△BCK=1S ABCD,请你借助无刻度直尺在给定的网格3中画出满足条件的线段BK,并简要说明你是怎么画出点K的.24.如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上(Ⅰ)BC的长等于______.(Ⅱ)请在如图所示的网格中,用无刻度的直尺,画出△ABC关于直线BC对称的图形,并简要说明画图方法(不要求证明).25.如图,△ABC中,AC、BC上的中线交于点O,且BE⊥AD.若BD=10,BO=8,则AO的长为______.26.如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为____.27.如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上.(Ⅰ)△ABC的面积等于______;(Ⅱ)若四边形DEFG是△ABC中所能包含的面积最大的正方形,请你在如图所示的网格中,用直尺和三角尺画出该正方形,并简要说明画图方法(不要求证明)______.三、解答题(本大题共4小题,共24.0分)28.已知△ABC内接于⊙O,AB为⊙O的直径,过点O作AB的垂线,与AC相交于点E,与过点C的⊙O的切线相交于点D.(Ⅰ)如图①,若∠ABC=67°,求∠D的大小;(Ⅱ)如图②,若EO=EC,AB=2,求CD的长.29.如图,在每个小正方形的边长为1的网格中,点A,B,C,D都在格点上.(Ⅰ)AC的长是______.(Ⅱ)将四边形ABCD折叠,使点C与点A重合折痕EF交BC于点E,交AD于点F,点D的对应点为Q,得五边形ABEFQ.请用无刻度的直尺在网格中画出折叠后的五边形,并简要说明点E,F,Q的位置是如何找到的.30.已知AB是⊙O的直径,C,D是⊙O上AB同侧的两点,∠BAC=25°(Ⅰ)如图①,若OD⊥AB,求∠ABC和∠ODC的大小;(Ⅱ)如图②,过点C作⊙O的切线,交AB延长线于点E,若OD/ /EC,求∠ACD的大小.31.如图,在每个小正方形的边长为1的网格中,A,B均为格点.(1)AB的长等于______.(2)请用无刻度的直尺,在如图所示的网格中求作一点P,使得以AB为底边的等腰三角形PAB的面积等于3,并简要说明点P的位置是如何找到的(不要求2证明).答案和解析1.【答案】B【解析】解:如图,过点M 作MF ⊥BC 于F ,∵四边形ABCD 是菱形 ∴∠DBC =12∠ABC =30°,且MF ⊥BC ∴MF =12BM ∴AM +12BM =AM +MF , ∴当点A ,点M ,点F 三点共线且垂直BC 时,AM +MF 有最小值, ∴AM +12BM 最小值为AE 故选:B .由菱形的性质可得∠DBC =12∠ABC =30°,可得MF =12BM ,可得AM +12BM =AM +MF ,由垂线段最短,可求解.本题考查了菱形的性质,直角三角形的性质,最短路径问题,熟练运用菱形的性质是本题的关键.2.【答案】A【解析】解:对称轴为:x =−b 2a =−m 2,y =4ac−b 24a =1−m 24, 分三种情况:①当对称轴x <0时,即−m 2<0,m >0,满足当0<x ≤2时的函数值总是非负数;②当0≤−b 2a <2时,0≤−m 2<2,−4<m ≤0,当1−m 24≥0时,−2≤m ≤2,满足当0<x ≤2时的函数值总是非负数; 当1−m 24<0时,不能满足当0<x ≤2时的函数值总是非负数; ∴当−2≤m ≤0时,当0<x ≤2时的函数值总是非负数, ③当对称轴−m 2≥2时,即m ≤−4,如果满足当0<x ≤2时的函数值总是非负数,则有x =2时,y ≥0,4+2m +1≥0, m ≥−52, 此种情况m 无解;故选:A .分三种情况进行讨论:对称轴分别为x <0、0≤x <2、x ≥2时,得出当0<x≤2时所对应的函数值,判断正误.本题考查了二次函数的图象及性质,根据其自变量的取值确定字母系数的取值范围,解决此类问题:首先要计算出顶点坐标,再根据对称轴的位置并与图象相结合得出取值.3.【答案】D【解析】解:由旋转的性质得,BO=AD,CD=CO,∠ACD=∠BCO,∠ADC=∠BOC=150°,∵∠ACB=60°,∴∠DCO=60°,∴△OCD为等边三角形,∴∠DOC=60°,故A,B正确;∵∠ODC=60°,∠ADC=∠BOC=150°,∴∠ADO=90°,∴OD⊥AD,故C正确;故选:D.由旋转的性质得,BO=AD,CD=CO,∠ACD=∠BCO,∠ADC=∠BOC=150°,推出△OCD为等边三角形,得到∠DOC=60°,故A,B正确;由于∠ODC=60°,∠ADC=∠BOC=150°,得到∠ADO=90°,由垂直的定义得到OD⊥AD,故C正确,于是得到结论.本题考查了旋转的性质,平行线的判定,等边三角形的性质和判定,熟练掌握旋转的性质是解题的关键.4.【答案】B【解析】解:菱形A与C关于BD对称,连接AE,即为PE+PC的最小值;∵AB=4,∠BAD=120°,E为BC的中点,∴∠ABC=60°,BE=2,在Rt△ABE中,AE=2√3;故选:B.菱形A与C关于BD对称连接AE,即为PE+PC的最小值;在Rt△ABE中即可求解;本题考查利用轴对称求最短距离;通过菱形的轴对称性确定点C的对称点是解题的关键.5.【答案】B【解析】解:作点E关于AC的对称点E′,连接E′F与AC交点为P点,此时EP+PF的值最小;∵E,F分别是边AB,BC的中点,∴E′是AD的中点,∵菱形ABCD,∴E′E⊥EF,∴E′F2=(12AC)2+(12BD)2=AD2=1;故选:B.作点E关于AC的对称点E′,连接E′F与AC交点为P点,此时EP+ PF的值最小;易求E′是AD的中点,则有E′E⊥EF,所以E′F2=(1 2AC)2+(12BD)2=AD2=1;本题考查菱形的性质,轴对称求最短距离;通过轴对称作点E关于AC的对称点是解题的关键.6.【答案】D【解析】解:连接AM,BM交AC于D,如图,∵∠ABC=90°,AB=BC=√2,∴AC=√2AB=√2×√2=2,∵△ABC绕点C逆时针转60°,得到△MNC,∴CM=CA=2,∠ACM=60°,∴△ACM为等边三角形,∴MA=MC,而BA=BC,∴BM垂直平分AC,∴BD=12AC=1,MD=√32AC=√32×2=√3,∴BM=1+√3.故选:D.连接AM,BM交AC于D,如图,利用等腰直角三角形的性质得到AC=√2AB=2,再根据旋转的性质得CM=CA=2,∠ACM= 60°,则可判断△ACM为等边三角形,直接证BM垂直平分AC,然后利用等腰直角三角形和等边三角形的性质计算出BD和MD,从而得到BM的长.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形和等边三角形的性质.7.【答案】B【解析】解:根据折叠及邻补角的性质,得∠1=180°−2∠ADE,∠2=180°−2∠AED,∴∠1+∠2=360°−2(∠ADE+∠AED),∴∠ADE+∠AED=12[360°−(∠1+∠2)]=180°−12(∠1+∠2),∴在△ADE中,由内角和定理,得∠A=180°−(∠ADE+∠AED)=180°−180°+12(∠1+∠2)=12(∠1+∠2).故选:B.由折叠及邻补角的性质可知,∠1=180°−2∠ADE,∠2=180°−2∠AED,两式相加,结合已知可求∠ADE+∠AED的度数,在△ADE 中,由内角和定理可求∠A的度数.本题考查了翻折变换,邻补角的性质,三角形内角和定理,关键是把∠1+∠2看作整体,对角的和进行转化.8.【答案】C【解析】【分析】此题主要考查了轴对称求最短路线问题及正方形的性质,根据已知得出D点关于MN的对称点为A点是解题关键.根据当PC+PD最小时,即PC+PA最小,此时A、P、C三点在一条直线上,点P在AC的连线上,连接AC根据正方形的性质即可得出∠PCD的度数.【解答】解:∵MN是正方形ABCD的一条对称轴,∴D点关于MN的对称点为A点,∴PD=PA,∴当PC+PD最小时,即PC+PA最小,此时A、P、C三点在一条直线上,点P在AC的连线上,连接AC,AC为正方形对角线,根据正方形的性质得出∠PCD=45°,∴∠PCD=45°.故选:C.9.【答案】C【解析】解:∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°−20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选:C.根据旋转的性质和三角形内角和解答即可.此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.10.【答案】C【解析】解:如图,连接AE,∵AB=AD=AF,∠D=∠AFE=90°,在Rt△AFE和Rt△ADE中,∵{AE=AEAF=AD,∴Rt△AFE≌Rt△ADE,∴EF=DE,设DE=FE=x,则EC=6−x.∵G为BC中点,BC=6,∴CG=3,在Rt△ECG中,根据勾股定理,得:(6−x)2+9=(x+3)2,解得x=2.则DE=2.故选:C.根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE;在直角△ECG中,根据勾股定理即可求出DE的长.本题考查了翻折变换,解题的关键是掌握翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理.11.【答案】5【解析】解:连接AE,如图:∵四边形ABCD是矩形,∴CD=AB=4,∠C=∠B=90°,∵EC=2BE,BC=6,∴BE=13BC=2,EC=4,AE=√42+22=2√5,∵点F是CD的中点,∴CF=12CD=2,∴BE=CF,EF=√42+22=2√5,∴AE=EF,∵点G为EF的中点,∴FG =12EF =√5, 在△ABE 和△ECF 中,{AB =EC∠B =∠C BE =CF ,∴△ABE≌△ECF(SAS),∴∠BEA =∠CFE ,∴∠BEA +∠FEC =∠CFE +∠FEC =90°,∴AE ⊥EF ,∴AG =√(2√5)2+(√5)2=5;故答案为:5.连接AE ,求出BE =13BC =2,EC =4,AE =√42+22=2√5,EF =√42+22=2√5,FG =12EF =√5,证明△ABE≌△ECF(SAS),得出∠BEA =∠CFE ,证出AE ⊥EF ,由勾股定理即可得出答案.本题考查了矩形的性质、全等三角形的判定与性质以及勾股定理;熟练掌握矩形的性质,证明三角形全等是解题的关键. 12.【答案】5 求√5AP′+P′B 的最小值等价于求AP′+√55BP′的最小值,作A 关于BC 的对称点A′,则AP′=P′A′,所以命题相当于找P 点,使得PA′+PB′的值直线,此时只要过A′作AB 的垂线交BC 于P ,此时PA +PB′的值最小.【解析】解:(1)S =4×4−12×4×2−12×1×2−12×3×4=5; 故答案为5;(2)如图点P 即为所求.理由如下:由题意AC =√,AB =2√,BC =5,∴AC 2+AB 2=BC 2,∴△ABC 是直角三角形,∴∠CAB =90°,sin ∠B =√55,对于BC 上的任意一点P′,作P′B′⊥AB 于B′,则有P′B′=√55P′B ,∴求√5AP′+P′B的最小值等价于求AP′+√55BP′的最小值,作A关于BC的对称点A′,则AP′=P′A′,∴命题相当于找P点,使得PA′+PB′的值直线,此时只要过A′作AB的垂线交BC于P,此时PA+PB′的值最小,∴作图的重点是如何找A′,如何作垂线,关于如何找垂线,只要利用网格寻找相似三角形易画AD⊥BC,EF⊥AB,EF交AD于A′,利用相似三角形的性质可以证明AA′=4,AH=2,可证A,A′关于BC对称,设EF交BC于点P,则点P即为所求.故答案为:求√5AP′+P′B的最小值等价于求AP′+√55BP′的最小值,作A关于BC的对称点A′,则AP′=P′A′,所以命题相当于找P点,使得PA′+PB′的值直线,此时只要过A′作AB的垂线交BC 于P,此时PA+PB′的值最小.(1)利用分割法的面积即可.(2)求√5AP′+P′B的最小值等价于求AP′+√55BP′的最小值,作A 关于BC的对称点A′,则AP′=P′A′,所以命题相当于找P点,使得PA′+PB′的值直线,此时只要过A′作AB的垂线交BC于P,此时PA+PB′的值最小.本题考查作图−复杂作图,垂线段最短,相似三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,题目有一定难度.13.【答案】√72【解析】解:连接AE.∵△ABC是等边三角形,BE=EC=CD=1,∴AE⊥BC,∠B=60°,∴AE=AB⋅sin60°=√3,∴DE=2,∴AD=√AE2+DE2=√22+(√3)2=√7,∵∠AED=90°,AF=DF,∴EF=12AD=√72,故答案为√72.连接AE,利用勾股定理求出AD,再利用直角三角形斜边中线的性质解决问题即可.本题考查解直角三角形,等边三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.14.【答案】√52【解析】解:如图,连接AP并延长AP交FD的延长线于点G,连接BG,∵BD=1,CD=2∴BC=3∵AC=BC,∠C=90°,∴AC=3,∠ABC=45°∵四边形DFEC是矩形∴CE=DF,FD⊥BD,DF//CE∴∠ABC=∠BFD=45°∴BD=DF=1,∴CE=1,∴AE=AC−CE=2,∵DF//CE∴∠DGP=∠EAP,且DP=PE,∠DPG=∠APE∴△DPG≌△EPA(AAS)∴DG=AE=2,PG=AP在Rt△DBGz中,BG=√BD2+DG2=√5∵AQ=BQ,PG=AP∴QP=√5 2故答案为:√52连接AP并延长AP交FD的延长线于点G,连接BG,由“AAS”可证△DPG≌△EPA,可得DG=AE=2,PG=AP,由勾股定理可求BG的长,由三角形中位线定理可得结论.本题考查了矩形的性质,全等三角形的判定和性质,勾股定理,三角形中位线定理,添加恰当辅助线构造全等三角形是本题的关键.15.【答案】2.5取格点D,E,F,连接CD,EF,它们相交于点G,取格点H,I,J,K,连接HI,JK,它们相交于点M,连接GM,取格点L,N,连接LN且延长,交GM于T,连接TC交AB 于Q,点Q即为所求【解析】解:(I)当点Q为线段AB中点时CQ的长度等于2.5;故答案为2.5.(Ⅱ)线段CQ+CP的值最小时,点P,Q必在△ABC的AB边上的高线的垂足的两侧,并且关于垂足对称,即离垂足的距离为0,5.所以先找到C关于ABD的对称点H,连接CH交AB于点O,下一步取格点D,使得AB//CD,AB=CD,取格点E,F,连接EF,则CG=1,取格点N,L,使得BN=3,NL//AB,NL=AB,此时直线LN 与直线CD到直线AB的距离相等,取格点H,T,使得HT//AB,TH=AB,取格点J,K,连接JK交TH于M,此时HM=CG=1,连接GM,此时GM//CH,设直线LN交MG于T,交CH于R,此时TR=CG= 1,OR=OC,矩形CGTR关于直线AB对称,连接CT交AB于Q,此时OQ=0.5,点Q即为所求.故答案为:取格点D,E,F,连接CD,EF,它们相交于点G,取格点H,I,J,K,连接HI,JK,它们相交于点M,连接GM,取格点L,N,连接LN且延长,交GM于T,连接TC交AB于Q,点Q即为所求.(Ⅰ)利用勾股定理直角三角形斜边的中线的性质求解即可.(Ⅱ)取格点D,E,F,连接CD,EF,它们相交于点G,取格点H,I,J,K,连接HI,JK,它们相交于点M,连接GM,取格点L,N,连接LN且延长,交GM于T,连接TC交AB于Q,点Q即为所求.本题考查作图−复杂作图,勾股定理,矩形的判定和性质,轴对称,平行线分线段成比例定理,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考压轴题.16.【答案】3【解析】解:延长DE交AB于F,延长CE交AB于G,如图所示:∵∠BAD=∠ADE=60°,∴AF=DF,∴△ADF是等边三角形,∴AF=DF=AD=5,∠AFD=60°,∵∠ACB=90°,AC=BC=4√2,CE平分∠ACB,∴AB=√2AC=8,CG⊥AB,CG=12AB=AG=4,∴GF=AF−AG=5−4=1,∠GEF=30°,∴EF=2GF=2,∴DE=DF−EF=5−2=3;故答案为:3.延长DE交AB于F,延长CE交AB于G,证明△ADF是等边三角形,得出AF=DF=AD=5,∠AFD=60°,由等腰直角三角形的性质得出AB=√2AC=8,CG⊥AB,CG=12AB=AG=4,得出GF=AF−AG=1,由直角三角形的性质得出EF=2GF=2,即可得出答案.本题考查了等腰直角三角形的性质、等边三角形的判定与性质、含30°角的直角三角形的性质等知识;熟练掌握等边三角形的判定与性质和等腰直角三角形的性质是解题的关键.17.【答案】15【解析】解:∵△DCF是△BCE旋转以后得到的图形,∴∠BEC=∠DFC=60°,∠ECF=∠BCE=90°,CF=CE.又∵∠ECF=90°,∴∠EFC=∠FEC=12(180°−∠ECF)=12(180°−90°)=45°,故∠EFD=∠DFC−∠EFC=60°−45°=15°.故答案为:15°此题只需根据旋转的性质发现等腰直角三角形CEF,进行求解.本题考查了图形的旋转变化,学生主要要看清是顺时针还是逆时针旋转,旋转多少度.难度不大,但易错.18.【答案】10 取格点D,F,E,连接DE,DF分别交AB,AC 于点M,N,再取格点S,T.G,K,连接GK,ST交于点Q,连接MQ并延长MQ交BC于点P,同理得到点R,四边形MPRN即为所求的正方形【解析】解:(Ⅰ)5×4÷2=10.故△ABC的面积等于10,故答案为:10;(Ⅱ)如图所示:取格点D,F,E,连接DE,DF分别交AB,AC 于点M,N,再取格点S,T.G,K,连接GK,ST交于点Q,连接MQ并延长MQ交BC于点P,同理得到点R,四边形MPRN即为所求的正方形;故答案为:取格点D,F,E,连接DE,DF分别交AB,AC于点M,N,再取格点S,T.G,K,连接GK,ST交于点Q,连接MQ并延长MQ交BC于点P,同理得到点R,四边形MPRN即为所求的正方形.(Ⅰ)根据三角形面积公式即可求解;(Ⅱ)根据作图解答即可.此题考查了作图−应用与设计作图、三角形的面积以及正方形的性质、角平分线的性质,熟练掌握角平分线的性质及正方形的性质作出正确的图形是解本题的关键.19.【答案】103【解析】解:∵四边形APQE的周长中AE和PQ是定值,∴要使四边形APQE的周长最小,只要AP+QE最小即可;在AD上截取AF=PQ=2,作点F关于BC的对称点G连接GE与BC交于点Q,过点A作AP//FQ,过G作GH//BC交CD于点H,∴GQ=FQ=AP,∵AB=4,BC=7,PQ=2,E为CD的中点,∴EC=2,CH=4,GH=5,∴EH=6,∴EH GH =EC CQ ,∴65=2CQ , ∴CQ =53, ∴BP =7−2−53=103;故答案为103;四边形APQE 的周长中AE 和PQ 是定值,要使四边形APQE 的周长最小,只要AP +QE 最小即可;在AD 上截取AF =PQ =2,作点F 关于BC 的对称点G 连接GE 与BC 交于点Q ,过点AAP//FQ ,过G 作GH//BC 交CD 于点H ,根据题意可得EH GH =EC CQ ,即可求出CQ =53,则BP =BC −PQ −CQ 即可求解; 本题考查矩形的性质,轴对称求最短距离,直角三角形的性质;能够将四边形的周长最小转化为线段AP +QE 的最小,通过构造平行四边形和轴对称找到AP +QE 的最短时的P 和Q 点位置是解题的关键.20.【答案】45【解析】解:∵∠ACB =90°,AC =4,BC =3,∴AB =√AC 2+BC 2=5∵S △ABC =12AC ×BC =12AB ×CE ∴CE =3×45=125 ∴BE =√BC 2−CE 2=95 ∵将边BC 沿CE 翻折,使点B 落在AB 上的点D 处,再将边AC 沿CF 翻折,使点A 落在CD 的延长线上的点A′处,∴AF =A′F ,∠BCE =∠DCE ,∠ACF =∠A′CF ,且∠BCE +∠DCE +∠ACF +∠A′CF =90°∴∠ECF =45°,且CE ⊥AB ∴CE =FE =125 ∴AF =A′F =AB −BE −EF =45 故答案为:45由勾股定理可求AB =5,由三角形的面积公式可求CE 的长,由勾股定理可求BE 的长,即可求A′F 的长.本题主要考查的是翻折的性质、勾股定理的应用,利用面积法求得CE 的长,然后再利用勾股定理和等腰三角形的性质求得BE 和EF 的长是解答问题的关键.21.【答案】√852 先作先正方形的边的中点N ,连接PN 交AB 余Q ,再确定格点M ,则MN//AB ,MN =AB ,连接PM ,则△PMN 为等腰直角三角形,所以∠PNM =∠PQB =45°【解析】解:(I)线段AB 的长=√12+(92)2=√852; (Ⅱ)如图,点Q 为所作;先作正方形的边的中点N ,连接PN 交AB余Q ,再确定格点M ,则MN//AB ,MN =AB ,连接PM ,则△PMN 为等腰直角三角形,所以∠PNM =45°,所以∠PQB =45°.故答案为√852;先作正方形的边的中点N ,连接PN 交AB 余Q ,再确定格点M ,则MN//AB ,MN =AB ,连接PM ,则△PMN 为等腰直角三角形,所以∠PNM =45°,所以∠PQB =45°. (Ⅰ)利用勾股定理计算AB 的长;(Ⅱ)先平移AB 确定点M 、N ,再证明△PMN 为到等腰直角三角形,从而得到∠PNM =45°,所以∠PQB =45°.本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.22.【答案】8【解析】解:根据题意可得:阴影部分的面积即是正方形的面积的一半,因为正方形的边长为4,则正方形的面积是16,所以阴影部分的面积是8.故答案为8.根据题意可发现:上边两个三角形的面积和是上边矩形面积的一半,下边两个三角形的面积和是下边矩形面积的一半,即阴影部分的面积是正方形面积的一半,已知正方形的边长则不难求得阴影部分的面积.此题考查了正方形的性质及对图形的观察能力.23.【答案】√26【解析】解:(1)BC =√12+52=√26.故答案为√26.(2)如图,取格点M ,连接BM ,得到格点N ,取格点E ,连接EC 得到格点F ,作直线NF 交CD 于K ,点K 即为所求.理由:易知S四边形ABCD =3×5−12×1×2−1×1−12×1×3−1 2×1×2−12×1×5=8,∴S△BCK=13×8=83,由作图可知:CN=5+13=163,∴S△BCN=12×163×1=83,∵NF//BC,∴S△BCK=S△BCN=83.(1)利用勾股定理计算即可.(2)利用数形结合的思想解决问题即可.本题考查作图−应用与设计,勾股定理,平行线的性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.24.【答案】√10【解析】解:(I)由勾股定理得:BC=√32+12=√10,故答案为:√10;(II)如图,取格点D、E、F,连接AD,保证AD⊥BC,连接EF,可知:EF//AB,且EF与AB的距离和A与BC的距离相等,EF与AD的交点即为点A′,得△ABC关于直线BC对称的图形:△A′BC;(I)利用勾股定理计算即可;(II)取格点D、E、F,连接AD、EF,直线AD与EF相交即为点A′,连接A′B,A′C即可.本题考查轴对称变换、勾股定理等知识,解题的关键是学会利用勾股定理求线段的长,巧妙利用格点作对称图形,属于作图中比较难的题目.25.【答案】12【解析】解:∵BE ⊥AD ,BD =10,BO =8,∴OD =√102−82=6,∵AC 、BC 上的中线交于点O ,∴AO =2OD =12.故答案为:12.先根据勾股定理得到OD 的长,再根据重心的性质即可得到AO 的长.此题主要考查了勾股定理的应用以及重心的性质,根据已知得出各边之间的关系进而求出是解题关键.26.【答案】√342【解析】解:∵四边形ABCD 为正方形,∴∠BAE =∠D =90°,AB =AD ,在△ABE 和△DAF 中, ∵{AB =AD ∠BAE =∠D AE =DF ,∴△ABE≌△DAF(SAS),∴∠ABE =∠DAF ,∵∠ABE +∠BEA =90°,∴∠DAF +∠BEA =90°,∴∠AGE =∠BGF =90°,∵点H 为BF 的中点, ∴GH =12BF , ∵BC =5、CF =CD −DF =5−2=3,∴BF =√BC 2+CF 2=√34,∴GH =12BF =√342, 故答案为:√342.根据正方形的四条边都相等可得AB =AD ,每一个角都是直角可得∠BAE =∠D =90°,然后利用“边角边”证明△ABE≌△DAF 得∠ABE =∠DAF ,进一步得∠AGE =∠BGF =90°,从而知GH =12BF ,利用勾股定理求出BF 的长即可得出答案. 本题考查了正方形的性质,全等三角形的判定与性质,直角三角形两锐角互余等知识,掌握三角形全等的判定方法与正方形的性质是解题的关键.27.【答案】6 取格点P ,连接PC ,过点A 画PC 的平行线,与BC 交于点Q ,连接PQ 与AC 相交得点D ,过点D 画CB 的平行线,与AB 相交得点E ,分别过点D 、E 画PC 的平行线,与CB 相交得点G ,F ,则四边形DEFG 即为所求【解析】解:(Ⅰ)△ABC的面积为:1 2×4×3=6;(Ⅱ)如图,取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC相交得点D,过点D画CB的平行线,与AB相交得点E,分别过点D、E画PC的平行线,与CB相交得点G,F,则四边形DEFG即为所求.故答案为:(Ⅰ)6;(Ⅱ)取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC相交得点D,过点D画CB 的平行线,与AB相交得点E,分别过点D、E画PC的平行线,与CB相交得点G,F,则四边形DEFG即为所求.(Ⅰ)△ABC以AB为底,高为3个单位,求出面积即可;(Ⅱ)作出所求的正方形,如图所示,画图方法为:取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC相交得点D,过点D画CB的平行线,与AB相交得点E,分别过点D、E画PC的平行线,与CB相交得点G,F,则四边形DEFG即为所求此题考查了作图−位似变换,三角形的面积,以及正方形的性质,作出正确的图形是解本题的关键.28.【答案】解:(Ⅰ)连接OC,∵CD是⊙O的切线,∴∠OCD=90°,∵OC=OB,∴∠OCB=∠ABC=67°,∴∠BOC=46°,∵OD⊥AB,∴∠BOD=90°,∴∠DOC=44°,∴∠D=90°−44°=46°;(Ⅱ)连接OC,如图所示:∵OA=OC,∴∠1=∠A,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∴∠2+∠CDE=90°,∵OD⊥AB,∴∠2+∠3=90°,∴∠3=∠CDE,∵∠3=∠A +∠1=2∠A ,∴∠CDE =2∠A ,∵∵EO =EC ,∴∠1=∠2,∴∠D =∠DCE ,∵∠DCE +∠1=∠BCO +∠1=90°,∴∠DCE =∠BCO =∠ABC =∠D ,∵∠A +∠ABC =90°,∴∠A =30°,∴∠1=∠2=30°,∵AB =2,∴OA =1, ∴OE =√32, ∴OD =√3,∴CD =√33.【解析】(Ⅰ)连接OC ,根据切线的性质得到∠OCD =90°,根据圆周角定理得到∠OCB =∠ABC =67°,得到∠BOC =46°,根据三角形的内角和即可得到结论;(Ⅱ)连接OC ,根据等腰三角形的性质得到∠1=∠A ,由切线的性质得到OC ⊥CD ,求得∠OCD =90°,等量代换得到∠CDE =2∠A ,根据等腰三角形的性质得到∠D =∠DCE ,得到∠A =30°,解直角三角形即可得到结论.本题考查了切线的性质,解直角三角形,直角三角形的性质,等腰三角形的性质,正确的作出辅助线是解题的关键.29.【答案】2√5【解析】解:(Ⅰ)AC =√22+42=2√5.故答案为2√5.(Ⅱ)如图所示,取格点O ,H ,M ,N ,连接HO 并延长交AD ,BC 于点F ,E ,连接BN ,DM 相较于点Q ,则点E ,F ,Q 即为所求.(Ⅰ)利用勾股定理即可解决问题.(Ⅱ)如图所示,取格点O ,H ,M ,N ,连接HO 并延长交AD ,BC 于点F ,E ,连接BN ,DM 相较于点Q ,则点E ,F ,Q 即为所求.本题考查作图−轴对称变换,勾股定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.30.【答案】解:(Ⅰ)连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=25°,∴∠ABC=65°,∵OD⊥AB,∴∠AOD=90°,∴∠ACD=12∠AOD=12×90°=45°,∵OA=OC,∴∠OAC=∠OCA=25°,∴∠OCD=∠OCA+∠ACD=70°,∵OD=OC,∴∠ODC=∠OCD=70°;(Ⅱ)连接OC,∵EC是⊙O的切线,∴OC⊥EC,∴∠OCE=90°,∵∠BAC=25°,∴∠COE=2∠BAC=50°,∴∠OEC=40°,∵OD//CE,∴∠AOD=∠COE=40°,∴∠ACD=12∠AOD=20°.【解析】(Ⅰ)连接OC,根据圆周角定理得到∠ACB=90°,根据三角形的内角和得到∠ABC=65°,由等腰三角形的性质得到∠OCD=∠OCA+∠ACD=70°,于是得到结论;(Ⅱ)连接OC,由切线的性质得到OC⊥EC,求得∠OCE=90°,根据圆周角定理得到∠COE=2∠BAC=50°,根据平行线的性质得到∠AOD=∠COE=40°,于是得到∠ACD=12∠AOD=20°本题考查了切线的性质,圆周角定理,直角三角形的性质,正确的作出辅助线是解题的关键.31.【答案】√5【解析】解:(1)AB=√22+12=√5,故答案为√5.),作直线CG,作矩形ANBM (2)如图取格点C、G(使得S△CAB=32和矩形EQGD,得到对角线的交点F和H,,作直线FH,交CG于P,则△PAB是等腰三角形,且S△PAB=32则点P即为所求.(1)利用勾股定理计算即可;),作直线CG,作矩形ANBM和(2)取格点C、G(使得S△CAB=32矩形EQGD,得到对角线的交点F和H,作直线FH,交CG于P,则点P即为所求.本题考查作图−应用与设计,线段的垂直平分线的性质、等高模型等知识,解题的关键是学会利用数形结合的思想思考问题,属于中考常考题型.。
2020年中考数学压轴题每日一练(含答案)

2020年中考数学压轴题每日一练(4.18)一、选择题1.如图,点A、B是反比例函数y=(k≠0)图象上的两点,延长线段AB交y轴于点C,且点B为线段AC中点,过点A作AD⊥x轴于点D,点E为线段OD的三等分点,且OE<DE.连接AE、BE,若S△ABE=7,则k的值为()A.﹣12 B.﹣10 C.﹣9 D.﹣62.如图,正方形ABCD中,AB=2,O是BC边的中点,点E是正方形内一动点,OE =2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE,CF.则线段OF长的最小值()A.2B.+2 C.2﹣2 D.5二、填空题3.如图,等腰直角△ABC中,∠C=90°,AC=BC=,E、F为边AC、BC上的两个动点,且CF=AE,连接BE、AF,则BE+AF的最小值为.4.如图,正方形ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于cm.三、解答题5.如图,矩形ABCD中,AB=a,BC=b,动点P从A点出发,按A→B→C的方向在AB 和BC上移动,记P A=x,点D到直线P A的距离为y,且y关于x的函数图象大致如图:(1)a=,b=;(2)求y关于x的函数关系式,并直接写出x的取值范围;(3)当△PCD的面积是△ABP的面积的时,求y的值.6.如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于点A,B(3,0),交y轴于点C(0,3).(1)求抛物线的解析式;(2)在直线BC上有一点P,使PO+P A的值最小,求点P的坐标;(3)在x轴上是否存在一点Q,使得以A,C,Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.【答案与解析】一、选择题1.【分析】设A(m,),C(0,n),则D(m,0),E(m,0),由AB=BC,推出B(,),根据点B在y=上,推出•=k,可得mn=3k,连接EC,OA.因为AB=BC,推出S△AEC=2•S△AEB=14,根据S△AEC=S△AEO+S△ACO﹣S△ECO,构建方程即可解决问题;【解答】解:设A(m,),C(0,n),则D(m,0),E(m,0),∵AB=BC,∴B(,),∵点B在y=上,∴•=k,∴k+mn=4k,∴mn=3k,连接EC,OA.∵AB=BC,∴S△AEC=2•S△AEB=14,∵S△AEC=S△AEO+S△ACO﹣S△ECO,∴14=•(﹣m)•+•n•(﹣m)﹣•(﹣m)•n,∴14=﹣k﹣+,∴k=﹣12.故选:A.2.【分析】连接DO,将线段DO绕点D逆时针旋转90°得DM,连接OF,FM,OM,证明△EDO≌△FDM,可得FM=OE=2,由条件可得OM=5,根据OF+MF≥OM,即可得出OF的最小值.【解答】解:如图,连接DO,将线段DO绕点D逆时针旋转90°得DM,连接OF,FM,OM,∵∠EDF=∠ODM=90°,∴∠EDO=∠FDM,∵DE=DF,DO=DM,∴△EDO≌△FDM(SAS),∴FM=OE=2,∵正方形ABCD中,AB=2,O是BC边的中点,∴OC=,∴OD=,∴OM=,∵OF+MF≥OM,∴OF≥.故选:D.二、填空题3.如图,等腰直角△ABC中,∠C=90°,AC=BC=,E、F为边AC、BC上的两个动点,且CF=AE,连接BE、AF,则BE+AF的最小值为.【分析】如图,作点C关于直线AB的对称点D,连接AD,BD,延长DA到H,使得AH=AD,连接EH,BH,DE.想办法证明AF=DE=EH,BE+AF的最小值转化为EH+EB 的最小值.【解答】解:如图,作点C关于直线AB的对称点D,连接AD,BD,延长DA到H,使得AH=AD,连接EH,BH,DE.∵CA=CB,∠C=90°,∴∠CAB=∠CBA=45°,∵C,D关于AB对称,∴DA=DB,∠DAB=∠CAB=45°,∠ABD=∠ABC=45°,∴∠CAD=∠CBD=∠ADC=∠C=90°,∴四边形ACBD是矩形,∵CA=CB,∴四边形ACBD是正方形,∵CF=AE,CA=DA,∠C=∠EAD=90°,∴△ACF≌△DAE(SAS),∴AF=DE,∴AF+BE=ED+EB,∵CA垂直平分线段DH,∴ED=EH,∴AF+BE=EB+EH,∵EB+EH≥BH,∴AF+BE的最小值为线段BH的长,BH==,∴AF+BE的最小值为,故答案为.4.如图,正方形ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于2或1cm.【分析】根据题意画出图形,过P作PN⊥BC,交BC于点N,由ABCD为正方形,得到AD=DC=PN,在直角三角形ADE中,利用锐角三角函数定义求出DE的长,进而利用勾股定理求出AE的长,根据M为AE中点求出AM的长,利用HL得到三角形ADE与三角形PQN全等,利用全等三角形对应边,对应角相等得到DE=NQ,∠DAE=∠NPQ =30°,再由PN与DC平行,得到∠PF A=∠DEA=60°,进而得到PM垂直于AE,在直角三角形APM中,根据AM的长,利用锐角三角函数定义求出AP的长,再利用对称性确定出AP′的长即可.【解答】解:根据题意画出图形,过P作PN⊥BC,交BC于点N,∵四边形ABCD为正方形,∴AD=DC=PN,在Rt△ADE中,∠DAE=30°,AD=3cm,∴tan30°=,即DE=cm,根据勾股定理得:AE=2cm,∵M为AE的中点,∴AM=AE=cm,在Rt△ADE和Rt△PNQ中,,∴Rt△ADE≌Rt△PNQ(HL),∴DE=NQ,∠DAE=∠NPQ=30°,∵PN∥DC,∴∠PF A=∠DEA=60°,∴∠PMF=90°,即PM⊥AF,在Rt△AMP中,∠MAP=30°,cos30°=,∴AP===2cm;由对称性得到AP′=DP=AD﹣AP=3﹣2=1cm,综上,AP等于1cm或2cm.故答案为:1或2.三、解答题5.如图,矩形ABCD中,AB=a,BC=b,动点P从A点出发,按A→B→C的方向在AB 和BC上移动,记P A=x,点D到直线P A的距离为y,且y关于x的函数图象大致如图:(1)a=3,b=4;(2)求y关于x的函数关系式,并直接写出x的取值范围;(3)当△PCD的面积是△ABP的面积的时,求y的值.【分析】(1)根据函数的图象,即可得出a、b的值;(2)分点P在线段AB上跟点P在线段BC上讨论,依据相似三角形的性质,即可得出y与x之间的关系;(3)由等高三角形的面积比等于底边长之比,可得出BP的长,根据勾股定理得出x的值,代入到(2)中的关系式中即可求出y的值.【解答】解:(1)当点P在线段AB上时,D到AB的距离为AD,由函数图象可看出,AD=4,即BC=b=4,当点P运动到线段BC上时,D到AB的距离出现变化,由函数图象可看出,AB=3=a.故答案为:3;4.(2)①当点P在线段AB上时,有0≤AP≤AB,即0≤x≤3,此时y=4.②当点P在线段BC上时,连接AC,过点D作DE⊥AP于点E,如图,由勾股定理可得:AC==5.∵此时P点过B点向C点运动,∴AB<AP≤AC,即3<x≤5.∵AD∥BC,∴∠DAE=∠APB,又∵∠ABP=∠DEA=90°,∴△DAE∽△APB,∴=,即=,∴y=.综合①②得:y=.(3)∵△PCD的面积是△ABP的面积的,且两三角形等高,∴BP=3PC,∵BP+PC=BC=4,∴BP=3,由勾股定理可得:x==3,将x=3代入,得y==2.故当△PCD的面积是△ABP的面积的时,y的值为2.6.如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于点A,B(3,0),交y轴于点C(0,3).(1)求抛物线的解析式;(2)在直线BC上有一点P,使PO+P A的值最小,求点P的坐标;(3)在x轴上是否存在一点Q,使得以A,C,Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.【分析】(1)根据点B,C的坐标,利用待定系数法可求出抛物线的解析式;(2)利用二次函数图象上点的坐标特征可得出点A的坐标,由点B,C的坐标可得出直线BC的解析式,作O关于BC的对称点O′,则点O′的坐标为(3,3),由两地之间线段最短可得出当A,P,O′共线时,PO+P A取最小值,由点O′,A的坐标可求出该最小值,由点A,O′的坐标,利用待定系数法可求出直线AO′的解析式,联立直线AO′和直线BC的解析式成方程组,通过解方程组可求出点P的坐标;(3)由点B,C,D的坐标可得出BC,BD,CD的长,由CD2+BC2=BD2可得出∠BCD=90°,由点A,C的坐标可得出OA,OC的长度,进而可得出=,结合∠AOC=∠DCB=90°可得出△AOC∽△DCB,进而可得出点Q与点O重合时△AQC∽△DCB;连接AC,过点C作CQ⊥AC,交x轴与点Q,则△ACQ∽△AOC∽△DCB,由相似三角形的性质可求出AQ的长度,进而可得出点Q的坐标.综上,此题得解.【解答】解:(1)将B(3,0),C(0,3)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的解析式为y=﹣x2+2x+3.(2)当y=0时,﹣x2+2x+3=0,解得:x1=﹣1,x2=3,∴点A的坐标为(﹣1,0).∵点B的坐标为(3,0),点C的坐标为(0,3),∴直线BC的解析式为y=﹣x+3.如图1,作O关于BC的对称点O′,则点O′的坐标为(3,3).∵O与O′关于直线BC对称,∴PO=PO′,∴PO+P A的最小值=PO′+P A=AO′==5.设直线AO′的解析式为y=kx+m,将A(﹣1,0),Q′(3,3)代入y=kx+m,得:,解得:,∴直线AO′的解析式为y=x+.联立直线AO′和直线BC的解析式成方程组,得:,解得:,∴点P的坐标为(,).(3)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴点D的坐标为(1,4).又∵点C的坐标为(0,3),点B的坐标为(3,0),∴CD==,BC==3,BD==2,∴CD2+BC2=BD2,∴∠BCD=90°.∵点A的坐标(﹣1,0),点C的坐标为(0,3),∴OA=1,OC=3,∴==.又∵∠AOC=∠DCB=90°,∴△AOC∽△DCB,∴当Q的坐标为(0,0)时,△AQC∽△DCB.如图2,连接AC,过点C作CQ⊥AC,交x轴与点Q.∵△ACQ为直角三角形,CO⊥AQ,∴△ACQ∽△AOC.又∵△AOC∽△DCB,∴△ACQ∽DCB,∴=,即=,∴AQ=10,∴点Q的坐标为(9,0).综上所述:当Q的坐标为(0,0)或(9,0)时,以A,C,Q为顶点的三角形与△BCD相似.。
2019年全国各地中考数学压轴题汇编:选择、填空(一)(山东专版)(解析卷)

2019年全国各地中考数学压轴题汇编(山东专版)选择、填空(一)参考答案与试题解析一.选择题(共12小题)1.(2019•青岛)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°解:∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD=∠ABC=,∠AFB=∠EFB=90°,∴∠BAF=∠BEF=90°﹣17.5°,∴AB=BE,∴AF=EF,∴AD=ED,∴∠DAF=∠DEF,∵∠BAC=180°﹣∠ABC﹣∠C=95°,∴∠BED=∠BAD=95°,∴∠CDE=95°﹣50°=45°,故选:C.2.(2019•淄博)如图,在△ABC中,AC=2,BC=4,D为BC边上的一点,且∠CAD=∠B.若△ADC的面积为a,则△ABD的面积为()A.2a B.a C.3a D.a解:∵∠CAD=∠B,∠ACD=∠BCA,∴△ACD∽△BCA,∴=()2,即=,解得,△BCA的面积为4a,∴△ABD的面积为:4a﹣a=3a,故选:C.3.(2019•青岛)已知反比例函数y=的图象如图所示,则二次函数y=ax2﹣2x和一次函数y=bx+a 在同一平面直角坐标系中的图象可能是()A.B.C.D.解:∵当x=0时,y=ax2﹣2x=0,即抛物线y=ax2﹣2x经过原点,故A错误;∵反比例函数y=的图象在第一、三象限,∴ab>0,即a、b同号,当a<0时,抛物线y=ax2﹣2x的对称轴x=<0,对称轴在y轴左边,故D错误;当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误,C正确.故选:C.4.(2019•枣庄)如图,将△ABC沿BC边上的中线AD平移到△A′B′C′的位置.已知△ABC的面积为16,阴影部分三角形的面积9.若AA′=1,则A′D等于()A.2B.3C.4D.解:∵S△ABC=16、S△A′EF=9,且AD为BC边的中线,∴S△A′DE=S△A′EF=,S△ABD=S△ABC=8,∵将△ABC沿BC边上的中线AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,则()2=,即()2=,解得A′D=3或A′D=﹣(舍),故选:B.5.(2019•潍坊)如图,在矩形ABCD中,AB=2,BC=3,动点P沿折线BCD从点B开始运动到点D.设运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是()A.B.C.D.解:由题意当0≤x≤3时,y=3,当3<x<5时,y=×3×(5﹣x)=﹣x+.故选:D.6.(2019•潍坊)如图,四边形ABCD内接于⊙O,AB为直径,AD=CD,过点D作DE⊥AB于点E,连接AC交DE于点F.若sin∠CAB=,DF=5,则BC的长为()A.8B.10C.12D.16解:连接BD,如图,∵AB为直径,∴∠ADB=∠ACB=90°,∵∠AD=CD,∴∠DAC=∠DCA,而∠DCA=∠ABD,∴∠DAC=∠ABD,∵DE⊥AB,∴∠ABD+∠BDE=90°,而∠ADE+∠BDE=90°,∴∠ABD=∠ADE,∴∠ADE=∠DAC,∴FD=F A=5,在Rt△AEF中,∵sin∠CAB==,∴EF=3,∴AE==4,DE=5+3=8,∵∠ADE=∠DBE,∠AED=∠BED,∴△ADE∽△DBE,∴DE:BE=AE:DE,即8:BE=4:8,∴BE=16,∴AB=4+16=20,在Rt△ABC中,∵sin∠CAB==,∴BC=20×=12.故选:C.7.(2019•枣庄)如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=(x>0)的图象上,若AB=1,则k的值为()A.1B.C.D.2解:∵等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,AB=1,∴∠BAC=∠BAO=45°,∴OA=OB=,AC=,∴点C的坐标为(,),∵点C在函数y=(x>0)的图象上,∴k==1,故选:A.8.(2019•济宁)如图,点A的坐标是(﹣2,0),点B的坐标是(0,6),C为OB的中点,将△ABC绕点B逆时针旋转90°后得到△A′B′C′.若反比例函数y=的图象恰好经过A′B的中点D,则k的值是()A.9B.12C.15D.18解:作A′H⊥y轴于H.∵∠AOB=∠A′HB=∠ABA′=90°,∴∠ABO+∠A′BH=90°,∠ABO+∠BAO=90°,∴∠BAO=∠A′BH,∵BA=BA′,∴△AOB≌△BHA′(AAS),∴OA=BH,OB=A′H,∵点A的坐标是(﹣2,0),点B的坐标是(0,6),∴OA=2,OB=6,∴BH=OA=2,A′H=OB=6,∴OH=4,∴A′(6,4),∵BD=A′D,∴D(3,5),∵反比例函数y=的图象经过点D,∴k=15.故选:C.9.(2019•潍坊)抛物线y=x2+bx+3的对称轴为直线x=1.若关于x的一元二次方程x2+bx+3﹣t=0(t为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是()A.2≤t<11B.t≥2C.6<t<11D.2≤t<6解:∵y=x2+bx+3的对称轴为直线x=1,∴b=﹣2,∴y=x2﹣2x+3,∴一元二次方程x2+bx+3﹣t=0的实数根可以看做y=x2﹣2x+3与函数y=t的有交点,∵方程在﹣1<x<4的范围内有实数根,当x=﹣1时,y=6;当x=4时,y=11;函数y=x2﹣2x+3在x=1时有最小值2;∴2≤t<11;故选:A.10.(2019•德州)在下列函数图象上任取不同两点P1(x1,y1)、P2(x2,y2),一定能使<0成立的是()A.y=3x﹣1(x<0)B.y=﹣x2+2x﹣1(x>0)C.y=﹣(x>0)D.y=x2﹣4x+1(x<0)解:A、∵k=3>0∴y随x的增大而增大,即当x1>x2时,必有y1>y2∴当x<0时,>0,故A选项不符合;B、∵对称轴为直线x=1,∴当0<x<1时y随x的增大而增大,当x>1时y随x的增大而减小,∴当0<x<1时:当x1>x2时,必有y1>y2此时>0,故B选项不符合;C、当x>0时,y随x的增大而增大,即当x1>x2时,必有y1>y2此时>0,故C选项不符合;D、∵对称轴为直线x=2,∴当x<0时y随x的增大而减小,即当x1>x2时,必有y1<y2此时<0,故D选项符合;故选:D.11.(2019•济宁)已知有理数a≠1,我们把称为a的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是=.如果a1=﹣2,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数……依此类推,那么a1+a2+…+a100的值是()A.﹣7.5B.7.5C.5.5D.﹣5.5解:∵a1=﹣2,∴a2==,a3==,a4==﹣2,……∴这个数列以﹣2,,依次循环,且﹣2++=﹣,∵100÷3=33…1,∴a1+a2+…+a100=33×(﹣)﹣2=﹣=﹣7.5,故选:A.12.(2019•德州)如图,正方形ABCD,点F在边AB上,且AF:FB=1:2,CE⊥DF,垂足为M,且交AD于点E,AC与DF交于点N,延长CB至G,使BG=BC,连接GM.有如下结论:①DE=AF;②AN=AB;③∠ADF=∠GMF;④S△ANF:S四边形CNFB=1:8.上述结论中,所有正确结论的序号是()A.①②B.①③C.①②③D.②③④解:∵四边形ABCD是正方形,∴AD=AB=CD=BC,∠CDE=∠DAF=90°,∵CE⊥DF,∴∠DCE+∠CDF=∠ADF+∠CDF=90°,∴∠ADF=∠DCE,在△ADF与△DCE中,,∴△ADF≌△DCE(ASA),∴DE=AF;故①正确;∵AB∥CD,∴=,∵AF:FB=1:2,∴AF:AB=AF:CD=1:3,∴=,∴=,∵AC=AB,∴=,∴AN=AB;故②正确;作GH⊥CE于H,设AF=DE=a,BF=2a,则AB=CD=BC=3a,EC=a,由△CMD∽△CDE,可得CM=a,由△GHC∽△CDE,可得CH=a,∴CH=MH=CM,∵GH⊥CM,∴GM=GC,∴∠GMH=∠GCH,∵∠FMG+∠GMH=90°,∠DCE+∠GCM=90°,∴∠FEG=∠DCE,∵∠ADF=∠DCE,∴∠ADF=∠GMF;故③正确,设△ANF的面积为m,∵AF∥CD,∴==,△AFN∽△CDN,∴△ADN的面积为3m,△DCN的面积为9m,∴△ADC的面积=△ABC的面积=12m,∴S△ANF:S四边形CNFB=1:11,故④错误,故选:C.二.填空题(共13小题)13.(2019•青岛)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是54°.解:连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠F AD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为:54.14.(2019•枣庄)用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE.图中,∠BAC=36度.解:∵∠ABC==108°,△ABC是等腰三角形,∴∠BAC=∠BCA=36度.15.(2019•青岛)如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走16个小立方块.解:若新几何体与原正方体的表面积相等,最多可以取走16个小正方体,只需留11个,分别是正中心的3个和四角上各2个,如图所示:故答案为:1616.(2019•潍坊)如图,直线y=x+1与抛物线y=x2﹣4x+5交于A,B两点,点P是y轴上的一个动点,当△P AB的周长最小时,S△P AB=.解:,解得,或,∴点A的坐标为(1,2),点B的坐标为(4,5),∴AB==3,作点A关于y轴的对称点A′,连接A′B与y轴的交于P,则此时△P AB的周长最小,点A′的坐标为(﹣1,2),点B的坐标为(4,5),设直线A′B的函数解析式为y=kx+b,,得,∴直线A′B的函数解析式为y=x+,当x=0时,y=,即点P的坐标为(0,),将x=0代入直线y=x+1中,得y=1,∵直线y=x+1与y轴的夹角是45°,∴点P到直线AB的距离是:(﹣1)×sin45°==,∴△P AB的面积是:=,故答案为:.17.(2019•枣庄)把两个同样大小含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个三角尺的直角顶点重合于点A,且另外三个锐角顶点B,C,D在同一直线上.若AB=2,则CD=﹣.解:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==,∴CD=BF+DF﹣BC=+﹣2=﹣,故答案为:﹣.18.(2019•济宁)如图,抛物线y=ax2+c与直线y=mx+n交于A(﹣1,p),B(3,q)两点,则不等式ax2+mx+c>n的解集是x<﹣3或x>1.解:∵抛物线y=ax2+c与直线y=mx+n交于A(﹣1,p),B(3,q)两点,∴﹣m+n=p,3m+n=q,∴抛物线y=ax2+c与直线y=﹣mx+n交于P(1,p),Q(﹣3,q)两点,观察函数图象可知:当x<﹣3或x>1时,直线y=﹣mx+n在抛物线y=ax2+bx+c的下方,∴不等式ax2+mx+c>n的解集为x<﹣3或x>1.故答案为:x<﹣3或x>1.19.(2019•潍坊)如图,在矩形ABCD中,AD=2.将∠A向内翻折,点A落在BC上,记为A′,折痕为DE.若将∠B沿EA′向内翻折,点B恰好落在DE上,记为B′,则AB=.解:∵四边形ABCD为矩形,∴∠ADC=∠C=∠B=90°,AB=DC,由翻折知,△AED≌△A'ED,△A'BE≌△A'B'E,∠A'B'E=∠B=∠A'B'D=90°,∴∠AED=∠A'ED,∠A'EB=∠A'EB',BE=B'E,∴∠AED=∠A'ED=∠A'EB=×180°=60°,∴∠ADE=90°﹣∠AED=30°,∠A'DE=90°﹣∠A'EB=30°,∴∠ADE=∠A'DE=∠A'DC=30°,又∵∠C=∠A'B'D=90°,DA'=DA',∴△DB'A'≌△DCA'(AAS),∴DC=DB',在Rt△AED中,∠ADE=30°,AD=2,∴AE==,设AB=DC=x,则BE=B'E=x﹣∵AE2+AD2=DE2,∴()2+22=(x+x﹣)2,解得,x1=(负值舍去),x2=,故答案为:.20.(2019•青岛)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若AD=4cm,则CF的长为6﹣cm.解:设BF=x,则FG=x,CF=4﹣x.在Rt△ADE中,利用勾股定理可得AE=.根据折叠的性质可知AG=AB=4,所以GE=﹣4.在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(﹣4)2+x2=(4﹣x)2+22,解得x=﹣2.则FC=4﹣x=6﹣.故答案为6﹣.21.(2019•德州)如图,CD为⊙O的直径,弦AB⊥CD,垂足为E,=,CE=1,AB=6,则弦AF的长度为.解:连接OA、OB,OB交AF于G,如图,∵AB⊥CD,∴AE=BE=AB=3,设⊙O的半径为r,则OE=r﹣1,OA=r,在Rt△OAE中,32+(r﹣1)2=r2,解得r=5,∵=,∴OB⊥AF,AG=FG,在Rt△OAG中,AG2+OG2=52,①在Rt△ABG中,AG2+(5﹣OG)2=62,②解由①②组成的方程组得到AG=,∴AF=2AG=.故答案为.22.(2019•枣庄)观察下列各式:=1+=1+(1﹣),=1+=1+(﹣),=1+=1+(﹣),…请利用你发现的规律,计算:+++…+,其结果为2018.解:+++…+=1+(1﹣)+1+(﹣)+…+1+(﹣)=2018+1﹣+﹣+﹣+…+﹣=2018,故答案为:2018.23.(2019•潍坊)如图所示,在平面直角坐标系xoy中,一组同心圆的圆心为坐标原点O,它们的半径分别为1,2,3,…,按照“加1”依次递增;一组平行线,l0,l1,l2,l3,…都与x轴垂直,相邻两直线的间距为l,其中l0与y轴重合若半径为2的圆与l1在第一象限内交于点P1,半径为3的圆与l2在第一象限内交于点P2,…,半径为n+1的圆与l n在第一象限内交于点P n,则点P n的坐标为(n,).(n为正整数)解:连接OP1,OP2,OP3,l1、l2、l3与x轴分别交于A1、A2、A3,如图所示:在Rt△OA1P1中,OA1=1,OP1=2,∴A1P1===,24.(2019•德州)如图,点A1、A3、A5…在反比例函数y=(x>0)的图象上,点A2、A4、A6……在反比例函数y=(x>0)的图象上,∠OA1A2=∠A1A2A3=∠A2A3A4=…=∠α=60°,且OA1=2,则A n(n为正整数)的纵坐标为(﹣1)n+1().(用含n的式子表示)解:过A1作A1D1⊥x轴于D1,∵OA1=2,∠OA1A2=∠α=60°,∴△OA1E是等边三角形,∴A1(1,),∴k=,∴y=和y=﹣,过A2作A2D2⊥x轴于D2,∵∠A2EF=∠A1A2A3=60°,∴△A2EF是等边三角形,设A2(x,﹣),则A2D2=,Rt△EA2D2中,∠EA2D2=30°,∴ED2=,∵OD2=2+=x,解得:x1=1﹣(舍),x2=1+,∴EF====2(﹣1)=2﹣2,A2D2===,即A2的纵坐标为﹣;过A3作A3D3⊥x轴于D3,同理得:△A3FG是等边三角形,设A3(x,),则A3D3=,Rt△F A3D3中,∠F A3D3=30°,∴FD3=,∵OD3=2+2﹣2+=x,解得:x1=(舍),x2=+;∴GF===2(﹣)=2﹣2,A3D3===(﹣),即A3的纵坐标为(﹣);…∴A n(n为正整数)的纵坐标为:(﹣1)n+1();故答案为:(﹣1)n+1();25.(2019•淄博)如图,在以A为直角顶点的等腰直角三角形纸片ABC中,将B角折起,使点B落在AC边上的点D(不与点A,C重合)处,折痕是EF.如图1,当CD=AC时,tanα1=;如图2,当CD=AC时,tanα2=;如图3,当CD=AC时,tanα3=;……依此类推,当CD=AC(n为正整数)时,tanαn=.解:观察可知,正切值的分子是3,5,7,9,…,2n+1,分母与勾股数有关系,分别是勾股数3,4,5;5,12,13;7,24,25;9,40,41;…,2n+1,,中的中间一个.∴tanαn ==.故答案为:.。
2020年江苏中考数学压轴题精选精练5(解析版)

2020年中考数学压轴题精选精练5一、选择题1.若0<m<2,则关于x的一元二次方程﹣(x+m)(x+3m)=3mx+37根的情况是()A.无实数根B.有两个正根C.有两个根,且都大于﹣3mD.有两个根,其中一根大于﹣m2.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP =QO,则的值为()A.B.C.D.3.如图,D是△ABC内一点,BD⊥CD,AD=7,BD=4,CD=3,E、F、G、H分别是AB、BD、CD、AC的中点,则四边形EFGH的周长为()A.12 B.14 C.24 D.214.如图,AB是半圆O的直径,且AB=12,点C为半圆上的一点.将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心O,则图中阴影部分的面积是()A.4πB.5πC.6πD.8π5.如图,△ABC和△DCE都是边长为8的等边三角形,点B,C,E在同一条直线上接BD,AE,则四边形FGCH的面积为()A.B.C.D.6.如图,△ABC内接于⊙O,∠A=60°,BC=4,当点P在上由B点运动到C点时,弦AP的中点E运动的路径长为()A.πB.πC.πD.2二、填空题1.如图,四边形ABCD中,已知AB=AD,∠BAD=60°,∠BCD=120°,若四边形ABCD 的面积为4,则AC=.第1题第2题2.如图,AB为⊙O的直径,AB=4,C为半圆AB的中点,P为上一动点,延长BP至点Q,使BP•BQ=AB2.若点P由A运动到C,则点Q运动的路径长为.3.如图,边长为5的等边三角形ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN 长度的最小值是.第3题第4题4.如图,AB为⊙O的直径,点C、D分别是半圆AB的三等分点,AB=4,点P自A点出发,沿弧ABC向C点运动,T为△P AC的内心.当点P运动到使BT最短时就停止运动,点T运动的路径长为5.如图,在四边形ABCD中,∠ADC=90°,∠BAD=60°,对角线AC平分∠BAD,且AB=AC=4,点E、F分别是AC、BC的中点,连接DE、EF、DF,则DF的长为.第3题第4题6.如图,AB为半圆O的直径,点C在半圆O上,AB=8,∠CAB=60°,P是弧上的一个点,连接AP,过点C作CD⊥AP于点D,连接BD,在点P移动过程中,BD长的最小值为.三、解答题1.如图,△ABC是等边三角形,D是BC边的中点,以D为顶点作一个120°的角,角的两边分别交直线AB、直线AC于M、N两点.以点D为中心旋转∠MDN(∠MDN的度数不变),当DM与AB垂直时(如图①所示),易证BM+CN=BD.(1)如图②,当DM与AB不垂直,点M在边AB上,点N在边AC上时,BM+CN=BD是否仍然成立?若成立,请给予证明;若不成立,请说明理由;(2)如图③,当DM与AB不垂直,点M在边AB上,点N在边AC的延长线上时,BM+CN =BD是否仍然成立?若不成立,请写出BM,CN,BD之间的数量关系,不用证明.2.如图,抛物线23(0)y ax ax c a =-+≠与x 轴交于A ,B 两点,交y 轴于点C ,其中A (-1,0),C (0,3). (1) 求抛物线的解析式(2) 点P 是线段BC 上方抛物线上一动点(不与B ,C 重合),过点P 作PD ⊥x 轴,垂足为D ,交BC 于点E ,作PF ⊥直线BC 于点F ,设点P 的横坐标为x ,△PEF 的周长记为l ,求l 关于x 的函数关系式,并求出l 的最大值及此时点P 的坐标(3) 点H 是直线AC 上一点,该抛物线的对称轴上一动点G ,连接OG ,GH ,则两线段OG ,GH 的长度之和的最小值等于______,此时点G 的坐标为_____(直接写出答案。
2020年中考数学压轴题(含答案) (2)

2020年中考数学压轴题一、选择题1.如图,在△ABC中,点D、E、F分别在AB、AC、BC边上,DE∥BC,EF∥AB,则下列比例式中错误的是()A.B.C.D.第1题第2题2.如图,在平面直角坐标系xOy中,A(﹣3,0),B(3,0),若在直线y=﹣x+m上存在点P满足∠APB=60°,则m的取值范围是()A.≤m≤B.﹣﹣5≤m≤+5C.﹣2≤m≤+2D.﹣﹣2≤m≤+2二、填空题18.如图,点G是矩形ABCD的对角线BD上一点,过点G作EF∥AB交AD于E,交BC 于F,若EG=5,BF=2,则图中阴影部分的面积为.第3题第4题24.如图为二次函数y=ax2+bx+c图象,直线y=t(t>0)与抛物线交于A,B两点,A,B 两点横坐标分别为m,n.根据函数图象信息有下列结论:①abc>0;②若对于t>0的任意值都有m<﹣1,则a≥1;③m+n=1;④m<﹣1;⑤当t为定值时,若a变大,则线段AB变长.其中,正确的结论有(写出所有正确结论的序号)三、解答题5.如图,已知点A(1,0),B(0,3),将△AOB绕点O逆时针旋转90°,得到△COD,设E为AD的中点.(1)若F为CD上一动点,求出当△DEF与△COD相似时点F的坐标;(2)过E作x轴的垂线l,在直线l上是否存在一点Q,使∠CQO=∠CDO?若存在,求出Q点的坐标;若不存在,请说明理由.6.如图1,在平面直角坐标系中,直线y=x+4与抛物线y=﹣x2+bx+c(b,c是常数)交于A、B两点,点A在x轴上,点B在y轴上.设抛物线与x轴的另一个交点为点C.(1)求该抛物线的解析式;(2)P是抛物线上一动点(不与点A、B重合),①如图2,若点P在直线AB上方,连接OP交AB于点D,求的最大值;②如图3,若点P在x轴的上方,连接PC,以PC为边作正方形CPEF,随着点P的运动,正方形的大小、位置也随之改变.当顶点E或F恰好落在y轴上,直接写出对应的点P的坐标.【答案与解析】一、选择题1.【分析】根据平行线分线段成比例定理列出比例式,再分别对每一项进行判断即可.【解答】A.∵EF∥AB,∴=,故本选项正确,B.∵DE∥BC,∴=,∵EF∥AB,∴DE=BF,∴=,∴=,故本选项正确,C.∵EF∥AB,∴=,∵CF≠DE,∴≠,故本选项错误,D.∵EF∥AB,∴=,∴=,故本选项正确,故选:C.2.【分析】作等边三角形ABE,然后作外接圆,求得直线y=﹣x+m与外接圆相切时的m的值,即可求得m的取值范围.【解答】解:如图,作等边三角形ABE,∵A(﹣3,0),B(3,0),∴OA=OB=3,∴E在y轴上,当E在AB上方时,作等边三角形ABE的外接圆⊙Q,设直线y=﹣x+m与⊙Q相切,切点为P,当P与P1重合时m的值最大,当P与P1重合时,连接QP1,则QP1⊥直线y=﹣x+m,∵OA=3,∴OE=3,设⊙Q的半径为x,则x2=32+(3﹣x)2,解得x=2,∴EQ=AQ=PQ=2,∴OQ=,由直线y=﹣x+m可知OD=OC=m,∴DQ=m﹣,CD=m,∵∠ODC=∠P1DQ,∠COD=∠QP1D,∴△QP1D∽△COD,∴=,即=,解得m=+2,当E在AB下方时,作等边三角形ABE的外接圆⊙Q,设直线y=﹣x+m与⊙Q相切,切点为P,当P与P2重合时m的值最小,当P与P2重合时,同理证得m=﹣﹣2,∴m的取值范围是﹣﹣2≤m≤+2,故选:D.二、填空题3.【分析】由矩形的性质可证明S矩形AEGM=S矩形CFGN=2×5=10,即可求解.【解答】解:作GM⊥AB于M,延长MG交CD于N.则有四边形AEGM,四边形DEGN,四边形CFGN,四边形BMGF都是矩形,∴AE=BF=2,S△ADB=S△DBC,S△BGM=S△BGF,S△DEG=S△DNG,∴S矩形AEGM=S矩形CFGN=2×5=10,∴S阴=S矩形CFGN=5,故答案为:5.4.【分析】由图象分别求出a>0,c=﹣2,b=﹣a<0,则函数解析式为y=ax2﹣ax﹣2,则对称轴x=,由开口向上的函数的图象开口与a的关系可得:当a变大,函数y=ax2﹣ax﹣2的开口变小,依据这个性质判断m的取值情况.【解答】解:由图象可知,a>0,c=﹣2,∵对称轴x=﹣=,∴b=﹣a<0,∴abc>0;∴①正确;A、B两点关于x=对称,∴m+n=1,∴③正确;a>0时,当a变大,函数y=ax2﹣ax﹣2的开口变小,则AB的距离变小,∴⑤不正确;若m<﹣1,n>2,由图象可知n>1,∴④不正确;当a=1时,对于t>0的任意值都有m<﹣1,当a>1时,函数开口变小,则有m>﹣1的时候,∴②不正确;故答案①③.三、解答题5.【分析】(1)当△DEF∽△COD时,=,DF=DE cos∠CDO=,据此求出EF的长度和点F的坐标即可;(2)首先以CD为直径作圆,设其圆心为P,交直线a于点Q、Q′,连接PQ,P Q′,由圆周角定理,可得∠CQO=∠CQ′O=∠CDO,在Rt△CDO中,由勾股定理可得CD=,则PQ=CD=;然后求出点P的坐标是多少;设Q(﹣1,a),则()2+(a﹣)2=,据此求出a的值是多少,进而求出Q点坐标是多少即可.【解答】解:(1)∵A(1,0),B(0,3),∴OA=1,OB=3,∵将△AOB绕点O逆时针旋转90°,得到△COD,∴OC=1,OD=3,∴C(0,1),D(﹣3,0),如图1,当△DEF∽△COD时,=∴EF=,∴F(﹣1,);当△DEF∽△COD时,DF=DE cos∠CDO=,作FK⊥OD于K,则FK=DF sin∠CDO=,DK=DF cos∠CDO=,∴F(﹣,);(2)如图2,以CD为直径作圆,设其圆心为P,交直线a于点Q、Q′,连接PQ,P Q′,由圆周角定理,可得∠CQO=∠CQ′O=∠CDO,在Rt△CDO中,由勾股定理可得CD=,则PQ=CD=,又∵P为CD中点,P(﹣,),设Q(﹣1,a),则()2+(a﹣)2=,解得a=2或﹣1,∴Q(﹣1,2)或(﹣1,﹣1).6.【分析】(1)利用直线解析式求出点A、B的坐标,再利用待定系数法求二次函数解析式解答;(2)作PF∥BO交AB于点F,证△PFD∽△OBD,得比例线段,则PF取最大值时,求得的最大值;(3)(i)点F在y轴上时,P在第一象限或第二象限,如图2,3,过点P作PH⊥x轴于H,根据正方形的性质可证明△CPH≌△FCO,根据全等三角形对应边相等可得PH=CO=2,然后利用二次函数解析式求解即可;(ii)点E在y轴上时,过点PK⊥x轴于K,作PS⊥y轴于S,同理可证得△EPS≌△CPK,可得PS=PK,则P点的横纵坐标互为相反数,可求出P点坐标;点E在y轴上时,过点PM⊥x轴于M,作PN⊥y轴于N,同理可证得△PEN≌△PCM,可得PN=PM,则P点的横纵坐标相等,可求出P点坐标.由此即可解决问题.【解答】解:(1)直线y=x+4与坐标轴交于A、B两点,当x=0时,y=4,x=﹣4时,y=0,∴A(﹣4,0),B(0,4),把A,B两点的坐标代入解析式得,,解得,,∴抛物线的解析式为;(2)如图1,作PF∥BO交AB于点F,∴△PFD∽△OBD,∴,∵OB为定值,∴当PF取最大值时,有最大值,设P(x,),其中﹣4<x<0,则F(x,x+4),∴PF==,∵且对称轴是直线x=﹣2,∴当x=﹣2时,PF有最大值,此时PF=2,;(3)∵点C(2,0),∴CO=2,(i)如图2,点F在y轴上时,若P在第二象限,过点P作PH⊥x轴于H,在正方形CPEF中,CP=CF,∠PCF=90°,∵∠PCH+∠OCF=90°,∠PCH+∠HPC=90°,∴∠HPC=∠OCF,在△CPH和△FCO中,,∴△CPH≌△FCO(AAS),∴PH=CO=2,∴点P的纵坐标为2,∴,解得,,x=﹣1+(舍去).∴,如图3,点F在y轴上时,若P在第一象限,同理可得点P的纵坐标为2,此时P2点坐标为(﹣1+,2)(ii)如图4,点E在y轴上时,过点PK⊥x轴于K,作PS⊥y轴于S,同理可证得△EPS≌△CPK,∴PS=PK,∴P点的横纵坐标互为相反数,∴,解得x=2(舍去),x=﹣2,∴,如图5,点E在y轴上时,过点PM⊥x轴于M,作PN⊥y轴于N,同理可证得△PEN≌△PCM,∴PN=PM,∴P点的横纵坐标相等,∴,解得,(舍去),∴,综合以上可得P点坐标为,,.。
2019年全国各地中考数学压轴题汇编:选择、填空(江苏专版)(原卷)

2019 年全国各地中考数学压轴题汇编(江苏专版)选择、填空一.选择题(共8 小题)1.( 2019?苏州)如图,菱形ABCD 的对角线AC ,BD 交于点 O, AC= 4, BD= 16,将△ ABO 沿点A 到点 C 的方向平移,获得△A'B'O'.当点 A'与点 C 重合时,点 A 与点 B'之间的距离为()A .6B.8C. 10D. 122.( 2019?连云港)如图,利用一个直角墙角修筑一个梯形储料场ABCD ,此中∠ C= 120°.若新建墙 BC 与 CD 总长为 12m,则该梯形储料场ABCD 的最大面积是()2B.18 2 2D.2A .18m m C. 24 m m3.( 2019?常州)跟着时代的进步,人们对(空气中直径小于等于 2.5 微米的颗粒)的关注日益亲密.某市一天中的值 y1( ug/m 3)随时间 t (h)的变化如下图,设y2表示 0 时到 t时 PM 2.5 的值的极差(即 0 时到 t 时 PM 2.5 的最大值与最小值的差),则y2与 t 的函数关系大概是()A.B.C. D .4.( 2019?苏州)如图,在△ABC 中,点 D 为BC 边上的一点,且AD =AB= 2, AD ⊥ AB.过点 D 作 DE⊥ AD,DE 交AC 于点E.若DE =1,则△ABC 的面积为()A .4 B.4 C. 2 D. 85.( 2019?连云港)如图,在矩形ABCD 中, AD= 2AB.将矩形ABCD 对折,获得折痕MN ;沿着 CM 折叠,点 D 的对应点为 E, ME 与 BC 的交点为 F;再沿着 MP 折叠,使得 AM 与 EM 重合,折痕为MP ,此时点 B 的对应点为 G.以下结论:① △ CMP 是直角三角形;②点 C、 E、 G 不在同一条直线上;③ PC= MP ;④ BP= AB;⑤ 点 F 是△ CMP 外接圆的圆心,此中正确的个数为()A.2 个B.3 个C.4 个D.5 个6.( 2019?扬州)若反比率函数y=﹣的图象上有两个不一样的点对y 轴的对称点都在一次函数y于=﹣ x+m 的图象上,则m 的取值范围是()A .m>2B . m<﹣ 2C.m>2 或 m<﹣ 2 D.﹣ 2 < m< 27.( 2019?镇江)如图,菱形ABCD 的极点B、C 在x 轴上(B 在C 的左边),极点A、D 在x 轴上方,对角线BD 的长是,点E(﹣ 2,0)为BC 的中点,点P 在菱形ABCD 的边上运动.当点 F( 0, 6)到EP 所在直线的距离获得最大值时,点P 恰巧落在AB 的中点处,则菱形ABCD 的边长等于()A.B.C.D.38.( 2019?宿迁)如图,在平面直角坐标系xOy 中,菱形ABCD 的极点 A 与原点 O 重合,极点 B 落在 x 轴的正半轴上,对角线AC、BD 交于点 M,点 D 、M 恰巧都在反比率函数y=(x>0)的图象上,则的值为()A.B.C.2D.二.填空题(共20 小题)9.( 2019?南京)如图,在△ABC 中, BC 的垂直均分线MN 交 AB 于点 D, CD 均分∠ ACB.若 AD = 2,BD = 3,则 AC 的长.10.( 2019?无锡)如图,在△ ABC 中, AC:BC:AB= 5:12:13,⊙ O 在△ ABC 内自由挪动,若⊙O 的半径为1,且圆心O 在△ ABC 内所能抵达的地区的面积为,则△ ABC的周长为.11.( 2019?常州)如图,半径为的⊙O与边长为8 的等边三角形ABC 的两边 AB、 BC 都相切,连结 OC,则 tan∠ OCB=.12.( 2019?苏州)如图,扇形垂足为 C, PC 与 AB 交于点OAB 中,∠ AOB= 90°. P 为弧 AB 上的一点,过点D.若 PD =2, CD= 1,则该扇形的半径长为P 作.PC⊥ OA,13.( 2019?南京)在△ ABC 中, AB= 4,∠ C=60°,∠ A>∠ B,则 BC 的长的取值范围是.14.( 2019?无锡)如图,在△ABC 中, AB= AC= 5,BC= 4,D为边AB上一动点(B点除外),以 CD 为一边作正方形CDEF ,连结 BE,则△ BDE 面积的最大值为.15.( 2019?常州)如图,在矩形CE= 2BE,点 M、N 在线段 BDABCD 中, AD = 3AB= 3,点P是上.若△ PMN 是等腰三角形且底角与∠ADDEC的中点,点 E 在相等,则 MN=BC 上,.16.( 2019?连云港)如图,将一等边三角形的三条边各8 均分,按顺时针方向(图中箭头方向)标注各均分点的序号0、 1、2、 3、 4、 5、 6、7、 8,将不一样边上的序号和为8 的两点挨次连结起来,这样就成立了“三角形”坐标系.在成立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示如点 A 的坐标可表示为( 1, 2,5),点 B 的坐标可表示为((水平方向开始,按顺时针方向),4, 1, 3),按此方法,则点 C 的坐标可表示为.17.( 2019?苏州)如图,一块含有45°角的直角三角板,外框的一条直角边长为8cm ,三角板的外框线和与其平行的内框线之间的距离均为cm ,则图中暗影部分的面积为cm 2(结果保存根号).18.( 2019?淮安)如图,在矩形ABCD 中,AB = 3,BC = 2,H 是 AB 的中点,将△ CBH 沿 CH 折叠,点 B 落在矩形内点 P 处,连结 AP ,则 tan ∠ HAP =.19.( 2019?盐城)如图,在△ ABC 中,BC = + ,∠ C = 45°,AB = AC ,则 AC 的长为 .20.( 2019?扬州)如图,已知点E 在正方形 ABCD 的边 AB 上,以 BE 为边向正方形 ABCD 外面作正方形 BEFG ,连结 DF ,M 、N 分别是 DC 、DF 的中点,连结 MN .若 AB = 7,BE = 5,则 MN =.21.( 2019?连云港) 如图, 在矩形 ABCD 中, AB = 4,AD = 3,以点 C 为圆心作 ⊙ C 与直线 BD 相切,点 P 是 ⊙ C 上一个动点,连结 AP 交 BD 于点 T ,则的最大值是.22.( 2019?盐城)如图,在平面直角坐标系中,一次函数y= 2x﹣ 1 的图象分别交x、 y 轴于点 A、B,将直线 AB 绕点 B 按顺时针方向旋转45°,交 x 轴于点 C,则直线BC 的函数表达式是.23.( 2019?镇江)将边长为 1 的正方形ABCD 绕点 C 按顺时针方向旋转到FECG 的地点(如图),使得点 D 落在对角线CF 上, EF 与 AD 订交于点H,则 HD=.(结果保存根号)24.( 2019?扬州)如图,将四边形ABCD 绕极点 A 顺时针旋转45°至四边形AB ′ C′ D′的地点,若 AB= 16cm,则图中暗影部分的面积为cm2.25.( 2019?泰州)如图,⊙ O 的半径为5,点 P 在⊙ O 上,点 A 在⊙ O 内,且 AP= 3,过点 A 作 AP 的垂线交⊙ O 于点 B、 C.设 PB= x, PC= y,则 y 与 x 的函数表达式为.26.( 2019?宿迁)如图,正方形ABCD 的边长为4, E 为 BC 上一点,且BE= 1, F 为 AB 边上的一个动点,连结EF ,以 EF 为边向右边作等边△EFG ,连结 CG,则 CG 的最小值为.27.( 2019?镇江)已知抛物线2y= ax +4ax+4a+1( a≠ 0)过点 A( m, 3), B( n,3)两点,若线段AB 的长不大于 4,则代数式2.a +a+1 的最小值是28.( 2019?扬州)如图,在△ ABC 中, AB= 5,AC= 4,若进行以下操作,在边BC 上从左到右挨次取点 D1、 D2、 D3、 D4、;过点 D 1作 AB、AC 的平行线分别交 AC、 AB 于点 E1、 F1;过点 D1 作 AB、 AC 的平行线分别交AC、 AB 于点 E2、 F2;过点 D3作 AB、 AC 的平行线分别交AC、 AB 于点 E3、 F 3,则 4(D 1E1+D 2E2+ +D2019E2019) +5( D1 F1+D2F2+ +D 2019F2019)=.。
2020年中考数学压轴题每日一练(含答案)

2020年中考数学压轴题每日一练(4.17)一、选择题1.如图所示,在平面直角坐标系xOy中,点A、B、C为反比例函数y=(k>0)上不同的三点,连接OA、OB、OC,过点A作AD⊥y轴于点D,过点B、C分别作BE,CF垂直x轴于点E、F,OC与BE相交于点M,记△AOD、△BOM、四边形CMEF的面积分别为S1、S2、S3,则()A.S1=S2+S3B.S2=S3C.S3>S2>S1D.S1S2<S32第1题第2题2.如图,矩形ABCD中,E是AB的中点,F是AD边上的一个动点,已知AB=4,AD=2,△GEF与△AEF关于直线EF成轴对称.当点F沿AD边从点A运动到点D时,点G的运动路径长为()A.2B.4πC.2πD.二、填空题3.如图,ABCDE是边长为1的正五边形,则它的内切圆与外接圆所围圆环的面积为.第3题第4题4.如图,在边长为1的正方形ABCD中,将射线AC绕点A按顺时针方向旋转α度(0<α≤360°),得到射线AE,点M是点D关于射线AE的对称点,则线段CM长度的最小值为.三、解答题5.已知△ACB和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,以CE、BC为边作平行四边形CEFB,连CD、CF.(1)如图1,当E、D分别在AC和AB上时,求证:CD=CF;(2)如图2,△ADE绕点A旋转一定角度,判断(1)中CD与CF的数量关系是否依然成立,并加以证明;(3)如图3,AE=,AB=,将△ADE绕A点旋转一周,当四边形CEFB为菱形时,直接写出CF的长.6.如图,在平面直角坐标系中,O是原点,点A在x轴的负半轴上,点B在y轴的正半轴上,tan∠BAO=,且线段OB的长是方程x2﹣2x﹣8=0的根.(1)求直线AB的函数表达式.(2)点E在y轴负半轴上,直线EC⊥AB,交线段AB于点C,交x轴于点D,S△DOE =16.点F是直线CE上一点,分别过点E,F作x轴和y轴的平行线交于点G,将△EFG 沿EF折叠,使点G的对应点落在坐标轴上,求点F的坐标.(3)在(2)的条件下,点M是DO的中点,点N,P,Q在直线BD或y轴上,是否存在点P,使四边形MNPQ是矩形?若存在,请画出示意图并直接写出点P的坐标;若不存在,请说明理由.【答案与解析】一、选择题1.【分析】根据反比例函数系数k的几何意义得到S3=S2,即可得到结论.【解答】解:∵点A、B、C为反比例函数y=(k>0)上不同的三点,AD⊥y轴,BE,CF垂直x轴于点E、F,∴S1=k,S△BOE=S△COF=k,∵S△BOE﹣S OME=S△CDF﹣S△OME,∴S3=S2,故选:B.2.【分析】由轴对称性质可知,GE=AE=2是定长,故点G的运动路径为以E为圆心、AE 长为半径的圆弧上,圆弧的最大角度即点F到达中点D时,∠AEG的度数.利用AD、AE的长可求tan∠AED的值,求得∠AED并进而求得∠AEG为特殊角.再代入弧长公式即求出点G的运动路径长.【解答】解:∵矩形ABCD中,AB=4,E是AB的中点∴AE=AB=2∵△GEF与△AEF关于直线EF成轴对称∴GE=AE=2,∠GEF=∠AEF∴G在以E为圆心,AE长为半径的圆弧上运动如图,当点F与点D重合时,AD=∴tan∠AED=∴∠AED=60°∴∠AEG=2∠AED=120°∴G运动路径长为:2π×2×=故选:D.二、填空题3.【分析】直接利用圆环面积求法进而得出答案.【解答】解:正五边形的内切圆与外接圆所围圆环的面积为:π(OA2﹣OH2)=π×AH2=.故答案为:.4.【分析】由轴对称的性质可知AM=AD,故此点M在以A圆心,以AD为半径的圆上,故此当点A、M、C在一条直线上时,CM有最小值.【解答】解:如图所示:连接AM.∵四边形ABCD为正方形,∴AC===.∵点D与点M关于AE对称,∴AM=AD=1.∴点M在以A为圆心,以AD长为半径的圆上.如图所示,当点A、M、C在一条直线上时,CM有最小值.∴CM的最小值=AC﹣AM′=﹣1,故答案为:﹣1.三、解答题5.【分析】(1)连接FD.证明△ADC≌△EDF(SAS)推出△DFC为等腰直角三角形即可解决问题.(2)成立.连接FD,证明△ADC≌△EDF(SAS)推出△DFC为等腰直角三角形即可解决问题.(3)分两种情形分别画出图形,利用(2)中结论求出CD即可解决问题.【解答】(1)证明:连接FD,∵AD=ED,∠ADE=90°,∴∠DAC=∠AED=45°,∵四边形BCEF是平行四边形,∠BCE=90°,∴四边形BCEF是矩形,∴∠CEF=∠AEF=90°,BC=EF=AC,∴∠DEF=45°,∴∠A=∠DEF,∴△ADC≌△EDF(SAS),∴DC=DF,∠DCA=∠DFE,∴∠FDC=∠FEC=90°,从而△DFC为等腰直角三角形,∴CD=CF.(2)解:成立.理由:连接FD,∵AD⊥DE,EF⊥AC,∴∠DAC=∠DEF,又AD=ED,AC=EF,∴△ADC≌△EDF(SAS),∴DC=DF,∠ADC=∠EDF,即∠ADE+∠EDC=∠FDC+∠EDC,∴∠FDC=∠ADE=90°∴△DFC为等腰直角三角形,∴CD=CF.(3)解:如图3﹣1中,设AE与CD的交点为M,∵CE=CA,DE=DA,∴CD垂直平分AE,∴=,DM=,∴CD=DM+CM=3,∵CF=CD∴CF=6.如图3﹣2中,设AE与CD的交点为M,同法可得CD=CM﹣DM=﹣=2,∴CF=CD=4,综上所述,满足条件的CF的值为6或4.6.【分析】(1)解方程求出OB,解直角三角形求出OA,可得A(﹣8,0),B(0,4),再利用待定系数法即可解决问题.(2)如图1中,设G的对应点为H,过点H作y轴的平行线IR,分别过E,F作x轴平行线与IR交于点I,R.可证△FHI∽△HER,推出===2,设ER=m,则IH=2m,可得F(m﹣16,2m),再利用待定系数法即可解决问题.(3)分三种种情形分别求解:①如图3﹣1,当四边形MNPQ是矩形时.②如图3﹣2,当四边形MNPQ是矩形时,点N与原点重合.③如图3﹣3,当四边形MNPQ是矩形时.【解答】解:(1)∵线段OB的长是方程x2﹣2x﹣8=0的根,∴OB=4,又tan∠BAO==,∴OA=8,∴A(﹣8,0).B(0,4),设直线AB的解析式为y=kx+b,则有,解得∴直线AB:y=x+4.(2)如图1中,设G的对应点为H,过点H作y轴的平行线IR,分别过E,F作x轴平行线与IR交于点I,R.∵直线EC⊥AB,S△DOE=16,∴OD=4,OE=8,可得直线DE:y=﹣2x﹣8,∵∠GFE=∠DEO,∴GE:GF=EH:HF=1:2∵∠FHE=∠I=∠R=90°,可证△FHI∽△HER,∴===2,设ER=m,则IH=2m,∴F(m﹣16,2m),把点F坐标代入y=﹣2x﹣8,得到:2m=﹣2(m﹣16)﹣8,∴m=6,∴F(﹣10,12).(3)如图3﹣1,当四边形MNPQ是矩形时,∵OD=OB=4,∴∠OBD=∠ODB=45°,∴∠PNB=∠ONM=45°,∴OM=DM=ON=2,∴BN=2,PB=PN=,∴P(﹣1,3).如图3﹣2,当四边形MNPQ是矩形时,点N与原点重合,易证△DMQ是等腰直角三角形,OP=MQ=DM=2,∴P(0,2).如图3﹣3,当四边形MNPQ是矩形时,设PM交BD于R,则R(﹣1,3),∴P(0,6).如图3﹣4中,当QN是对角线时,P(2,6).。
2019年全国各地中考数学压轴题汇编:选择、填空(湖北专版)(原卷)

2019年全国各地中考数学压轴题汇编(湖北专版)选择、填空一.选择题(共14小题)1.(2019•武汉)如图,AB是⊙O的直径,M、N是(异于A、B)上两点,C是上一动点,∠ACB的角平分线交⊙O于点D,∠BAC的平分线交CD于点E.当点C从点M运动到点N时,则C、E两点的运动路径长的比是()A.B.C.D.2.(2019•天门)如图,AB为⊙O的直径,BC为⊙O的切线,弦AD∥OC,直线CD交BA的延长线于点E,连接BD.下列结论:①CD是⊙O的切线;②CO⊥DB;③△EDA∽△EBD;④ED•BC=BO•BE.其中正确结论的个数有()A.4个B.3个C.2个D.1个3.(2019•黄石)如图,矩形ABCD中,AC与BD相交于点E,AD:AB=:1,将△ABD沿BD 折叠,点A的对应点为F,连接AF交BC于点G,且BG=2,在AD边上有一点H,使得BH+EH 的值最小,此时=()A.B.C.D.4.(2019•武汉)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2…已知按一定规律排列的一组数:250、251、252、…、299、2100.若250=a,用含a的式子表示这组数的和是()A.2a2﹣2a B.2a2﹣2a﹣2C.2a2﹣a D.2a2+a5.(2019•十堰)如图,平面直角坐标系中,A(﹣8,0),B(﹣8,4),C(0,4),反比例函数y=的图象分别与线段AB,BC交于点D,E,连接DE.若点B关于DE的对称点恰好在OA上,则k=()A.﹣20B.﹣16C.﹣12D.﹣86.(2019•宜昌)如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2,将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是()A.(﹣1,2+)B.(﹣,3)C.(﹣,2+)D.(﹣3,)7.(2019•襄阳)如图,AD是⊙O的直径,BC是弦,四边形OBCD是平行四边形,AC与OB相交于点P,下列结论错误的是()A.AP=2OP B.CD=2OP C.OB⊥AC D.AC平分OB 8.(2019•鄂州)二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc<0;②3a+c>0;③(a+c)2﹣b2<0;④a+b≤m(am+b)(m为实数).其中结论正确的个数为()A.1个B.2个C.3个D.4个9.(2019•荆门)如图,△ABC内心为I,连接AI并延长交△ABC的外接圆于D,则线段DI与DB 的关系是()A.DI=DB B.DI>DB C.DI<DB D.不确定10.(2019•孝感)如图,正方形ABCD中,点E、F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE=AF=1,则GF的长为()A.B.C.D.11.(2019•荆州)如图,点C为扇形OAB的半径OB上一点,将△OAC沿AC折叠,点O恰好落在上的点D处,且l:l=1:3(l表示的长),若将此扇形OAB围成一个圆锥,则圆锥的底面半径与母线长的比为()A.1:3B.1:πC.1:4D.2:912.(2019•咸宁)在平面直角坐标系中,将一块直角三角板如图放置,直角顶点与原点O重合,顶点A,B恰好分别落在函数y=﹣(x<0),y=(x>0)的图象上,则sin∠ABO的值为()A.B.C.D.13.(2019•随州)如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A,B两点,与y轴交于点C,OA=OC,对称轴为直线x=1,则下列结论:①abc<0;②a+b+c=0;③ac+b+1=0;④2+c是关于x的一元二次方程ax2+bx+c=0的一个根.其中正确的有()A.1个B.2个C.3个D.4个14.(2019•鄂州)如图,在平面直角坐标系中,点A1、A2、A3…A n在x轴上,B1、B2、B3…B n在直线y=x上,若A1(1,0),且△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为S1、S2、S3…S n.则S n可表示为()A.22n B.22n﹣1C.22n﹣2D.22n﹣3二.填空题(共16小题)15.(2019•武汉)问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:P A+PC=PE.问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=.点O是△MNG内一点,则点O到△MNG三个顶点的距离和的最小值是.16.(2019•黄石)如图,Rt△ABC中,∠A=90°,CD平分∠ACB交AB于点D,O是BC上一点,经过C、D两点的⊙O分别交AC、BC于点E、F,AD=,∠ADC=60°,则劣弧的长为.17.(2019•襄阳)如图,若被击打的小球飞行高度h(单位:m)与飞行时间t(单位:s)之间具有的关系为h=20t﹣5t2,则小球从飞出到落地所用的时间为s.18.(2019•十堰)如图,正方形ABCD和Rt△AEF,AB=5,AE=AF=4,连接BF,DE.若△AEF 绕点A旋转,当∠ABF最大时,S△ADE=.19.(2019•襄阳)如图,两个大小不同的三角板放在同一平面内,直角顶点重合于点C,点D在AB 上,∠BAC=∠DEC=30°,AC与DE交于点F,连接AE,若BD=1,AD=5,则=.20.(2019•荆门)如图,在平面直角坐标系中,函数y=(k>0,x>0)的图象与等边三角形OAB 的边OA,AB分别交于点M,N,且OM=2MA,若AB=3,那么点N的横坐标为.21.(2019•鄂州)如图,在平面直角坐标系中,已知C(3,4),以点C为圆心的圆与y轴相切.点A、B在x轴上,且OA=OB.点P为⊙C上的动点,∠APB=90°,则AB长度的最大值为.22.(2019•荆门)如图,等边三角形ABC的边长为2,以A为圆心,1为半径作圆分别交AB,AC 边于D,E,再以点C为圆心,CD长为半径作圆交BC边于F,连接E,F,那么图中阴影部分的面积为.23.(2019•孝感)如图,双曲线y=(x>0)经过矩形OABC的顶点B,双曲线y=(x>0)交AB,BC于点E、F,且与矩形的对角线OB交于点D,连接EF.若OD:OB=2:3,则△BEF的面积为.24.(2019•荆州)如图,AB为⊙O的直径,C为⊙O上一点,过B点的切线交AC的延长线于点D,E为弦AC的中点,AD=10,BD=6,若点P为直径AB上的一个动点,连接EP,当△AEP是直角三角形时,AP的长为.25.(2019•荆门)抛物线y=ax2+bx+c(a,b,c为常数)的顶点为P,且抛物线经过点A(﹣1,0),B(m,0),C(﹣2,n)(1<m<3,n<0),下列结论:①abc>0,②3a+c<0,③a(m﹣1)+2b>0,④a=﹣1时,存在点P使△P AB为直角三角形.其中正确结论的序号为.26.(2019•黄冈)如图,AC,BD在AB的同侧,AC=2,BD=8,AB=8,点M为AB的中点,若∠CMD=120°,则CD的最大值是.27.(2019•荆州)边长为1的8个正方形如图摆放在直角坐标系中,直线y=k1x平分这8个正方形所组成的图形的面积,交其中两个正方形的边于A,B两点,过B点的双曲线y=的一支交其中两个正方形的边于C,D两点,连接OC,OD,CD,则S△OCD=.28.(2019•咸宁)如图,先有一张矩形纸片ABCD,AB=4,BC=8,点M,N分别在矩形的边AD,BC上,将矩形纸片沿直线MN折叠,使点C落在矩形的边AD上,记为点P,点D落在G处,连接PC,交MN于点Q,连接CM.下列结论:①CQ=CD;②四边形CMPN是菱形;③P,A重合时,MN=2;④△PQM的面积S的取值范围是3≤S≤5.其中正确的是(把正确结论的序号都填上).29.(2019•天门)如图,在平面直角坐标系中,四边形OA1B1C1,A1A2B2C2,A2A3B3C3,…都是菱形,点A1,A2,A3,…都在x轴上,点C1,C2,C3,…都在直线y=x+上,且∠C1OA1=∠C2A1A2=∠C3A2A3=…=60°,OA1=1,则点C6的坐标是.30.(2019•随州)如图,已知正方形ABCD的边长为a,E为CD边上一点(不与端点重合),将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.给出下列判断:①∠EAG=45°;②若DE=a,则AG∥CF;③若E为CD的中点,则△GFC的面积为a2;④若CF=FG,则DE=(﹣1)a;⑤BG•DE+AF•GE=a2.其中正确的是.(写出所有正确判断的序号)。
2019年全国各地中考数学压轴题汇编:选择、填空(一)(四川专版)(解析卷)

2019年全国各地中考数学压轴题汇编(四川专版)选择、填空(一)参考答案与试题解析一.选择题(共15小题)1.(2019•成都)如图,二次函数y=ax2+bx+c的图象经过点A(1,0),B(5,0),下列说法正确的是()A.c<0B.b2﹣4ac<0C.a﹣b+c<0D.图象的对称轴是直线x=3解:A.由于二次函数y=ax2+bx+c的图象与y轴交于正半轴,所以c>0,故A错误;B.二次函数y=ax2+bx+c的图象与x轴由2个交点,所以b2﹣4ac>0,故B错误;C.当x=﹣1时,y<0,即a﹣b+c<0,故C错误;D.因为A(1,0),B(5,0),所以对称轴为直线x==3,故D正确.故选:D.2.(2019•自贡)图中有两张型号完全一样的折叠式饭桌,将正方形桌面边上的四个弓形面板翻折起来后,就能形成一个圆形桌面(可近似看作正方形的外接圆),正方形桌面与翻折成的圆形桌面的面积之比最接近()A.B.C.D.解:连接AC,设正方形的边长为a,∵四边形ABCD是正方形,∴∠B=90°,∴AC为圆的直径,∴AC=AB=a,则正方形桌面与翻折成的圆形桌面的面积之比为:=≈,故选:C.3.(2019•攀枝花)在同一坐标系中,二次函数y=ax2+bx与一次函数y=bx﹣a的图象可能是()A.B.C.D.解:由方程组得ax2=﹣a,∵a≠0∴x2=﹣1,该方程无实数根,故二次函数与一次函数图象无交点,排除B.A:二次函数开口向上,说明a>0,对称轴在y轴右侧,则b<0;但是一次函数b为一次项系数,图象显示从左向右上升,b>0,两者矛盾,故A错;C:二次函数开口向上,说明a>0,对称轴在y轴右侧,则b<0;b为一次函数的一次项系数,图象显示从左向右下降,b<0,两者相符,故C正确;D:二次函数的图象应过原点,此选项不符,故D错.故选:C.4.(2019•自贡)如图,已知A、B两点的坐标分别为(8,0)、(0,8),点C、F分别是直线x=﹣5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取得最小值时,tan∠BAD的值是()A.B.C.D.解:如图,设直线x=﹣5交x轴于K.由题意KD=CF=5,∴点D的运动轨迹是以K为圆心,5为半径的圆,∴当直线AD与⊙K相切时,△ABE的面积最小,∵AD是切线,点D是切点,∴AD⊥KD,∵AK=13,DK=5,∴AD=12,∵tan∠EAO==,∴=,∴OE=,∴AE==,作EH⊥AB于H.∵S△ABE=•AB•EH=S△AOB﹣S△AOE,∴EH=,∴AH==,∴tan∠BAD===,故选:B.5.(2019•泸州)如图,等腰△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AB =AC=5,BC=6,则DE的长是()A.B.C.D.解:连接OA、OE、OB,OB交DE于H,如图,∵等腰△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,∴OA平分∠BAC,OE⊥BC,OD⊥AB,BE=BD,∵AB=AC,∴AO⊥BC,∴点A、O、E共线,即AE⊥BC,∴BE=CE=3,在Rt△ABE中,AE==4,∵BD=BE=3,∴AD=2,设⊙O的半径为r,则OD=OE=r,AO=4﹣r,在Rt△AOD中,r2+22=(4﹣r)2,解得r=,在Rt△BOE中,OB==,∵BE=BD,OE=OD,∴OB垂直平分DE,∴DH=EH,OB⊥DE,∵HE•OB=OE•BE,∴HE===,∴DE=2EH=.故选:D.6.(2019•攀枝花)如图,在正方形ABCD中,E是BC边上的一点,BE=4,EC=8,将正方形边AB沿AE折叠到AF,延长EF交DC于G,连接AC,现在有如下4个结论:①∠EAG=45°;②FG=FC;③FC∥AG;④S△GFC=14.其中正确结论的个数是()A.1 B.2 C.3 D.4解:如图,连接DF.∵四边形ABC都是正方形,∴AB=AD=BC=CD,∠ABE=∠BAD=∠ADG=∠ECG=90°,由翻折可知:AB=AF,∠ABE=∠AFE=∠AFG=90°,BE=EF=2,∠BAE=∠EAF,∵∠AFG=∠ADG=90°,AG=AG,AD=AF,∴Rt△AGD≌Rt△△AGF(HL),∴DG=FG,∠GAF=∠GAD,设GD=GF=x,∴∠EAG=∠EAF+∠GAF=(∠BAF+∠DAF)=45°,故①正确,在Rt△ECG中,∵EG2=EC2+CG2,∴(2+x)2=82+(12﹣x)2,∴x=6,∵CD=BC=BE+EC=12,∴DG=CG=6,∴FG=GC,易知△GFC不是等边三角形,显然FG≠FC,故②错误,∵GF=GD=GC,∴∠DFC=90°,∴CF⊥DF,∵AD=AF,GD=GF,∴AG⊥DF,∴CF∥AG,故③正确,∵S△ECG=×6×8=24,FG:FE=6:4=3:2,∴FG:EG=3:5,∴S△GFC=×24=,故④错误,故选:B.7.(2019•绵阳)如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于两点(x1,0),(2,0),其中0<x1<1.下列四个结论:①abc<0;②2a﹣c>0;③a+2b+4c>0;④+<﹣4,正确的个数是()A.1 B.2 C.3 D.4 解:①∵抛物线开口向上,∴a>0,∵抛物线对称轴在y轴的右侧,∴b<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;②∵图象与x轴交于两点(x1,0),(2,0),其中0<x1<1,∴<﹣<,∴1<﹣<,当﹣<时,b>﹣3a,∵当x=2时,y=4a+2b+c=0,∴b=﹣2a﹣c,∴﹣2a﹣c>﹣3a,∴2a﹣c>0,故②正确;③当x=时,y的值为a+b+c,给a+b+c乘以4,即可化为a+2b+4c,∵抛物线的对称轴在1<﹣<,∴x=关于对称轴对称点的横坐标在和之间,由图象可知在和2之间y为负值,2和之间y为正值,∴a+2b+4c与0的关系不能确定,故③错误;④∵﹣,∴2a+b<0,∴(2a+b)2>0,4a2+b2+4ab>0,4a2+b2>﹣4ab,∵a>0,b<0,∴ab<0,∴,即,故④正确.故选:C.8.(2019•泸州)已知二次函数y=(x﹣a﹣1)(x﹣a+1)﹣3a+7(其中x是自变量)的图象与x轴没有公共点,且当x<﹣1时,y随x的增大而减小,则实数a的取值范围是()A.a<2 B.a>﹣1 C.﹣1<a≤2 D.﹣1≤a<2解:y=(x﹣a﹣1)(x﹣a+1)﹣3a+7=x2﹣2ax+a2﹣3a+6,∵抛物线与x轴没有公共点,∴△=(﹣2a)2﹣4(a2﹣3a+6)<0,解得a<2,∵抛物线的对称轴为直线x=﹣=a,抛物线开口向上,而当x<﹣1时,y随x的增大而减小,∴a≥﹣1,∴实数a的取值范围是﹣1≤a<2.故选:D.9.(2019•广元)如图,在正方形ABCD的对角线AC上取一点E.使得∠CDE=15°,连接BE并延长BE到F,使CF=CB,BF与CD相交于点H,若AB=1,有下列结论:①BE=DE;②CE+DE =EF;③S△DEC=﹣;④=2﹣1.则其中正确的结论有()A.①②③B.①②③④C.①②④D.①③④证明:①∵四边形ABCD是正方形,∴AB=AD,∠ABC=∠ADC=90°,∠BAC=∠DAC=∠ACB=∠ACD=45°.在△ABE和△ADE中,,∴△ABE≌△ADE(SAS),∴BE=DE,故①正确;②在EF上取一点G,使EG=EC,连结CG,∵△ABE≌△ADE,∴∠ABE=∠ADE.∴∠CBE=∠CDE,∵BC=CF,∴∠CBE=∠F,∴∠CBE=∠CDE=∠F.∵∠CDE=15°,∴∠CBE=15°,∴∠CEG=60°.∵CE=GE,∴△CEG是等边三角形.∴∠CGE=60°,CE=GC,∴∠GCF=45°,∴∠ECD=GCF.在△DEC和△FGC中,,∴△DEC≌△FGC(SAS),∴DE=GF.∵EF=EG+GF,∴EF=CE+ED,故②正确;③过D作DM⊥AC交于M,根据勾股定理求出AC=,由面积公式得:AD×DC=AC×DM,∴DM=,∵∠DCA=45°,∠AED=60°,∴CM=,EM=,∴CE=CM﹣EM=﹣∴S△DEC=CE×DM=﹣,故③正确;④在Rt△DEM中,DE=2ME=,∵△ECG是等边三角形,∴CG=CE=﹣,∵∠DEF=∠EGC=60°,∴DE∥CG,∴△DEH∽△CGH,∴===+1,故④错误;综上,正确的结论有①②③,故选:A.10.(2019•绵阳)如图,在四边形ABCD中,AB∥DC,∠ADC=90°,AB=5,CD=AD=3,点E 是线段CD的三等分点,且靠近点C,∠FEG的两边与线段AB分别交于点F、G,连接AC分别交EF、EG于点H、K.若BG=,∠FEG=45°,则HK=()A.B.C.D.解:∵∠ADC=90°,CD=AD=3,∴AC=3,∵AB=5,BG=,∴AG=,∵AB∥DC,∴△CEK∽△AGK,∴==,∴==,∴==,∵CK+AK=3,∴CK=,过E作EM⊥AB于M,则四边形ADEM是矩形,∴EM=AD=3,AM=DE=2,∴MG=,∴EG==,∵=,∴EK=,∵∠HEK=∠KCE=45°,∠EHK=∠CHE,∴△HEK∽△HCE,∴==,∴设HE=3x,HK=x,∵△HEK∽△HCE,∴=,∴=,解得:x=,∴HK=,故选:B.11.(2019•遂宁)二次函数y=x2﹣ax+b的图象如图所示,对称轴为直线x=2,下列结论不正确的是()A.a=4B.当b=﹣4时,顶点的坐标为(2,﹣8)C.当x=﹣1时,b>﹣5D.当x>3时,y随x的增大而增大解:∵二次函数y=x2﹣ax+b∴对称轴为直线x==2∴a=4,故A选项正确;当b=﹣4时,y=x2﹣4x﹣4=(x﹣2)2﹣8∴顶点的坐标为(2,﹣8),故B选项正确;当x=﹣1时,由图象知此时y<0即1+4+b<0∴b<﹣5,故C选项不正确;∵对称轴为直线x=2且图象开口向上∴当x>3时,y随x的增大而增大,故D选项正确;故选:C.12.(2019•广元)如图,过点A0(0,1)作y轴的垂线交直线l:y=x于点A1,过点A1作直线l的垂线,交y轴于点A2,过点A2作y轴的垂线交直线l于点A3,…,这样依次下去,得到△A0A1A2,△A2A3A4,△A4A546,…,其面积分别记为S1,S2,S3,…,则S100为()A.()100B.(3)100C.3×4199D.3×2395解:∵点A0的坐标是(0,1),∴OA0=1,∵点A1在直线y=x上,∴OA1=2,A0A1=,∴OA2=4,∴OA3=8,∴OA4=16,得出OA n=2n,∴A n A n+1=2n•,∴OA198=2198,A198A199=2198•,∵S1=(4﹣1)•=,∵A2A1∥A200A199,∴△A0A1A2∽△A198A199A200,∴=()2,∴S=2396•=3×2395故选:D.13.(2019•乐山)如图,在边长为的菱形ABCD中,∠B=30°,过点A作AE⊥BC于点E,现将△ABE沿直线AE翻折至△AFE的位置,AF与CD交于点G.则CG等于()A.B.1 C.D.解:在Rt△ABE中,∠B=30°,AB=,∴BE=.根据折叠性质可得BF=2BE=3.∴CF=3﹣.∵AD∥CF,∴△ADG∽△FCG.∴.设CG=x,则,解得x=﹣1.故选:A.14.(2019•遂宁)如图,四边形ABCD是边长为1的正方形,△BPC是等边三角形,连接DP并延长交CB的延长线于点H,连接BD交PC于点Q,下列结论:①∠BPD=135°;②△BDP∽△HDB;③DQ:BQ=1:2;④S△BDP=.其中正确的有()A.①②③B.②③④C.①③④D.①②④解:∵△PBC是等边三角形,四边形ABCD是正方形,∴∠PCB=∠CPB=60°,∠PCD=30°,BC=PC=CD,∴∠CPD=∠CDP=75°,则∠BPD=∠BPC+∠CPD=135°,故①正确;∵∠CBD=∠CDB=45°,∴∠DBP=∠DPB=135°,又∵∠PDB=∠BDH,∴△BDP∽△HDB,故②正确;如图,过点Q作QE⊥CD于E,设QE=DE=x,则QD=x,CQ=2QE=2x,∴CE=x,由CE+DE=CD知x+x=1,解得x=,∴QD=x=,∵BD=,∴BQ=BD﹣DQ=﹣=,则DQ:BQ=:≠1:2,故③错误;∵∠CDP=75°,∠CDQ=45°,∴∠PDQ=30°,又∵∠CPD=75°,∴∠DPQ=∠DQP=75°,∴DP=DQ=,∴S△BDP=BD•PD sin∠BDP=×××=,故④正确;故选:D.15.(2019•乐山)如图,抛物线y=x2﹣4与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段P A的中点,连结OQ.则线段OQ的最大值是()A.3 B.C.D.4解:连接BP,如图,当y=0时,x2﹣4=0,解得x1=4,x2=﹣4,则A(﹣4,0),B(4,0),∵Q是线段P A的中点,∴OQ为△ABP的中位线,∴OQ=BP,当BP最大时,OQ最大,而BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,∵BC==5,∴BP′=5+2=7,∴线段OQ的最大值是.故选:C.二.填空题(共12小题)16.(2019•成都)如图,▱ABCD的对角线AC与BD相交于点O,按以下步骤作图:①以点A为圆心,以任意长为半径作弧,分别交AO,AB于点M,N;②以点O为圆心,以AM长为半径作弧,交OC于点M';③以点M'为圆心,以MN长为半径作弧,在∠COB内部交前面的弧于点N';④过点N'作射线ON'交BC于点E.若AB=8,则线段OE的长为4.解:由作法得∠COE=∠OAB,∴OE∥AB,∵四边形ABCD为平行四边形,∴OC=OA,∴CE=BE,∴OE为△ABC的中位线,∴OE=AB=×8=4.故答案为4.17.(2019•自贡)如图,在由10个完全相同的正三角形构成的网格图中,∠α、∠β如图所示,则cos(α+β)=.解:给图中各点标上字母,连接DE,如图所示.在△ABC中,∠ABC=120°,BA=BC,∴∠α=30°.同理,可得出:∠CDE=∠CED=30°=∠α.又∵∠AEC=60°,∴∠AED=∠AEC+∠CED=90°.设等边三角形的边长为a,则AE=2a,DE=2×sin60°•a=a,∴AD==a,∴cos(α+β)==.故答案为:.18.(2019•攀枝花)正方形A1B1C1A2,A2B2C2A3,A3B3C3A4,…按如图所示的方式放置,点A1,A2,A3,…和点B1,B2,B3,…分别在直线y=kx+b(k>0)和x轴上.已知点A1(0,1),点B1(1,0),则C5的坐标是(47,16),.解:由题意可知A1纵坐标为1,A2的纵坐标为2,A3的纵坐标为4,A4的纵坐标为8,…,∵A1和C1,A2和C2,A3和C3,A4和C4的纵坐标相同,∴C1,C2,C3,C4,C5的纵坐标分别为1,2,4,8,16,…∴根据图象得出C1(2,1),C2(5,2),C3(11,4),∴直线C1C2的解析式为y=x+,∵A5的纵坐标为16,∴C5的纵坐标为16,把y=16代入y=x+,解得x=47,∴C5的坐标是(47,16),故答案为(47,16).19.(2019•绵阳)在△ABC中,若∠B=45°,AB=10,AC=5,则△ABC的面积是75或25.解:过点A作AD⊥BC,垂足为D,如图所示.在Rt△ABD中,AD=AB•sin B=10,BD=AB•cos B=10;在Rt△ACD中,AD=10,AC=5,∴CD==5,∴BC=BD+CD=15或BC=BD﹣CD=5,∴S△ABC=BC•AD=75或25.故答案为:75或25.20.(2019•泸州)如图,在等腰Rt△ABC中,∠C=90°,AC=15,点E在边CB上,CE=2EB,点D在边AB上,CD⊥AE,垂足为F,则AD的长为.解:过D作DH⊥AC于H,∵在等腰Rt△ABC中,∠C=90°,AC=15,∴AC=BC=15,∴∠CAD=45°,∴AH=DH,∴CH=15﹣DH,∵CF⊥AE,∴∠DHA=∠DF A=90°,∴∠HAF=∠HDF,∴△ACE∽△DHC,∴=,∵CE=2EB,21.(2019•广元)如图,△ABC是⊙O的内接三角形,且AB是⊙O的直径,点P为⊙O上的动点,且∠BPC=60°,⊙O的半径为6,则点P到AC距离的最大值是6+3.解:过O作OM⊥AC于M,延长MO交⊙O于P,则此时,点P到AC距离的最大,且点P到AC距离的最大值=PM,∵OM⊥AC,∠A=∠BPC=60°,⊙O的半径为6,∴OP=OA=6,∴OM=OA=×6=3,∴PM=OP+OM=6+3,∴则点P到AC距离的最大值是6+3,故答案为:6+3.22.(2019•绵阳)如图,△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2.将△BDE绕点B逆时针方向旋转后得△BD′E′,当点E′恰好落在线段AD′上时,则CE′=.解:如图,连接CE′,∵△ABC、△BDE都是等腰直角三角形,BA=BC,BD=BE,AC=4,DE=2,∴AB=BC=2,BD=BE=2,∵将△BDE绕点B逆时针方向旋转后得△BD′E′,∴D′B=BE′=BD=2,∠D′BE′=90′,∠D′BD=∠ABE′,∴∠ABD′=∠CBE′,∴△ABD′≌△CBE′(SAS),∴∠D′=∠CE′B=45°,过B作BH⊥CE′于H,在Rt△BHE′中,BH=E′H=BE′=,在Rt△BCH中,CH==,∴CE′=+,故答案为:.23.(2019•广元)如图,抛物线y=ax2+bx+c(a≠0)过点(﹣1,0),(0,2),且顶点在第一象限,设M=4a+2b+c,则M的取值范围是﹣6<M<6.解:将(﹣1,0)与(0,2)代入y=ax2+bx+c,∴0=a﹣b+c,2=c,∴b=a+2,∵>0,a<0,∴b>0,∴a>﹣2,∴﹣2<a<0,∴M=4a+2(a+2)+2=6a+6=6(a+1)∴﹣6<M<6,故答案为:﹣6<M<6;24.(2019•乐山)如图,点P是双曲线C:y=(x>0)上的一点,过点P作x轴的垂线交直线AB:y=x﹣2于点Q,连结OP,OQ.当点P在曲线C上运动,且点P在Q的上方时,△POQ 面积的最大值是3.解:∵PQ⊥x轴,∴设P(x,),则Q(x,x﹣2),∴PQ=﹣x+2,∴S△POQ=(﹣+2)•x=﹣(x﹣2)2+3,∵﹣<0,∴△POQ面积有最大值,最大值是3,故答案为3.25.(2019•遂宁)如图,在平面直角坐标系中,矩形OABC的顶点O落在坐标原点,点A、点C分别位于x轴,y轴的正半轴,G为线段OA上一点,将△OCG沿CG翻折,O点恰好落在对角线AC上的点P处,反比例函数y=经过点B.二次函数y=ax2+bx+c(a≠0)的图象经过C(0,3)、G、A三点,则该二次函数的解析式为y=x2﹣x+3.(填一般式)解:点C(0,3),反比例函数y=经过点B,则点B(4,3),则OC=3,OA=4,∴AC=5,设OG=PG=x,则GA=4﹣x,P A=AC﹣CP=AC﹣OC=5﹣3=2,由勾股定理得:(4﹣x)2=4+x2,解得:x=,故点G(,0),将点C、G、A坐标代入二次函数表达式得:,解得:,故答案为:y=x2﹣x+3.26.(2019•乐山)如图1,在四边形ABCD中,AD∥BC,∠B=30°,直线l⊥AB.当直线l沿射线BC方向,从点B开始向右平移时,直线l与四边形ABCD的边分别相交于点E、F.设直线l向右平移的距离为x,线段EF的长为y,且y与x的函数关系如图2所示,则四边形ABCD的周长是.解:∵∠B=30°,直线l⊥AB,∴BE=2EF,由图可得,AB=4cos30°=4×=2,BC=5,AD=7﹣4=3,当EF平移到点F与点D重合时,如右图所示,∵∠EFB=60°,∴∠DEC=60°,∵DE=CE=2,∴△DEC为等边三角形,∴CD=2.∴四边形ABCD的周长是:AB+BC+AD+CD=2+5+3+2=10+2,故答案为:10+2.27.(2019•遂宁)阅读材料:定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫这个复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似.例如计算:(4+i)+(6﹣2i)=(4+6)+(1﹣2)i=10﹣i;(2﹣i)(3+i)=6﹣3i+2i﹣i2=6﹣i﹣(﹣1)=7﹣i;(4+i)(4﹣i)=16﹣i2=16﹣(﹣1)=17;(2+i)2=4+4i+i2=4+4i﹣1=3+4i根据以上信息,完成下面计算:(1+2i)(2﹣i)+(2﹣i)2=7﹣i.解:(1+2i)(2﹣i)+(2﹣i)2=2﹣i+4i﹣2i2+4+i2﹣4i =6﹣i﹣i2=6﹣i+1=7﹣i.故答案为:7﹣i.。
2019-2020中考数学选择填空与大题压轴题精选

2019--2020中考数学专题《选择、填空》压轴题1【专题一、动点问题】【例题1】.如图,C为⊙O直径AB上一动点,过点C的直线交⊙O于D、E两点,且∠ACD=45°,DF⊥AB于点F,EG⊥AB于点G,当点C在AB上运动时,设AF=x,DE=y,下列中图象中,能表示y与x的函数关系式的图象大致是()【例题2】.在ABC△中,12cm6cmAB AC BC D===,,为BC的中点,动点P从B点出发,以每秒1cm的速度沿B A C→→的方向运动.设运动时间为t,那么当t=秒时,过D、P两点的直线将ABC△的周长分成两个部分,使其中一部分是另一部分的2倍.【例题3】.如图,正方形ABCD的边长为2,将长为2的线段QR的两端放在正方形的相邻的两边上同时滑动.如果Q点从A点出发,沿图中所示方向按A→B→C→D→A滑动到A止,同时点R从B点出发,沿图中所示方向按B→C→D→A→B滑动到B止,在这个过程中,线段QR的中点M所经过的路线围成的图形的面积为:()A.2 B.4π-C.πD.π1-【例题4】.如图,在梯形ABCD中,90614AD BC ABC AD AB BC∠====∥,°,,,点M是线段BC上一定点,且MC=8.动点P从C点出发沿C D A B→→→的路线运动,运动到点B停止.在点P的运动过程中,使PMC△为等腰三角形的点P有个【例题5】.如图在边长为2的正方形ABCD中,E,F,O分别是AB,CD,AD的中点,以O为圆心,以OE为半径画弧EF,P是弧EF上的一个动点,连结OP,并延长OP交线段BC于点K,过点P作⊙O的切线,分别交射线AB于点M,交直线BC于点G。
若3=BMBG,则BK﹦.【专题二、面积与长度问题】【例题6】.已知, A、B、C、D、E是反比例函数16yx=(x>0)图象上五个整数点(横、纵坐标均为整数),分别以这些点向横轴或纵轴作垂线段,由垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图所示的五个橄榄形(阴影部分),则这五个橄榄形的面积总和是(用含π的代数式表示)【例题7】.如图,把一个棱长为3的正方体的每个面等分成9个小正方形,然后沿每个面正中心的一个正方形向里挖空(相当于挖去了7个小正方体),所得到的几何体的表面积是()(第3题)(第4题)(第5题)(第6题)(第7题)【例题8】.如图,Rt ABC△中,90ACB∠=o,30CAB∠=o,2BC=,O H,分别为边AB AC,的中点,将ABC△绕点B顺时针旋转120o到11A BC△的位置,则整个旋转过程中线段OH所扫过部分的面积(即阴影部分面积)为:()A.77π338B.47π338C.πD.4π33+【例题9】.在Rt△ABC内有边长分别为,,a b c的三个正方形,则,,a b c满足关系式.【例题10】.一张等腰三角形纸片,底边长l5cm,底边上的高长22.5cm.现沿底边依次从下往上裁剪宽度均为3cm的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是( )A.第4张B.第5张 C.第6张D.第7张【例题11】.如图,直径分别为CD、CE的两个半圆相切于点C,大半圆M的弦AB与小半圆N相切于点F,且AB∥CD,AB=4,设弧CD、弧CE的长分别为x、y,线段ED的长为z,则z(x+y)= .【专题三、多结论问题】【例题12】.如图,在Rt△ABC中,AB AC=,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90︒后,得到△AFB,连接EF,下列结论:①△AED≌△AEF;②△ABE∽△ACD;③BE DC DE+=;④222BE DC DE+=。
2020年中考数学专题训练:压轴题

2020年中考数学专题训练:压轴题一、选择题1.如图,一次函数与反比例函数的图象交于A(1,8)和B(4,2)两点,点P是线段AB 上一动点(不与点A和B重合),过P点分别作x轴,y轴的垂线PC,PD交反比例函数图象于点E,F,则四边形OEPF面积的最大值是()A.3 B.4 C.D.6第1题第2题2.如图,四边形ABHK是边长为6的正方形,点C、D在边AB上,且AC=DB=1,点P 是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作正方形AMNP和正方形BRQP,E、F分别为MN、QR的中点,连接EF,设EF的中点为G,则当点P从点C 运动到点D时,点G移动的路径长为()A.1 B.2 C.3 D.63.如图,过原点的直线与反比例函数y=(k>0)的图象交于点A,B两点,在x轴有一点C(3,0),AC⊥BC,连结AC交反比例函数图象于点D,若AD=CD,则k的值为()A.B.2 C.2D.44.七巧板是我国祖先的一项卓越创造,如图正方形ABCD可以制作一副七巧板,现将这副七巧板拼成如图2的“风车”造型(内部有一块空心),连结最外围的风车顶点M、N、P、Q得到一个四边形MNPQ,则正方形ABCD与四边形MNPQ的面积之比为()A.5:8 B.3:5 C.8:13 D.25:495.如图,△AOB和△ACD均为正三角形,且顶点B、D均在双曲线y=(x>0)上,若图中S△OBP=4,则k的值为()A.B.﹣C.﹣4 D.46.有一个著名的希波克拉蒂月牙问题:如图1,以直角三角形的各边为直径分别向上作半圆,则直角三角形的面积可表示成两个月牙形的面积之和,现将三个半圆纸片沿直角三角形的各边向下翻折得到图2,把较小的两张半圆纸片的重叠部分面积记为S1,大半圆纸片未被覆盖部分的面积记为S2,则直角三角形的面积可表示成()A.S1+S2B.S2﹣S1C.S2﹣2S1D.S1•S2二、填空题1.如图,四边形ABCD,四边形EBFG,四边形HMPN均是正方形,点E、F、P、N分别在边AB、BC、CD、AD上,点H、G、M在AC上,阴影部分的面积依次记为S1,S2,则S1:S2等于.第3题第4题2.如图,点A在反比例函数y=(x<0,k1<0)的图象上,点B,C在反比例函数y=(x>0,k2>0)的图象上,AB∥x轴,CD⊥x轴于点D,交AB于点E.若△ABC与△DBC的面积之差为3,=,则k1的值为.3.如图,矩形ABCD中,将△BCD绕点B逆时针旋转得△BEF,其中点C的对应点E恰好落在BD上.BF,EF分别交边AD于点G,H.若GH=4HD,则cos∠DBC的值为.第3题第4题4.如图,在矩形ABCD中,AB=3,BC=4,P是对角线BD上的动点,以BP为直径作圆,当圆与矩形ABCD的边相切时,BP的长为.5.如图,在平面直角坐标系中,菱形OABC的边长为2,∠AOC=60°,点D为AB边上的一点,经过O,A,D三点的抛物线与x轴的正半轴交于点E,连结AE交BC于点F,当DF⊥AB时,CE的长为.第5题第6题6.如图,已知AC=6,BC=8,AB=10,以点C为圆心,4为半径作圆.点D是⊙C上的一个动点,连接AD、BD,则AD+BD的最小值为.三、解答题1.如图1,Rt△ABC中,点D,E分别为直角边AC,BC上的点,若满足AD2+BE2=DE2,则称DE为Rt△ABC的“完美分割线”.显然,当DE为△ABC的中位线时,DE是△ABC 的一条完美分割线.(1)如图1,AB=10,cos A=,AD=3,若DE为完美分割线,则BE的长是.(2)如图2,对AC边上的点D,在Rt△ABC中的斜边AB上取点P,使得DP=DA,过点P画PE⊥PD交BC于点E,连结DE,求证:DE是直角△ABC的完美分割线.(3)如图3,在Rt△ABC中,AC=10,BC=5,DE是其完美分割线,点P是斜边AB 的中点,连结PD、PE,求cos∠PDE的值.2.抛物线y=ax2﹣2ax﹣3a图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于C点,顶点M的纵坐标为4,直线MD⊥x轴于点D.(1)求抛物线的解析式;(2)如图1,N为线段MD上一个动点,以N为等腰三角形顶角顶点,NA为腰构造等腰△NAG,且G点落在直线CM上.若在直线CM上满足条件的G点有且只有一个时,请直接写出点N的坐标.(3)如图,点P为第一象限内抛物线上的一点,点Q为第四象限内抛物线上一点,点Q 的横坐标比点P的横坐标大1,连接PC、AQ.当PC=AQ时,求S△PCQ的值.3.定义:有一组对边与一条对角线均相等的四边形为对等四边形,这条对角线又称对等线.(1)如图1,在四边形ABCD中,∠C=∠BDC,E为AB的中点,DE⊥AB.求证:四边形ABCD是对等四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的对等四边形ABCD,使BD是对等线,C,D在格点上.(3)如图3,在图(1)的条件下,过点E作AD的平行线交BD,BC于点F,G,连结DG,若DG⊥EG,DG=2,AB=5,求对等线BD的长.4.如图,AB为⊙O的直径,点C为下方的一动点,连结OC,过点O作OD⊥OC交BC 于点D,过点C作AB的垂线,垂足为F,交DO的延长线于点E.(1)求证:EC=ED.(2)当OE=OD,AB=4时,求OE的长.(3)设=x,tan B=y.①求y关于x的函数表达式;②若△COD的面积是△BOD的面积的3倍,求y的值.5.如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A、B两点,交y轴于点D,其中点B的坐标为(3,0).(1)求抛物线的解析式;(2)如图2,点P为直线BD上方抛物线上一点,若S△PBD=3,请求出点P的坐标.(3)如图3,M为线段AB上的一点,过点M作MN∥BD,交线段AD于点N,连接MD,若△DNM∽△BMD,请求出点M的坐标.6.如图1,在矩形ABCD中,BC=3,动点P从B出发,以每秒1个单位的速度,沿射线BC方向移动,作△P AB关于直线P A的对称△P AB′,设点P的运动时间为t(s).(1)若AB=2.①如图2,当点B′落在AC上时,显然△P AB′是直角三角形,求此时t的值;②是否存在异于图2的时刻,使得△PCB′是直角三角形?若存在,请直接写出所有符合题意的t的值?若不存在,请说明理由.(2)当P点不与C点重合时,若直线PB′与直线CD相交于点M,且当t<3时存在某一时刻有结论∠P AM=45°成立,试探究:对于t>3的任意时刻,结论“∠P AM=45°”是否总是成立?请说明理由.参考答案一、选择题1.【分析】利用A和B两个点求出解析式,将面积转化为二次函数的形式,利用二次函数的性质求最大值;【解答】解:设一次函数解析式为y=kx+b,反比例函数解析式为y=,∵A(1,8)和B(4,2)是两个函数图象的交点,∴y=,∴,∴,∴y=﹣2x+10,∵S△ODF=S△ECO=4,设点P的坐标(x,﹣2x+10),∴四边形OEPF面积=xy﹣8=x(﹣2x+10)﹣8=﹣2x2+10x﹣8=﹣2(x﹣)2+,∴当x=时,面积最大为;故选:C.2.【分析】设KH中点为S,连接PE、ES、SF、PF、PS,可证明四边形PESF为平行四边形,判断出G的运行轨迹为△CSD的中位线,从而求出点G移动的路径长.【解答】解:设KH中点为S,连接PE、ES、SF、PF、PS,可证明四边形PESF为平行四边形,∴G为PS的中点,即在点P运动过程中,G始终为PS的中点,∴G的运行轨迹为△CSD的中位线,∵CD=AB﹣AC﹣BD=6﹣1﹣1=4,∴点G移动的路径长为×4=2.故选:B.3.【分析】设A(t,),利用线段的中点坐标公式得到D点坐标为(,),则•=k,解得t=1,所以A(1,k),再证明OC为Rt△ACB斜边上的中线,则OA=OC=3,然后利用勾股定理得到12+k2=32,最后解方程即可.【解答】解:设A(t,),∵C(3,0),AD=CD,∴D点坐标为(,),∵点D在反比例函数y=(k>0)的图象上,∴•=k,解得t=1,∴A(1,k),∵AC⊥BC,∴∠ACB=90°,∵过原点的直线与反比例函数y=(k>0)的图象交于点A,B两点,∴点A与点B关于原点对称,即OA=OB,∴OC=OA=OB=3,∴12+k2=32,解得k=2.故选:C.4.【分析】设AC=4a,解直角三角形求出AB、MQ,再求出两正方形的面积,即可得出答案.【解答】解:设AC=a+a+a+a=4a,则AB=BC=AC×sin45°=2 a,所以正方形ABCD的面积是(2 a)2=8a2;图2中ME=3a,EQ=2a,由勾股定理得:MQ==a,所以正方形MNPQ的面积为(a)2=13a2,所以图中正方形ABCD,MNPQ的面积比为,故选:C.5.【分析】先根据△AOB和△ACD均为正三角形可知∠AOB=∠CAD=60°,故可得出AD ∥OB,所以S△ABP=S△AOP,故S△AOB=S△OBP=4,过点B作BE⊥OA于点E,由反比例函数系数k的几何意义即可得出结论.【解答】解:如图:∵△AOB和△ACD均为正三角形,∴∠AOB=∠CAD=60°,∴AD∥OB,∴S△ABP=S△AOP,∴S△AOB=S△OBP=4,过点B作BE⊥OA于点E,则S△OBE=S△ABE=S△AOB=2,∵点B在反比例函数y=的图象上,∴S△OBE=k,∴k=4故选:D.6.【分析】设以Rt△ABC的斜边为直径的半圆为大半圆,以AC为直径的半圆为中半圆,以BC为直径的半圆为小半圆,根据圆的面积公式得到S小半圆=π×=BC2,S=AC2,S大半圆=AB2,根据勾股定理于是得到S△ABC=S2﹣S1.中半圆【解答】解:设以Rt△ABC的斜边为直径的半圆为大半圆,以AC为直径的半圆为中半圆,以BC为直径的半圆为小半圆,∵S小半圆=π×=BC2,S中半圆=AC2,S大半圆=AB2,∴S大半圆﹣S中半圆﹣S小半圆=(AB2﹣BC2﹣AC2)=0,∵S△ABC+S大半圆﹣S中半圆﹣S小半圆+S1=S2,∴S△ABC+S1=S2,∴S△ABC=S2﹣S1,∴直角三角形的面积可表示成S2﹣S1,故选:B.二、填空题1.【分析】设DP=DN=m,则PN=m,PC=2m,AD=CD=3m,AC=3m,CG=AG=m,求出两个阴影部分的面积即可解决问题.【解答】解:设DP=DN=m,则PN=m,PC=2m,AD=CD=3m,AC=3m,CG=AG=m,∴S1=m2,S2=••CG2=m2,∴==,故答案为4:9.2.【分析】设CE=2t,则DE=3t,利用反比例函数图象上点的坐标特征得到C(,5t),B(,3t),A(,3t),再根据三角形面积公式得到×(﹣)×2t﹣×5t (﹣)=3,然后化简后可得到的值.【解答】解:设CE=2t,则DE=3t,∵点B,C在反比例函数y=(x>0,k2>0)的图象上,AB∥x轴,CD⊥x轴,∴C(,5t),B(,3t),∴A(,3t),∵△ABC与△DBC的面积之差为3,∴×(﹣)×2t﹣×5t(﹣)=3,∴k1=﹣9.故答案为﹣9.3.【分析】由旋转的性质可得∠FBE=∠DBC,BF=BD,BE=BC,∠BEF=∠C=90°,再由矩形的性质得出∠EDH=∠DBC,设HD=x,GH=4x,设BE=BC=y,分别用x和y表示出BC、BD、DE、DH,根据cos∠DBC=cos∠EDH,列出比例式,化简得=,即cos∠DBC=.【解答】解:∵将△BCD绕点B逆时针旋转得△BEF,其中点C的对应点E恰好落在BD上.∴∠FBE=∠DBC,BF=BD,BE=BC,∠BEF=∠C=90°,∵矩形ABCD中,AD∥BC,∴∠EDH=∠DBC,∴∠FBE=∠DBC=∠EDH,∴BG=DG,∵GH=4HD,∴设HD=x,GH=4x,设BE=BC=y,则BG=DG=5x,∵∠DHE+∠EDH=90°,∠F+∠FBE=90°,∠FBE=∠EDH,∴∠F=∠DHE,∵∠FHG=∠DHE,∴∠F=∠FHG,∴GF=GH=4x,∴BF=BD=9x,DE=9x﹣y,∵cos∠DBC=cos∠EDH,∴=,∴=,∴xy=81x2﹣9xy,∴10xy=81x2,∴10y=81x,∴=,即cos∠DBC=.故答案为:.4.【分析】BP为直径的圆的圆心为O,作OE⊥AD于E,OF⊥CD于F,如图,设⊙O的半径为r,先利用勾股定理计算出BD=5,根据切线的判定方法,当OE=OB时,⊙O与AD相切,根据平行线分线段成比例定理得=,求出r得到BP的长;当OF=OB时利用同样方法求出BP的长.【解答】解:BP为直径的圆的圆心为O,作OE⊥AD于E,OF⊥CD于F,如图,设⊙O的半径为r,在矩形ABCD中,AB=3,BC=4,∴BD==5,当OE=OB时,⊙O与AD相切,∵OE∥AB,∴=,即=,解得r=,此时BP=2r=;当OF=OB时,⊙O与DC相切,∵OF∥BC,∴=,即=,解得r=,此时BP=2r=;综上所述,BP的长为或.故答案为或.5.【分析】先求出A(1,),B(3,),设BF=x,则CF=2﹣x,再由菱形的性质求出D(3﹣x,),由于抛物线经过O,A,D、E,根据抛物线的对称性可知点A与点D的中点横坐标与点O与点E的中点横坐标相同,可求E(4﹣x,0),由平行线分线段成比例可得=,从而建立等量关系=,求出x即可求CE.【解答】解:∵菱形OABC的边长为2,∠AOC=60°,∴OA=2,∴A(1,),∵菱形OABC,∴AB=OC=2,AB∥OC,∴B(3,),设BF=x,则CF=2﹣x,在菱形OABC中,∠B=∠AOC=60°,∵DF⊥AB,∴D(3﹣x,),∴点A与点D的中点为(2﹣x,),∵抛物线经过O,A,D、E,∴点O与点E的中点为(2﹣x,0),∴E(4﹣x,0),∴CE=4﹣x﹣2=2﹣x,∵AB∥CE,∴=,∴=,∴x=4+2(舍)或x=4﹣2,∴CE=,故答案为.6.【分析】在CB上找一点E,连接ED,使ED=BD,然后根据两间之间线段最短原量即可解决问题.【解答】解:如图,在CB上取一点E,使CE=2,连接CD、DE、AE.∵AC=6,BC=8,AB=10,所以AC2+BC2=AB2,∴∠ACB=90°,∵CD=4,∴==,∴△CED∼△CDB,∴==,∴ED=BD,∴AD+BD=AD+ED≥AE,当且仅当E、D、A三点共线时,AD+BD取得最小值AE==2.三、解答题1.【分析】(1)由勾股定理求出BC=6,设BE=x,则CE=6﹣x,则AD2+BE2=DE2,可得出32+x2=52+(6﹣x)2,解得:x=,则答案可求出;(2)证得AD2+BE2=DP2+EP2=DE2,则结论得证;(3)延长DP至F,使PF=PD,连接BF,EF,证明△APD≌△BPF(SAS),得出AD =BF,∠A=∠FBP,则∠EPD=90°,过点P作PM⊥AC,PN⊥BC,则∠MPD=∠NPE =90°﹣∠MPE,证明△MPD∽△NPE,得出PE=2PD,设PD=a,则PE=2a,则DE =a,则可求出答案.【解答】解:(1)∵AB=10,cos A=,∴cos A=,∴AC=8,CD=5,∴==6,设BE=x,则CE=6﹣x,在Rt△CDE中,DE2=CD2+CE2=52+(6﹣x)2,∵DE为完美分割线,∴AD2+BE2=DE2,∴32+x2=52+(6﹣x)2,解得:x=.∴BE=.故答案为:.(2)证明:如图2,∵DA=DP,∴∠DAP=∠DP A,∵PE⊥PD,∴∠DP A+∠EPB=90°,又∠A=∠B,∴∠EPB=∠B,∴EP=EB,∴AD2+BE2=DP2+EP2=DE2,∴DE是直角△ABC的完美分割线.(3)解:延长DP至F,使PF=PD,连接BF,EF,∵AP=BP,∠APD=∠BPF,∴△APD≌△BPF(SAS),∴AD=BF,∠A=∠FBP,∴∠EBF=∠CBA+∠FBP=∠CBA+∠A=90°,∵DE是完美分割线,∴DE2=AD2+BE2=BF2+BE2=EF2,即ED=EF.又PD=PF,∴∠EPD=90°,过点P作PM⊥AC,PN⊥BC,则∠MPD=∠NPE=90°﹣∠MPE,∴△MPD∽△NPE,∴,设PD=a,则PE=2a,则DE==a,∴cos∠PDE==.2.【分析】(1)求出对称轴得到顶点坐标,代入解析式求出a值即可.(2)当直线CM上满足条件的G点有且只有一个时,可分两种情况讨论:①NG⊥CM,且NG=NA,如图2,作CH⊥MD于H,如图2.设N(1,n),易得NG=MN=(4﹣n),NA2=22+n2=4+n2,由题可得NG=NA,由此即可得到关于n的方程,解这个方程就可解决问题;②A、N、G共线,且AN=GN,如图3,过点GT⊥x轴于T,则有AD=DT=2,运用待定系数法求出直线CM的解析式,从而得出点G的坐标,然后运用三角形的中位线定理就可解决问题.(3)根据点P在第一象限,点Q在第二象限,且横坐标相差1,进而设出点P(3﹣m,﹣m2+4m)(0<m<1);得出点Q(4﹣m,﹣m2+6m﹣5),得出CP2,AQ2,最后建立方程求解即可.【解答】解:(1)将顶点M坐标(1,4)代入解析式,可得a=﹣1,抛物线解析式为y =﹣x2+2x+3(2)当直线CM上满足条件的G点有且只有一个时,①NG⊥CM,且NG=NA,如图1,作CH⊥MD于H,则有∠MGN=∠MHC=90°.设N(1,n),当x=0时,y=3,点C(0,3).∵M(1,4),∴CH=MH=1,∴∠CMH=∠MCH=45°,∴NG=MN=(4﹣n).在Rt△NAD中,∵AD=DB=2,DN=n,∴NA2=22+n2=4+n2.则(4﹣n)2=4+n2整理得:n2+8n﹣8=0,解得:n1=﹣4+2,n2=﹣4﹣2(舍负),∴N(1,﹣4+2).②A、N、G共线,且AN=GN,如图2.过点GT⊥x轴于T,则有DN∥GT,根据平行线分线段成比例可得AD=DT=2,∴OT=3.设过点C(0,3)、M(1,4)的解析式为y=px+q,则,解得,∴直线CM的解析式为y=x+3.当x=3时,y=6,∴G(3,6),GT=6.∵AN=NG,AD=DT,∴ND=GT=3,∴点N的坐标为(1,3).综上所述:点N的坐标为(1,﹣4+2 )或(1,3).(3)如图3,过点P作PD⊥x轴交CQ于D,设P(3﹣m,﹣m2+4m)(0<m<1);∵C(0,3),∴PC2=(3﹣m)2+(﹣m2+4m﹣3)2=(m﹣3)2[(m﹣1)2+1],∵点Q的横坐标比点P的横坐标大1,∴Q(4﹣m,﹣m2+6m﹣5),∵A(﹣1,0).∴AQ2=(4﹣m+1)2+(﹣m2+6m﹣5)2=(m﹣5)2[(m﹣1)2+1]∵PC=AQ,∴81PC2=25AQ2,∴81(m﹣3)2[(m﹣1)2+1]=25(m﹣5)2[(m﹣1)2+1],∵0<m<1,∴[(m﹣1)2+1]≠0,∴81(m﹣3)2=25(m﹣5)2,∴9(m﹣3)=±5(m﹣5),∴m=或m=(舍),∴P(,),Q(,﹣),∵C(0,3),∴直线CQ的解析式为y=﹣x+3,∵P(,),∴D(,﹣),∴PD=+=∴S△PCQ=S△PCD+S△PQD=PD×x P+PD×(x Q﹣x P)=PD×x Q==.3.【分析】(1)由∠C=∠BDC,得出BC=BD,由等腰三角形的性质得出BD=AD,即可得出结论;(2)有两种画法:①作AB的垂直平分线与方格纸上的格点的交点即为点D,再以点B为圆心、以BD长为半径画圆,圆与方格纸上的格点的交点即为点C,连接AD、BC、CD,则AD=BC=BD;②以点B为圆心、以AB长为半径画圆,圆与方格纸上的格点的交点即为点D,再以点D为圆心、以BD长为半径画圆,圆与方格纸上的格点的交点即为点C,连接AD、BC、CD,则AB=CD=BD;(3)过点E作EH⊥AD于H,易证四边形DGEH是矩形,得出EH=DG=2,求出AE =BE=AB=,S△ADE=S△BDE,设DE=x,AD=BD=y,S△ADE=EH•AD=y,S△BDE =BE•DE=x,由勾股定理得出BD2=BE2+DE2,即y2=()2+x2,则,解方程组即可得出结果.【解答】(1)证明:∵∠C=∠BDC,∴BC=BD,∵E为AB的中点,DE⊥AB,∴BD=AD,∴BC=AD=BD,∴四边形ABCD是对等四边形;(2)解:有两种画法:①作AB的垂直平分线与方格纸上的格点的交点即为点D,再以点B为圆心、以BD长为半径画圆,圆与方格纸上的格点的交点即为点C,连接AD、BC、CD,则AD=BC=BD,如图2﹣1所示;②以点B为圆心、以AB长为半径画圆,圆与方格纸上的格点的交点即为点D,再以点D为圆心、以BD长为半径画圆,圆与方格纸上的格点的交点即为点C,连接AD、BC、CD,则AB=CD=BD,如图2﹣2所示;(3)解:过点E作EH⊥AD于H,如图3所示:则∠EHD=90°,∵EG∥AD,DG⊥EG,∴∠EGD=∠HDG=90°,∴四边形DGEH是矩形,∴EH=DG=2,∵E为AB的中点,AB=5,∴AE=BE=AB=,S△ADE=S△BDE,设DE=x,AD=BD=y,则S△ADE=EH•AD=×2×y=y,S△BDE=BE•DE=××x=x,∵在Rt△BDE中,∠BED=90°,∴BD2=BE2+DE2,即y2=()2+x2,∴,解得:,∴BD=.4.【分析】(1)欲证明EC=ED,只要证明∠ECD=∠EDC.(2)证明△ECD是等边三角形,推出∠E=60°即可解决问题.(3)①连接AC.首先证明x==,再证明∠ACF=∠B,推出tan∠B=tan∠ACF ==y,令OC=k,则OF=kx,CF===k•,推出AF=OA﹣OF=k﹣kx=k(1﹣x),根据y=计算即可.②作OH⊥BC于H.设BD=m,利用相似三角形的性质求出OH,BH(用m表示)即可解决问题.【解答】(1)证明:∵OD⊥OC,∴∠COD=90°,∴∠OCD+∠ODC=90°,∵EC⊥AB,∴∠CEB=90°,∴∠B+∠ECB=90°,∵OC=OB,∴∠B=∠OCD,∴∠ODC=∠ECB,∴EC=EB.(2)解:∵OE=OD,OC⊥ED,∴CE=CE,∵EC=ED,∴EC=ED=CD,∴△ECD是等边三角形,∵∠E=60°,在Rt△EOC中,∵∠EOC=90°,OC=AB=2,∴OE==.(3)解:①连接AC.∵EC=ED,∠EOC=90°∴==sin∠ECO,∵∠OFC=90°,∴sin∠ECO=,∴x==,∵AB是直径,∴∠ACB=90°,∵CE⊥AB,∴∠AFC=90°,∴∠ACF+∠A=90°,∠B+∠A=90°,∴∠ACF=∠B,∴tan∠B=tan∠ACF==y,令OC=k,则OF=kx,CF===k•,∴AF=OA﹣OF=k﹣kx=k(1﹣x),∴y===(0<x<1).②作OH⊥BC于H.设BD=m,∵△COD的面积是△BOD的面积的3倍,∴CD=3BD=3m,CB=4m,∵OH⊥BC,∴CH=BH=2m,∴HD=m,∵∠OCH+∠COH=90°,∠COH+∠DOH=90°,∴∠OCH=∠DOH,∵∠OHC=∠OHD=90°,∴△OHC∽△DHO,∴=,∴OH2=2m2,∴OH=m,∴y=tan B===.5.【分析】(1)设抛物线的解析式为y=a(x﹣1)2+4,将点B的坐标代入求出a的值即可得出答案;(2)过点P作PQ∥y轴交DB于点Q,求出直线BD的解析式,设P(m,﹣m2+2m+3),则Q(m,﹣m+3),可得出S△PBD=﹣m,解方程可求出m的值,则答案可求出;(3)设M(a,0),证明△AMN∽△ABD,可得,再由△DNM∽△BMD,可得,得出关于a的方程,解方程即可得出答案.【解答】解:(1)设抛物线的解析式为y=a(x﹣1)2+4,将点B(3,0)代入得,(3﹣1)2×a+4=0.解得:a=﹣1.∴抛物线的解析式为:y=﹣(x﹣1)2+4=﹣x2+2x+3.(2)过点P作PQ∥y轴交DB于点Q,∵抛物线的解析式为y=﹣x2+2x+3∴D(0,3).设直线BD的解析式为y=kx+n,∴,解得:,∴直线BD的解析式为y=﹣x+3.设P(m,﹣m2+2m+3),则Q(m,﹣m+3),∴PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m.∵S△PBD=S△PQD+S△PQB,∴S△PBD=×PQ×(3﹣m)=PQ=﹣m,∵S△PBD=3,∴﹣m=3.解得:m1=1,m2=2.∴点P的坐标为(1,4)或(2,3).(3)∵B(3,0),D(0,3),∴BD==3,设M(a,0),∵MN∥BD,∴△AMN∽△ABD,∴,即.∴MN=(1+a),DM==,∵△DNM∽△BMD,∴,∴DM2=BD•MN.∴9+a2=3(1+a).解得:a=或a=3(舍去).∴点M的坐标为(,0).6.【分析】(1)①利用勾股定理求出AC,由△PCB′∽△ACB,推出=,即可解决问题.②分三种情形分别求解即可:如图2﹣1中,当∠PCB′=90°时.如图2﹣2中,当∠PCB′=90°时.如图2﹣3中,当∠CPB′=90°时.(2)如图3﹣2中,首先证明四边形ABCD是正方形,如图3﹣2中,利用全等三角形的性质,翻折不变性即可解决问题.【解答】解:(1)①如图1中,∵四边形ABCD是矩形,∴∠ABC=90°,∴AC==,∵∠PCB′=∠ACB,∠PB′C=∠ABC=90°,∴△PCB′∽△ACB,∴=,∴=,∴PB′=2﹣4.∴t=PB=2﹣4.②如图2﹣1中,当∠PCB′=90°时,∵四边形ABCD是矩形,∴∠D=90°,AB=CD=2,AD=BC=3,∴DB′==,∴CB′=CD﹣DB′=,在Rt△PCB′中,∵B′P2=PC2+B′C2,∴t2=()2+(3﹣t)2,∴t=2.如图2﹣2中,当∠PCB′=90°时,在Rt△ADB′中,DB′==,∴CB′=3在Rt△PCB′中则有:,解得t=6.如图2﹣3中,当∠CPB′=90°时,易证四边形ABP′为正方形,易知t=2.综上所述,满足条件的t的值为2s或6s或2s.(2)如图3﹣1中,∵∠P AM=45°∴∠2+∠3=45°,∠1+∠4=45°又∵翻折,∴∠1=∠2,∠3=∠4,又∵∠ADM=∠AB′M,AM=AM,∴△AMD≌△AMB′(AAS),∴AD=AB′=AB,即四边形ABCD是正方形,如图,设∠APB=x.∴∠P AB=90°﹣x,∴∠DAP=x,易证△MDA≌△B′AM(HL),∴∠BAM=∠DAM,∵翻折,∴∠P AB=∠P AB′=90°﹣x,∴∠DAB′=∠P AB′﹣∠DAP=90°﹣2x,∴∠DAM=∠DAB′=45°﹣x,∴∠MAP=∠DAM+∠P AD=45°.。
2019-2020中考数学试题(附答案)

2019-2020中考数学试题(附答案) 一、选择题1.如图,矩形ABCD的顶点A和对称中心均在反比例函数y=kx(k≠0,x>0)上,若矩形ABCD的面积为12,则k的值为()A.12B.4C.3D.62.下列计算正确的是()A.2a+3b=5ab B.(a-b)2=a2-b2C.(2x2)3=6x6D.x8÷x3=x53.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°4.如图,下列关于物体的主视图画法正确的是()A.B.C.D.5.如图,直线l1∥l2,将一直角三角尺按如图所示放置,使得直角顶点在直线l1上,两直角边分别与直线l1、l2相交形成锐角∠1、∠2且∠1=25°,则∠2的度数为()A.25°B.75°C.65°D.55°6.如图,长宽高分别为2,1,1的长方体木块上有一只小虫从顶点A出发沿着长方体的外表面爬到顶点B ,则它爬行的最短路程是( )A .10B .5C .22D .37.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x 个队参赛,根据题意,可列方程为() A .()11362x x -= B .()11362x x += C .()136x x -= D .()136x x +=8.如图,矩形纸片ABCD 中,4AB =,6BC =,将ABC V 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则DF 的长等于( )A .35B .53C .73D .549.下列各式化简后的结果为32 的是( ) A .6B .12C .18D .3610.如图,正比例函数1y=k x 与反比例函数2k y=x的图象相交于点A 、B 两点,若点A 的坐标为(2,1),则点B 的坐标是( )A .(1,2)B .(-2,1)C .(-1,-2)D .(-2,-1)11.下列分解因式正确的是( ) A .24(4)x x x x -+=-+ B .2()x xy x x x y ++=+ C .2()()()x x y y y x x y -+-=- D .244(2)(2)x x x x -+=+-12.cos45°的值等于( ) A 2B .1C 3D 2二、填空题13.如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y=kx的图象上,则k的值为________.14.分解因式:2x3﹣6x2+4x=__________.15.如图,边长为2的正方形ABCD的顶点A,B在x轴正半轴上,反比例函数kyx 在第一象限的图象经过点D,交BC于E,若点E是BC的中点,则OD的长为_____.16.甲、乙两人在1200米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别以不同的速度匀速前进,已知,甲出发30秒后,乙出发,乙到终点后立即返回,并以原来的速度前进,最后与甲相遇,此时跑步结束.如图,y(米)表示甲、乙两人之间的距离,x(秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中y与x函数关系,那么,乙到达终点后_____秒与甲相遇.17.农科院新培育出A、B两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:种子数量10020050010002000A出芽种子数961654919841965发芽率0.960.830.980.980.98B出芽种子数961924869771946发芽率0.960.960.970.980.97下面有三个推断:①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样;②随着实验种子数量的增加,A种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.98;③在同样的地质环境下播种,A种子的出芽率可能会高于B种子.其中合理的是__________(只填序号).18.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快40千米,提速后从北京到上海运行时间缩短了30分钟,已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x千米/时,依题意,可列方程为_____.19.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2,a a次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物乙车共运270吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________元.(按每吨运费20元计算)20.二元一次方程组627x yx y+=⎧⎨+=⎩的解为_____.三、解答题21.国家自2016年1月1日起实行全面放开二胎政策,某计生组织为了解该市家庭对待这项政策的态度,准备采用以下调查方式中的一种进行调查:A.从一个社区随机选取1 000户家庭调查;B.从一个城镇的不同住宅楼中随机选取1 000户家庭调查;C.从该市公安局户籍管理处随机抽取1 000户城乡家庭调查.(1)在上述调查方式中,你认为比较合理的一个是.(填“A”、“B”或“C”)(2)将一种比较合理的调查方式调查得到的结果分为四类:(A)已有两个孩子;(B)决定生二胎;(C)考虑之中;(D)决定不生二胎.将调查结果绘制成如下两幅不完整的统计图.请根据以上不完整的统计图提供的信息,解答下列问题:①补全条形统计图.②估计该市100万户家庭中决定不生二胎的家庭数.22.如图1,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且3D作DF∥BC,交AB的延长线于点F.(1)求证:DF为⊙O的切线;(2)若∠BAC=60°,DE=7,求图中阴影部分的面积;(3)若43ABAC,DF+BF=8,如图2,求BF的长.23.荆门市是著名的“鱼米之乡”.某水产经销商在荆门市长湖养殖场批发购进草鱼和乌鱼(俗称黑鱼)共75千克,且乌鱼的进货量大于40千克.已知草鱼的批发单价为8元/千克,乌鱼的批发单价与进货量的函数关系如图所示.(1)请直接写出批发购进乌鱼所需总金额y(元)与进货量x(千克)之间的函数关系式;(2)若经销商将购进的这批鱼当日零售,草鱼和乌鱼分别可卖出89%、95%,要使总零售量不低于进货量的93%,问该经销商应怎样安排进货,才能使进货费用最低?最低费用是多少?24.如图,AB是半圆O的直径,AD为弦,∠DBC=∠A.(1)求证:BC是半圆O的切线;(2)若OC∥AD,OC交BD于E,BD=6,CE=4,求AD的长.25.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是⊙O的切线;(2)设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;(3)若BE=8,sinB=513,求DG的长,【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】分析:设点A的坐标为(m,km),则根据矩形的面积与性质得出矩形中心的纵坐标为2km,求出中心的横坐标为m+6mk,根据中心在反比例函数y=kx上,可得出结果.详解:设点A的坐标为(m,km),∵矩形ABCD的面积为12,∴121212m BCkAB km===,∴矩形ABCD的对称中心的坐标为(m+6mk,2km),∵对称中心在反比例函数上,∴(m+6mk)×2km=k,解方程得k=6,故选D.点睛:本题考查了反比例函数图象上点的坐标特点,熟知反比例函数中k=xy位定值是解答本题的关键.2.D解析:D【解析】分析:A.原式不能合并,错误;B.原式利用完全平方公式展开得到结果,即可做出判断;C.原式利用积的乘方运算法则计算得到结果,即可做出判断;D.原式利用同底数幂的除法法则计算得到结果,即可做出判断.详解:A.不是同类项,不能合并,故A错误;B.(a﹣b)2=a2﹣2ab+b2,故B错误;C.(2x2)3=8x6,故C错误;D.x8÷x3=x5,故D正确.故选D.点睛:本题考查了完全平方公式,合并同类项,幂的乘方及积的乘方,以及同底数幂的除法,熟练掌握公式及法则是解答本题的关键.3.C解析:C【解析】【分析】根据平行四边形性质和折叠性质得∠BAC=∠ACD=∠B′AC=12∠1,再根据三角形内角和定理可得.【详解】∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=12∠1=22°∴∠B=180°-∠2-∠BAC=180°-44°-22°=114°;故选C.【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.4.C解析:C【解析】【分析】根据主视图是从正面看到的图形,进而得出答案.【详解】主视图是从正面看这个几何体得到的正投影,空心圆柱从正面看是一个长方形,加两条虚竖线,画法正确的是:.故选C.【点睛】本题考查了三视图的知识,关键是找准主视图所看的方向.5.C解析:C【解析】【分析】依据∠1=25°,∠BAC=90°,即可得到∠3=65°,再根据平行线的性质,即可得到∠2=∠3=65°.【详解】如图,∵∠1=25°,∠BAC=90°,∴∠3=180°-90°-25°=65°,∵l1∥l2,∴∠2=∠3=65°,故选C.【点睛】本题考查的是平行线的性质,运用两直线平行,同位角相等是解答此题的关键.6.C解析:C【解析】【分析】蚂蚁有两种爬法,就是把正视和俯视(或正视和侧视)二个面展平成一个长方形,然后求其对角线,比较大小即可求得最短路程.【详解】如图所示,路径一:AB22=++=()22;211路径二:AB22=++=().21110<,∴蚂蚁爬行的最短路程为22.∵2210故选C.【点睛】本题考查了立体图形中的最短路线问题;通常应把立体几何中的最短路线问题转化为平面几何中的求两点间距离的问题;注意长方体展开图形应分情况进行探讨.7.A解析:A 【解析】 【分析】共有x 个队参加比赛,则每队参加(x-1)场比赛,但2队之间只有1场比赛,根据共安排36场比赛,列方程即可. 【详解】解:设有x 个队参赛,根据题意,可列方程为:12x (x ﹣1)=36, 故选:A . 【点睛】此题考查由实际问题抽象出一元二次方程,解题关键在于得到比赛总场数的等量关系.8.B解析:B 【解析】 【分析】由折叠的性质得到AE=AB ,∠E=∠B=90°,易证Rt △AEF ≌Rt △CDF ,即可得到结论EF=DF ;易得FC=FA ,设FA=x ,则FC=x ,FD=6-x ,在Rt △CDF 中利用勾股定理得到关于x 的方程x 2=42+(6-x )2,解方程求出x 即可. 【详解】∵矩形ABCD 沿对角线AC 对折,使△ABC 落在△ACE 的位置, ∴AE=AB ,∠E=∠B=90°, 又∵四边形ABCD 为矩形, ∴AB=CD , ∴AE=DC , 而∠AFE=∠DFC , ∵在△AEF 与△CDF 中,AFE CFD E DAE CD ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AEF ≌△CDF (AAS ), ∴EF=DF ;∵四边形ABCD 为矩形, ∴AD=BC=6,CD=AB=4,∵Rt △AEF ≌Rt △CDF , ∴FC=FA ,设FA=x ,则FC=x ,FD=6-x ,在Rt △CDF 中,CF 2=CD 2+DF 2,即x 2=42+(6-x )2,解得x =133, 则FD =6-x=53. 故选B . 【点睛】考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.也考查了矩形的性质和三角形全等的判定与性质以及勾股定理.9.C解析:C 【解析】A 不能化简;BC ,故正确;D ,故错误; 故选C .点睛:本题主要考查二次根式,熟练掌握二次根式的性质是解题的关键.10.D解析:D 【解析】 【分析】 【详解】解:根据正比例函数与反比例函数关于原点对称的性质,正比例函数1y=k x 与反比例函数2k y=x的图象的两交点A 、B 关于原点对称; 由A 的坐标为(2,1),根据关于原点对称的点的坐标是横、纵坐标都互为相反数的坐标特征,得点B 的坐标是(-2,-1). 故选:D11.C解析:C 【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ()244x x x x -+=-- ,故A 选项错误;B. ()21x xy x x x y ++=++,故B 选项错误;C. ()()()2x x y y y x x y -+-=- ,故C 选项正确;D. 244x x -+=(x-2)2,故D 选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.12.D解析:D【解析】【分析】将特殊角的三角函数值代入求解.【详解】解:cos45° 故选D .【点睛】本题考查特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值. 二、填空题13.-6【解析】因为四边形OABC 是菱形所以对角线互相垂直平分则点A 和点C 关于y 轴对称点C 在反比例函数上设点C 的坐标为(x)则点A 的坐标为(-x)点B 的坐标为(0)因此AC=-2xOB=根据菱形的面积等解析:-6【解析】因为四边形OABC 是菱形,所以对角线互相垂直平分,则点A 和点C 关于y 轴对称,点C 在反比例函数上,设点C 的坐标为(x ,k x ),则点A 的坐标为(-x ,k x ),点B 的坐标为(0,2k x ),因此AC=-2x,OB=2K X,根据菱形的面积等于对角线乘积的一半得: ()OABC 122122k S x x=⨯-⨯=菱形,解得 6.k =- 14.2x (x ﹣1)(x ﹣2)【解析】分析:首先提取公因式2x 再利用十字相乘法分解因式得出答案详解:2x3﹣6x2+4x=2x (x2﹣3x+2)=2x (x ﹣1)(x ﹣2)故答案为2x (x ﹣1)(x ﹣2)点解析:2x (x ﹣1)(x ﹣2).【解析】分析:首先提取公因式2x ,再利用十字相乘法分解因式得出答案.详解:2x 3﹣6x 2+4x=2x (x 2﹣3x+2)=2x (x ﹣1)(x ﹣2).故答案为2x (x ﹣1)(x ﹣2).点睛:此题主要考查了提取公因式法以及十字相乘法分解因式,正确分解常数项是解题关键.15.【解析】【分析】设D (x2)则E (x+21)由反比例函数经过点DE 列出关于x 的方程求得x 的值即可得出答案【详解】解:设D (x2)则E (x+21)∵反比例函数在第一象限的图象经过点D 点E∴2x=x+2 解析:12x x 【解析】【分析】设D (x ,2)则E (x+2,1),由反比例函数经过点D 、E 列出关于x 的方程,求得x 的值即可得出答案.【详解】解:设D (x ,2)则E (x+2,1),∵反比例函数k y x=在第一象限的图象经过点D 、点E , ∴2x =x+2,解得x =2,∴D (2,2),∴OA =AD =2,∴2222,OD OA OD =+=故答案为:2 2.【点睛】本题主要考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D 、E 的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k . 16.30【解析】【分析】由图象可以V 甲=9030=3m/sV 追=90120-30=1m/s 故V 乙=1+3=4m/s 由此可求得乙走完全程所用的时间为:12004=300s 则可以求得此时乙与甲的距离即可求出解析:30【解析】【分析】由图象可以V 甲==3m/s ,V 追==1m/s ,故V 乙=1+3=4m/s ,由此可求得乙走完全程所用的时间为:=300s ,则可以求得此时乙与甲的距离,即可求出最后与甲相遇的时间.【详解】由图象可得V甲==3m/s,V追==1m/s,∴V乙=1+3=4m/s,∴乙走完全程所用的时间为:=300s,此时甲所走的路程为:(300+30)×3=990m.此时甲乙相距:1200﹣990=210m则最后相遇的时间为:=30s故答案为:30【点睛】此题主要考查一次函数图象的应用,利用函数图象解决行程问题.此时就要求掌握函数图象中数据表示的含义.17.②③【解析】分析:根据随机事件发生的频率与概率的关系进行分析解答即可详解:(1)由表中的数据可知当实验种子数量为100时两种种子的发芽率虽然都是96但结合后续实验数据可知此时的发芽率并不稳定故不能确解析:②③【解析】分析:根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.详解:(1)由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以①中的说法不合理;(2)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,故可以估计A种种子发芽的概率是98%,所以②中的说法是合理的;(3)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,而B种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A种种子发芽率大于B种种子发芽率,所以③中的说法是合理的.故答案为:②③.点睛:理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键. 18.【解析】【分析】设复兴号的速度为x千米/时则原来列车的速度为(x-40)千米/时根据提速后从北京到上海运行时间缩短了30分钟列出方程即可【详解】设复兴号的速度为x千米/时则原来列车的速度为(x﹣40解析:13201320304060x x-=-.【解析】【分析】设“复兴号”的速度为x千米/时,则原来列车的速度为(x-40)千米/时,根据提速后从北京到上海运行时间缩短了30分钟列出方程即可.【详解】设“复兴号”的速度为x千米/时,则原来列车的速度为(x﹣40)千米/时,根据题意得:13201320304060x x-=-.故答案为:13201320304060x x-=-.【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是理解题意,找到题目蕴含的相等关系.19.【解析】【分析】根据甲乙两车单独运这批货物分别用2a次a次能运完甲的效率应该为乙的效率应该为那么可知乙车每次货运量是甲车的2倍根据若甲丙两车合运相同次数运完这批货物时甲车共运了180吨;若乙丙两车合解析:2160【解析】【分析】根据“甲、乙两车单独运这批货物分别用2a次、a次能运完”甲的效率应该为1 2a ,乙的效率应该为1a,那么可知乙车每次货运量是甲车的2倍根据“若甲、丙两车合运相同次数运完这批货物时,甲车共运了180吨;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨.”这两个等量关系来列方程.【详解】设这批货物共有T吨,甲车每次运t甲吨,乙车每次运t乙吨,∵2a⋅t甲=T,a⋅t乙=T,∴t甲:t乙=1:2,由题意列方程:180270 180270T Tt t--=甲乙,t乙=2t甲,∴180270180135T T--=,解得T=540.∵甲车运180吨,丙车运540−180=360吨,∴丙车每次运货量也是甲车的2倍,∴甲车车主应得运费15402021605⨯⨯= (元),故答案为:2160.【点睛】考查分式方程的应用,读懂题目,找出题目中的等量关系是解题的关键.20.【解析】【分析】由加减消元法或代入消元法都可求解【详解】②﹣①得③将③代入①得∴故答案为:【点睛】本题考查的是二元一次方程组的基本解法本题属于基础题比较简单解析:15x y =⎧⎨=⎩【解析】【分析】由加减消元法或代入消元法都可求解.【详解】627x y x y +=⎧⎨+=⎩①②, ②﹣①得1x =③将③代入①得5y =∴15x y =⎧⎨=⎩故答案为:15x y =⎧⎨=⎩【点睛】本题考查的是二元一次方程组的基本解法,本题属于基础题,比较简单.三、解答题21.(1)C ;(2)①作图见解析;②35万户.【解析】【分析】(1)C 项涉及的范围更广;(2)①求出B ,D 的户数补全统计图即可;①100万乘以不生二胎的百分比即可.【详解】解:(1)A 、B 两种调查方式具有片面性,故C 比较合理;故答案为:C ;(2)①B :100030%300⨯=户1000-100-300-250=350户补全统计图如图所示:(3)因为350100351000⨯=(万户), 所以该市100万户家庭中决定不生二胎的家庭数约为35万户.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(1)证明见解析(2)﹣2π;(3)3【解析】【分析】(1)连结OD ,如图1,由已知得到∠BAD=∠CAD ,得到»»BDCD =,再由垂径定理得OD ⊥BC ,由于BC ∥EF ,则OD ⊥DF ,于是可得结论;(2)连结OB ,OD 交BC 于P ,作BH ⊥DF 于H ,如图1,先证明△OBD 为等边三角形得到∠ODB=60°,OB=BD=BDF=∠DBP=30°,在Rt △DBP 中得到,PB=3,在Rt △DEP 中利用勾股定理可算出PE=2,由于OP ⊥BC ,则BP=CP=3,得到CE=1,由△BDE ∽△ACE ,得到AE 的长,再证明△ABE ∽△AFD ,可得DF=12,最后利用S 阴影部分=S △BDF ﹣S 弓形BD =S △BDF ﹣(S 扇形BOD ﹣S △BOD )进行计算;(3)连结CD ,如图2,由43AB AC =可设AB=4x ,AC=3x ,设BF=y ,由»»BD CD =得到CD=BD=△BFD ∽△CDA ,得到xy=4,再由△FDB ∽△FAD ,得到16﹣4y=xy ,则16﹣4y=4,然后解方程即可得到BF=3.【详解】(1)连结OD ,如图1,∵AD 平分∠BAC 交⊙O 于D ,∴∠BAD=∠CAD ,∴»»BDCD =,∴OD ⊥BC , ∵BC ∥EF ,∴OD ⊥DF ,∴DF 为⊙O 的切线;(2)连结OB ,连结OD 交BC 于P ,作BH ⊥DF 于H ,如图1,∵∠BAC=60°,AD 平分∠BAC ,∴∠BAD=30°,∴∠BOD=2∠BAD=60°,∴△OBD 为等边三角形,∴∠ODB=60°,OB=BD=∴∠BDF=30°,∵BC ∥DF ,∴∠DBP=30°,在Rt △DBP 中,PD=12,在Rt △DEP 中,∵,,∴=2,∵OP ⊥BC ,∴BP=CP=3,∴CE=3﹣2=1,易证得△BDE ∽△ACE ,∴AE :BE=CE :DE ,即AE :5=1,∴,∵BE ∥DF,∴△ABE∽△AFD,∴BE AEDF AD=,即5757125DF=,解得DF=12,在Rt△BDH中,BH=12BD=3,∴S阴影部分=S△BDF﹣S弓形BD=S△BDF﹣(S扇形BOD﹣S△BOD)=22160(23)3123(23)23604π⨯⨯-+⨯=932π-;(3)连结CD,如图2,由43ABAC=可设AB=4x,AC=3x,设BF=y,∵»»BD CD=,∴CD=BD=23,∵∠F=∠ABC=∠ADC,∵∠FDB=∠DBC=∠DAC,∴△BFD∽△CDA,∴BD BFAC CD=,即2323=,∴xy=4,∵∠FDB=∠DBC=∠DAC=∠FAD,而∠DFB=∠AFD,∴△FDB∽△FAD,∴DF BFAF DF=,即848y yy x y-=+-,整理得16﹣4y=xy,∴16﹣4y=4,解得y=3,即BF的长为3.考点:1.圆的综合题;2.相似三角形的判定与性质;3.切线的判定与性质;4.综合题;5.压轴题.23.(1)y=26(2040)24(40)x xx x⎧⎨>⎩剟;(2)该经销商应购进草鱼25千克,乌鱼50千克,才能使进货费用最低,最低费用为1400元.【解析】【分析】【详解】(1)批发购进乌鱼所需总金额y(元)与进货量x(千克)之间的函数关系式y=26(2040)24(40)x xx x⎧⎨>⎩剟;(2)设该经销商购进乌鱼x千克,则购进草鱼(75﹣x)千克,所需进货费用为w元.由题意得:4089%(75)95%93%75x x x >⎧⎨⨯-+⨯⎩… 解得x≥50.由题意得w=8(75﹣x )+24x=16x+600.∵16>0,∴w 的值随x 的增大而增大.∴当x=50时,75﹣x=25,W 最小=1400(元).答:该经销商应购进草鱼25千克,乌鱼50千克,才能使进货费用最低,最低费用为1400元.24.(1)见解析;(2)AD=4.5.【解析】【分析】(1)若证明BC 是半圆O 的切线,利用切线的判定定理:即证明AB ⊥BC 即可;(2)因为OC ∥AD ,可得∠BEC=∠D=90°,再有其他条件可判定△BCE ∽△BAD ,利用相似三角形的性质:对应边的比值相等即可求出AD 的长.【详解】(1)证明:∵AB 是半圆O 的直径,∴BD ⊥AD ,∴∠DBA+∠A=90°,∵∠DBC=∠A ,∴∠DBA+∠DBC=90°即AB ⊥BC ,∴BC 是半圆O 的切线;(2)解:∵OC ∥AD ,∴∠BEC=∠D=90°,∵BD ⊥AD ,BD=6,∴BE=DE=3,∵∠DBC=∠A ,∴△BCE ∽△BAD ,∴=CE BE BD AD ,即436=AD; ∴AD=4.5【点睛】 本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了相似三角形的判定和性质.25.(1)证明见解析;(3)DG=23. 【解析】【分析】(1)连接OD ,由AD 为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD 与AC 平行,得到OD 与BC 垂直,即可得证;(2)连接DF ,由(1)得到BC 为圆O 的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD 与三角形ADF 相似,由相似得比例,即可表示出AD ;(3)连接EF ,设圆的半径为r ,由sinB 的值,利用锐角三角函数定义求出r 的值,由直径所对的圆周角为直角,得到EF 与BC 平行,得到sin ∠AEF=sinB ,进而求出DG 的长即可.【详解】(1)如图,连接OD ,∵AD 为∠BAC 的角平分线,∴∠BAD=∠CAD ,∵OA=OD ,∴∠ODA=∠OAD ,∴∠ODA=∠CAD ,∴OD ∥AC ,∵∠C=90°,∴∠ODC=90°,∴OD ⊥BC ,∴BC 为圆O 的切线;(2)连接DF ,由(1)知BC 为圆O 的切线,∴∠FDC=∠DAF ,∴∠CDA=∠CFD ,∴∠AFD=∠ADB ,∵∠BAD=∠DAF ,∴△ABD ∽△ADF , ∴AB AD AD AF=,即AD 2=AB•AF=xy ,则;(3)连接EF ,在Rt △BOD 中,sinB=513OD OB =, 设圆的半径为r ,可得5813r r =+, 解得:r=5,∴AE=10,AB=18,∵AE 是直径,∴∠AFE=∠C=90°,∴EF ∥BC ,∴∠AEF=∠B ,∴sin ∠AEF=513AF AE =,∴AF=AE•sin∠AEF=10×513=50 13,∵AF∥OD,∴501013513AG AFDG OD===,即DG=1323AD,∴AD=503013·1813AB AF=⨯=,则DG=133033013 23⨯=.【点睛】圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.。
中考数学备考填空压轴题精选(73题)学生版

2020年中考数学备考填空压轴题精选(73题)教师版1.(2019安徽省)在平面直角坐标系中,垂直于x 轴的直线l 分别与函数y =x ﹣a +1和y =x 2﹣2ax 的图象相交于P ,Q 两点.若平移直线l ,可以使P ,Q 都在x 轴的下方,则实数a 的取值范围是 . 2.(2019北京市)在矩形ABCD 中,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上的点(不与端点重合). 对于任意矩形ABCD ,下面四个结论中,①存在无数个四边形MNPQ 是平行四边形;②存在无数个四边形MNPQ 是矩形;③存在无数个四边形MNPQ 是菱形;④至少存在一个四边形MNPQ 是正方形.所有正确结论的序号是______.3.(2019福建省)如图,菱形ABCD 顶点A 在函数y =(x >0)的图象上,函数y =(k >3,x >0)的图象关于直线AC 对称,且经过点B 、D 两点,若AB =2,∠BAD =30°,则k = .4.(2019甘肃省)如图,每一图中有若干个大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,如果第n 幅图中有2019个菱形,则n = .5.(2019甘肃省)如图,在Rt △ABC 中,∠C =90°,AC =BC =2,点D 是AB 的中点,以A 、B 为圆心,AD 、BD 长为半径画弧,分别交AC 、BC 于点E 、F ,则图中阴影部分的面积为 .6.(2019甘肃省武威市)把半径为1的圆分割成四段相等的弧,再将这四段弧依次相连拼成如图所示的恒星图形,那么这个恒星图形的面积等于 .7.(2019广东省)如题16-1图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题16-2图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(题16-1图)拼出来的图形的总长度是_____________________(结果用含a 、b 代数式表示).8.(2019广东省广州市)如图,正方形ABCD 的边长为a ,点E 在边AB 上运动(不与点A ,B 重合),∠DAM =45°,点F 在射线AM 上,且AF =BE ,CF 与AD 相交于点G ,连接EC ,EF ,EG ,则下列结论:①∠ECF =45°;②△AEG 的周长为(1+)a ;③BE 2+DG 2=EG 2;④△EAF 的面积的最大值a 2. 其中正确的结论是 .(填写所有正确结论的序号)9.(2019广东省深圳市)如图,在Rt△ABC 中,∠ABC=90°,C (0,-3),CD=3AD,点A 在xk y 上,且y 轴平分脚ACB ,求k= 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019--2020中考数学专题《选择、填空》压轴题1【专题一、动点问题】【例题1】.如图,C 为⊙O 直径AB 上一动点,过点C 的直线交⊙O 于D 、E 两点,且∠ACD=45°,DF ⊥AB 于点F ,EG ⊥AB 于点G ,当点C 在AB 上运动时,设AF=x ,DE=y ,下列中图象中,能表示y 与x 的函数关系式的图象大致是()【例题2】.在ABC △中,12cm 6cm AB AC BC D ,,为BC 的中点,动点P 从B 点出发,以每秒1cm 的速度沿B AC 的方向运动.设运动时间为t ,那么当t秒时,过D 、P 两点的直线将ABC △的周长分成两个部分,使其中一部分是另一部分的2倍.【例题3】.如图,正方形ABCD 的边长为2,将长为2的线段QR 的两端放在正方形的相邻的两边上同时滑动.如果Q 点从A 点出发,沿图中所示方向按A →B →C →D →A滑动到A 止,同时点R 从B 点出发,沿图中所示方向按B →C →D →A →B滑动到B 止,在这个过程中,线段QR 的中点M 所经过的路线围成的图形的面积为:()A .2B .4πC .πD .π1【例题4】.如图,在梯形ABCD 中,90614AD BC ABC AD AB BC ∥,°,,,点M是线段BC 上一定点,且MC =8.动点P 从C 点出发沿CDA B 的路线运动,运动到点B 停止.在点P 的运动过程中,使PMC △为等腰三角形的点P 有个【例题5】.如图在边长为2的正方形ABCD 中,E ,F ,O 分别是AB ,CD ,AD 的中点,以O 为圆心,以OE 为半径画弧EF ,P 是弧EF 上的一个动点,连结OP ,并延长OP 交线段BC 于点K ,过点P 作⊙O 的切线,分别交射线AB 于点M ,交直线BC 于点G 。
若3BMBG ,则BK ﹦.【专题二、面积与长度问题】【例题6】.已知, A 、B 、C 、D 、E 是反比例函数16y x(x>0)图象上五个整数点(横、纵坐标均为整数),分别以这些点向横轴或纵轴作垂线段,由垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图所示的五个橄榄形(阴影部分),则这五个橄榄形的面积总和是(用含π的代数式表示)【例题7】.如图,把一个棱长为3的正方体的每个面等分成9个小正方形,然后沿每个面正中心的一个正方形向里挖空(相当于挖去了7个小正方体),所得到的几何体的表面积是()A .78B .72C .54D .48(第3题)(第4题)(第5题)(第6题)(第7题)【例题8】.如图,Rt ABC △中,90ACB ,30CAB ,2BC ,O H ,分别为边AB AC ,的中点,将ABC △绕点B 顺时针旋转120到11A BC △的位置,则整个旋转过程中线段OH 所扫过部分的面积(即阴影部分面积)为:()A .77π338B .47π338C .πD .4π33【例题9】.在Rt △ABC 内有边长分别为,,a b c 的三个正方形,则,,a b c 满足关系式.【例题10】.一张等腰三角形纸片,底边长l5cm ,底边上的高长22.5cm .现沿底边依次从下往上裁剪宽度均为3cm 的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是()A .第4张B .第5张C.第6张D .第7张【例题11】.如图,直径分别为CD 、CE 的两个半圆相切于点C ,大半圆M 的弦AB 与小半圆N 相切于点F ,且AB ∥CD ,AB=4,设弧CD 、弧CE 的长分别为x 、y ,线段ED 的长为z ,则z (x+y )=.【专题三、多结论问题】【例题12】.如图,在Rt △ABC 中,ABAC ,D 、E 是斜边BC 上两点,且∠DAE =45°,将△ADC 绕点A 顺时针旋转90后,得到△AFB ,连接EF ,下列结论:①△AED ≌△AEF ;②△ABE ∽△ACD ;③BE DC DE ;④222BE DCDE 。
其中一定正确的是()A .②④B .①③C .②③D .①④【例题13】.如图,在正方形纸片ABCD 中,对角线AC 、BD 交于点O ,折叠正方形纸片ABCD ,使AD 落在BD上,点A 恰好与BD 上的点F 重合,展开后折痕DE 分别交AB 、AC 于点E 、G ,连接GF.下列结论①∠ADG=22.5°;②tan ∠AED=2;③OGDAGDSS ;④四边形AEFG 是菱形;⑤BE=2OG 。
.其中正确的结论有:A.①④⑤B.①②④C.③④⑤D.②③④( )【例题14】.在矩形ABCD 中,1AB ,3AD ,AF 平分DAB ,过C 点作BD CE 于E ,延长AF 、EC交于点H ,下列结论中:①FH AF ;②BF BO;③CH CA ;④ED BE 3,其中正确的是() A .②③B .③④C .①②④D .②③④(第8题)(第9题)(第10题)(第11题)(第12题)(第13题)(第14题)O HEFDC AB21012yx13x(第15题)(第18题)【专题四、函数问题】【例题15】.小明从图所示的二次函数2y axbx c 的图象中,观察得出了下面五条信息:①0c ;②0abc ;③0a b c;④230a b ;⑤40c b ,你认为其中正确信息的个数有()A .2个B .3个C .4个D .5个【例题16】. 若|42||||2||2|M a b c a b c a b a b ,且二次函数2y ax bxc 的图象如图所示,则有:A .M>0 B. M<0C. M=0D.M 的符号不能确定()【例题17】.如果一条直线l 经过不同的三点A(a ,b),B(b ,a),C(a-b ,b-a),那么直线l 必定会经过()A .第二、四象限B.第一、二、三象限C.第一、三象限D.第二、三、四象限【专题五、反比例K 值问题】【例题18】.如图,已知矩形OABC 的面积为3100,它的对角线OB 与双曲线xky 相交于点D ,且OB ∶OD =5∶3,则k =_____.【例题19】.如图,已知点A 、B 在双曲线xk y(x >0)上,AC ⊥x 轴于点C ,BD ⊥y 轴于点D ,AC 与BD 交于点P ,P 是AC 的中点,若△ABP 的面积为3,则k =.【专题六、规律问题】【例题29】.将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图1.在图2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图1所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是()A .6B .5C .3D .2yxOAB PCD (第16题)(第19题)A'NM BCADE O ABCDA 1B 1C 1A 2C 2B 2 xy【例题21】.在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1 交x 轴于点A 2,作正方形A 2B 2C 2C 1…按这样的规律进行下去,第2010个正方形的面积为()A .2009235B .2010495C .2008495D .4018235【专题七、折叠问题】【例题22】.如图正方形纸片ABCD 的边长为1,M 、N 分别是AD 、BC 边上的点,将纸片的一角沿过点B 的直线折叠,使A 落在MN 上,落点记为A ′,折痕交AD 于点E ,若M 、N 分别是AD 、BC 边的中点,则A ′N=;若M 、N 分别是AD 、BC 边的上距DC 最近的n 等分点(2n ,且n 为整数),则A ′N=(用含有n 的式子表示)【例题23】.小明尝试着将矩形纸片ABCD (如图①,AD >CD )沿过A 点的直线折叠,使得B 点落在AD 边上的点F 处,折痕为AE (如图②);再沿过D 点的直线折叠,使得C 点落在DA 边上的点N 处,E 点落在AE 边上的点M处,折痕为DG (如图③).如果第二次折叠后,M 点正好在∠NDG 的平分线上,那么矩形ABCD 长与宽的比值为.【例题24】.矩形纸片ABCD 中,AB =4,AC =3,将纸片折叠,使点B 落在边CD 上的B ’处,折痕为AE .在折痕AE 上存在一点P 到边CD 的距离与到点B 的距离相等,则此相等距离为________.ABCDABCDEF①②ABCDEGMN ③(第21题)(第22题)(第24题)2019--2020中考数学专题《圆的相关》压轴题2【例题1】如图,在Rt△ABC中,∠ACB=90°,AC=4cm,BC=3cm,⊙O为△ABC的内切圆.(1)求⊙O的半径;(2)点P从点B沿边BA向点A以1cm/s的速度匀速运动,以P为圆心,PB长为半径作圆,设点P运动的时间为t s,若⊙P与⊙O相切,求t的值.【例题2】阅读材料:已知,如图(1),在面积为S的△ABC中,BC=a,AC=b,AB=c,内切圆O的半径为r.连接OA、OB、OC,△ABC被划分为三个小三角形.∵S=S△OBC+S△OAC+S△OAB=BC?r+AC?r+AB?r=(a+b+c)r.∴r=.(1)类比推理:若面积为S的四边形ABCD存在内切圆(与各边都相切的圆),如图(2),各边长分别为AB=a,BC=b,CD=c,AD=d,求四边形的内切圆半径r;(2)理解应用:如图(3),在等腰梯形ABCD中,AB∥DC,AB=21,CD=11,AD=13,⊙O1与⊙O2分别为△ABD与△BCD的内切圆,设它们的半径分别为r1和r2,求的值.【例题3】已知在平面直角坐标系xOy中,O是坐标原点,以P(1,1)为圆心的⊙P与x轴,y轴分别相切于点M和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点PE⊥PF交y轴于点E,设点F运动的时间是t秒(t>0)(1)若点E在y轴的负半轴上(如图所示),求证:PE=PF;(2)在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b;(3)作点F关于点M的对称点F′,经过M、E和F′三点的抛物线的对称轴交x轴于点Q,连接QE.在点F运动过程中,是否存在某一时刻,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似?若存在,请直接写出t的值;若不存在,请说明理由.【例题4】如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A出发,沿射线AD移动,以CE为直径作圆O,点F为圆O与射线BD的公共点,连接EF、CF,过点E作EG⊥EF,EG与圆O相交于点G,连接CG.(1)试说明四边形EFCG是矩形;(2)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,①矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由;②求点G移动路线的长.【例题5】如图,在△ABC中,∠B=45°,∠ACB=60°,AB32,点D为BA延长线上的一点,且∠D=∠ACB,⊙O为△ABC的外接圆.(1)求BC的长;(2)求⊙O的半径.【例题6】为了考察冰川融化的状况,一支科考队在某冰川上设一定一个以大本营O 为圆心,半径为4km 圆形考察区域,线段P 1、P 2是冰川的部分边界线(不考虑其它边界),当冰川融化时,边界线沿着与其垂直的方向朝考察区域平行移动.若经过n 年,冰川的边界线P 1P 2移动的距离为s(km),并且s 与n (n 为正整数)的关系是2575092032nns .以O 为原点,建立如图所示的平面直角坐标系,其中P 1、P 2的坐标分别是(-4,9)、(-13,-3).(1)求线段P 1P 2所在的直线对应的函数关系式;(2)求冰川的边界线移动到考察区域所需要的最短时间.【例题7】如图,平面直角坐标系xOy 中,一次函数y=﹣x+b (b 为常数,b >0)的图象与x 轴、y 轴分别相交于点A 、B ,半径为4的⊙O 与x 轴正半轴相交于点C ,与y 轴相交于点D 、E ,点D 在点E 上方.yx(第25题图)已融 化 区域P 2P 1O(1)若直线AB与有两个交点F、G.①求∠CFE的度数;②用含b的代数式表示FG2,并直接写出b的取值范围;(2)设b≥5,在线段AB上是否存在点P,使∠CPE=45°?若存在,请求出P点坐标;若不存在,请说明理由.。