大学物理第四版(马文蔚)量子物理习题
哈工大大学物理课件(马文蔚教材)-第19章-1量子物理

量子物理的前沿研究与未来发展
目前,量子物理领域的研究重点 包括量子纠缠、量子相干性、量
子计算复杂度等。
未来,随着实验技术的不断进步 和理论研究的深入,量子物理有 望在多个领域取得突破性进展。
例如,利用量子力学原理开发新 型传感器、探测器、加速器等设 备,以及探索宇宙中的量子现象
量子物理
目录
• 量子物理概述 • 光的量子性 • 量子力学的诞生 • 原子结构与量子力学 • 量子力学的数学基础 • 量子力学的应用与展望
01 量子物理概述
量子物理的发展历程
1900年
普朗克提出能量子假说,认为 能量是离散的,而不是连续的。
1925年
海森堡和薛定谔分别提出量子 力学的矩阵力学和波动力学两 种数学描述方式。
测量误差
由于不确定性原理的存在,我们无法同时精确测 量一个量子粒子பைடு நூலகம்位置和动量,测量结果会存在 误差。
互补性
互补性是量子力学中的另一个重要概念,它表明 某些物理量在测量时具有相互排斥的特性,无法 同时精确测量。
06 量子力学的应用与展望
量子计算与量子计算机
量子计算机利用量子比特(qubit)作为信息的 基本单位,相比传统计算机的经典比特(bit), 量子比特具有叠加和纠缠的特性,能够在理论 上大幅度提升计算速度。
薛定谔方程是描述量子粒子运动的偏微分方程, 它决定了波函数的演化。
时间演化
薛定谔方程描述了量子态随时间演化的过程,时 间演化由系统的哈密顿量决定。
空间演化
薛定谔方程的空间部分描述了波函数在空间中的 传播,与粒子的动量和位置有关。
海森堡不确定性原理
大学物理第四版(马文蔚)量子物理习题

可见光 n 3 n 2
6.58 107 m
E3 E1 1.51 (13.6) 12.09eV
14.一些氢原子被一束单色光从基态激发到 n=4 的状态,
问: (1)该单色光的频率等于多少? (2)当氢原子又
单值、有限、连续
微观粒子的运动状态可以用波函数完全描述。 t 时刻,波函数在空间某点的模的 平方与该时刻在该点附近找到粒子的概率密度成正比。
八
薛i定 谔方(r程,t)
t
[
2 2m
2
EP
(r, t )]
(r, t )
定态薛定谔方程
2 2m
2
(r)
EP
(r)
(r)
E
(r)
n
(r,
t
)
n
(r)
e
i
En
(2)反冲电子的动能。 (3)反冲电子的速度。
P
P
me q
解:(1)
h (1 cosq )
mec
1.211012 m 0.0121 Å
1.012 Å
m
(2)
Ek
hν0
hν
hc
hc
hc
2.36 1017J
(3) E0 mec2 8.021014J 相对论效应可以忽略
t
一维无限深方势阱
0 0xa EP(x) x 0, x a
线性谐振子 En (n
EP (x)
1 2
)
1 m 2
2
n (x)
x2
En
n2π 22 2ma2
n (x)
2 sin a
N
ne
1 2
2
x
2
马文蔚《物理学》(下)配套题库-名校考研真题(量子物理)【圣才出品】

第15章量子物理一、选择题1.光电效应的红限取决于().[暨南大学2010研]A.金属的逸出功B.入射光的强度C.入射光的颜色D.入射光的频率【答案】A【解析】光电效应的红限是金属的固有属性,表示能够激发光电子的入射光的最低能量,也是金属的逸出功.2.一电子被限定在原子直径范围内运动(原子直径约为d=10-8m,电子的质量为306.6310=⨯J·S),则电子的速度不确定量约为().[暨南h-⨯kg, 普朗克常数340.9110-大学2010研]A.210m/sB.410m/sC.810m/sD.1110m/s【答案】B【解析】根据测不准原理,电子的动量和位置的不确定性满足:p r∆⋅∆2电子的位置不确定度大致为原子直径的大小,可得410/∆≈v m s3.对于激光器中两平面镜构成的谐振腔所起的作用,不正确的是().[暨南大学2010研]A.产生和维持光振荡B.使粒子数反转分布C.具有限制光束的作用,使激光束的方向性好D.具有选频作用,使激光的单色性好【答案】C【解析】激光器中的激活介质通过自发辐射产生光振荡,再通过受激辐射维持这种振荡并使粒子数反转,另外激活介质的能级结构选择某能量的光进行放大,具有选频作用.谐振腔的两个平面镜所起的作用是改变激光的方向,使进一步放大,同时限制光的方向,使得出射光束方向性更好.4.关于黑体辐射,以下错误的说法是().[暨南大学2010研]A.能吸收一切外来的电磁辐射的物体称之为黑体B.当黑体的温度越高时,其单色辐出度的峰值波长也越短C.黑体吸收电磁辐射的能力最强,发射电磁辐射的能力也最强D.只有黑体辐射的辐射能是量子化的,其他物体的辐射能不是量子化的【答案】D【解析】理想的黑体能够吸收一切电磁波,根据维恩位移定律,热辐射的峰值波长育温度成反比,另外根据基尔霍夫的理论,在同一温度下,各种不同物体对于相同波长的单色辐出度与吸收比的比值相等,所以吸收能力强的黑体,其发射电磁波的能力也强.黑体是一个理想模型,因其简单性而易于进行实验和理论分析,得出光量子化的结论.但一切物体的辐射能都是量子化的,但因干扰因素的复杂而不易于研究而已.5.证实德布罗意物质波存在的实验是().[暨南大学2010研]A.光电效应实验B.电子衍射实验C .弗兰克–赫兹实验D .康普顿效应实验 【答案】B【解析】光电效应和康普顿实验都是针对于光的量子性的,弗兰克-赫兹实验证明了原子能量的量子化,而电子衍射实验验证了电子的波的特性,证实了德布罗意波的存在.6.已知氢原子基态能量为-13.6eV ,根据玻尔理论,要把氢原子从基态激发到第一激发态所需能量为( ).[暨南大学2010研]A .eV 6.13B .eV 2.10C .eV 8.6D .eV 4.3 【答案】B【解析】根据原子能级结构,121n E E n =,所以把氢原子从基态激发到第一激发态所需的能量为2111(1)10.2eV 4E E E E =-=-=7.根据光的波粒二象性,以下正确的是( ).[暨南大学2010研] A .光子能量和光的波长成正比 B .光子能量和光的频率成反比 C .光子的动量和光的频率成反比 D .光子的动量和光的波长成反比 【答案】D【解析】根据波粒二象性,光子的能量为hc E h νλ==光子的动量为2h p k cπνλ===8.产生康普顿效应的原因是( ).[暨南大学2010研] A .光子和原子中束缚较强的内层电子碰撞的结果 B .光子和原子中束缚较弱的外层电子碰撞的结果 C .光子和原子核碰撞的结果D .光子和原子中辐射出的光子碰撞的结果 【答案】B【解析】康普顿效应是指光子与一个近似自由的电子的作用,在实验中是指原子外层束缚较弱的电子.9.光电效应的截止频率取决于( ).[暨南大学2011研] A .两电极所加电压 B .入射光的强度 C .金属阴极的材料 D .入射光的波长 【答案】C【解析】光电效应的截止频率,与逸出功直接相关,是金属材料的固有性质,表征表面电子束缚能的大小,与外界条件以及入射光无关.10.一个光子和一个电子具有相同的波长,则( ).[暨南大学2011研] A .光子具有较大的动量 B .电子具有较大的动量 C .光子和电子具有相同的动量D.光子和电子的动量不确定【答案】C,不论何种粒子,只要波长相同,则动量一定相同.【解析】根据德布罗意关系=h/p11.关于黑体辐射,以下错误的说法是().[暨南大学2011研]A.能吸收一切外来的电磁辐射而不能向外辐射电磁波的物体称之为黑体B.其单色辐出度的峰值波长越短,说明黑体的温度越高C.黑体吸收电磁辐射的能力最强,发射电磁辐射的能力也最强D.黑体辐射的辐射能是量子化的【答案】C【解析】黑体既吸收外来辐射,也向外辐射.12.证实光的粒子性的实验是().[暨南大学2011研]A.光干涉实验B.光衍射实验C.弗兰克–赫兹实验D.康普顿效应实验【答案】D【解析】光的干涉和衍射实验都是证实光的波动性的实验,弗兰克-赫兹实验则是证明了原子能级模型.康普顿效应通过光和电子的散射,证实了光的粒子性.13.关于氢原子中的电子,以下错误的是().[暨南大学2011研]A.电子在一些特定圆轨道上运动而不辐射电磁波B.电子在一些特定圆轨道上运动的同时不断辐射电磁波C.电子在稳定的特定圆轨道上运动的角动量是量子化的D.电子在圆轨道上运动的能量是量子化的【答案】B【解析】根据玻尔的定态假设,氢原子中的电子处于一些分立的能级上,处于稳定状态,不会辐射电磁波.14.根据德布罗意物质波,以下正确的是().[暨南大学2011研]A.物质波的波长与物体的质量成正比B.物质波的波长与物体的动量成正比C.物质波的波长与物体的速度成正比D.光子的动量和光的波长成反比【答案】D【解析】根据德布罗意关系,物质波(包括光波)波长与粒子的动量成反比.15.康普顿效应中的波长变化量().[暨南大学2011研]A.和散射源有关B.和X射线的波长有关C.散射角越大,波长变化量越小D.和散射角有关【答案】D。
物理学 第四版 马文蔚 习题课ppt

(a)(b)两图中的细棒和小球均相同,系统可绕o 轴在竖直面内自由转动系统从水平位置静止释放,转动 到竖直位置所需时间分别为ta和tb,则:
( A) ta tb , ( B) ta tb , ( C) ta tb , (D) 无法判定
判断两种情况下小球绕轴转动的角加速度
P
一子弹水平地射穿两个前后并排放在光滑水平桌面上的 木块。木块质量分别为m1和m2,测得子弹穿过两木块 的时间分别为Δt1和Δt2,已知子弹在木块中受的阻力为 恒力F。求子弹穿过后两木块各以多大的速度运动。 两个木块受到子弹给它们的力均为F
木块1 木块2
还是角动量守恒
2.质量为m,半径为R的均匀圆盘,可在 水平桌面上绕中心轴转动,若盘与桌面 间的摩擦系数为μ,则盘转动时所受摩擦 力矩Mf = 。
μ
μ
μ
μ
补充专题:刚体平衡问题
μ
补充专题:刚体平衡问题
平衡要求: 合力为零 ∑F=0 μ 对任意点,合力矩为零 ∑M=0
补充专题:刚体平衡问题
∑M
μ
若对刚体某轴的合外力矩为零 则对其他轴的合外力矩也为零 学会聪明地选轴
补充专题:刚体平衡问题
μ
题:刚体平衡问题
角动量守恒
(B)
两个匀质圆盘A和B的密度分别为rA和rB ,若rA> rB,但两圆盘的质量与厚度相同,如两盘对通过盘心垂 直于盘面轴的转动惯量各为JA和JB,则
(A) JA>JB. (C) JA=JB. (B) JB>JA. (D) JA、JB哪个大,不能确定.
(B)
厚度相同,质量相同,密度大的半径小
μ
补充专题:刚体平衡问题
μ
补充专题:刚体平衡问题
大学物理活页答案(马文蔚 版)高等教育出版社

10.机械波单元练习(一)答案 1. B 2. C 3. B 4. 1.67m 5.0cos[()]x ly A t uωϕ-=-+ 6. 6,307. 解:(1)由波动方程可知振幅0.05m A =,角频率20πω=,/3πu ω=,则波速16.67m s u-=⋅,频率/2π10Hz νω==,波长2π2/3m uλω==。
(2)maxπ 3.14m/s A ω==≈v8. 解:(1)由图可知振幅0.1m A =,波长4m λ=,波速1100m s u -=⋅ 则2π2π/50πuT ωλ===。
又O 点初始时刻位于平衡位置且向y 轴正向运动,则由旋转矢量法可得π/2ϕ=-,因此波动方程为0.1cos[50π(/100)π/2](m)y t x =--(2)P 处质点的振动方程为0.1cos(50π3π/2)(m)y t =-9. 解:由图可知振幅0.1m A =,波长100m λ=,则角频率2π2ππuT ωλ===。
由P 点的运动方向可知波向x 轴负方向传播。
又由图可知原点O 初始时刻位于A /2处,且向y 轴负方向运动,则由旋转矢量法可得0π/3ϕ=。
则波动方程为0.1cos[π(/50)π/3](m)y t x =++10.解:(1)以A 点为坐标原点的波动方程为2310cos[3π(/30)](m) y t x -=⨯-(2)π2π2BA ABABuωϕϕλ=-=-=-则以B 点为坐标原点的波动方程为2310cos[3π(/30)π/2](m)y t x -=⨯--11.机械波单元练习(二)答案1. C 2. B 3. C 4./2λ,π5. 550Hz ,458.3Hz 6. 0.08W/m 2 7. 解:两列波传到1S 2S 连线和延长线上任一点P 的相位差212120102ππ2πr r r r ϕϕϕλλ--∆=--=--1S 左侧各点:2110π2ππ2π6π4r r ϕλ-∆=--=--=-,振动都加强; 2S 右侧各点:2110π2ππ2π4π4r r ϕλ--∆=--=--=,振动都加强;1S 、2S 之间:2111110π2ππ2π6ππ(21)π4r r r r r k ϕλ---∆=--=--=-+=+则距1S 点为:11m,3m,5m,7m,9m r =处各点静止不动。
大学物理下册(马文蔚主编)-第15章例题

h /(mv )
2π r nh /( mv )
2rmv nh
这里m是电子质量,v是电子速度的大小,r mv为动 量矩,以L表示, 则上式为: L nh /(2) 这就是玻尔的动量矩量子化条件.
p
a
0
d
R
第十五章
量子物理
15
物理学
第五版
第十五章补充例题
例.不确定关系式表示在x方向上 (A) 粒子位置不能准确确定. (B) 粒子动量不能准确确定. (C) 粒子位置和动量都不能准确确定. (D) 粒子位置和动量不能同时准确确 定. 答:D
第十五章
量子物理
16
物理学
第五版
第十五章补充例题
例.已知氢光谱的某一线系的极限波长为3647 Å.其中有一谱线波长为6565Å.试由玻尔氢原子 理论,求与该波长相应的始态与终态能级的能量. (R =1.097×107 m-1 ) 2 解.极限波数 1/ R / k 可求出该线系的共同终态. 1 1 1 R( 2 2 ) k R 2 k n
n=1,2,3…
第十五章
量子物理
1
物理学
第五版
第十五章补充例题
每个光子的能量 =h 光是由光子组成 每个光子的动量 p=h / 1 2 光电效应方程: h mVm W 2 实验 e U 1 mV 2 Ua K U0 a m 2 红限 0= U 0 =W = W W=eU0, h=eKT1Leabharlann 答:C
13
量子物理
物理学
第五版
第十五章补充例题
大学物理活页作业答案(全套)马文蔚

1.质点运动学单元练习(一)答案1.B 2.D 3.D 4.B5.3.0m ;5.0m (提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。
)6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。
)7.解:(1))()2(22SI jt i t r -+=)(21m ji r+= )(242m ji r-=)(3212m ji r r r-=-=∆)/(32s m ji t r v -=∆∆=(2))(22SI j t i dtrd v -== )(2SI jdt vd a -==)/(422s m j i v-=)/(222--=s m ja8.解:t A tdt A adt v totoωω-=ωω-==⎰⎰sin cos 2t A tdt A A vdt A x totoω=ωω-=+=⎰⎰cos sin9.解:(1)设太阳光线对地转动的角速度为ωs rad /1027.73600*62/5-⨯=π=ωs m th dt ds v /1094.1cos 32-⨯=ωω==(2)当旗杆与投影等长时,4/π=ωth s t 0.31008.144=⨯=ωπ=10.解: ky yv v t y y v t dv a -====d d d d d d d -k =y v d v / d y⎰⎰+=-=-C v ky v v y ky 222121,d d 已知y =y o ,v =v o 则20202121ky v C --= )(2222y y k v v o o -+=2.质点运动学单元练习(二)答案1.D 2.A 3.B 4.C5.14-⋅==s m t dt ds v ;24-⋅==s m dtdva t ;2228-⋅==s m t Rv a n ;2284-⋅+=s m e t e a nt6.s rad o /0.2=ω;s rad /0.4=α;2/8.0s rad r a t =α=;22/20s m r a n =ω=7.解:(1)由速度和加速度的定义)(22SI ji t dt rd v +==;)(2SI idtvd a ==(2)由切向加速度和法向加速度的定义)(124422SI t t t dt d a t +=+=)(12222SI t a a a t n +=-=(3)())(122/322SI t a v n+==ρ8.解:火箭竖直向上的速度为gt v v o y -︒=45sin 火箭达到最高点时垂直方向速度为零,解得s m gtv o /8345sin =︒=3.牛顿定律单元练习答案1.C 2.C 3.A 4.kg Mg T 5.36721==;2/98.02.0s m MT a == 5.x k v x 22=;x x xv k dtdxk dt dv v 222== 221mk dt dv mf x x == 6.解:(1)ma F F N T =θ-θsin cosmg F F N T =θ+θcos sinθ-θ=θ+θ=sin cos ;cos sin ma mg F ma mg F N T(2)F N =0时;a =g cot θ7.解:mg R m o ≥ωμ2Rg o μ≥ω 8.解:由牛顿运动定律可得dtdv t 1040120=+ 分离变量积分()⎰⎰+=tovdt t dv 4120.6 )/(6462s m t t v ++=()⎰⎰++=t oxdt t tdx 6462.5 )(562223m t t t x +++=9.解:由牛顿运动定律可得dtdv mmg kv =+- 分离变量积分⎰⎰-=+t o vv o dt m k mg kv kdv ot m kmg kv mg o -=⎪⎪⎭⎫ ⎝⎛+ln ⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+-=mg kv k m mg kv mg k m t o o 1ln ln10.解:设f 沿半径指向外为正,则对小珠可列方程 a v m f mg 2cos =-θ,t vm mg d d sin =θ,以及 ta v d d θ=,θd d v a t =,积分并代入初条件得 )cos 1(22θ-=ag v ,)2cos 3(cos 2-=-=θθmg av m mg f .4.动量守恒和能量守恒定律单元练习(一)答案1.A ; 2.A ; 3.B ; 4.C ; 5.相同 6.2111m m t F v +∆=;2212m t F v v ∆+=7.解:(1)t dt dxv x 10==;10==dtdv a x x N ma F 20==;m x x x 4013=-=∆J x F W 800=∆=(2)s N Fdt I ⋅==⎰40318.解:()1'v m m mv +=()221221'2121o kx v m m mv ++= ()''m m k mm vx +=9.解: 物体m 落下h 后的速度为 gh v 2=当绳子完全拉直时,有 ()'2v M m gh m +=gh mM m v 2'+=gh mM mMMv I I T 22'22+===10.解:设船移动距离x ,人、船系统总动量不变为零0=+mv Mu等式乘以d t 后积分,得0=+⎰⎰totomvdt Mudt0)(=-+l x m Mx m mM mlx 47.0=+=5.动量守恒和能量守恒定律单元练习(二)答案1.C 2.D 3.D 4.C 5.18J ;6m/s 6.5/37.解:摩擦力mg f μ=由功能原理 2121210)(kx x x f -=+- 解得 )(22121x x mg kx +=μ.8.解:根据牛顿运动定律 Rv m F mg N 2cos =-θ由能量守恒定律mgh mv =221质点脱离球面时 RhR F N -=θ=cos ;0 解得:3R h =9.解:(1)在碰撞过程中,两球速度相等时两小球间距离最小 v v v )(212211m m m m +=+ ①212211m m v m v m v ++=(2) 两球速度相等时两小球间距离最小,形变最大,最大形变势能等于总动能之差22122221)(212121v v v m m m m E p +-+=② 联立①、②得 )/()(212122121m m m m E p +-=v v10.解:(1)由题给条件m 、M 系统水平方向动量守恒,m 、M 、地系统机械能守恒.0)(=--MV V u m ①mgR MV V u m =+-2221)(21 ② 解得: )(2m M M gRmV +=;MgRm M u )(2+=(2) 当m 到达B 点时,M 以V 运动,且对地加速度为零,可看成惯性系,以M 为参考系 R mu mg N /2=-M mg m M mg R mu mg N /)(2/2++=+= mg MmM M mg m M Mmg N 23)(2+=++=6.刚体转动单元练习(一)答案1.B 2.C 3.C 4.C5.v = 1.23 m/s ;a n = 9.6 m/s 2;α = –0.545 rad/ s 2;N = 9.73转。
哈工大大学物理(马文蔚教材)第19章2量子物理省名师优质课赛课获奖课件市赛课一等奖课件

讨论:
i
t
r
,
t
2 2m
2
E
p
r,
t
r,
t
1 薛定谔方程是量子力学中旳一项基本假设;
2 薛定谔方程旳解满足态叠加原理
若 则
1(r , t
c11(r ,
)t)和 c222((rr,,tt))也是是薛薛定定谔谔方方程程旳旳解解,。
这是因为薛定谔方程是线性偏微分方程。
3 薛定谔方程是有关时间旳一阶偏微分方程;
C C
(r1 (r2
, ,
t t
) )
2 2
(r1 , t ) (r2 , t )
3). 概率波 ------量子力学是一种统计理论与经典决定论不同 (存在长时期旳争沦)
4). 波函数应满足旳原则条件(物理要求)
连续性
有限性 单值性
后来会看到,有些情况下能量量子化 就是源于这些条件旳限制
k
2mE
n0
n
a
E
与本征值 En 相应本征函数
En
2 2n2
2ma 2
n2
h2 8ma 2
nx
Asin( n
a
x)
本征能量 n 1,2,
a
2
3) 用 n x dx 1, 可求A 2 / a (归一化条件)
0
n x
2 sin( n x)
aa
(0 x a)
势阱内
0 xa n x
d 2 dx
xa
d3 dx
xa
k2 A2ek2a B2k2ek2a ik3 A3eik3a (4)
A1 B1 A2 B2 (1) A2ek2a B2ek2a A3eik3a (3)
大学物理 马文蔚版,下册复习题,有答案,有详解

一、简答题1. 怎样判定一个振动是否做简谐振动?写出简谐振动的运动学方程。
2. 从动力学的角度说明什么是简谐振动,并写出其动力学方程。
3.简谐运动的三要素是什么?各由什么因素决定。
二、选择题1.一个质点作简谐运动,振幅为A ,在起始时刻质点的位移为2A,且向x 轴正方向运动,代表此简谐运动的旋转矢量为( )。
2. 如图已知两振动曲线x 1 、x 2 ,他们的初相位之差12ϕϕ-为( )(A )32π (B )32π-(C )π (D )π-3.质点在X 轴上作简谐振动,振幅为A ,0=t 时质点在A 22处,向平衡位置运动,则质点振动的初相位为( )(A)2π; (B)4π;(C)4π-; (D)2π-。
三、填空题1. 振幅为A 的简谐振动在 位置动能最大,在 位置势能最大, ___________________位置势能与动能相等。
2. 两个同方向同频率的简谐振动,其振动表达式分别为: )215cos(41π+=t x (SI) ,)215cos(22π+=t x (SI) )215cos(63π-=t x (SI) 则x 1,x 2的合振动的振辐为 ,初相为 。
则x 1,x 3的合振动的振辐为 ,初相为 。
3.两质点1、2同在X 轴上作简谐振动振幅A 相周期均为T = 12s ;0=t 时刻,质点1在A 22处,并向平衡位置运动,质点2在A -处,也向平衡位置运动。
则两质点振动的相位差为 ;两质点第一次通过平衡位置的时间分别为 和 。
四、计算题1.如图9-1,质量为1m 的物体与劲度系数为k 的轻质弹簧相连,置于光滑平面上静止,现有质量为2m 的小球以水平速度v 和1m发生完全非弹性碰撞,试分析碰撞后系统的运动规律,并写出相应的运动方程。
图9-12.某质点作简谐振动,振动曲线如图所示,已知质点在s 1t =时位于a 点,A 22x =。
(1)在图中标出质点在a 、b 、c 、d 处的振动方向;(2)求该质点的振动方程。
大学物理习题集马文蔚,第四版,上册

第二十单元 热力学第二定律[课本内容] 马文蔚,第四版,上册 [6]-[40]练习二十一、选择题:20-1.关于可逆过程和不可逆过程有以下几种说法: (1) 可逆过程一定是平衡过程. (2) 平衡过程一定是可逆过程.(3) 不可逆过程发生后一定找不到另一过程使系统和外界同时复原. (4) 非平衡过程一定是不可逆过程.以上说法,正确的是: [ ] (A) (1)、(2)、(3). (B) (2)、(3)、(4).(C) (1)、(3)、(4). (D) (1)、(2)、(3) 、(4). 提示:无摩擦的平衡过程是可逆的, 选C20-2.根据热力学第二定律可知: (A) 功可以全部转换为热,但热不能全部转换为功.(B) 热可以从高温物体传到低温物体,但不能从低温物体传到高温物体 (C) 不可逆过程就是不能向相反方向进行的过程.(D) 一切自发过程都是不可逆的. [ ] 提示:(A )应为:但热在不引起其它变化的条件下,不能全部转换为功 (B )应为:但在不引起其它变化是不能从低温物体传到高温物体 (C )应为:在不引起其它变化的条件下不可能向反方向进行的过程 选D20-3.一绝热容器被隔板分成两半,一半是真空,另一半是理想气体.若把隔板抽出,气体将进行自由膨胀,达到平衡后 (A) 温度不变,熵增加. (B) 温度升高,熵增加.(C) 温度降低,熵增加. (D) 温度不变,熵不变. [ ] 提示:0,0Q A ==0,E ∴∆=温度不变 又这是一个不可逆的绝热过程 ∴ 熵增加。
选A20-4.关于热功转换和热量传递过程,有下面一些叙述: (1) 功可以完全变为热量,而热量不能完全变为功; (2) 一切热机的效率都只能够小于1; (3) 热量不能从低温物体向高温物体传递; (4) 热量从高温物体向低温物体传递是不可逆的.以上这些叙述 [ ] (A) 只有(2)、(4)正确. (B) 只有(2)、(3) 、(4)正确. (C) 只有(1)、(3) 、(4)正确. (D) 全部正确.提示:(1)功可以完全变为热量而热量在不引起其它变化时不能完全变为功 (3)在不引起其它变化时,热量不能从低温物体向高温物体传递 ∴选 A20-5.热力学第二定律表明: (A) 不可能从单一热源吸收热量使之全部变为有用的功. (B) 在一个可逆过程中,工作物质净吸热等于对外作的功.(C) 摩擦生热的过程是不可逆的.(D) 热量不可能从温度低的物体传到温度高的物体. [ ] 提示:(A )应为:不可能从单一热源吸收热量使之全部变为有用的功而不引起其它变化 (B )应为:在一个可逆过程中,工作物质净吸热等于对外作的功和不对外放出热量(D )应为:热量不可能从温度低的物体传到温度高的物体而不引起其它变化 所以选C二、选择题20-6.一个作可逆卡诺循环的热机,其效率为η,它逆向运转时便成为一台致冷机.该致冷机的致冷系数212T T T w -=,则 η与w 的关系为__________. 提示:221111T T T T ηη=-⇒=-1W ηη-∴=20-7.可逆卡诺热机可以逆向运转.逆向循环时, 从低温热源吸热,向高温热源放热,而且吸的热量和放出的热量等于它正循环时向低温热源放出的热量和从高温热源吸的热量.设高温热源的温度为T 1 =450 K , 低温热源的温度为T 2 =300 K, 卡诺热机逆向循环时从低温热源吸热 Q 2 =400 J ,则该卡诺热机逆向循环一次外界必须作功W =_________.提示:212112003200T W W W T W Q W η=-=⇒=⇒=++20-8.热力学第二定律的开尔文表述和克劳修斯表述是等价的,表明在自然界中与热现象有关的实际宏观过程都是不可逆的,开尔文表述指出了_______________________________的过程是不可逆的,而克劳修斯表述指出了________________的过程是不可逆的. 提示:热功转换 ,热传导20-9.从统计的意义来解释, 不可逆过程实质上是一个____ _____________________ ____________________的转变过程, 一切实际过程都向着____________的方向进行.提示:从几率小的宏观状态到几率大的宏观态;几率增大20-10.在一个孤立系统内,一切实际过程都向着______________的方向进行.这就是热力学第二定律的统计意义.从宏观上说,一切与热现象有关的实际的过程都是____________.提示:熵增加 ;不可逆的20-11.熵是______________________________________的定量量度.若一定量的理想气体经历一个等温膨胀过程,它的熵将________________________.(填入:增加,减少,不变.)提示:分子热运动的无序性或混乱性 ;增加第十九单元 绝热过程 循环过程[课本内容] 马文蔚,第四版,上册 [6]-[40] [典型例题]例19-1.一定量的理想气体,分别经历如图(a )所示的abc 过程,(图中虚线ac 为等温线),和图(b )所示的def 过程(图中虚线df 为绝热线),这两种过程是吸热还是放热。
哈工大大学物理课件马文蔚教材第19章1量子物理.ppt

2)维恩位移定律
m
黑体辐射出的光谱中辐射最强的波长 m 与黑体温度
T 之间满足关系
mT b
维恩常数 b 2.897756103 m K
四. 经典物理学所遇到的困难——解释实验曲线
M0
1)维恩的半经验公式:
M 0 3e /T
公式适合于短波波段, 长波波段与实验偏离。
2)瑞利----金斯公式
或
2
2 h M0 (T )
c
M0 (T )
3
hc
e 1 kT
或 M 0 (T )
c2
h
e kT 1
假说:
对于一定频率 的电磁辐射, 物体只能以
h为单位发射或吸收它 --- h 是一个普适常数
物体 发射或吸收电磁辐射只能以“量子”
的形式进行, 每个能量子能量为: E nhv
能量子的最小能量 h
测量系统
加热器 Mr00 (,T )(1014W / m3 )
1.0
可 6000K
见
光
0.5
区
5000K
黑体辐射的 实验曲线
4000K
3000K
(m)
0
0.4 0.8
1.2
1.6
2.0
三. 黑体辐射的基本规律
1)斯特藩——玻耳兹曼定律
M0(T )
0
M0
(T
)d
T
4
斯特藩常数
5.67051108W / m2K 4
3)单色吸收比(光谱吸收比)λ 和单色反射比(光谱反射比)
λ
物体在温度T,吸收和反射频率λλdλ范围内电磁 波能量与相应波长入射电磁波能量之比
对于不透明物体: λ + λ =1
物理学教程马文蔚习题答案

物理学教程马文蔚习题答案物理学教程马文蔚习题答案在学习物理学的过程中,我们常常会遇到一些难题,需要寻找答案来解决疑惑。
而马文蔚的物理学教程就是一本非常优秀的教材,它不仅提供了丰富的知识点,还包含了大量的习题。
在这篇文章中,我将为大家提供一些马文蔚物理学教程中的习题答案,希望能够对大家的学习有所帮助。
1. 习题一:一个质量为2kg的物体以10m/s的速度向东运动,受到一个向西的5N的力,求物体在2s后的速度。
解答:根据牛顿第二定律F=ma,可以求得物体的加速度a=F/m=5N/2kg=2.5m/s^2。
根据物体的匀加速运动公式v=v0+at,可以求得物体在2s后的速度v=10m/s+2.5m/s^2*2s=15m/s。
2. 习题二:一个弹簧的劲度系数为100N/m,如果将它拉伸1cm,求所需的力。
解答:根据胡克定律F=kx,可以求得所需的力F=100N/m*0.01m=1N。
3. 习题三:一个质量为0.1kg的物体从高度为10m的位置自由落下,求物体落地时的速度。
解答:根据重力势能和动能的转化关系mgh=1/2mv^2,可以求得物体落地时的速度v=sqrt(2gh)=sqrt(2*10m/s^2*10m)=sqrt(200)m/s=14.14m/s。
4. 习题四:一个质量为2kg的物体以10m/s的速度水平投掷,求物体在0.5s后的位置。
解答:根据物体的匀速直线运动公式x=x0+vt,可以求得物体在0.5s后的位置x=10m/s*0.5s=5m。
以上是我为大家提供的一些马文蔚物理学教程中的习题答案。
希望通过这些答案的解析,能够帮助大家更好地理解物理学的知识点,提高解题能力。
当然,这只是一部分习题的答案,马文蔚的物理学教程中还有更多的习题等待大家去探索和解答。
希望大家在学习物理学的过程中能够勤于思考,不断探索,提高自己的物理素养。
大学物理马文蔚(第五版)

练习八(热)解答12-7、(本题10分) 4151解:(1)ca 是等温过程,K600==c a T T ;ab 过程是等压过程,因此bb a a T V T V =,K300)(==a a b bT V V T 2分ab 过程吸收的热量为)(a b P molab T T C MM Q -=J1023.6)600300(253⨯-=-=Rbc 是等容过程,其吸收的热量为31074.3)300600(23)(⨯=-=-=R T T C Q b c V bc Jca 是等温过程,其吸收的热量为31046.32ln 600ln⨯=⋅==R V V RT Q ca c ca J(2) 经一循环,系统内能增量为零,所以系统所作的净功等于净热,即ca bc ab Q Q Q Q W ++==31097.0⨯=J(3) 循环过程系统从外界吸收的热量31102.7⨯=+=ca bc Q Q Q J故循环效率为3315.13102.71097.0=⨯⨯==Q W η练习五(电)解答26-5、静电场中有一质子(带电量C106.119-⨯=e)沿图示路径从a 点经c 点移动到b 处时,电场力做功8×10-15J ,则当质子从b 点沿另一路径回到a 点过程中,电场力做功A = ,若设a 点电势为零,则b 点电势U = 。
解:(1) 静电力是保守力,所以在静电场中沿任一闭合路径移动电荷电场力所作的功等于零,因此0=+ba acb A A即15108-⨯-=-=acb ba A A (J)(2) 把质子从a 点经c 移动到b 点电场力所作的功为()()bbbaacb eUUe UUe A -=-=-=0所以41915105106.1108⨯-=⨯⨯-=-=--eA U acb b(V)练习二(磁)解答39-2、在真空中有两根无限长载流直导线,电流大小为I 1,I 2,方向垂直纸面,如图所示,以I 1为圆-3m 3)心的圆形环路L 包围电流I 1,在环路L 上,B →的大小为变量,B →沿环路L 绕顺时针方向的线积分 ∮L B d l →→⋅=10I μ-。
物理学马文蔚第1至8章课后习题答案详解

1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v ,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v .(1) 根据上述情况,则必有( )(A) |Δr |= Δs = Δr(B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r(C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s(D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s(2) 根据上述情况,则必有( )(A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v(C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).(2) 由于|Δr |≠Δs ,故ts t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故ts t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即 (1)t r d d ; (2)t d d r ; (3)t s d d ; (4)22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x . 下述判断正确的是( )(A) 只有(1)(2)正确 (B) 只有(2)正确(C) 只有(2)(3)正确 (D) 只有(3)(4)正确分析与解 tr d d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;td d r 表示速度矢量;在自然坐标系中速度大小可用公式t s d d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D). 1 -3 质点作曲线运动,r 表示位置矢量, v 表示速度,a 表示加速度,s 表示路程, a t表示切向加速度.对下列表达式,即(1)d v /d t =a ;(2)d r /d t =v ;(3)d s /d t =v ;(4)d v /d t |=a t.下述判断正确的是( )(A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的(C) 只有(2)是对的 (D) 只有(3)是对的 分析与解td d v 表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;tr d d 在极坐标系中表示径向速率v r (如题1 -2 所述);t s d d 在自然坐标系中表示质点的速率v ;而td d v 表示加速度的大小而不是切向加速度a t.因此只有(3) 式表达是正确的.故选(D).1 -4 一个质点在做圆周运动时,则有( )(A) 切向加速度一定改变,法向加速度也改变(B) 切向加速度可能不变,法向加速度一定改变(C) 切向加速度可能不变,法向加速度不变(D) 切向加速度一定改变,法向加速度不变分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).*1 -5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率v 0 收绳,绳不伸长且湖水静止,小船的速率为v ,则小船作( )(A) 匀加速运动,θcos 0v v = (B) 匀减速运动,θcos 0v v =(C) 变加速运动,θcos 0v v = (D) 变减速运动,θcos 0v v =(E) 匀速直线运动,0v v =分析与解 本题关键是先求得小船速度表达式,进而判断运动性质.为此建立如图所示坐标系,设定滑轮距水面高度为h,t 时刻定滑轮距小船的绳长为l ,则小船的运动方程为22h l x -=,其中绳长l 随时间t 而变化.小船速度22d d d d h l t llt x -==v ,式中t l d d 表示绳长l 随时间的变化率,其大小即为v 0,代入整理后为θl h l cos /0220v v v =-=,方向沿x 轴负向.由速度表达式,可判断小船作变加速运动.故选(C).讨论 有人会将绳子速率v 0按x 、y 两个方向分解,则小船速度θcos 0v v =,这样做对吗?1 -6 已知质点沿x 轴作直线运动,其运动方程为32262t t x -+=,式中x 的单位为m,t 的单位为 s .求:(1) 质点在运动开始后 s 内的位移的大小;(2) 质点在该时间内所通过的路程;(3) t =4 s 时质点的速度和加速度.分析 位移和路程是两个完全不同的概念.只有当质点作直线运动且运动方向不改变时,位移的大小才会与路程相等.质点在t 时间内的位移Δx 的大小可直接由运动方程得到:0Δx x x t -=,而在求路程时,就必须注意到质点在运动过程中可能改变运动方向,此时,位移的大小和路程就不同了.为此,需根据0d d =tx 来确定其运动方向改变的时刻t p ,求出0~t p 和t p ~t 内的位移大小Δx 1 、Δx 2 ,则t 时间内的路程21x x s ∆+∆=,如图所示,至于t = s 时质点速度和加速度可用tx d d 和22d d t x 两式计算. 解 (1) 质点在 s 内位移的大小m 32Δ04-=-=x x x(2) 由0d d =tx 得知质点的换向时刻为s 2=p t (t =0不合题意) 则m 0.8Δ021=-=x x x m 40Δ242-=-=x x x所以,质点在 s 时间间隔内的路程为m 48ΔΔ21=+=x x s(3) t = s 时1 -7 一质点沿x 轴方向作直线运动,其速度与时间的关系如图(a)所示.设t =0 时,x =0.试根据已知的v -t 图,画出a -t 图以及x -t 图.分析 根据加速度的定义可知,在直线运动中v -t 曲线的斜率为加速度的大小(图中AB 、CD 段斜率为定值,即匀变速直线运动;而线段BC 的斜率为0,加速度为零,即匀速直线运动).加速度为恒量,在a -t 图上是平行于t 轴的直线,由v -t 图中求出各段的斜率,即可作出a -t 图线.又由速度的定义可知,x -t 曲线的斜率为速度的大小.因此,匀速直线运动所对应的x -t 图应是一直线,而匀变速直线运动所对应的x –t 图为t 的二次曲线.根据各段时间内的运动方程x =x (t ),求出不同时刻t 的位置x ,采用描数据点的方法,可作出x -t 图.解 将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为2s m 20-⋅=--=AB A B AB t t a v v (匀加速直线运动) 0=BC a (匀速直线运动)2s m 10-⋅-=--=CD C D CD t t a v v (匀减速直线运动) 根据上述结果即可作出质点的a -t 图[图(B)].在匀变速直线运动中,有由此,可计算在0~2s和4~6s时间间隔内各时刻的位置分别为用描数据点的作图方法,由表中数据可作0~2s和4~6s时间内的x -t 图.在2~4s时间内, 质点是作1s m 20-⋅=v 的匀速直线运动, 其x -t 图是斜率k =20的一段直线[图(c)].1 -8 已知质点的运动方程为j i r )2(22t t -+=,式中r 的单位为m,t 的单位为s.求:(1) 质点的运动轨迹;(2) t =0 及t =2s时,质点的位矢;(3) 由t =0 到t =2s内质点的位移Δr 和径向增量Δr ;*(4) 2 s 内质点所走过的路程s .分析 质点的轨迹方程为y =f (x ),可由运动方程的两个分量式x (t )和y (t )中消去t 即可得到.对于r 、Δr 、Δr 、Δs 来说,物理含义不同,可根据其定义计算.其中对s 的求解用到积分方法,先在轨迹上任取一段微元d s ,则22)d ()d (d y x s +=,最后用⎰=s s d 积分求s.解 (1) 由x (t )和y (t )中消去t 后得质点轨迹方程为这是一个抛物线方程,轨迹如图(a)所示.(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为j r 20= , j i r 242-=图(a)中的P 、Q 两点,即为t =0s和t =2s时质点所在位置.(3) 由位移表达式,得 其中位移大小m 66.5)(Δ)(ΔΔ22=+=y x r 而径向增量m 47.2ΔΔ2020222202=+-+=-==y x y x r r r r *(4) 如图(B)所示,所求Δs 即为图中PQ 段长度,先在其间任意处取AB 微元d s ,则22)d ()d (d y x s +=,由轨道方程可得x x y d 21d -=,代入d s ,则2s内路程为1 -9 质点的运动方程为式中x ,y 的单位为m,t 的单位为s.试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向.分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为当t =0 时, v o x =-10 m·s-1 , v o y =15 m·s-1 ,则初速度大小为设v o 与x 轴的夹角为α,则α=123°41′(2) 加速度的分量式为2s m 60d d -⋅==ta x x v , 2s m 40d d -⋅-==t a y y v 则加速度的大小为设a 与x 轴的夹角为β,则β=-33°41′(或326°19′)1 -10 一升降机以加速度 m·s-2上升,当上升速度为 m·s-1时,有一螺丝自升降机的天花板上松脱,天花板与升降机的底面相距 m .计算:(1)螺丝从天花板落到底面所需要的时间;(2)螺丝相对升降机外固定柱子的下降距离.分析 在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y 1 =y 1(t )和y 2 =y 2(t ),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为当螺丝落至底面时,有y 1 =y 2 ,即(2) 螺丝相对升降机外固定柱子下降的距离为解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a ′=g +a ,螺丝落至底面时,有(2) 由于升降机在t 时间内上升的高度为则 m 716.0='-=h h d1 -11 一质点P 沿半径R = m 的圆周作匀速率运动,运动一周所需时间为s,设t =0 时,质点位于O 点.按(a )图中所示Oxy 坐标系,求(1) 质点P 在任意时刻的位矢;(2)5s时的速度和加速度.分析 该题属于运动学的第一类问题,即已知运动方程r =r (t )求质点运动的一切信息(如位置矢量、位移、速度、加速度).在确定运动方程时,若取以点(0,3)为原点的O′x′y′坐标系,并采用参数方程x′=x′(t )和y′=y′(t )来表示圆周运动是比较方便的.然后,运用坐标变换x =x 0 +x ′和y =y 0 +y ′,将所得参数方程转换至Oxy 坐标系中,即得Oxy 坐标系中质点P 在任意时刻的位矢.采用对运动方程求导的方法可得速度和加速度.解 (1) 如图(B)所示,在O′x′y′坐标系中,因t T θπ2=,则质点P 的参数方程为 t T R x π2sin=', t TR y π2cos -=' 坐标变换后,在O x y 坐标系中有 t T R x x π2sin='=, R t TR y y y +-=+'=π2cos 0 则质点P 的位矢方程为 (2) 5s时的速度和加速度分别为j j i r )s m π3.0(π2sin π2π2cos π2d d 1-⋅=+==t TT R t T T R t v i j i r a )s m π03.0(π2cos )π2(π2sin )π2(d d 222222-⋅-=+-==t TT R t T T R t 1 -12 地面上垂直竖立一高 m 的旗杆,已知正午时分太阳在旗杆的正上方,求在下午2∶00 时,杆顶在地面上的影子的速度的大小.在何时刻杆影伸展至 m ?分析 为求杆顶在地面上影子速度的大小,必须建立影长与时间的函数关系,即影子端点的位矢方程.根据几何关系,影长可通过太阳光线对地转动的角速度求得.由于运动的相对性,太阳光线对地转动的角速度也就是地球自转的角速度.这样,影子端点的位矢方程和速度均可求得.解 设太阳光线对地转动的角速度为ω,从正午时分开始计时,则杆的影长为s =h tg ωt ,下午2∶00 时,杆顶在地面上影子的速度大小为当杆长等于影长时,即s =h ,则即为下午3∶00 时.1 -13 质点沿直线运动,加速度a =4 -t2 ,式中a 的单位为m·s-2 ,t 的单位为s.如果当t =3s时,x =9 m,v =2 m·s-1 ,求质点的运动方程.分析 本题属于运动学第二类问题,即已知加速度求速度和运动方程,必须在给定条件下用积分方法解决.由t a d d v =和tx d d =v 可得t a d d =v 和t x d d v =.如a =a (t )或v =v (t ),则可两边直接积分.如果a 或v 不是时间t 的显函数,则应经过诸如分离变量或变量代换等数学操作后再做积分.解 由分析知,应有得 03314v v +-=t t (1) 由 ⎰⎰=t x x t x 0d d 0v 得 00421212x t t t x ++-=v (2) 将t =3s时,x =9 m,v =2 m·s-1代入(1) (2)得v 0=-1 m·s-1,x 0= m .于是可得质点运动方程为1 -14 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动,现测得其加速度a =A -B v ,式中A 、B 为正恒量,求石子下落的速度和运动方程.分析 本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v 的函数,因此,需将式d v =a (v )d t 分离变量为t a d )(d =v v 后再两边积分. 解 选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题意知 v v B A ta -==d d (1)用分离变量法把式(1)改写为t B A d d =-vv (2) 将式(2)两边积分并考虑初始条件,有得石子速度 )1(Bt e B A --=v 由此可知当,t →∞时,B A →v 为一常量,通常称为极限速度或收尾速度. (2) 再由)1(d d Bt e BA t y --==v 并考虑初始条件有 得石子运动方程1 -15 一质点具有恒定加速度a =6i +4j ,式中a 的单位为m·s-2 .在t =0时,其速度为零,位置矢量r 0 =10 m i .求:(1) 在任意时刻的速度和位置矢量;(2) 质点在Oxy 平面上的轨迹方程,并画出轨迹的示意图.分析 与上两题不同处在于质点作平面曲线运动,根据叠加原理,求解时需根据加速度的两个分量a x 和a y 分别积分,从而得到运动方程r 的两个分量式x (t )和y (t ).由于本题中质点加速度为恒矢量,故两次积分后所得运动方程为固定形式,即20021t a t x x x x ++=v 和20021t a t y y y y ++=v ,两个分运动均为匀变速直线运动.读者不妨自己验证一下.解 由加速度定义式,根据初始条件t 0 =0时v 0 =0,积分可得 又由td d r =v 及初始条件t =0 时,r 0=(10 m)i ,积分可得 由上述结果可得质点运动方程的分量式,即x =10+3t 2 y =2t 2 消去参数t ,可得运动的轨迹方程 3y =2x -20 m 这是一个直线方程.直线斜率32tan d d ===αx y k ,α=33°41′.轨迹如图所示.1 -16 一质点在半径为R 的圆周上以恒定的速率运动,质点由位置A 运动到位置B,OA 和OB 所对的圆心角为Δθ.(1) 试证位置A 和B 之间的平均加速度为)Δ(/)Δcos 1(22θR θa v -=;(2) 当Δθ分别等于90°、30°、10°和1°时,平均加速度各为多少? 并对结果加以讨论.分析 瞬时加速度和平均加速度的物理含义不同,它们分别表示为t d d v =a 和tΔΔv =a .在匀速率圆周运动中,它们的大小分别为Ra n 2v =,t a ΔΔv = ,式中|Δv |可由图(B)中的几何关系得到,而Δt 可由转过的角度Δθ 求出.由计算结果能清楚地看到两者之间的关系,即瞬时加速度是平均加速度在Δt →0 时的极限值.解 (1) 由图(b)可看到Δv =v 2 -v 1 ,故而所以(2) 将Δθ=90°,30°,10°,1°分别代入上式,得R a 219003.0v ≈,Ra 229886.0v ≈ R a 239987.0v ≈,Ra 24000.1v ≈ 以上结果表明,当Δθ→0 时,匀速率圆周运动的平均加速度趋近于一极限值,该值即为法向加速度R2v . 1 -17 质点在Oxy 平面内运动,其运动方程为r = + )j ,式中r 的单位为m,t 的单位为s .求:(1)质点的轨迹方程;(2) 在t 1= 到t 2 = 时间内的平均速度;(3) t 1 =s时的速度及切向和法向加速度;(4) t = 时质点所在处轨道的曲率半径ρ.分析 根据运动方程可直接写出其分量式x =x (t )和y =y (t ),从中消去参数t ,即得质点的轨迹方程.平均速度是反映质点在一段时间内位置的变化率,即tΔΔr =v ,它与时间间隔Δt 的大小有关,当Δt →0 时,平均速度的极限即瞬时速度td d r =v .切向和法向加速度是指在自然坐标下的分矢量a t 和a n ,前者只反映质点在切线方向速度大小的变化率,即t t te a d d v =,后者只反映质点速度方向的变化,它可由总加速度a 和a t 得到.在求得t 1 时刻质点的速度和法向加速度的大小后,可由公式ρa n 2v =求ρ. 解 (1) 由参数方程x =, y =消去t 得质点的轨迹方程:y =(2) 在t 1 =s 到t 2 =s时间内的平均速度(3) 质点在任意时刻的速度和加速度分别为则t 1 =s时的速度v (t )|t =1s=切向和法向加速度分别为(4) t =s质点的速度大小为 则m 17.112==na ρv 1 -18 飞机以100 m·s-1 的速度沿水平直线飞行,在离地面高为100 m 时,驾驶员要把物品空投到前方某一地面目标处,问:(1) 此时目标在飞机正下方位置的前面多远? (2) 投放物品时,驾驶员看目标的视线和水平线成何角度?(3) 物品投出s后,它的法向加速度和切向加速度各为多少?分析 物品空投后作平抛运动.忽略空气阻力的条件下,由运动独立性原理知,物品在空中沿水平方向作匀速直线运动,在竖直方向作自由落体运动.到达地面目标时,两方向上运动时间是相同的.因此,分别列出其运动方程,运用时间相等的条件,即可求解.此外,平抛物体在运动过程中只存在竖直向下的重力加速度.为求特定时刻t 时物体的切向加速度和法向加速度,只需求出该时刻它们与重力加速度之间的夹角α或β.由图可知,在特定时刻t ,物体的切向加速度和水平线之间的夹角α,可由此时刻的两速度分量v x 、v y 求出,这样,也就可将重力加速度g 的切向和法向分量求得.解 (1) 取如图所示的坐标,物品下落时在水平和竖直方向的运动方程分别为x =v t , y =1/2 gt 2飞机水平飞行速度v =100 m·s -1 ,飞机离地面的高度y =100 m,由上述两式可得目标在飞机正下方前的距离(2) 视线和水平线的夹角为(3) 在任意时刻物品的速度与水平轴的夹角为取自然坐标,物品在抛出2s 时,重力加速度的切向分量与法向分量分别为1 -19 如图(a)所示,一小型迫击炮架设在一斜坡的底端O 处,已知斜坡倾角为α,炮身与斜坡的夹角为β,炮弹的出口速度为v 0,忽略空气阻力.求:(1)炮弹落地点P 与点O 的距离OP ;(2) 欲使炮弹能垂直击中坡面.证明α和β必须满足αβtan 21tan =并与v 0 无关. 分析 这是一个斜上抛运动,看似简单,但针对题目所问,如不能灵活运用叠加原理,建立一个恰当的坐标系,将运动分解的话,求解起来并不容易.现建立如图(a)所示坐标系,则炮弹在x 和y 两个方向的分运动均为匀减速直线运动,其初速度分别为v 0cos β和v 0sin β,其加速度分别为g sin α和gcos α.在此坐标系中炮弹落地时,应有y =0,则x =OP .如欲使炮弹垂直击中坡面,则应满足v x =0,直接列出有关运动方程和速度方程,即可求解.由于本题中加速度g 为恒矢量.故第一问也可由运动方程的矢量式计算,即20g 21t t +=v r ,做出炮弹落地时的矢量图[如图(B)所示],由图中所示几何关系也可求得OP (即图中的r 矢量).(1)解1 由分析知,炮弹在图(a)所示坐标系中两个分运动方程为αgt βt x sin 21cos 20-=v (1) αgt βt y cos 21sin 20-=v (2) 令y =0 求得时间t 后再代入式(1)得解2 做出炮弹的运动矢量图,如图(b)所示,并利用正弦定理,有从中消去t 后也可得到同样结果.(2) 由分析知,如炮弹垂直击中坡面应满足y =0 和v x =0,则0sin cos 0=-=αgt βx v v (3)由(2)(3)两式消去t 后得由此可知.只要角α和β满足上式,炮弹就能垂直击中坡面,而与v 0 的大小无关.讨论 如将炮弹的运动按水平和竖直两个方向分解,求解本题将会比较困难,有兴趣读者不妨自己体验一下.1 -20 一直立的雨伞,张开后其边缘圆周的半径为R ,离地面的高度为h ,(1) 当伞绕伞柄以匀角速ω旋转时,求证水滴沿边缘飞出后落在地面上半径为g ωh R r /212+=的圆周上;(2) 读者能否由此定性构想一种草坪上或农田灌溉用的旋转式洒水器的方案?分析 选定伞边缘O 处的雨滴为研究对象,当伞以角速度ω旋转时,雨滴将以速度v 沿切线方向飞出,并作平抛运动.建立如图(a)所示坐标系,列出雨滴的运动方程并考虑图中所示几何关系,即可求证.由此可以想像如果让水从一个旋转的有很多小孔的喷头中飞出,从不同小孔中飞出的水滴将会落在半径不同的圆周上,为保证均匀喷洒对喷头上小孔的分布还要给予精心的考虑.解 (1) 如图(a)所示坐标系中,雨滴落地的运动方程为t ωR t x ==v (1)h gt y ==221 (2) 由式(1)(2)可得 gh ωR x 2222= 由图(a)所示几何关系得雨滴落地处圆周的半径为(2) 常用草坪喷水器采用如图(b)所示的球面喷头(θ0 =45°)其上有大量小孔.喷头旋转时,水滴以初速度v 0 从各个小孔中喷出,并作斜上抛运动,通常喷头表面基本上与草坪处在同一水平面上.则以φ角喷射的水柱射程为为使喷头周围的草坪能被均匀喷洒,喷头上的小孔数不但很多,而且还不能均匀分布,这是喷头设计中的一个关键问题.1 -21 一足球运动员在正对球门前 m 处以 m·s-1 的初速率罚任意球,已知球门高为 m .若要在垂直于球门的竖直平面内将足球直接踢进球门,问他应在与地面成什么角度的范围内踢出足球? (足球可视为质点)分析 被踢出后的足球,在空中作斜抛运动,其轨迹方程可由质点在竖直平面内的运动方程得到.由于水平距离x 已知,球门高度又限定了在y 方向的范围,故只需将x 、y 值代入即可求出.解 取图示坐标系Oxy ,由运动方程θt x cos v =, 221sin gt θt y -=v 消去t 得轨迹方程以x = m,v = m·s-1 及 m≥y ≥0 代入后,可解得71.11°≥θ1 ≥69.92°27.92°≥θ2 ≥18.89°如何理解上述角度的范围?在初速一定的条件下,球击中球门底线或球门上缘都将对应有两个不同的投射倾角(如图所示).如果以θ>71.11°或θ <°踢出足球,都将因射程不足而不能直接射入球门;由于球门高度的限制,θ 角也并非能取°与°之间的任何值.当倾角取值为°<θ <69.92°时,踢出的足球将越过门缘而离去,这时球也不能射入球门.因此可取的角度范围只能是解中的结果.1 -22 一质点沿半径为R 的圆周按规律2021bt t s -=v 运动,v 0 、b 都是常量.(1) 求t 时刻质点的总加速度;(2) t 为何值时总加速度在数值上等于b ?(3) 当加速度达到b 时,质点已沿圆周运行了多少圈?分析 在自然坐标中,s 表示圆周上从某一点开始的曲线坐标.由给定的运动方程s =s (t ),对时间t 求一阶、二阶导数,即是沿曲线运动的速度v 和加速度的切向分量a t,而加速度的法向分量为a n =v 2 /R .这样,总加速度为a =a te t+a n e n .至于质点在t 时间内通过的路程,即为曲线坐标的改变量Δs =s t -s 0.因圆周长为2πR,质点所转过的圈数自然可求得.解 (1) 质点作圆周运动的速率为其加速度的切向分量和法向分量分别为b t s a t -==22d d , Rbt R a n 202)(-==v v 故加速度的大小为其方向与切线之间的夹角为(2) 要使|a |=b ,由b bt b R R=-+4022)(1v 可得 (3) 从t =0 开始到t =v 0 /b 时,质点经过的路程为因此质点运行的圈数为1 -23 一半径为 m 的飞轮在启动时的短时间内,其角速度与时间的平方成正比.在t =s 时测得轮缘一点的速度值为 m·s-1.求:(1) 该轮在t′=s的角速度,轮缘一点的切向加速度和总加速度;(2)该点在s内所转过的角度.分析 首先应该确定角速度的函数关系ω=kt 2.依据角量与线量的关系由特定时刻的速度值可得相应的角速度,从而求出式中的比例系数k ,ω=ω(t )确定后,注意到运动的角量描述与线量描述的相应关系,由运动学中两类问题求解的方法(微分法和积分法),即可得到特定时刻的角加速度、切向加速度和角位移.解 因ωR =v ,由题意ω∝t 2 得比例系数所以 22)(t t ωω==则t ′=s 时的角速度、角加速度和切向加速度分别为总加速度在s内该点所转过的角度1 -24 一质点在半径为 m 的圆周上运动,其角位置为342t θ+=,式中θ 的单位为rad,t 的单位为s.(1) 求在t =s时质点的法向加速度和切向加速度.(2) 当切向加速度的大小恰等于总加速度大小的一半时,θ 值为多少?(3) t 为多少时,法向加速度和切向加速度的值相等?分析 掌握角量与线量、角位移方程与位矢方程的对应关系,应用运动学求解的方法即可得到.解 (1) 由于342t θ+=,则角速度212d d t t θω==.在t =2 s 时,法向加速度和切向加速度的数值分别为(2) 当22212/t n t a a a a +==时,有223n t a a =,即 得 3213=t此时刻的角位置为(3) 要使t n a a =,则有 t =s1 -25 一无风的下雨天,一列火车以v 1= m·s-1 的速度匀速前进,在车内的旅客看见玻璃窗外的雨滴和垂线成75°角下降.求雨滴下落的速度v2 .(设下降的雨滴作匀速运动)分析 这是一个相对运动的问题.设雨滴为研究对象,地面为静止参考系S,火车为动参考系S′.v 1 为S′相对S 的速度,v 2 为雨滴相对S的速度,利用相对运动速度的关系即可解.解 以地面为参考系,火车相对地面运动的速度为v 1 ,雨滴相对地面竖直下落的速度为v 2 ,旅客看到雨滴下落的速度v 2′为相对速度,它们之间的关系为1'22v v v += (如图所示),于是可得1 -26 如图(a)所示,一汽车在雨中沿直线行驶,其速率为v 1 ,下落雨滴的速度方向偏于竖直方向之前θ 角,速率为v 2′,若车后有一长方形物体,问车速v 1为多大时,此物体正好不会被雨水淋湿?分析 这也是一个相对运动的问题.可视雨点为研究对象,地面为静参考系S,汽车为动参考系S′.如图(a)所示,要使物体不被淋湿,在车上观察雨点下落的方向(即雨点相对于汽车的运动速度v 2′的方向)应满足hl αarctan ≥.再由相对速度的矢量关系122v v v -=',即可求出所需车速v 1.解 由122v v v -='[图(b)],有 而要使h l αarctan ≥,则1 -27 一人能在静水中以 m·s-1 的速度划船前进.今欲横渡一宽为 ×103 m 、水流速度为 m·s-1 的大河.(1) 他若要从出发点横渡该河而到达正对岸的一点,那么应如何确定划行方向? 到达正对岸需多少时间? (2)如果希望用最短的时间过河,应如何确定划行方向? 船到达对岸的位置在什么地方?分析 船到达对岸所需时间是由船相对于岸的速度v 决定的.由于水流速度u 的存在, v 与船在静水中划行的速度v ′之间有v =u +v ′(如图所示).若要使船到达正对岸,则必须使v 沿正对岸方向;在划速一定的条件下,若要用最短时间过河,则必须使v 有极大值.解 (1) 由v =u +v ′可知v'=u αarcsin ,则船到达正对岸所需时间为 (2) 由于αcos v v '=,在划速v ′一定的条件下,只有当α=0 时, v 最大(即v =v ′),此时,船过河时间t ′=d /v ′,船到达距正对岸为l 的下游处,且有1 -28 一质点相对观察者O 运动, 在任意时刻t , 其位置为x =v t , y =gt2 /2,质点运动的轨迹为抛物线.若另一观察者O′以速率v 沿x 轴正向相对于O 运动.试问质点相对O′的轨迹和加速度如何?分析 该问题涉及到运动的相对性.如何将已知质点相对于观察者O 的运动转换到相对于观察者O′的运动中去,其实质就是进行坐标变换,将系O 中一动点(x ,y )变换至系O′中的点(x ′,y ′).由于观察者O′相对于观察者O 作匀速运动,因此,该坐标变换是线性的.解 取Oxy 和O′x′y′分别为观察者O 和观察者O′所在的坐标系,且使Ox 和O′x ′两轴平行.在t =0 时,两坐标原点重合.由坐标变换得。
大学物理第四版(马文蔚)量子物理习题

05 习题答案与解析
波函数与概率幅答案与解析
总结词
理解波函数与概率幅的概念是解决量子物理问题的关键。
详细描述
波函数是描述粒子状态的函数,它包含了粒子在空间中位置和动量的信息。概率幅则用于描述粒子在某个位置出 现的概率大小,其绝对值的平方等于粒子在该位置出现的概率。在解题过程中,需要正确理解和运用波函数与概 率幅的性质,如波函数的叠加原理、概率幅的归一化条件等。
波函数
描述微观粒子状态的函数,其模平方表示粒子在某一时刻出现在 某一位置的概率幅。
概率幅
波函数的模平方,表示粒子出现在某一位置的概率大小。
波函数的性质
单值、有限、平方可积,是粒子状态的完整描述。
薛定谔方程
01
02
03
薛定谔方程
描述微观粒子运动状态的 偏微分方程,是量子力学 的基本方程之一。
薛定谔方程的形式
详细描述
这类题目通常涉及薛定谔方程的推导、理解和应用。需要 掌握薛定谔方程的物理意义,理解其在描述粒子运动时的 适用范围和局限性。
解析过程
首先根据题意写出薛定谔方程,然后根据初始条件和边界条 件求解方程,得出波函数Ψ(x,t)的表达式。
算符与力学量习题
理解算符和力学量的概念及其运算规则是解决这类题 目的关键。
量子物理的发展对于现代科技,如半导体技术、激光技术、量子计算等领域有着深 远的影响。
习题的重要性
01
通过习题巩固和加深对量子物理理论知识的理解。
02
培养解决实际问题的能力,提高分析问题和解决问题的能力 。
03
检验学习效果,发现学习中存在的问题和不足,促进学习的 进步。
02 量子物理基础知识
波函数与概率幅
物理学简明教程(马文蔚等著)第四章课后练习题答案详解

物理学简明教程(马文蔚等著) 第四章课后练习题答案详解4-1 一个质点作简谐运动,振幅为A ,在起始时刻质点的位移为2A,且向x 轴正方向运动,代表此简谐运动的旋转矢量为( )题4-1图分析与解(B )图中旋转矢量的矢端在x 轴上投影点的位移为-A/2,且投影点的运动方向指向Ox 轴正向,即其速度的x 分量大于零,故满足题意.因而正确答案为(B ). 4-2 一简谐运动曲线如图(a )所示,则运动周期是( )(A) 2.62 s (B) 2.40 s (C) 2.20 s (D )2.00 s题4-2图分析与解 由振动曲线可知,初始时刻质点的位移为A/2,且向x 轴正方向运动.图(b)是其相应的旋转矢量图,由旋转矢量法可知初相位为-.振动曲线上给出质点从A/2 处运动到x=0处所需时间为 1 s ,由对应旋转矢量图可知相应的相位差3/π265232πππϕ=+=∆,则角频率1s rad 65Δ/Δ-⋅==πϕωt ,周期s 40.22==ωπT .故选(B ).4-3 两个同周期简谐运动曲线如图(a )所示, x 1的相位比x 2的相位( ) (A )落后2π(B )超前2π(C )落后π(D )超前π 分析与解 由振动曲线图作出相应的旋转矢量图(b )即可得到答案为(B ).题4 -3图4-4 两个同振动方向、同频率、振幅均为A 的简谐运动合成后,振幅仍为A ,则这两个简谐运动的相位差为( )(A )60(B )90(C )120(D )180分析与解 由旋转矢量图可知两个简谐运动1和2的相位差为120时,合成后的简谐运动3的振幅仍为A.正确答案为(C ).题4-4图4-5 若简谐运动方程为⎪⎭⎫⎝⎛+=4ππ20cos 10.0t x ,式中x 的单位为m ,t 的单位为s.求:(1)振幅、频率、角频率、周期和初相;(2)s 2=t 时的位移、速度和加速度. 分析 可采用比较法求解.将已知的简谐运动方程与简谐运动方程的一般形式()ϕω+=t A x cos 作比较,即可求得各特征量.运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t 值后,即可求得结果. 解 (1)将()()m π25.0π20cos 10.0+=t x与()ϕω+=t A x cos 比较后可得:振幅A =0.10m ,角频率1s rad π20-⋅=ω,初相ϕ=0.25π,则周期s 1.0/π2==ωT ,频率Hz /1T =v .(2)s 2=t 时的位移、速度、加速度分别为()m 1007.7π25.0π40cos 10.02-⨯=+=t x ()-1s m 44.4π25.0π40sin π2d /d ⋅-=+-==t x v()-22222s m 1079.2π25.0π40cos π40d /d ⋅⨯-=+-==t x a4-6 一放置在水平桌面上的弹簧振子,振幅A =2.0 ×10-2 m ,周期T =0.50s.当t =0 时,(1)物体在正方向端点;(2)物体在平衡位置、向负方向运动;(3)物体在x =-1.0×10-2m 处,向负方向运动;(4)物体在x =-1.0×10-2 m 处,向正方向运动.求以上各种情况的运动方程.分析 在振幅A 和周期T 已知的条件下,确定初相φ是求解简谐运动方程的关键.初相的确定通常有两种方法.(1)解析法:由振动方程出发,根据初始条件,即t =0 时,x =x 0和v =v 0来确定φ值.(2)旋转矢量法:如图(a )所示,将质点P 在Ox 轴上振动的初始位置x 0和速度v 0的方向与旋转矢量图相对应来确定φ.旋转矢量法比较直观、方便,在分析中常采用.题4-6图解 由题给条件知A =2.0 ×10-2 m ,1s π4/2-==T ω,而初相φ可采用分析中的两种不同方法来求.解析法:根据简谐运动方程()ϕω+=t A x cos ,当0t =时有()ϕω+=t A x cos 0,sin 0ϕωA -=v .当(1)A x =0时,1cos 1=ϕ,则01=ϕ; (2)00=x 时,0cos 2=ϕ,2π2±=ϕ,因00<v ,取2π2=ϕ; (3)m 100120-⨯=.x 时,50cos 3.=ϕ,3π3±=ϕ,由00<v ,取3π3=ϕ;(4)m 100120-⨯-=.x 时,50cos 4.-=ϕ,3ππ4±=ϕ,由00>v ,取3π44=ϕ. 旋转矢量法:分别画出四个不同初始状态的旋转矢量图,如图(b )所示,它们所对应的初相分别为01=ϕ,2π2=ϕ,3π3=ϕ,3π44=ϕ. 振幅A 、角频率ω、初相φ均确定后,则各相应状态下的运动方程为(1)()m tπcos4100.22-⨯=x(2)()()m /2πt π4cos 100.22+⨯=-x (3)()()m /3πt π4cos 100.22+⨯=-x (4)()()m /3π4t π4cos 100.22+⨯=-x4-7 有一弹簧,当其下端挂一质量为m 的物体时,伸长量为9.8 ×10-2 m .若使物体上、下振动,且规定向下为正方向.(1)当t =0 时,物体在平衡位置上方8.0 ×10-2m处,由静止开始向下运动,求运动方程.(2)当t =0时,物体在平衡位置并以0.6m·s -1的速度向上运动,求运动方程.分析 求运动方程,也就是要确定振动的三个特征物理量A 、ω和φ.其中振动的角频率是由弹簧振子系统的固有性质(振子质量m 及弹簧劲度系数k )决定的,即ω=k可根据物体受力平衡时弹簧的伸长来计算;振幅A 和初相φ需要根据初始条件确定.题4-7图解 物体受力平衡时,弹性力F 与重力P 的大小相等,即F =mg .而此时弹簧的伸长量Δl =9.8 ×10-2m .则弹簧的劲度系数k =F /Δl =mg /Δl .系统作简谐运动的角频率为1s 10-=∆==l g m k //ω(1)设系统平衡时,物体所在处为坐标原点,向下为x 轴正向.由初始条件t =0 时,x 10=8.0 ×10-2 m 、v 10=0 可得振幅()m 10082210210-⨯=+=./ωv x A ;应用旋转矢量法可确定初相π1=ϕ[图(a )].则运动方程为()()m π10t cos 100.821+⨯=-x(2)t =0时,x 20=0、v 20=0.6 m·s -1,同理可得()m 100622202202-⨯=+=./ωv x A ;2/π2=ϕ[图(b )].则运动方程为()()m π5.010t cos 100.622+⨯=-x4-8 某振动质点的x-t 曲线如图(a )所示,试求:(1)运动方程;(2)点P 对应的相位;(3)到达点P 相应位置所需的时间.分析 由已知运动方程画振动曲线和由振动曲线求运动方程是振动中常见的两类问题.本题就是要通过x -t 图线确定振动的三个特征量A 、ω和0ϕ,从而写出运动方程.曲线最大幅值即为振幅A ;而ω、0ϕ通常可通过旋转矢量法或解析法解出,一般采用旋转矢量法比较方便.解 (1)质点振动振幅A =0.10 m.而由振动曲线可画出t 0=0 和t 1=4 s时旋转矢量,如图(b )所示.由图可见初相3/π0-=ϕ(或3/π50=ϕ),而由()3201//ππω+=-t t 得1s 24/π5-=ω,则运动方程为()m 3/π24π5cos 10.0⎪⎭⎫⎝⎛-=t x题4-8图(2)图(a )中点P 的位置是质点从A /2 处运动到正向的端点处.对应的旋转矢量图如图(c )所示.当初相取3/π0-=ϕ时,点P 的相位为()000=-+=p p t ωϕϕ(如果初相取成3/π50=ϕ,则点P 相应的相位应表示为()π200=-+=p p t ωϕϕ.(3)由旋转矢量图可得()3/π0=-p t ω,则s 61.=p t .4-9 质量为10 g 的物体沿x 的轴作简谐运动,振幅A=10 cm ,周期T=4.0 s ,t=0 时物体的位移为,cm 0.50-=x 且物体朝x 轴负方向运动,求(1)t=1.0 s 时物体的位移;(2)t=1.0 s 时物体受的力;(3)t=0之后何时物体第一次到达x=5.0 cm 处;(4)第二次和第一次经过x=5.0 cm 处的时间间隔. 分析根据题给条件可以先写出物体简谐运动方程)cos(ϕω+=t A x .其中振幅A ,角频率Tπ2=ω均已知,而初相ϕ可由题给初始条件利用旋转矢量法方便求出. 有了运动方程,t 时刻位移x 和t 时刻物体受力x m ma F2ω-==也就可以求出. 对于(3)、(4)两问均可通过作旋转矢量图并根据公式t ∆=∆ωϕ很方便求解.解由题给条件画出t=0时该简谐运动的旋转矢量图如图(a )所示,可知初相3π2=ϕ.而A=0.10 m ,1s 2ππ2-==T ω.则简谐运动方程为m )3π22πcos(10.0+=t x(1)t=1.0 s 时物体的位移m 1066.8m )3π22π0.1cos(10.02-⨯-=+⨯=x(2)t=1.0 s 时物体受力N1014.2N)1066.8()2π(101032232---⨯=⨯-⨯⨯⨯-=-=x m F ω (3)设t=0时刻后,物体第一次到达x=5.0 cm 处的时刻为t 1,画出t=0和t=t 1时刻的旋转矢量图,如图(b )所示,由图可知,A 1与A 的相位差为π,由t ∆=∆ωϕ得s 2s 2/ππ1==∆=ωϕt (4)设t=0时刻后,物体第二次到达x=5.0 cm 处的时刻为t 2,画出t=t 1和t= t 2时刻的旋转矢量图,如图(c )所示,由图可知,A 2与A 1的相位差为3π2,故有 s 34s 2/π3/π212==∆=-=∆ωϕt t t题 4-9 图4-10 图(a )为一简谐运动质点的速度与时间的关系曲线,且振幅为2cm ,求(1)振动周期;(2)加速度的最大值;(3)运动方程.分析 根据v-t 图可知速度的最大值v max ,由v max =Aω可求出角频率ω,进而可求出周期T 和加速度的最大值a max =Aω2.在要求的简谐运动方程x =Acos (ωt +φ)中,因为A 和ω已得出,故只要求初相位φ即可.由v -t 曲线图可以知道,当t =0 时,质点运动速度v 0=v max /2 =Aω/2,之后速度越来越大,因此可以判断出质点沿x 轴正向向着平衡点运动.利用v 0=-Aωsinφ就可求出φ.解 (1)由ωA v =max 得1s 51-=.ω,则s 2.4/π2==ωT(2)222max s m 1054--⋅⨯==.ωA a(3)从分析中已知2/sin0ωA ωA =-=v ,即21sin /-=ϕ6/π5,6/π--=ϕ因为质点沿x 轴正向向平衡位置运动,则取6/π5-=,其旋转矢量图如图(b )所示.则运动方程为()cm 6π55.1cos 2⎪⎭⎫⎝⎛-=t x题4-10图4-11 有一单摆,长为1.0m ,最大摆角为5°,如图所示.(1)求摆的角频率和周期;(2)设开始时摆角最大,试写出此单摆的运动方程;(3)摆角为3°时的角速度和摆球的线速度各为多少?题4-11图分析 单摆在摆角较小时(θ<5°)的摆动,其角量θ与时间的关系可表示为简谐运动方程()ϕωθθ+=t cos max ,其中角频率ω仍由该系统的性质(重力加速度g 和绳长l )决定,即l g /=ω.初相φ与摆角θ,质点的角速度与旋转矢量的角速度(角频率)均是不同的物理概念,必须注意区分. 解 (1)单摆角频率及周期分别为s 01.2/π2;s 13.3/1====-ωT l g ω(2)由0=t 时omax 5==θθ可得振动初相0=ϕ,则以角量表示的简谐运动方程为t θ13.3cos 36π=(3)摆角为3°时,有()60cos max ./==+θθϕωt ,则这时质点的角速度为()()1max 2max max s2180800cos 1sin /d d --=-=+--=+-=..ωθϕωωθϕωωθθt t t线速度的大小为1s m 218.0/d d -⋅-==t l v θ讨论 质点的线速度和角速度也可通过机械能守恒定律求解,但结果会有极微小的差别.这是因为在导出简谐运动方程时曾取θθ≈sin ,所以,单摆的简谐运动方程仅在θ较小时成立.4-12 如图(a )所示,质量为1.0 ×10-2kg 的子弹,以500m·s -1的速度射入木块,并嵌在木块中,同时使弹簧压缩从而作简谐运动,设木块的质量为 4.99 kg ,弹簧的劲度系数为8.0 ×103 N·m -1,若以弹簧原长时物体所在处为坐标原点,向左为x 轴正向,求简谐运动方程.题4-12图分析 可分为两个过程讨论.首先是子弹射入木块的过程,在此过程中,子弹和木块组成的系统满足动量守恒,因而可以确定它们共同运动的初速度v 0,即振动的初速度.随后的过程是以子弹和木块为弹簧振子作简谐运动.它的角频率由振子质量m 1+m 2和弹簧的劲度系数k 确定,振幅和初相可根据初始条件(初速度v 0和初位移x 0)求得.初相位仍可用旋转矢量法求. 解 振动系统的角频率为()121s 40-=+=m m k /ω由动量守恒定律得振动的初始速度即子弹和木块的共同运动初速度v 0为12110s m 0.1-⋅=+=m m vm v又因初始位移x 0=0,则振动系统的振幅为()m 105.2//202020-⨯==+=ωωx A v v图(b )给出了弹簧振子的旋转矢量图,从图中可知初相位2/π0=ϕ,则简谐运动方程为()()m π0.540cos 105.22+⨯=-t x4-13 如图(a )所示,一劲度系数为k 的轻弹簧,其下挂有一质量为m 1的空盘.现有一质量为m 2的物体从盘上方高为h 处自由落入盘中,并和盘粘在一起振动.问:(1)此时的振动周期与空盘作振动的周期有何不同?(2)此时的振幅为多大?题4-13图分析 原有空盘振动系统由于下落物体的加入,振子质量由m 1变为m 1 + m 2,因此新系统的角频率(或周期)要改变.由于()2020/ωx A v +=,因此,确定初始速度v 0和初始位移x 0是求解振幅A 的关键.物体落到盘中,与盘作完全非弹性碰撞,由动量守恒定律可确定盘与物体的共同初速度v 0,这也是该振动系统的初始速度.在确定初始时刻的位移x 0时,应注意新振动系统的平衡位置应是盘和物体悬挂在弹簧上的平衡位置.因此,本题中初始位移x 0,也就是空盘时的平衡位置相对新系统的平衡位置的位移. 解 (1)空盘时和物体落入盘中后的振动周期分别为k m ωT /π2/π21== ()k m m ωT /π2/π221+='='可见T′>T ,即振动周期变大了.(2)如图(b )所示,取新系统的平衡位置为坐标原点O .则根据分析中所述,初始位移为空盘时的平衡位置相对粘上物体后新系统平衡位置的位移,即g km g k m m k g m l l x 2211210-=+-=-=式中k g m l 11=为空盘静止时弹簧的伸长量,l 2=g km m 21+为物体粘在盘上后,静止时弹簧的伸长量.由动量守恒定律可得振动系统的初始速度,即盘与物体相碰后的速度gh m m m m m m 22122120+=+=v v式中gh 2=v 是物体由h 高下落至盘时的速度.故系统振动的振幅为()gm m khk g m x A )(21/2122020++='+=ωv 本题也可用机械能守恒定律求振幅A .4-14 质量为0.10kg 的物体,以振幅1.0×10-2 m 作简谐运动,其最大加速度为4.0 m·s -1 求:(1)振动的周期;(2)物体通过平衡位置时的总能量与动能;(3)物体在何处其动能和势能相等?(4)当物体的位移大小为振幅的一半时,动能、势能各占总能量的多少?分析 在简谐运动过程中,物体的最大加速度2max ωA a =,由此可确定振动的周期T .另外,在简谐运动过程中机械能是守恒的,其中动能和势能互相交替转化,其总能量E =kA 2/2.当动能与势能相等时,E k =E P =kA 2/4.因而可求解本题. 解 (1)由分析可得振动周期s 314.0/π2/π2max ===a A ωT(2)当物体处于平衡位置时,系统的势能为零,由机械能守恒可得系统的动能等于总能量,即J 100221213max22k -⨯====.mAa mA E E ω (3)设振子在位移x 0处动能与势能相等,则有42220//kA kx =得m 100772230-⨯±=±=./A x(4)物体位移的大小为振幅的一半(即2x A =/)时的势能为4221212P /E A k kx E =⎪⎭⎫⎝⎛==则动能为43P K /E E E E =-=4-15 已知两同方向、同频率的简谐运动的运动方程分别为()()m π75.010cos 05.01+=t x ;()()m π25.010cos 06.02+=t x .求:(1)合振动的振幅及初相;(2)若有另一同方向、同频率的简谐运动()()m 10cos 07033ϕ+=t x .,则3ϕ为多少时,x 1+x 3的振幅最大?又3ϕ为多少时,x 2+x 3的振幅最小?题4-15图分析 可采用解析法或旋转矢量法求解.由旋转矢量合成可知,两个同方向、同频率简谐运动的合成仍为一简谐运动,其角频率不变;合振动的振幅()12212221cos 2ϕϕ-++=A A A A A ,其大小与两个分振动的初相差12ϕϕ-相关.而合振动的初相位()()[]22112211cos cos sin sin arctan ϕϕϕϕϕA A A A ++=/解 (1)作两个简谐运动合成的旋转矢量图(如图).因为2/πΔ12-=-=ϕϕϕ,故合振动振幅为()m 1087cos 2212212221-⨯=-++=.ϕϕA A A A A合振动初相位()()[]rad1.48arctan11cos cos sin sin arctan 22112211==++=ϕϕϕϕϕA A A A /(2)要使x 1+x 3振幅最大,即两振动同相,则由π2Δk =ϕ得,...2,1,0,π75.0π2π213±±=+=+=k k k ϕϕ要使x 1+x 3的振幅最小,即两振动反相,则由()π12Δ+=k ϕ得(),...2,1,0,π25.1π2π1223±±=+=++=k k k ϕϕ4-16 两个同频率的简谐运动1 和2 的振动曲线如图(a )所示,求(1)两简谐运动的运动方程x 1和x 2;(2)在同一图中画出两简谐运动的旋转矢量,并比较两振动的相位关系;(3)若两简谐运动叠加,求合振动的运动方程.分析 振动图已给出了两个简谐运动的振幅和周期,因此只要利用图中所给初始条件,由旋转矢量法或解析法求出初相位,便可得两个简谐运动的方程.解 (1)由振动曲线可知,A =0.1 m,T =2s,则ω=2π/T =πs-1.曲线1表示质点初始时刻在x =0 处且向x 轴正向运动,因此φ1=-π/2;曲线2 表示质点初始时刻在x =A /2 处且向x 轴负向运动,因此φ2=π/3.它们的旋转矢量图如图(b )所示.则两振动的运动方程分别为()()m 2/ππcos 1.01-=t x 和(2)由图(b )可知振动2超前振动1 的相位为5π/6. (3)()ϕω+'=+=t A x x x cos 21其中()m 0520cos 212212221.=-++='ϕϕA A A A A()12π0.268arctan cos cos sin sin arctan22112211-=-=++=ϕϕϕϕϕA A A A则合振动的运动方程为 ()()m π/12πcos 052.0-=t x()()m 3/ππcos 1.02+=t x题4-16 图4-17 图(a )表示t =0 时的简谐波的波形图,波沿x 轴正方向传播,图(b )为一质点的振动曲线.则图(a )中所表示的x =0 处振动的初相位与图(b )所表示的振动的初相位分别为( )题4-17 图(A)均为零 (B)均为2π(C)均为2π-(D)2π与2π-(E)2π-与2π分析与解 本题给了两个很相似的曲线图,但本质却完全不同.求解本题要弄清振动图和波形图不同的物理意义.图(a )描述的是连续介质中沿波线上许许多多质点振动在t 时刻的位移状态.其中原点处质点位移为零,其运动方向由图中波形状态和波的传播方向可以知道是沿y 轴负向,利用旋转矢量法可以方便的求出该质点振动的初相位为π/2.而图(b )是一个质点的振动曲线图,该质点在t =0 时位移为0,t >0 时,由曲线形状可知,质点向y 轴正向运动,故由旋转矢量法可判知初相位为-π/2,答案为(D ).4-18一横波以速度u 沿x 轴负方向传播,t 时刻波形曲线如图(a )所示,则该时刻() (A )A 点相位为π(B )B 点静止不动(C )C 点相位为2π3(D )D 点向上运动 分析与解由波形曲线可知,波沿x 轴负向传播,B 、D 处质点均向y 轴负方向运动,且B 处质点在运动速度最快的位置. 因此答案(B )和(D )不对. A 处质点位于正最大位移处,C 处质点位于平衡位置且向y 轴正方向运动,它们的旋转矢量图如图(b )所示.A 、C 点的相位分别为0和2π3.故答案为(C )题 4-18 图4-19 如图所示,两列波长为λ的相干波在点P 相遇.波在点S 1振动的初相是φ1,点S 1到点P 的距离是r 1.波在点S 2的初相是φ2,点S 2到点P 的距离是r 2,以k 代表零或正、负整数,则点P 是干涉极大的条件为( )()()()()()()π2/π2A π2/π2A π2A πA 211212121212k r r k r r k k r r =-+-=-+-=-=-λϕϕλϕϕϕϕ分析与解 P 是干涉极大的条件为两分振动的相位差π2Δk =,而两列波传到P 点时的两分振动相位差为()λϕϕϕ/π2Δ1212r r ---=,故选项(D )正确.题4-19图4-20 一横波在沿绳子传播时的波动方程为()x y ππ5.2cos 20.0-=,式中y 的单位为m ,t 的单位为s .(1)求波的振幅、波速、频率及波长;(2)求绳上质点振动时的最大速度;(3)分别画出t =1s 和t =2 s 时的波形,并指出波峰和波谷.画出x =1.0 m处质点的振动曲线并讨论其与波形图的不同.分析 (1)已知波动方程(又称波函数)求波动的特征量(波速u 、频率υ、振幅A 及波长λ等),通常采用比较法.将已知的波动方程按波动方程的一般形式⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛=0cos ϕωu x t A y 书写,然后通过比较确定各特征量(式中u x前“-”、“+”的选取分别对应波沿x 轴正向和负向传播).比较法思路清晰、求解简便,是一种常用的解题方法.(2)讨论波动问题,要理解振动物理量与波动物理量之间的内在联系与区别.例如区分质点的振动速度与波速的不同,振动速度是质点的运动速度,即v =dy/dt ;而波速是波线上质点运动状态的传播速度(也称相位的传播速度、波形的传播速度或能量的传播速度),其大小由介质的性质决定.介质不变,波速保持恒定.(3)将不同时刻的t 值代入已知波动方程,便可以得到不同时刻的波形方程y =y (x ),从而作出波形图.而将确定的x 值代入波动方程,便可以得到该位置处质点的运动方程y =y (t ),从而作出振动图. 解 (1)将已知波动方程表示为()[]()m 5.2/π5.2cos 20.0x t y -=与一般表达式()[]0cos ϕω+-=u x t A y /比较,可得0s m 52m 20001=⋅==-ϕ,.,.u A则m 0.2/,Hz 25.1π2/====v u λωv(2)绳上质点的振动速度()[]()1s m 5.2/π5.2sin π5.0d /d -⋅--==x t t y v则1max s m 57.1-⋅=v(3)t =1s和t =2s时的波形方程分别为()()()()m ππ5cos 20.0m ππ5.2cos 20.021x y x y -=-=波形图如图(a )所示. x =1.0m 处质点的运动方程为()()m π5.2cos 20.0t y -=振动图线如图(b )所示.波形图与振动图虽在图形上相似,但却有着本质的区别.前者表示某确定时刻波线上所有质点的位移情况,而后者则表示某确定位置的一个质点,其位移随时间变化的情况.题4-20图4-21 波源作简谐运动,其运动方程为()m tπcos240100.43-⨯=y ,它所形成的波形以30m·s-1的速度沿一直线传播.(1)求波的周期及波长;(2)写出波动方程. 分析 已知波源运动方程求波动物理量及波动方程,可先将运动方程与其一般形式进行比较,求出振幅A 、角频率ω及初相φ0,而这三个物理量与波动方程的一般形式()[]0cos ϕω+-=u x t A y /中相应的三个物理量是相同的.再利用题中已知的波速u 及公式ω=2πν=2π/T 和λ=uT 即可求解.解 (1)由已知的运动方程可知,质点振动的角频率1s π240-=ω.根据分析中所述,波的周期就是振动的周期,故有s 1033.8/π23-⨯==ωT波长为λ=uT =0.25 m(2)将已知的波源运动方程与简谐运动方程的一般形式比较后可得A =4.0 ×10-3m ,1s π240-=ω,φ0=0故以波源为原点,沿x 轴正向传播的波的波动方程为()[]()()m π8π240cos 100.4/cos 30x t u x t ωA y -⨯=+-=-()ϕω+=t cos A y4-22 图示为平面简谐波在t =0 时的波形图,设此简谐波的频率为250Hz ,且此时图中质点P 的运动方向向上.求:(1)该波的波动方程;(2)在距原点O 为7.5 m 处质点的运动方程与t =0 时该点的振动速度.分析 (1)从波形曲线图获取波的特征量,从而写出波动方程是建立波动方程的又一途径.具体步骤为:1. 从波形图得出波长λ、振幅A 和波速u =λυ;2. 根据点P 的运动趋势来判断波的传播方向,从而可确定原点处质点的运动趋向,并利用旋转矢量法确定其初相φ0.(2)在波动方程确定后,即可得到波线上距原点O 为x 处的运动方程y =y (t ),及该质点的振动速度υ=dy/dt .解 (1)从图中得知,波的振幅A =0.10 m ,波长λ=20.0m ,则波速u =λυ=5.0 ×103m·s-1.根据t =0 时点P 向上运动,可知波沿Ox 轴负向传播,并判定此时位于原点处的质点将沿Oy 轴负方向运动.利用旋转矢量法可得其初相φ0=π/3.故波动方程为()[]()[]()m 3/π5000/π500cos 10.0/cos 0++=++=x t u x t A y ϕω(2)距原点O 为x =7.5m处质点的运动方程为()()m 12π13π5000.10cos y /t +=t =0 时该点的振动速度为()-10s m 40.6/12π13sin π50/d d ⋅=-===t t y v题4-22图4-23 平面简谐波的波动方程为()x t y π2π4cos 08.0-=,式中y 和x 的单位为m ,t的单位为s,求:(1) t =2.1 s 时波源及距波源0.10m 两处的相位;(2)离波源0.80 m 及0.30 m 两处的相位差.解 (1)将t =2.1 s 和x =0 代入题给波动方程,可得波源处的相位π4.81=ϕ将t =2.1 s 和x′=0.10 m 代入题给波动方程,得0.10 m 处的相位为π2.82=ϕ(2)从波动方程可知波长λ=1.0 m .这样,x 1=0.80 m 与x 2=0.30 m 两点间的相位差πΔπ2Δ=⋅=λϕx4-24 两相干波波源位于同一介质中的A 、B 两点,如图(a )所示.其振幅相等、频率皆为100 Hz ,B 比A 的相位超前π.若A 、B 相距30.0m ,波速为u =400 m·s -1,试求AB 连线上因干涉而静止的各点的位置.题4-24图分析 两列相干波相遇时的相位差λϕϕϕrΔπ2Δ12--=.因此,两列振幅相同的相干波因干涉而静止的点的位置,可根据相消条件()π12Δ+=k ϕ获得.解 以A 、B 两点的中点O 为原点,取坐标如图(b )所示.两波的波长均为λ=u/υ=4.0 m .在A 、B 连线上可分三个部分进行讨论. 1. 位于点A 左侧部分()π14π2ΔA B A B -=---=r r ϕϕϕ因该范围内两列波相位差恒为2π的整数倍,故干涉后质点振动处处加强,没有静止的点. 2. 位于点B 右侧部分()π16π2ΔA B A B =---=r r ϕϕϕ显然该范围内质点振动也都是加强,无干涉静止的点.3. 在A 、B 两点的连线间,设任意一点P 距原点为x .因x r -=15B ,x r +=15A ,则两列波在点P 的相位差为()()π1/π2ΔA B A B +=---=x r r λϕϕϕ根据分析中所述,干涉静止的点应满足方程()()π152π1+=+k x x得()2,...1,0,k m2±±==k x因x≤15 m ,故k ≤7.即在A 、B 之间的连线上共有15 个静止点.4-25图(a )是干涉型消声器结构的原理图,利用这一结构可以消除噪声.当发动机排气噪声声波经管道到达点A 时,分成两路而在点B 相遇,声波因干涉而相消.如果要消除频率为300 Hz 的发动机排气噪声,则图中弯管与直管的长度差Δr =r 2-r 1至少应为多少?(设声波速度为340 m·s -1)题4-25图分析 一列声波被分成两束后再相遇,将形成波的干涉现象.由干涉相消条件,可确定所需的波程差,即两管的长度差Δr .解 由分析可知,声波从点A 分开到点B 相遇,两列波的波程差Δr =r 2 - r 1,故它们的相位差为()λλϕ/Δπ2/π2Δ12r r r =-=由相消静止条件Δφ=(2k +1)π,(k =0,±1,±2,…) 得 Δr =(2k +1)λ/2 根据题中要求令k =0 得Δr 至少应为m 57022.//===∆v u r λ讨论 在实际应用中,由于噪声是由多种频率的声波混合而成,因而常将具有不同Δr 的消声单元串接起来以增加消除噪声的能力.图(b )为安装在摩托车排气系统中的干涉消声器的结构原理图.4-26 一警车以25 m·s -1的速度在静止的空气中行驶,假设车上警笛的频率为v=800 Hz .求:(1)静止站在路边的人听到警车驶近和离去时的警笛声波频率;(2)如果警车追赶一辆速度为15m·s -1的客车,则客车上人听到的警笛声波的频率是多少?(设空气中的声速u =330m·s -1)分析 由于声源与观察者之间的相对运动而产生声多普勒效应,由多普勒频率公式可解得结果.在处理这类问题时,不仅要分清观察者相对介质(空气)是静止还是运动,同时也要分清声源的运动状态.解 (1)根据多普勒频率公式,当声源(警车)以速度υs =25 m·s -1运动时,静止于路边的观察者所接收到的频率为su uvv υ ='警车驶近观察者时,式中υs 前取“-”号,故有Hz 6.8651=-='su uv v υ警车驶离观察者时,式中υs 前取“+”号,故有Hz 7.7432=+='su uv v υ(2)客车的速度为0υ=15m·s -1,声源(警车)与客车上的观察者作同向运动时,观察者收到的频率为Hz 2.82603=--='su u v v υυ4-27 蝙蝠在洞穴中飞来飞去,能非常有效地用超声波脉冲导航.假如蝙蝠发出的超声波频率为39 kHz ,当它以声速的401的速度朝着表面平直的岩壁飞去时,试求它听到的从岩壁反射回来的超声波频率为多少?分析由题意可知,蝙蝠既是波的发出者,又是波的接收者.设超声波的传播速度为u.首先,蝙蝠是声源,发出信号频率为v ,运动速度为40s u =υ,岩壁是接收者,利用多普勒频率公式,即可求得岩壁接收到的信号频率v '.经岩壁反射后频率不变,即岩壁发射信号频率为v ',这时蝙蝠是波的接收者,其运动速度为400u =υ,再次利用多普勒频率公式,可求得蝙蝠接收到的信号频率v ''. 解将蝙蝠看成波源,则由分析可知,岩壁接收到的信号频率为sυ-='u uv v ,在蝙蝠接收岩壁反射信号时,又将它看成接收者.则蝙蝠接收到的信号频率为kHz 41kHz 3940/1140/11/1/1s 0s 00=⨯-+=-+=-+='+=''v u u v u u v u u v υυυυυ。
大学物理(第四版)课后习题与答案量子物理

第十七 章量子物理题17.1:天狼星的温度大约是11000℃。
试由维思位移定律计算其辐射峰值的波长。
题17.1解:由维思位移定律可得天狼星单色辐出度的峰值所对应的波长该波长nm 257m 1057.27m =⨯==-Tbλ 属紫外区域,所以天狼星呈紫色题17.2:已知地球跟金星的大小差不多,金星的平均温度约为773 K ,地球的平均温度约为293 K 。
若把它们看作是理想黑体,这两个星体向空间辐射的能量之比为多少?题17.2解:由斯特藩一玻耳兹曼定律4)(T T M σ=可知,这两个星体辐射能量之比为4.484=⎪⎪⎭⎫⎝⎛=地金地金T T M M 题17.3:太阳可看作是半径为7.0 ⨯ 108 m 的球形黑体,试计算太阳的温度。
设太阳射到地球表面上的辐射能量为1.4 ⨯ 103W ⋅m -2,地球与太阳间的距离为1.5 ⨯ 1011m 。
题17.3解:以太阳为中心,地球与太阳之间的距离d 为半径作一球面,地球处在该球面的某一位置上。
太阳在单位时间对外辐射的总能量将均匀地通过该球面,因此有 2244)(R Ed T M ππ=(1)4)(T T M σ= (2)由式(1)、(2)可得K 58004122=⎪⎪⎭⎫⎝⎛=σR E d T题17.4:钨的逸出功是4.52 eV ,钡的选出功是2.50 eV ,分别计算钨和钡的截止频率。
哪一种金属可以用作可见光围的光电管阴极材料?题17.4解:钨的截止频率 Hz 1009.115101⨯==hW ν 钡的截止频率Hz 1063.015202⨯==hW ν 对照可见光的频率围可知,钡的截止频率02ν正好处于该围,而钨的截止频率01ν大于可见光的最大频率,因而钡可以用于可见光围的光电管材料。
题17.5:钾的截止频率为4.62 ⨯ 1014 Hz ,今以波长为435.8 nm 的光照射,求钾放出的光电子的初速度。
题17.5解:根据光电效应的爱因斯坦方程W mv h +=221ν 其中λνν/0c h W ==,可得电子的初速度15210s m 1074.52-⋅⨯=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=νλc m h v由于选出金属的电子的速度v << c ,故式中m 取电子的静止质量。
大学物理下波动习题答案(马文蔚版)

⼤学物理下波动习题答案(马⽂蔚版)波动习题1⼀、选择题1、⼀平⾯简谐波沿Ox 正⽅向传播,波动表达式为]2)42(2cos[10.0π+-π=x t y ,则该波在t = 0.5 s 时刻的波形图是 [ B ]m )-m )2、已知⼀平⾯简谐波的表达式为 )cos(bx at A y -=(a 、b 为正值常量),则A 、波的频率为a .B 、波的传播速度为 b/a .C 、波长为π / b .D 、波的周期为2π / a .[ D ] 3、如图所⽰,有⼀平⾯简谐波沿x 轴负⽅向传播,坐标原点O 的振动规律为)cos(0φω+=t A y ),则B 点的振动⽅程为A 、])/(cos[0φω+-=u x t Ay . B 、)]/([cos u x t A y +=ω. C 、})]/([cos{0φω+-=u x t A y . D 、})]/([cos{0φω++=u x t A y .[ D ]⼆、填空题4、 A ,B 是简谐波波线上距离⼩于波长的两点.已知,B 点振动的相位⽐A 点落后π31,波长为λ = 3 m ,则A ,B 两点相距L = ____1/2____________m .5、已知波源的振动周期为4.00×10-2 s ,波的传播速度为300 m/s ,波沿x 轴正⽅向传播,则位于x 1 = 10.0 m 和x 2 = 16.0 m 的两质点振动相位差为π.6、请按频率递增的顺序,写出⽐可见光频率⾼的电磁波谱的名称___紫外线_______ ;_______X 射线___; ___γ射线______ .三、计算题7、图为t = T / 4 时⼀平⾯简谐波的波形曲线,求其波的表达式。
解:3304==µλTπππω16543302T 2=?==])360(165cos[1.0y ψπ+-=xt s T t 33014==0]3601165cos[1.00=+?=ψπy 0?Vπψ=∴])360(165cos[1.0y ππ+-=xt 8、⼀平⾯简谐波沿x 轴正向传播,波的振幅A = 10 cm ,⾓频率ω = 7π rad/s.当t = 1.0 s 时,x = 10 cm 处的a 质点正通过其平衡位置向y 轴负⽅向运动,⽽x = 20 cm 处的b 质点正通过y = 5.0 cm 点向y 轴正⽅向运动.设该波波长λ >10 cm ,求该平⾯波的表达式.解:设])(cos[y ψυω+-=x t Am X 24.0651.022=?=?=?=λπλπΔλπΔψ s m T /84.024.0272=?===πλωλυt=1时,346521πππφ=+=t=0时,ππππφ637340-=-= 即3π所以]3)84.0(7cos[1.0y ππ+-=x t波动习题2⼀、选择题1、⼀平⾯简谐波在弹性媒质中传播,质元从平衡位置运动到最⼤位移处的过程中A 、它的动能转换成热能。