简单桁架桥梁ANSYS分析

合集下载

ansys课程设计报告-平面桁架静力学分析

ansys课程设计报告-平面桁架静力学分析

辽宁工程技术大学课程设计课程大型工程分析软件及应用题目平面桁架的静力分析院系力学与工程学院专业班级学生姓名学生学号2018年01月07 日力学与工程学院课程设计任务书课程 大型工程分析软件及应用课程设计题目 平面桁架的静力分析专业 姓名主要内容:1、 小型铁路桥由横截面积为3250mm 2的钢制杆件组装而成。

一辆火车停在桥上,EX=2.1×105MPa ,μ=0.3,ρ=7.8×103kg/m 3。

试计算位置R 处由于载荷作用而沿水平方向移动的距离以及支反力,同时,分析各个节点的位移和单元应力。

2、 试件的几何参数设计报告目录a=1ma=1m a=1m b=1mRF2=280KNF1=210KN第1章概述................................................................................................................... - 3 -1.1 课程设计的意义、目的..................................................................................................... - 3 - 第2章 ANSYS详细设计步骤........................................................................................ - 3 -2.1问题分析.............................................................................................................................. - 3 -2.2基于ANSYS分析的步骤................................................................................................... - 3 -2.2.1启动ANSYS,进入ANSYS界面........................................................................... - 4 -2.2.2定义工作文件名和分析标题.................................................................................... - 4 -2.2.3设定分析类型............................................................................................................ - 4 -2.2.4选择单元类型............................................................................................................ - 4 -2.2.5定义实常数................................................................................................................ - 5 -2.2.6定义力学参数............................................................................................................ - 5 -2.2.7存盘............................................................................................................................ - 6 -2.2.8创立关键点先、线.................................................................................................... - 6 -2.2.9设置、划分网格........................................................................................................ - 8 -2.2.10施加荷载并求解.................................................................................................... - 10 - 第3章设计结果及分析............................................................................................. - 13 -3.1显示桁架变形图................................................................................................................. - 13 -3.2列表显示节点解................................................................................................................. - 14 -3.3上述分析对应的命令流如下:......................................................................................... - 15 - 结论............................................................................................................................... - 17 - 心得体会....................................................................................................................... - 17 - 参考文献....................................................................................................................... - 18 -设计报告第1章概述1.1 课程设计的意义、目的1〕ANSYS模态分析用于确定设计结构或机器部件的振动特性〔固有频率和振型〕,即结构的固有频率和振型,它们是承受动态载荷的重要参数,也可作为其他动力学分析的起点,是进行谱分析或模态叠加法普响应分析或瞬态动力学分析所必需的前期分析过程。

基于ansys的钢桁架桥的分析和计算

基于ansys的钢桁架桥的分析和计算

基于ansys的钢桁架桥的分析和计算姓名: 马彦学院:建筑与环境专业:工程力学学号:1043055033指导老师:朱哲明2013/6/151.问题简述钢桁架桥简图如下,尺寸如图,单元长12m,高16m。

设桥面板为0.3m厚的混凝土板。

杆件截面号形状规格端斜杆 1 工字梁400*400*16*16上下弦 2 工字梁400*400*12*12横向连接梁 2 工字梁400*400*12*12其他腹杆 3 工字梁400*300*12*12参数钢材混凝土EX 2.1x1011 3.5x1010PRXY 0.3 0.1667DENS 7850 25002.材料实常数3.半横架桥模型镜面对称,生成整体模型3.施加约束及受力4.计算及分析结果◆整体位移云图◆结点总位移矢量图◆单元第一主应力云图◆单元第二主应力云图◆单元第三主应力云图◆节点位移结果PRINT U NODAL SOLUTION PER NODE***** POST1 NODAL DEGREE OF FREEDOM LISTING *****LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATESYSTEMNODE UX UY UZ USUM1 0.18808E-02-0.20919E-01 0.70316E-03 0.21015E-012 0.11411E-02-0.21354E-01 0.59772E-03 0.21393E-013 0.14813E-02-0.20809E-01 0.11202E-02 0.20892E-014 0.15919E-02-0.20373E-01 0.11392E-02 0.20467E-015 0.22549E-02-0.18918E-01 0.10528E-02 0.19081E-016 0.23458E-02-0.18310E-01 0.10055E-02 0.18487E-017 -0.10050E-02-0.18459E-01-0.38731E-02 0.18887E-018 -0.11376E-02-0.19066E-01-0.38598E-02 0.19486E-019 0.24977E-02-0.12074E-01 0.72603E-03 0.12351E-0110 0.29237E-02-0.11079E-01 0.68719E-03 0.11479E-0111 -0.35033E-02-0.10438E-01-0.84626E-02 0.13887E-0112 -0.38537E-02-0.10965E-01-0.84226E-02 0.14353E-0113 0.27521E-02 0.0000 0.0000 0.27521E-0214 0.34768E-02 0.0000 0.0000 0.34768E-0215 0.82671E-03-0.17947E-01 0.14911E-03 0.17967E-0116 0.67748E-03-0.19250E-01 0.10648E-03 0.19262E-0117 0.42077E-02-0.19398E-01 0.59595E-02 0.20725E-0118 0.40812E-02-0.18095E-01 0.59727E-02 0.19488E-0119 0.40101E-03-0.10784E-01 0.34385E-04 0.10791E-0120 0.34470E-03-0.12307E-01 0.25523E-06 0.12312E-0121 0.69212E-02-0.11199E-01 0.10204E-01 0.16656E-0122 0.65820E-02-0.10142E-01 0.10244E-01 0.15847E-0123 0.0000 0.0000 0.0000 0.000024 0.0000 0.0000 0.0000 0.0000MAXIMUM ABSOLUTE VALUESNODE 21 2 22 2VALUE 0.69212E-02-0.21354E-01 0.10244E-01 0.21393E-01◆单元受力结果PRINT ELEMENT TABLE ITEMS PER ELEMENT***** POST1 ELEMENT TABLE LISTING *****STAT CURRENT CURRENTELEM ZHOU_I ZHOU_J1 -49659. 7936.32 -42695. -3502.73 -9873.9 -28642.4 9567.9 -51440.5 -15016. 23374.6 -22120. -5510.47 -26981. -11385.8 -33355. 18549.9 -17656. -15556.10 -16095. -16301.11 -16203. -16943.12 -12683. -20132.13 4836.6 5157.114 -17901. -18351.15 -2331.6 23001.16 -18331. -20015.17 -6067.9 50464.18 -19568. -26493.19 -5052.8 51411.20 -26836. -34142.21 -23626. -29919.22 -32522. -21349.23 -35649. -25215.24 -699.47 1061.525 690.13 -1048.326 5802.4 -1462.327 -9677.8 5182.928 16212. -4765.129 -4310.8 3979.130 -25.038 0.000031 -9.3064 0.000032 23.898 0.000033 -3569.2 -42609.34 8110.9 -49823.35 -5544.6 -22051.36 -11343. -27005.37 18453. -33238.38 -28592. -9977.139 -51593. 9648.540 23614. -15193.41 -16998. -16116.***** POST1 ELEMENT TABLE LISTING *****STAT CURRENT CURRENTELEM ZHOU_I ZHOU_J42 -20120. -12682.43 -15489. -17761.44 -16350. -16082.45 5157.1 4836.646 -18351. -17901.47 -2225.2 22850.48 -18463. -19869.49 -6087.5 50530.50 -19228. -26843.51 -5332.4 51796.52 -21374. -32473.53 -25205. -35655.54 -34114. -26894.55 -29953. -23607.56 -1061.5 699.4757 1048.3 -690.1358 5171.8 -9672.159 -1448.6 5796.560 3928.8 -4269.361 -4732.8 16215.62 -20.844 0.000063 -5.2944 0.000064 36.585 0.0000MINIMUM VALUESELEM 39 4VALUE -51593. -51440.MAXIMUM VALUESELEM 40 51VALUE 23614. 51796.5.命令流文件/FILNAM,Structural/TITLE,Truss Bridge Static Analysis/COM,Structural/prep7et,1,beam4et,2,shell63sectype,1,beam,i,,0 !定义工字型截面secoffset,cent !截面至心不偏移secdata,0.4,0.4,0.4,0.016,0.016,0.016,0,0,0,0 !定义工字型截面参数sectype,2,beam,i,,0secoffset,centsecdata,0.4,0.4,0.4,0.012,0.012,0.012,0,0,0,0sectype,3,beam,i,,0secoffset,centsecdata,0.3,0.3,0.4,0.012,0.012,0.012,0,0,0,0r,1,0.0187,0.00017,0.00054,0.4,0.4,0, !定义单元实常数r,2,0.0141,0.128e-3,0.415e-3,0.4,0.4,,r,3,0.0117,0.541e-4,0.324e-3,0.3,0.4,,r,4,0.3,,,,,,MP,EX,1,2.1E11MP,PRXY,1,0.3MP,DENS,1,7850MP,EX,2,3.5E10MP,PRXY,2,0.1667MP,DENS,2,2500N,,0,0,-5,,,, !创建节点,复制结点NGEN,4,4,ALL,,,12,,,1,NGEN,2,1,ALL,,,,,10,1,NGEN,2,1,2,10,4,,16,,1,NGEN,2,1,3,11,4,,,-10,1,TYPE,1MAT,1REAL,1ESYS,0 !单元坐标系SECNUM,1TSHAP,LINEE,11,14 !建立单元TYPE,1 MAT,1 REAL,1 ESYS,0 SECNUM,2 TSHAP,LINE E,2,6E,6,10E,10,14 E,1,5E,5,9E,9,13E,3,7E,7,11E,4,8E,8,12E,1,2E,3,4E,5,6E,7,8E,9,10E,13,14 TYPE,1 MAT,1 REAL,1 ESYS,0 SECNUM,3 TSHAP,LINE E,3,6E,6,11E,4,5E,5,12E,2,3E,1,4E,6,7E,5,8E,10,11 E,9,12 TYPE,2 MAT,2 REAL,1 ESYS,0TSHAP,QUADE,1,2,6,5E,5,6,10,9E,9,10,14,13NSYM,X,14,ALL ESYM,,14,ALLNUMMRG,ALL,,,,LOW NUMCMP,ALL FINISH/SOLNSEL,S,,,23,24D,ALL,,,,,,UX,UY,UZ,,, NSEL,S,,,13,14D,ALL,,,,,,UY,UZ,,, NSEL,S,,,1,2F,ALL,FY,-100000 ALLSEL,ALL ACEL,0,10,0, ANTYPE,0SOLVEFINISH/POST1PLDISP,2PLNSOL,U,SUM,0,1PLVECT,U,,,,VECT,NODE,ON,0ETABLE,zhou_i,SMISC,1ETABLE,zhou_j,SMISC,7ETABLE,zhou_i,SMISC,2ETABLE,zhou_j,SMISC,8ETABLE,zhou_i,SMISC,6ETABLE,zhou_j,SMISC,12PRETAB,ZHOU_I,ZHOU_J,JIAN_I,JIAN_J,WAN_I,WAN_J PLLS,ZHOU_I,ZHOU_J,1,0PRNSOL,U,COMPFINISH/EXIT。

根据ANSYS的桥梁分析

根据ANSYS的桥梁分析

钢桁架桥静力受力分析对一架钢桁架桥进行具体静力受力分析,分别采用GUI方式和命令流方式。

A 问题描述图6-15 钢桁架桥简图已知下承式简支钢桁架桥桥长72米,每个节段12米,桥宽10米,高16米。

设桥面板为0.3米厚的混凝土板,当车辆行驶于桥梁上面时,轴重简化为一组集中力作用于梁上,来计算梁的受力情况。

桁架杆件规格有三种,见下表:杆件截面号形状规格端斜杆 1 工字形400×400×16×16上下弦 2 工字形400×400×12×12 横向连接梁 2 工字形400×400×12×12其他腹杆 3 工字形400×300×12×12所用材料属性如下表:表6-3 材料属性参数钢材混凝土弹性模量EX 2.1×1011 3.5×1010泊松比PRXY 0.3 0.1667密度DENS 7850 2500B GUI操作方法1.创建物理环境1)过滤图形界面:GUI:Main Menu> Preferences,弹出“Preferences for GUI Filtering”对话框,选中“Structural”来对后面的分析进行菜单及相应的图形界面过滤。

2)定义工作标题:GUI:Utility Menu> File> Change Title,在弹出的对话框中输入“Truss Bridge StaticAnalysis”,单击“OK”。

如图6-16(a)。

指定工作名:GUI:Utility Menu> File> Change Jobname,弹出一个对话框,在“Enter new Name”后面输入“Structural”,“New log and error files”选择yes,单击“OK”。

如图6-16(b)。

图6-16(a)定义工作标题图6-16(b)指定工作名3)定义单元类型和选项:GUI:Main Menu> Preprocessor> Element Type> Add/Edit/Delete,弹出“Element Types”单元类型对话框,单击“Add”按钮,弹出“Library of Element Types”单元类型库对话框。

Ansys作业2桁架分析

Ansys作业2桁架分析

(1) 进入ANSYS(设定工作目录和工作文件)1) 进入ANSYS菜单路径“程序>ANSYS >ANSYS10.0”2) 设置工作文件名菜单路径“file > Change Jobname”,弹出“Change Jobname”对话框,输入“CYKLink”,单击【OK】确定并关闭对话框。

(2) 设置计算类型菜单路径“ANSYS Main Menu: Preferences…”,在弹出的对话框中选择“Structural”,单击【OK】确定并关闭对话框。

(3) 选择单元类型菜单路径“ANSYS Main Menu: Preprocessor >Element Type>Add/Edit/Delete…”,在弹出“Library of Element Types”对话框中按照如图1所示参数选择,单击【OK】确定并关闭对话框。

图1 “Library of Element Types”对话框(4) 定义实常数菜单路径“ANSYS Main Menu: Preprocessor >Real Constants…>Add/Edit/Delete ”,在弹出的对话框中单击“Add > OK”,弹出如图2所示“Real Constant …”对话框,参数设置“AREA 0.000416”,单击【OK】确定并关闭对话框。

图2 “Real Constant …”对话框(5) 定义材料参数菜单路径“ANSYS Main Menu: Preprocessor > Material Props > Material Models”,在弹出的菜单中打开“Structural > Linear > Elastic > Isotropic”,弹出如图3所示“Linear Isotropic Material…”对话框,并设置如下参数。

图3 “Linear Isotropic Material…”对话框图4 “Beam Tool”对话框(6) 定义梁的截面菜单路径“ANSYS Main Menu: Preprocessor > Sections > Beam > Common Sections”,弹出如图4所示“Beam Tool”对话框,并按照图4设置,单击【OK】确定关闭对话框。

ANSYS结构静力学分析应用实例解析--钢桁架桥的受力分析

ANSYS结构静力学分析应用实例解析--钢桁架桥的受力分析

ANSYS结构静⼒学分析应⽤实例解析--钢桁架桥的受⼒分析1. 问题描述钢桁架桥简图如下,已知下承式简⽀钢桁架桥长72m,每个节段为12m,桥宽10m,⾼16m。

设桥⾯板为0.3m厚的混凝⼟板。

2. 求解步骤2.1 建⽴⼯作⽂件名和⼯作标题/FILNAME,Structural/TITLE,Truss Bridge Static Analysis2.2 过滤图形界⾯/COM, Structural ! 指定分析类型为结构分析2.3 定义单元类型/PREP7ET,1,BEAM4ET,2,SHELL632.4 定义梁单元截⾯Main Menu>Preprocessor>Sections>Beam>Common SectionsSECTYPE,1,BEAM,I, , 0 ! 定义⼯字型截⾯ SECOFFSET, CENT !截⾯质⼼不偏移SECDATA,0.4,0.4,0.4,0.016,0.016,0.016,0,0,0,0 !定义⼯字型截⾯参数SECTYPE,2,BEAM,I, , 0 ! 定义⼯字型截⾯SECOFFSET, CENT !截⾯质⼼不偏移SECDATA,0.4,0.4,0.4,0.012,0.012,0.012,0,0,0,0 !定义⼯字型截⾯参数SECTYPE,3,BEAM,I, , 0 ! 定义⼯字型截⾯SECOFFSET, CENT !截⾯质⼼不偏移SECDATA,0.3,0.3,0.4,0.012,0.012,0.012,0,0,0,0 !定义⼯字型截⾯参数2.5 定义实常数Main Menu>Preprocessor>Real Constants>Add/Edit/DeleteR,2,0.0141,0.128E-3,0.415E-3,0.4,0.4R,3,0.0117,0.541E-4,0.324E-3,0.3,0.4R,4,0.32.6 定义材料属性MP,EX,1,2.1E11 ! 定义钢材的材料属性MP,PRXY,1,0.3MP,DENS,1,7800MP,EX,2,3.5E10 ! 定义混凝⼟的材料属性MP,PRXY,2,0.1667 MP,DENS,2,25002.7 创建有限元模型2.7.1 ⽣成半跨桥的节点N,,0,0,-5NGEN,4,4,ALL,,,12,,,1NGEN,2,1,ALL,,,,,10,1NGEN,2,1,2,10,4,,16,,1NGEN,2,1,3,11,4,,,-10,12.7.2 ⽣成半跨桥单元TYPE,1MAT,1REAL,1ESYS,0SECNUM,1 !选择截⾯编号TSHAP,LINE !选择线性单元E,11,14 E,12,13TYPE,1MAT,1REAL,2ESYS,0SECNUM,2 !选择截⾯编号TSHAP,LINE !选择线性单元E,2,6 E,6,10E,10,14E,1,5E,5,9E,3,7E,7,11E,4,8E,8,12E,1,2E,3,4E,5,6E,7,8E,9,10E,11,12E,13,14TYPE,1MAT,1REAL,3ESYS,0SECNUM,3 !选择截⾯编号TSHAP,LINE !选择线性单元E,3,6E,6,11E,4,5E,5,12E,2,3E,1,4E,6,7E,5,8E,10,11E,9,12TYPE,2MAT,2REAL,4ESYS,0SECNUM,3 !选择截⾯编号TSHAP,QUAD !选择四边形单元E,1,2,6,5 E,5,6,10,9E,9,10,14,13Main Menu>Preprocessor>Modeling>Reflect>NodesNSYM,X,14,ALL ! 所有节点以YOZ 平⾯对称ESYM,,14,ALL !所有单元以YOZ 平⾯对称2.7.4 合并重合节点和单元NUMMRG,ALL,,,,LOW ! 合并重复节点单元,编号取较⼩者NUMCMP,ALL ! 压缩节点单元等编号2.7.5 保存模型并退出前处理器SA VE,’mo_xing’,’db’FINISH2.8 施加位移约束/SOL2.8.1 施加位移约束NSEL,S,,,23,24 ! 选择左端节点D,ALL,,,,,,UX,UY,UZ ! 对左端节点施加位移约束NSEL,S,,,13,14 ! 选择右端节点D,ALL,,,,,,UY,UZ ! 对右端节点施加位移约束2.8.2 施加集中⼒NSEL,S,,,1,2 ! 选择中间节点F,ALL,FY,-100000 ! 对中间节点施加竖向集中⼒荷载2.8.3 施加重⼒ALLSEL,ALLACEL,0,10,0 ! 施加重⼒2.9 求解计算ANTYPE,0SOLVEFINISH2.10 查看计算结果2.10.1 查看结构变形图/POST1PLDISP,2 ! 显⽰结构变形图2.10.2 云图显⽰位移PLNSOL,U,SUM,0,1 ! 显⽰总位移云图Main Menu>General Postproc>Plot Results>Vector Plot>PredefinedPLVECT,U,,,,VECT,NODE,ON,0 ! 显⽰节点总位移⽮量图2.10.4 显⽰结构内⼒图2.10.4.1 定义单元表Main Menu>General Postproc>Element Table>Define TableETABLE,zhouli_i,SMISC,1 ! 定义单元表轴⼒ETABLE,zhouli_j,SMISC,7ETABLE,jianli_i,SMISC,2 ! 定义单元表剪⼒ETABLE,jianli_j,SMISC,8ETABLE,wanju_i,SMISC,6 ! 定义单元表弯矩ETABLE,wanju_j,SMISC,122.10.4.2 列表单元表结果PRETAB, zhouli_i, zhouli_j, jianli_i, jianli_j, wanju_i, wanju_j ! 列表显⽰单元表结果Main Menu>General Postproc>Plot Results>Contour Plot>Line Elem ResPLLS, zhouli_i, zhouli_j,1,0 ! 显⽰轴⼒图。

基于ansys的铁路钢桁架桥受力分析1

基于ansys的铁路钢桁架桥受力分析1

第一章工程简介1.1工程概况一、结构设计本工程为单线铁路刚桁架桥,铁路线穿过山区桁架桥跨越峡谷,设计桥梁为简支栓焊桁架桥。

整座桥梁主要由桁架构成的桥跨结构和桥墩、桥台组成,为下承式桥。

该桥的跨度为64m,两侧桥台为重力式,其桥跨的的布置及各种杆件的尺寸如图1所示:图1 桥跨的布置以及各种杆件的基本尺寸注:桥跨的单位为m,各种杆件的截面尺寸单位为mm;所有杆件皆为H型截面,所用钢材为16Mnq;图中1为上下弦杆,2为端斜杆,3为直腹杆,4为斜腹杆。

桁架由上弦、下弦、腹杆组成;腹杆的形式又分为斜腹杆、直腹杆;本设计中上下弦杆,端斜杆,直腹杆杆,斜腹杆分别采用不同同的工字钢。

由于杆件本身长细比较大,虽然杆件之间的连接可能是“固接”,但是实际杆端弯矩一般都很小,因此,设计分析时可以简化为“铰接”。

简化计算时,杆件都是“二力杆”,只承受压力或者拉力,而不产生弯矩和剪力。

由于桥梁跨度较大,而单榀的桁架“平面外”的刚度较弱,因此,“平面外”需要设置支撑,设计桥梁时,“平面外”一般也是设计成桁架形式,这样,桥梁就形成双向都有很好刚度的整体。

有些桥梁桥面设置在上弦,因此力主要通过上弦传递;也有的桥面设置在下弦,由于平面外刚度的要求,上弦之间仍需要连接以减少上弦平面外计算长度。

桁架的弦杆在跨中部分受力比较大,向支座方向逐步减小;而腹杆的受力主要在支座附件最大,在跨中部分腹杆的受力比较小,甚至有理论上的“零杆”。

二、施工方法设计采用拖拉法架设简支栓焊桁架桥,其施工步骤为:1.在桥头路基上布置滑道,其滑道的数量要进行计算确定;2.在滑道上拼装钢梁;3.按照牵引设备进行技术检查,合格后开始拖拉钢梁只预定的桥孔位置;4.钢梁降落就位。

技术检查内容包括:钢梁的拼装质量、钢梁的拱度是否满足设计要求;加固杆件的数量、位置和质量是否满足要求;钢梁的中心位置和标高、滑道的设置、牵引动力的配置情况、落梁的设备、信号和照明、施工流程及人身设备安全。

基于ANSYS的平面桁架有限元分析.

基于ANSYS的平面桁架有限元分析.

PREP7 !* ET,1,LINK180 !* R,1,10, ,0 !* !* MPTEMP,,,,,,,, MPTEMP,1,0 MPDATA,EX,1,,2.0e6 MPDATA,PRXY,1,,0.3 WPSTYLE,,,,,,,,0 WPSTYLE,,,,,,,,1 WPSTYLE,,,,,,,,0 WPSTYLE,,,,,,,,1 FLST,3,1,8 FITEM,3,0,0,0 N, ,P51X FLST,3,1,8 FITEM,3,30,0,0 N, ,P51X FLST,3,1,8 FITEM,3,0,30,0 N, ,P51X FLST,3,1,8 FITEM,3,30,30,0 N, ,P51X FLST,3,1,8 FITEM,3,60,30,0
5
数值解与解析解的比较与分析
求出了平面桁架的数值解与解析解,现将两 者的结果进行列表对比
数值解与解析解的比较与分析
表2 整体坐标系下各节点的位移(in)
节点 解析解
U1x 0 0
U1y 0 0
U2x -0.0029 -0.002925
U2y -0.0085 -0.0084404
U3x 0 0
U3y 0 0
基于AN限元分析
平面桁架是工程中常见的结构,本文基于ANSYS平台对平面桁架进行有 限元分析。 首先通过有限元法的理论知识求得平面桁架在一定工况下的理论值,然 后利用ANSYS进行分析得到数值解,最后通过比较理论解与数值解得出结论。 利用ANSYS对平面桁架进行有限元分析,可以提取其他分析结果,对深 入研究平面桁架问题提供了强有力手段,也对其他结构问题的有限元分析具 有指导性意义与价值。
数值解与解析解的比较与分析
表4 单元①的内力与正应力(lb)

钢桁架桥梁结构的ANSYS分析

钢桁架桥梁结构的ANSYS分析

钢桁架桥梁结构的ANSYS分析摘要本文中采用有限元分析法,在大型有限元分析软件ANSYS平台上分析桥梁工程结构,很好地模拟桥梁的受力、应力情况等。

在静力分析中,通过加载各种载荷,得出结构变形图,找出桥梁的危险区域。

1、问题描述下面以一个简单桁架桥梁为例,以展示有限元分析的全过程。

该桁架桥由型钢组成,顶梁及侧梁,桥身弦杆,底梁分别采用3种不同型号的型钢,结构参数见表1-1。

桥长L=32m,桥高H=5.5m。

桥身由8段桁架组成,每段长4m。

该桥梁可以通行卡车,若这里仅考虑卡车位于桥梁中间位置,假设卡车的质量为4000kg,若取一半的模型,可以将卡车对桥梁的作用力简化为P1 ,P2和P3 ,其中P1= P3=5000 N, P2=10000N,见图1。

1图1桥梁的简化平面模型(取桥梁的一半)2、模型建立在桥梁结构模拟分析中,最常用的是梁单元和壳单元,鉴于桥梁的模型简化,采用普通梁单元beam3。

实体模型的建立过程为先生成关键点,再形成线,从而得到桁架桥梁的简化模型。

3、有限元模型3.1单元属性整个桥梁分成三部分,分别为顶梁及侧梁、弦杆梁、底梁,三者所使用的单元都为beam3单元,因其横截面积和惯性矩不同,所以设置3个实常数。

此外,他们材料都为型钢,材料属性视为相同,取为弹性模量EX为2.1e11 ,泊松比prxy为0.3,材料密度dens为7800。

3.2网格划分线单元尺寸大小为2,即每条线段的1/2。

4、计算4.1约束根据问题描述的要求,该桁架桥梁在x=0处的边界条件为全约束,x=32处的边界条件为y方向位移为0(即UY=0)。

如下图所示。

4.2载荷卡车对桥梁的压力视为3个集中载荷,因为模型只取桥梁的一般,所以3个集中载荷的力之和为20000N,分别为p1=5000N,p2=10000N,p3=5000N。

并将载荷施加在底梁的关键点4,5,6上。

如下图所示。

5、静力分析的计算结果5.1查看结构变形图显示y方向位移显示x方向位移5.2结论从加载后的结构变形图中可以看出,在载荷作用下,桁架桥的中间位置向下发生弯曲变形最为明显而两侧的侧梁变形最小,载荷引起的位移最大处在桥中间位置,随跨中间向两侧递减。

ansys建模桁架结构

ansys建模桁架结构

实验类别: 土木工程结构创新实验 专 业: 土 木 工 程班 级: 11070542组 号: 第 六 组姓 名: 印 前 名小组成员: 张旭岗 陈焕学 王朝史国兴 赵敏 张丽青一、实验名称:桁架桥模型二、实验材料:竹子、铁钉、胶水实验仪器:64件材料加工器具实验手段:有限元软件分析、缩尺模型实验三、实验目的熟悉各种结构模型受力原理、提高动手能力、有限元软件操作能力三、实验建模的基本过程及主要步骤1、实验构思及选型(附思考过程、草图或照片、结构尺寸等)思考过程:首先,我们小组进行了方案选型,大家都提出了自己的方案,并在老师指导下,进行了分析对比,考虑到材料的尺寸,建模的可行性,小组最终确定了下面的模型,模型及尺寸如下(单位mm)。

2、结构整体(或局部)优化过程(附调整草图或照片)考虑到初次建的模型变形过大,我们在中间跨加了两个小三角形,模型及尺寸如下(mm)3、最终设计的结构模型(附ANSYS及缩尺模型照片)四、缩尺模型加载及有限元数据对比分析:1、荷载施加位置示意图(ANSYS)(加载5kg,加载点(100,500,0))弯矩图轴力图整体变形图2、荷载施加位测点布设及测量结果表1 ANSYS软件计算结果加载次数 荷载数值(100,500,0)__1_测点位移(100,500,0)_2__测点位移(100,200,0)__3_测点位移(100,600,0)第一次 0.957kg 0.577 0.061 0.013 第二次 1.594kg 0.961 0.102 0.022 第三次 2.231kg 1.344 0.143 0.031表2 百分表实际测试结果加载次数 荷载数值(100,500,0)__1_测点位移(100,500,0)__2_测点位移(100,200,0)_3__测点位移(100,600,0)第一次 0.957kg 0.551 0.088 0.096 第二次 1.594kg 0.956 0.099 0.175 第三次 2.231kg 1.325 0.121 0.214五、讨论及思考1、产生区别的原因可能是什么?(1)材料的弹性模量不确定性和差异性(2)模型的实际尺寸、节点连接形式和理论有差别(3)实际施加约束和理论有差距2、你们小组是如何制作好一个缩尺模型或建好一个有限元模型的?(1)分工合作,ANSYS建模,缩尺模型同步进行,并做好技术搭接;(2)在建缩尺模型时,先计算好尺寸,再操作;程序部分! 结构创新实验 ANSYS 建模命令流文件!################################################################ ######finish/clear,all/filname, civil engineering/TITLE, truss Structure Analysis !!!!题目的标题,桁架结构分析/REP !!!自动显示当前坐标,re/Prep7 !!!进入前处理ET, 1, BEAM4 ! 梁单元!!!!!定义材料属性!!!MP=meterial propertyMP, EX, 1, 69e+2 !调整后竹子弹性模量MP, PRXY, 1, 0.20 ! 泊松比MP, DENS, 1, 2500 ! 密度,不考虑重力,此数据无用!!上面的1表示1号材料的属性!!!!!!定义实常数!!!R=real constant,含义跟截面有关R,1,120,640,2250,15,8, , ! 框架柱单元!RMORE, ,2/192, , , , ,!!!RMORE表示一行放不下,需要续行,具体填写的时候需要查看其单元类型R,2,64,341.333, 341.333,8,8, , ! 外环梁单元!RMORE, ,0.00425, , , , ,!!!!!!定义关键点K,1,0,0,0K,2,0,200,0K,3,0,300,0K,4,0,400,0K,5,0,500,0K,6,0,600,0K,7,0,700,0K,8,0,800,0K,9,0,1000,0K,10,0,500,343.6K,11,0,420,207.8K,12,0,580,207.8K,13,0,150,-258.9K,14,0,850,-258.9K,21,200,0,0K,22,200,200,0K,23,200,300,0 K,24,200,400,0K,25,200,500,0K,26,200,600,0K,27,200,700,0K,28,200,800,0K,29,200,1000,0K,210,200,500,343.6K,211,200,420,207.8K,212,200,580,207.8K,213,200,150,-258.9K,214,200,850,-258.9!!!!!!!生成线元L,1,2L,2,3L,3,4L,4,5L,5,6L,6,7L,7,8L,8,9L,3,11L,11,10L,10,12L,12,7L,11,12L,1,13L,13,3L,7,14L,14,9L,21,22 L,22,23 L,23,24L,24,25L,25,26L,26,27L,27,28L,28,29L,23,211L,211,210L,210,212L,212,27L,211,212L,21,213L,213,23L,27,214L,214,29LATT,1,1,1 ! 指定框架柱线元属性 !!!!LATT, MAT, REAL, TYPE, --, KB, KE, SECNUM!!!Associates element attributes with the selected, unmeshed linesLESIZE,ALL,,,8,,1,,,1, ! 指定框架柱线元网格划分!!!LESIZE, NL1, SIZE, ANGSIZ, NDIV, SPACE, KFORC, LAYER1, LAYER2, KYNDIV!!!划分为几段,8段LMESH,ALLL,1,21L,2,22L,4,24L,6,26L,8,28L,9,29L,1,22L,22,4L,4,26L,26,8L,8,29L,10,210L,13,213L,14,214L,5,11L,12,5L,25,211L,212,25LATT,1,2,1 ! 指定框架柱线元属性!!!!LATT, MAT, REAL, TYPE, --, KB, KE, SECNUM!!!Associates element attributes with the selected, unmeshed linesLESIZE,ALL,,,8,,1,,,1, ! 指定框架柱线元网格划分!!!LESIZE, NL1, SIZE, ANGSIZ, NDIV, SPACE, KFORC, LAYER1, LAYER2, KYNDIV!!!划分为几段,8段LMESH,ALLNUMMRG,NODE, , , ,LOW ! 合并节点NUMCMP,NODE ! 压缩节点编号finish/solu! ! ! 施加位移约束dk,13,ux,0,,0,uy,uzdk,213,ux,0,,0,uy,uzdk,14,ux,0,,0,uy,uzdk,214,ux,0,,0,uy,uzchakandian=node(100,500,0)F,chakandian,FZ,-5*9.8solve !开始求解finish !结束求解器/post1 !!!!!!!!!!!看弯矩大小 !!!!!!ETABLE,moment_x,SMISC,4 !!!!!!PLETAB,moment_x,NOAV !!!!!!ETABLE,moment_y,SMISC,5 !!!!!!PLETAB,moment_y,NOAV !!!!!!!!!看位移PLNSOL, U,SUM, 0,1.0 !!!总的位移,0表示不覆盖原有变形,变形系数1.0PLNSOL, U,x, 0,1.0 !!!总的位移,变形系数1.0PLNSOL, U,z, 0,1.0 !!!总的位移,变形系数1.0!!!!看轴力ETABLE,strain,LS, 1 !!!!!!!* !!!!!!PLETAB,STRAIN,NOAV !!!!!!!!!!!看整体变形pldisp,2 !显示结构变形图。

基于ANSYS的桁架桥简单的力学分析

基于ANSYS的桁架桥简单的力学分析

基于ANSYS的桁架桥简单的力学分析姓名戴航学号20120680203专业工程力学班级2班二〇一五年六月一、桁架桥的工程背景及用途桁架桥简介:桁架桥是桥梁的一种形式,一般多见于铁路和高速公路,指的是以桁架作为上部结构主要承重构件的桥梁。

桁架桥为空腹结构,因而对双层桥面有很好的适应性。

桁架是由直杆组成的一般具有三角形单元的平面或空间结构,桁架杆件主要承受轴向拉力或压力,从而能充分利用材料的强度,节约材料,在跨度较大时可比实腹梁节省材料,减轻自重和增大刚度。

本文通过分析在卡车过桥时,对桁架桥进行ansys静力分析和模态分析,给出危险截面,从而为优化设计提供理论依据。

桁架桥实物如下:桥梁的简化平面模型(取桥梁的一半):二、研究对象简介在本文的分析中,分析模型为:桁架桥由型钢组成,顶梁及侧梁,桥身弦杆,底梁分别采用3种不同型号的型钢,结构参数见表3-6。

桥长L=32m,桥高H=5.5m。

桥身由8段桁架组成,每段长4m。

该桥梁可以通行卡车,若这里仅考虑卡车位于桥梁中间位置,假设卡车的质量为4000kg,若取一半的模型,可以将卡车对桥梁的作用力简化为P1 ,P2和P3 ,其中P1= P3=5000 N, P2=10000N。

材料性能为:弹性模量E=2.10e10Pa,泊松比为0.3,密度7800kg/m3。

表3-6 桥梁结构中各种构件的几何性能参数三、单元类型:共选用三种单元:1、顶梁及侧梁(beam1),定义1号是实常数用于beam1,截面参数见上表;2、桥身弦梁(beam2),定义2号实常数用于beam2,截面数据见上表;3、底梁(beam3),定义3号实常数用于beam3,截面数据见上表。

四、主要建模过程1、定义单元类型2、定义实常数以确定梁单元的截面参数,,定义材料参数3、构造桁架桥模型生成桥体几何模型:ANSYS Main Menu:Preprocessor → Modeling → Create → Keypoints → In Active CS → NPT Keypoint number:1,X,Y,Z Location in active CS:0,0 → Apply→同样输入其余15个特征点坐标(最左端为起始点,坐标分别为 (4,0), (8,0), (12,0), (16,0), (20,0), (24,0), (28,0), (32,0), (4,5.5), (8,5.5), (12,5.5), (16.5.5), (20,5.5), (24,5.5), (28,5.5))→ Lines → Lines → Straight Line →依次分别连接特征点→ OK网格划分:ANSYS Main Menu: Preprocessor → Meshing → Mesh Attributes → Picked Lines →选择桥顶梁及侧梁→OK → select REAL: 1, TYPE: 1 → Apply →选择桥体弦杆→OK → select REAL: 2, TYPE: 1 → Apply →选择桥底梁→ OK → select REAL: 3, TYPE:1 → OK → ANSYS Main Menu:Preprocessor → Meshing → MeshTool →位于Size Controls下的Lines:Set → Element Size on Picked → Pick all →Apply → NDIV:1 → OK → Mesh → Lines → Pick all → OK (划分网格)3、给模型加约束和施加载荷4、计算分析,显示结果五、工况分析:1、加载工况施加载荷ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Force/Moment → On Keypoints →选取底梁上卡车两侧关键点(X坐标为12及20)→OK → select Lab: FY,Value: -5000 → Apply →选取底梁上卡车中部关键点(X 坐标为16)→ OK → select Lab: FY,Value: -10000 → OK→ ANSYS Utility Menu:→ Select → Everything图形显示结构Y方向的位移(a)桥梁中部最大挠度值为0.003 374m等效应力云图(b)桥梁中部轴力最大值为25 380N2、自重工况。

ansys简单桁架分析

ansys简单桁架分析

6.3 显示压力分布图 General Postproc----Plot Results--contour plot---nodal solu—DOF solution—Displace vector sum— addtion 中选择 all applicable
6.4 显示结点位移
General Postproc----List Results---Nodal Solution—DOF Solution---Displacement vecU)---PlotCtrls---animate—Deformed results—OK得到动画
5.2 定义载荷 Loads---define loads—apply---structural--force/moment---on nodes—选择4结点---OK--选择FY---填入-5000---OK Loads---define loads—apply---structural--force/moment---on nodes—选择5结点---OK--选择FY---填入-7000---OK Loads---define loads—apply---structural--force/moment---on nodes—选择5结点---OK--选择FX--填入2000---OK
3.3 选择材料为线性,并定义弹性模量 Preprocessor—material models---structural--linear---elastic---isotropic---在EX中填入 3E7---OK(线性—弹性材料—各向同性) Preprocessor—material models---materialnew model--structural---linear---elastic--isotropic---在EX中填入1E7---OK

简单桁架桥梁ansys分析

简单桁架桥梁ansys分析

简单桁架桥梁ansys分析Ansys是一款广泛使用的有限元分析软件,可以用于各种工程结构的分析,包括桁架桥梁。

下面是一个简单的桁架桥梁分析的步骤,使用Ansys进行模拟。

一、建立模型1.创建新的分析:在Ansys中,首先需要创建一个新的分析。

选择适当的分析类型,例如静态分析或动态分析,根据需要进行设置。

2.创建几何体:在Ansys中,可以使用自带的建模工具创建几何体。

对于桁架桥梁,需要创建梁单元和节点。

梁单元用于模拟桥梁的横梁和纵梁,节点用于连接梁单元。

3.定义材料属性:为梁单元分配适当的材料属性,例如弹性模量、泊松比、密度等。

4.网格化:对几何体进行网格化,以生成有限元网格。

可以调整网格密度以获得更精确的结果。

5.边界条件和载荷:定义边界条件和载荷。

对于桁架桥梁,可能需要在支撑处施加固定约束,并在桥面上施加车辆载荷。

二、进行分析1.运行分析:在Ansys中,可以运行分析并观察结果。

可以使用后处理功能来查看结果,例如位移、应力、应变等。

2.检查结果:检查模型的位移、应力、应变等是否符合预期。

如果结果不符合预期,可能需要返回模型进行修正。

三、优化设计1.优化设置:在Ansys中,可以使用优化工具对模型进行优化设计。

设置优化目标,例如最小化总重量或最大化刚度。

2.运行优化:运行优化过程,Ansys将自动调整模型的参数以达到优化目标。

3.检查结果:在优化完成后,检查结果以确保满足设计要求。

四、验证模型1.确认模型的正确性:在完成优化设计后,需要确认模型的正确性。

可以通过与实验数据进行比较,或者与其他分析工具的结果进行比较来验证模型的准确性。

2.进行敏感性分析:可以使用Ansys的敏感性分析功能来确定哪些参数对模型结果影响最大。

这有助于在后续设计中更好地控制这些参数。

3.确认模型的可靠性:确认模型是否符合工程要求和规范。

如果模型满足所有条件,那么可以将其用于实际工程设计。

五、应用模型1.工程设计:在确认模型的正确性和可靠性后,可以将模型应用于实际的工程设计。

简单桁架桥梁ANSYS分析

简单桁架桥梁ANSYS分析

下面以一个简单桁架桥梁为例,以展示有限元分析的全过程。

背景素材选自位于密执安的"Old North Park Bridge" (1904 - 1988),见图3-22。

该桁架桥由型钢组成,顶梁及侧梁,桥身弦杆,底梁分别采用3种不同型号的型钢,结构参数见表3-6。

桥长L=32m,桥高H=5.5m。

桥身由8段桁架组成,每段长4m。

该桥梁可以通行卡车,若这里仅考虑卡车位于桥梁中间位置,假设卡车的质量为4000kg,若取一半的模型,可以将卡车对桥梁的作用力简化为P1,P2和P3,其中P1= P3=5000 N, P2=10000N,见图3-23。

图3-22位于密执安的"Old North Park Bridge" (1904 - 1988)图3-23桥梁的简化平面模型(取桥梁的一半)表3-6桥梁结构中各种构件的几何性能参数构件惯性矩m4横截面积m2顶梁及侧梁(Beam1) 643.8310m-´322.1910m-´桥身弦梁(Beam2) 61.8710-´31.18510-´底梁(Beam3) 68.4710-´33.03110-´解答以下为基于ANSYS图形界面(Graphic User Interface , GUI)的菜单操作流程。

安全提示:如果聊天中有涉及财产的操作,请一定先核实好友身份。

发送验证问题或点击举报天意11:36:47(1)进入ANSYS(设定工作目录和工作文件)程序→ANSYS →ANSYS Interactive →Working directory(设置工作目录)→Initial jobname(设置工作文件名):TrussBridge →Run →OK(2)设置计算类型ANSYS Main Menu:Preferences…→Structural →OK(3)定义单元类型hhQÆRRN«•QQoomm QM•9NN•}ANSYS Main Menu:Preprocessor →Element Type →Add/Edit/Delete... →Add…→Beam : 2delastic 3 →OK(返回到Element Types窗口)→Close(4)定义实常数以确定梁单元的截面参数ANSYS Main Menu: Preprocessor →Real Constants…→Add/Edit/Delete →Add…→select Type 1Beam 3 →OK →input Real Constants Set No. : 1 , AREA: 2.1 9E-3,Izz: 3.83e-6(1号实常数用于顶梁和侧梁) →Apply →input Real Constants Set No. : 2 , AREA: 1.18 5E-3,Izz: 1.87E-6 (2号实常数用于弦杆)→Apply →input Real Constants Set No. : 3, AREA: 3.031E-3,Izz: 8.47E-6 (3号实常数用于底梁) →OK(back to Real Constants window) →Close (the Real Constants win dow)(5)定义材料参数ANSYS Main Menu: Preprocessor →Material Props →Material Model s →Structural →Linear→Elastic →Isotropic →input EX: 2.1e11, PRXY: 0.3(定义泊松比及弹性模量) →OK →Density (定义材料密度) →input DENS: 7800, →OK →Close(关闭材料定义窗口)(6)构造桁架桥模型生成桥体几何模型ANSYS Main Menu:Preprocessor →Modeling →Create →Keypoints →In Active CS →NPTKeypoint number:1,X,Y,Z Location in active CS:0,0 →Apply →同样输入其余15个特征点坐标(最左端为起始点,坐标分别为(4,0), (8,0), (12,0), (16,0), (20,0), (24,0), (28,0), (32,0), (4,5 .5), (8,5.5),(12,5.5), (16.5.5), (20,5.5), (24,5.5), (28,5.5))→Lines →Lines →Straight Line →依次分别连接特征点→OK网格划分ANSYS Main Menu: Preprocessor →Meshing →Mesh Attributes →P icked Lines →选择桥顶梁及侧梁→OK →select REAL: 1, TYPE: 1 →Apply →选择桥体弦杆→OK →select REAL: 2,TYPE: 1 →Apply →选择桥底梁→OK →select REAL: 3, TYPE:1 →OK →ANSYS Main Menu:Preprocessor →Meshing →MeshTool →位于Size Controls下的Lines:Set →Element Size on Picked→Pick all →Apply →NDIV:1 →OK →Mesh →Lines →Pick all →OK (划分网格)(7)模型加约束ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Displacement →OnNodes →选取桥身左端节点→OK →select Lab2: All DOF(施加全部约束) →Apply →选取桥身右端节点→OK →select Lab2: UY(施加Y方向约束) →OK(8)施加载荷ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Force/Moment →OnKeypoints →选取底梁上卡车两侧关键点(X坐标为12及20)→OK →select Lab: FY,Value: -5000→Apply →选取底梁上卡车中部关键点(X坐标为16)→OK →select Lab: FY,Value: -10000 →OK→ANSYS Utility Menu:→Select →Everything(9)计算分析ANSYS Main Menu:Solution →Solve →Current LS →OK(10)结果显示ANSYS Main Menu:General Postproc →Plot Results →Deformed shape →Def shape only →OK(返回到Plot Results)→Contour Plot →Nodal Solu →DOF Solution, Y-Component of D isplacement→OK(显示Y方向位移UY)(见图3-24(a))定义线性单元I节点的轴力ANSYS Main Menu →General Postproc →Element Table →Define Table →Add →Lab:[bar_I], By sequence num: [SMISC,1] →OK →Close定义线性单元J节点的轴力ANSYS Main Menu →General Postproc →Element Table →Define Table →Add →Lab:[bar_J], By sequence num: [SMISC,1] →OK →Close画出线性单元的受力图(见图3-24(b))ANSYS Main Menu →General Postproc →Plot Results →Contour Plot →Line Elem Res →LabI: [ bar_I], LabJ: [ bar_J], Fact: [1] →OK(11)退出系统ANSYS Utility Menu:File →Exit →Save Everything →OK(a)桥梁中部最大挠度值为0.003 374m (b)桥梁中部轴力最大值为25 380N图3.24桁架桥挠度UY以及单元轴力计算结果!%%%%% [ANSYS算例]3.4.2(2) %%%%% begin %%%%%%!------注:命令流中的符号$,可将多行命令流写成一行------/prep7 !进入前处理/PLOPTS,DATE,0 !设置不显示日期和时间!=====设置单元和材料ET,1,BEAM3 !定义单元类型R,1,2.19E-3,3.83e-6, , , , , !定义1号实常数用于顶梁侧梁R,2,1.185E-3,1.87e-6,0,0,0,0, !定义2号实常数用于弦杆R,3,3.031E-3,8.47E-6,0,0,0,0, !定义3号实常数用于底梁MP,EX,1,2.1E11 !定义材料弹性模量MP,PRXY,1,0.30 !定义材料泊松比MP,DENS,1,,7800 !定义材料密度!-----定义几何关键点K,1,0,0,, $ K,2,4,0,, $ K,3,8,0,, $K,4,12,0,, $K,5,16,0,, $K,6,20,0,, $K,7,24,0,, $K,8,28,0,, $K,9,32,0,, $K,10,4,5.5,,$K,11,8,5.5,, $K,12,12,5.5,, $K,13,16,5.5,, $K,14,20,5.5,, $K,15,24,5.5, , $K,16,28,5.5,,!-----通过几何点生成桥底梁的线L,1,2 $L,2,3 $L,3,4 $L,4,5 $L,5,6 $L,6,7 $L,7,8 $L,8,9!------生成桥顶梁和侧梁的线L,9,16 $L,15,16 $L,14,15 $L,13,14 $L,12,13 $L,11,12 $L,10,11 $L,1,10!------生成桥身弦杆的线L,2,10 $L,3,10 $L,3,11 $L,4,11 $L,4,12 $L,4,13 $L,5,13 $L,6,13 $L,6, 14 $L,6,15 $L,7,15 $L,7,16 $L,8,16!------选择桥顶梁和侧梁指定单元属性LSEL,S,,,9,16,1,LATT,1,1,1,,,,hhQÆRRN«•QQoomm QM•9NN•}!-----选择桥身弦杆指定单元属性LSEL,S,,,17,29,1,LATT,1,2,1,,,,!-----选择桥底梁指定单元属性LSEL,S,,,1,8,1,LATT,1,3,1,,,,!------划分网格AllSEL,all !再恢复选择所有对象LESIZE,all,,,1,,,,,1 !对所有对象进行单元划分前的分段设置LMESH,all !对所有几何线进行单元划分!=====在求解模块中,施加位移约束、外力,进行求解/soluNSEL,S,LOC,X,0 !根据几何位置选择节点D,all,,,,,,ALL,,,,, !对所选择的节点施加位移约束AllSEL,all !再恢复选择所有对象NSEL,S,LOC,X,32 !根据几何位置选择节点D,all,,,,,,,UY,,,, !对所选择的节点施加位移约束ALLSEL,all !再恢复选择所有对象!------基于几何关键点施加载荷FK,4,FY,-5000 $FK,6,FY,-5000 $FK,5,FY,-10000/replot !重画图形Allsel,all !选择所有信息(包括所有节点、单元和载荷等)solve !求解!=====进入一般的后处理模块/post1 !后处理PLNSOL, U,Y, 0,1.0 !显示Y方向位移PLNSOL, U,X, 0,1.0 !显示X方向位移!------显示线单元轴力------ETABLE,bar_I,SMISC, 1ETABLE,bar_J,SMISC, 1PLLS,BAR_I,BAR_J,0.5,1 !画出轴力图finish !结束你参考这个例题试一下。

Ansys桥梁应用—桁架桥的受力仿真

Ansys桥梁应用—桁架桥的受力仿真

Ansys桥梁应用一桁架桥的受力仿真黑宝平航天与建筑工程学院摘要:本文利用仿真分析软件ANSYS对桁架桥实现全桥建模,进而进行受力分析,对总体结构,以及桁架中各弦杆、腹杆和横梁的位移进行仿真。

得出一些结论,为同类工程结构的有限元分析提供参考。

关键字:仿真分析软件ANSYS;全桥建模;受力分析;仿真1工程概况桁架桥即truss bridge,指的是以桁架作为上部结构主要承重构件的桥梁。

桁架桥一般由主桥架、上下水平纵向联结系、桥门架和中间横撑架以及桥面系组成。

在桁架中,弦杆是组成桁架外围的杆件,包括上弦杆和下弦杆,连接上、下弦杆的杆件叫腹杆,按腹杆方向之不同乂区分为斜杆和竖杆。

弦杆与腹杆所在的平面就叫主桁平面。

大跨度桥架的桥高沿跨径方向变化,形成曲弦桁架;中、小跨度采用不变的桁高,即所谓平弦桁架或直弦桁架。

桁架结构可以形成梁式、拱式桥,也可以作为缆索支撑体系桥梁中的主梁(或加劲梁)。

桁架桥梁绝大多数采用钢材修建,亦有采用预应力混凝土修建的例子。

我国比较有名的桁架桥梁有:武汉长江大桥(三联3X 128m连续钢桁梁,1937年,为“万里长江第一桥”)、南京长江大桥(三联3X 160m连续钢桁梁,1969年)、九江长江大桥(180m+260m+160m梁拱组合体系,1993年)、芜湖长江大桥(180m+312m+180m钢桁斜拉桥,1999年)和香港青马大桥(主跨1377m钢桁加劲梁悬索桥,1997年),目前已动工修建的重庆朝天门大桥为190m+552m+190m钢桁拱桥,将成为世界最大跨径拱桥。

桁架桥为空腹结构,因而对双层桥面有很好的适应性,以上列举的儿座桥均布置为双层桥面。

随着计•算能力的提高及方法的改进,可以汁算更大跨径、更高强超静定次数的桁架桥。

在同样跨径的桥梁中,桁架桥一般总是人们的首选,因为大有成熟而快捷的讣算方法和施工技术作为保证。

而且山于预应力技术的出现,使桁架桥的经济性更加突出,人们通过施加预应力筋可以使桥梁的材料节省10%以上。

桁架桥

桁架桥

桁架桥ANSYS分析
四、建模
单元属性:type=1,MAT=1,SEC=1. 连接节点5、6、7和12、13、14以及5、12和6、 13和7、14
桁架桥ANSYS分析
四、建模
单元属性:type=2,MAT=1,REAL=1. 连接节点5、2、7和12、9、1 单元属性:type=2,MAT=1,REAL=1. 连接节点1、5和2、6和3、7和8、12和9、13和 10、14
桁架桥ANSYS分析
四、建模
生成另一半 Reflect node Y-Zplan X INC=14 Reflect ELEMENT NINC=14 压缩节点、编号、单元
桁架桥ANSYS分析
五、加载
桁架桥ANSYS分析
五、加载
桁架桥ANSYS分析
五、加载
桁架桥ANSYS分析
五、加载
桁架桥ANSYS分析
桁架桥ANSYS分析
三、定义梁截面
BEAM188:SEC1——AREA=3;B=3,H=1
桁架桥ANSYS分析
三、定义梁截面
SHELL181:SEC2——Thickness=0.3
桁架桥ANSYS分析
三、定义材料
1# EX=3.5E10; PRXY=0.1677;DENS=2500 2# EX=21E10; PRXY=0.3;DENS=3500
• 桁架桥
桁架桥ANSYS分析
某桁架桥,桥宽10,桥长72,高12,每个节段长12,分析 在荷载作用下构件受力。
桁架桥ANSYS分析
BEAM188——下弦梁、上弦梁、横梁、端斜腹梁
一、定义单元 LINK180——其他斜腹梁、竖杆
SHELL181——桥面梁
桁架桥ANSYS分析

ansys分析题目及解答

ansys分析题目及解答

【ANSYS 算例】3.4.2(1) 基于图形界面的桁架桥梁结构分析(step by step) 下面以一个简单桁架桥梁为例,以展示有限元分析的全过程。

背景素材选自位于密执安的"Old North Park Bridge" (1904 - 1988),见图 3-22。

该桁架桥由型钢组成,顶梁及侧梁,桥身弦杆,底梁分别采用 3 种不同型号的型钢,结构参数见表 3-6。

桥长 L=32m,桥高 H=5.5m。

桥身由 8 段桁架组成,每段长 4m。

该桥梁可以通行卡车,若这里仅考虑卡车位于桥梁中间位置,假设卡车的质量为 4000kg,若取一半的模型,可以将卡车对桥梁的作用力简化为 P1 , P2 和 P3 ,其中 P1= P3=5000 N, P2=10000N,见图 3-23解答:1、以下为基于 ANSYS 图形界面(Graphic User Interface , GUI)的菜单操作流程。

(1)进入 ANSYS(设定工作目录和工作文件)程序→ ANSYS → ANSYS Interactive → Working directory(设置工作目录)→ Initial jobname (设置工作文件名):TrussBridge → Run → OK(2)设置计算类型 ANSYS Main Menu:Preferences… → Structural → OK(3)定义单元类型 ANSYS Main Menu:Preprocessor → Element Type → Add/Edit/Delete... → Add…→ Beam: 2d elastic 3 → OK(返回到 Element Types 窗口)→ Close(4)定义实常数以确定梁单元的截面参数 ANSYS Main Menu: Preproc essor → Real Constants…→ Add/Edit/Delete → Add…→ select Type 1 Beam 3 → OK → input Real Constants Set No. : 1 , AREA: 2.19E-3,Izz: 3.83e-6(1 号实常数用于顶梁和侧梁) → Apply → input Real Constants Set No. : 2 , AREA: 1.185E-3,Izz: 1.87E-6 (2 号实常数用于弦杆) → Apply → input Real Constants Set No. : 3, AREA: 3.031E-3,Izz: 8.47E-6 (3 号实常数用于底梁) → OK (back to Real Constants window) → Close (the Real Constants window)(5) 定义材料参数ANSYS Main Menu: Preprocessor → Material Props → Material Models → Structural → Linear → Elastic → Isotropic → input EX: 2.1e11, PRXY: 0.3(定义泊松比及弹性模量) → OK → Density (定义材料密度) → input DENS: 7800, → OK → Close(关闭材料定义窗口)(6) 构造桁架桥模型生成桥体几何模型 ANSYS Main Menu:Preprocessor → Modeling → Create → Keypoints → In Active CS → NPT Keypoint number:1,X,Y,Z Location in active CS:0,0 → Apply → 同样输入其余 15 个特征点坐标(最左端为起始点,坐标分别为 (4,0), (8,0), (12,0), (16,0), (20,0), (24,0), (28,0), (32,0), (4,5.5), (8,5.5), (12,5.5), (16.5.5), (20,5.5), (24,5.5), (28,5.5))→ Lines → Lines → Straight Line → 依次分别连接特征点→ OK 网格划分 ANSYS Main Menu: Preprocessor → Meshing → Mesh Attributes → Picked Lines → 选择桥顶梁及侧梁→ OK → select REAL: 1, TYPE: 1 → Apply → 选择桥体弦杆→ OK → select REAL: 2, TYPE: 1 → Apply → 选择桥底梁→ OK → select REAL: 3, TYPE:1 → OK → ANSYS Main Menu:Preprocessor → Meshing → MeshTool → 位于 Size Controls 下的 Lines:Set → Element Size on Picked → Pick all → Apply → NDIV:1 → OK → Mesh → Lines → Pick all → OK (划分网格)(7) 模型加约束ANSYS Main Menu: Solution → Define Loads → Apply → Structural→ Displacement → On Nodes → 选取桥身左端节点→ OK → select Lab2: Al l DOF(施加全部约束) → Apply → 选取桥身右端节点→ OK → select Lab2: UY(施加 Y 方向约束) → OK(8) 施加载荷ANSYS Main Menu: Solution → Define Loads → Apply → Structural → Force/Moment → On Keypoints → 选取底梁上卡车两侧关键点(X 坐标为 12 及 20)→ OK → select Lab: FY,Value: -5000 → Apply → 选取底梁上卡车中部关键点(X 坐标为 16)→ OK → select Lab: FY,Value: -10000 → OK → ANSYS Utility Menu:→ Select → Everything(9) 计算分析 ANSYS Main Menu:Solution → Solve → Current LS → OK(10) 结果显示 ANSYS Main Menu:General Postproc → Plot Results → Deformed shape → Def shape only → OK (返回到 Plot Results)→ Contour Plot → Nodal Solu → DOF Solution, Y-Component of Displacement → OK(显示 Y 方向位移 UY)(见图 3-24(a)) 定义线性单元 I 节点的轴力ANSYS Main Menu → General Postproc → Element Table → Define Table → Add → Lab: [bar_I], By sequence num: [SMISC,1] →OK → Close 定义线性单元 J 节点的轴力 ANSYS Main Menu → General Postproc → Element Table → Define Table → Add → Lab: [bar_J], By sequence num: [SMISC,1] → OK → Close 画出线性单元的受力图(见图 3-24(b)) ANSYS Main Menu → General Postproc → Plot Results → Contour Plot → Line Elem Res → LabI: [ bar_I], LabJ: [ bar_J], Fact: [1] → OK(11) 退出系统 ANSYS Utility Menu:File → Exit → Save Everything → OK2、基于命令流方式的桁架桥梁结构分析!%%%%% [ANSYS 算例]3.4.2(2) %%%%% begin %%%%%%!------注:命令流中的符号$,可将多行命令流写成一行------/prep7 !进入前处理/PLOPTS,DATE,0 !设置不显示日期和时间!=====设置单元和材料ET,1,BEAM3 !定义单元类型R,1,2.19E-3,3.83e-6, , , , , !定义 1 号实常数用于顶梁侧梁R,2,1.185E-3,1.87e-6,0,0,0,0, !定义 2 号实常数用于弦杆R,3,3.031E-3,8.47E-6,0,0,0,0, !定义 3 号实常数用于底梁MP,EX,1,2.1E11 !定义材料弹性模量MP,PRXY,1,0.30 !定义材料泊松比MP,DENS,1,,7800 !定义材料密度!-----定义几何关键点K,1,0,0,, $ K,2,4,0,, $ K,3,8,0,, $K,4,12,0,, $K,5,16,0,, $K,6,20,0,, $K,7,24,0,, $K,8,28,0,, $K,9,32,0,, $K,10,4,5.5,, $K,11,8,5.5,, $K,12,12,5.5,, $K,13,16,5.5,, $K,14,20,5.5,, $K,15,24,5.5,, $K,16,28,5.5,,!-----通过几何点生成桥底梁的线L,1,2 $L,2,3 $L,3,4 $L,4,5 $L,5,6 $L,6,7 $L,7,8 $L,8,9!------生成桥顶梁和侧梁的线L,9,16 $L,15,16 $L,14,15 $L,13,14 $L,12,13 $L,11,12 $L,10,11 $L,1,10!------生成桥身弦杆的线L,2,10 $L,3,10 $L,3,11 $L,4,11 $L,4,12 $L,4,13 $L,5,13 $L,6,13 $L,6,14 $L,6,15 $L,7,15 $L,7,16 $L,8,16!------选择桥顶梁和侧梁指定单元属性LSEL,S,,,9,16,1, LATT,1,1,1,,,, !-----选择桥身弦杆指定单元属性LSEL,S,,,17,29,1, LATT,1,2,1,,,, !-----选择桥底梁指定单元属性LSEL,S,,,1,8,1, LATT,1,3,1,,,, !------划分网格AllSEL,all !再恢复选择所有对象LESIZE,all,,,1,,,,,1 !对所有对象进行单元划分前的分段设置LMESH,all !对所有几何线进行单元划分 !=====在求解模块中,施加位移约束、外力,进行求解/soluNSEL,S,LOC,X,0 !根据几何位置选择节点D,all,,,,,,ALL,,,,, !对所选择的节点施加位移约束AllSEL,all !再恢复选择所有对象NSEL,S,LOC,X,32 !根据几何位置选择节点D,all,,,,,,,UY,,,, !对所选择的节点施加位移约束ALLSEL,all !再恢复选择所有对象!------基于几何关键点施加载荷FK,4,FY,-5000 $FK,6,FY,-5000 $FK,5,FY,-10000/replot !重画图形Allsel,all !选择所有信息(包括所有节点、单元和载荷等)solve !求解!=====进入一般的后处理模块/post1 !后处理PLNSOL, U,Y, 0,1.0 !显示 Y 方向位移PLNSOL, U,X, 0,1.0 !显示 X 方向位移!------显示线单元轴力------ETABLE,bar_I,SMISC, 1ETABLE,bar_J,SMISC, 1PLLS,BAR_I,BAR_J,0.5,1 !画出轴力图finish !结束!%%%%% [ANSYS 算例]3.4.2(2) %%%%% end %%%%%%。

ANSYS案例——20例ANSYS经典实例】

ANSYS案例——20例ANSYS经典实例】

三梁平面框架结构的有限元分析针对【典型例题】3.3.7(1)的模型,即如图3-19所示的框架结构,其顶端受均布力作用,用有限元方法分析该结构的位移。

结构中各个截面的参数都为:113.010Pa E =⨯,746.510m I -=⨯,426.810m A -=⨯,相应的有限元分析模型见图3-20。

在ANSYS 平台上,完成相应的力学分析。

图3-19 框架结构受一均布力作用(a ) 节点位移及单元编号 (b ) 等效在节点上的外力图3-20 单元划分、节点位移及节点上的外载解答 对该问题进行有限元分析的过程如下。

1.基于图形界面的交互式操作(step by step)(1) 进入ANSYS(设定工作目录和工作文件)程序 →ANSYS → ANSYS Interactive →Working directory (设置工作目录) →Initial jobname (设置工作文件名): beam3→Run → OK(2) 设置计算类型ANSYS Main Menu: Preferences… → Structural → OK(3) 选择单元类型ANSYS Main Menu: Preprocessor →Element Type →Add/Edit/Delete… →Add… →beam :2D elastic 3 →OK (返回到Element Types 窗口) →Close(4) 定义材料参数ANSYS Main Menu:Preprocessor →Material Props →Material Models→Structural →Linear →Elastic→Isotropic: EX:3e11 (弹性模量) →OK →鼠标点击该窗口右上角的“ ”来关闭该窗口(5) 定义实常数以确定平面问题的厚度ANSYS Main Menu: Preprocessor →Real Constant s… →Add/Edit/Delete →Add →Type 1 Beam3→OK→Real Constant Set No: 1 (第1号实常数), Cross-sectional area:6.8e-4 (梁的横截面积) →OK →Close(6) 生成几何模型生成节点ANSYS Main Menu: Preprocessor →Modeling →Creat→Nodes→In Active CS→Node number 1 →X:0,Y:0.96,Z:0 →Apply→Node number 2 →X:1.44,Y:0.96,Z:0 →Apply→Node number 3 →X:0,Y:0,Z:0→Apply→Node number 4 →X:1.44,Y:0,Z:0→OK生成单元ANSYS Main Menu: Preprocessor →Modeling →Create →Element →Auto Numbered →Thru Nodes →选择节点1,2(生成单元1)→apply →选择节点1,3(生成单元2)→apply →选择节点2,4(生成单元3)→OK(7)模型施加约束和外载左边加X方向的受力ANSYS Main Menu:Solution →Define Loads →Apply →Structural →Force/Moment →On Nodes →选择节点1→apply →Direction of force: FX →V ALUE:3000 →OK→上方施加Y方向的均布载荷ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Pressure →On Beams →选取单元1(节点1和节点2之间)→apply →V ALI:4167→V ALJ:4167→OK左、右下角节点加约束ANSYS Main Menu:Solution →Define Loads →Apply →Structural →Displacement →On Nodes →选取节点3和节点4 →Apply →Lab:ALL DOF →OK(8) 分析计算ANSYS Main Menu:Solution →Solve →Current LS →OK →Should the Solve Command be Executed? Y→Close (Solution is done! ) →关闭文字窗口(9) 结果显示ANSYS Main Menu: General Postproc →Plot Results →Deformed Shape … →Def + Undeformed →OK (返回到Plot Results)(10) 退出系统ANSYS Utility Menu: File→Exit …→Save Everything→OK(11) 计算结果的验证与MA TLAB支反力计算结果一致。

平面桁架ANSYS有限元法分析实例

平面桁架ANSYS有限元法分析实例

2. 前处理 (1)定义单位
从第二章可知,ANSYS中单位可以不定义,但建模时一定要 保证单位的一致。
已知:各杆的弹性模量E=2.0×105MPa,各杆截面均为A=0.5cm2,杆13长 为100cm,载荷P=2KN,试求平面桁架的内力和位移。
本题采用单位m-kg-s-N较简便,建模过程中 的所有参数都选用m-kg-s-N,相应计算结果 应力为Pa。
改为国际单位制:各杆的弹性模量E=2.0×1011Pa, 各杆截面均为A=0.5e-4m2,杆13长为1m,载荷 P=2000N。
(2)定义单元类型
单元类型
特点
结点数 结点自由度
适用
LINK1 LINK8 LINK10
二维杆单元,只承受 轴向的拉压力,不考 虑弯矩
三维杆单元,具有塑 性、蠕变、膨胀、应 力刚化、大变形、大 应变等功能。
平面桁架ANSYS有限元法分析实例
例3-1 设平面三角结构的桁架123如 图3-4所示。已知:各杆的弹性模量 E=2.0×105MPa,各杆截面均为 A=0.5cm2,杆13长为100cm,载荷P=2KN, 试求平面桁架的内力和位移。
解:传统分析方法
设杆12、杆23和杆13的内力分别为N1、N2和N3。在总体坐标系 x-y(或U-V)中,由力的平衡方程可以得到结点的内力值。
3.求解 (1)施加约束
• 本例中,点1为固定支座,点3为活动支座。 • 在节点1上,约束UX、UY; • 在节点3上,约束UY。
• 在节点1上,约束UX、UY,如图; • 在节点3上,约束UY。
(2)施加载荷
选节点2,按图示完成;
•apply-,选FY,输入-2000,OK。 施加载荷后,结果如图
仅受拉或受压的三维 杆单元,具有应力刚 化和大变形功能。

基于ANSYS钢桁架桥的静动力分析

基于ANSYS钢桁架桥的静动力分析

基于ANSYS钢桁架桥的静动力分析黎波含华北科技学院摘要:本文采用ANSYS分析程序,对下承式钢桁架桥进行了空间有限元建模;对桁架桥进行了静力分析和动力分析(模态分析),作出了桁架桥在静载下的结构变形图、位移云图、以及各个节点处的结构内力图(轴力图、弯矩图、剪切力图),找出了结构的危险截面,在对桁架桥进行模态分析时,主要绘制出了桁架桥的八阶模态振型图,得出一些结论,这些都为桥梁的设计、维护、检测提供了一些技术参数。

关键词:ANSYS;钢桁架桥;模态分析;动力特性引言:随着现代交通运输的快速发展,桥梁兴建的规模在不断的扩大,尤其是现代铁路行业的快速发展更加促进了铁路桥梁的建设,一些新建的高速铁路桥梁可以达到四线甚至是六线,由于桥面和桥身的材料不同导致其受力情况变得复杂,这就需要桥梁需要有足够的承载力,足够的竖向侧向和扭转刚度,同时还应具有良好的稳定性以及较高的减震降噪性,因此对其进行静动力学分析了解其受力特性具有重要的意义。

基于此文中对某下承式钢桁梁桥进行了静动力学分析,初步得到了该桥的一些静动力学结果该结果对桥梁的设计、维护、检测具有一定的指导意义。

1工程简介某一下承式简支钢桁架桥桥长72米,每个节段12米,桥宽10米,高16米。

桥面板为0.3米厚的混凝土板,桁架桥的杆件均使用的是工字型截面但型号有所不同,钢桥的形式见图1,其结构简图见图2图1图2 刚桁架桥简图所用的桁架杆件有三种规格,见表1表1 钢桁架杆件规格杆件截面号形状规格端斜杆1工字形400X400X16X16上下弦2工字形400X400X12X12横向连接梁3工字形400X400X12X12其他腹杆4工字形400X300X12X12所用的材料属性见表2表2 材料属性参数钢材混凝土弹性模量EX 2.1×1011 3.5×10泊松比PRXY0.30.1667密度DENS7850225002 模型构建将下承式钢桁梁桥的各部分杆件,包括上弦杆、下弦杆、腹杆、横梁均采用BEAM188单元,此空间梁单元既可以考虑所模拟杆件的轴向变形,又可以考虑所模杆件在两个平面内的弯曲及绕杆件自身轴的扭转; 钢桥面板采用SHELL181,该空间板单元可以考虑在荷载作用下桥面板内所产生的各种应力; 定义了两套材料属性,桥面为混凝土,各类杆件为钢材,其对应的参数如表2所示;根据表1中的杆件规格定义了三种梁单元截面,根据表1分别定义在相应的梁上;建模时直接建立节点和单元,在后续按照先建节点在建杆最后建桥面板的次序一次建模。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

下面以一个简单桁架桥梁为例,以展示有限元分析的全过程。

背景素材选自位于密执安的"Old North Park Bridge" (1904 - 1988),见图3-22。

该桁架桥由型钢组成,顶梁及侧梁,桥身弦杆,底梁分别采用3种不同型号的型钢,结构参数见表3-6。

桥长L=32m,桥高H=5.5m。

桥身由8段桁架组成,每段长4m。

该桥梁可以通行卡车,若这里仅考虑卡车位于桥梁中间位置,假设卡车的质量为4000kg,若取一半的模型,可以将卡车对桥梁的作用力简化为P1,P2和P3,其中P1= P3=5000 N, P2=10000N,见图3-23。

图3-22位于密执安的"Old North Park Bridge" (1904 - 1988)图3-23桥梁的简化平面模型(取桥梁的一半)表3-6桥梁结构中各种构件的几何性能参数构件惯性矩m4横截面积m2顶梁及侧梁(Beam1) 643.8310m-´322.1910m-´桥身弦梁(Beam2) 61.8710-´31.18510-´底梁(Beam3) 68.4710-´33.03110-´解答以下为基于ANSYS图形界面(Graphic User Interface , GUI)的菜单操作流程。

安全提示:如果聊天中有涉及财产的操作,请一定先核实好友身份。

发送验证问题或点击举报天意11:36:47(1)进入ANSYS(设定工作目录和工作文件)程序→ANSYS →ANSYS Interactive →Working directory(设置工作目录)→Initial jobname(设置工作文件名):TrussBridge →Run →OK(2)设置计算类型ANSYS Main Menu:Preferences…→Structural →OK(3)定义单元类型hhQÆRRN«•QQoomm QM•9NN•}ANSYS Main Menu:Preprocessor →Element Type →Add/Edit/Delete... →Add…→Beam : 2delastic 3 →OK(返回到Element Types窗口)→Close(4)定义实常数以确定梁单元的截面参数ANSYS Main Menu: Preprocessor →Real Constants…→Add/Edit/Delete →Add…→select Type 1Beam 3 →OK →input Real Constants Set No. : 1 , AREA: 2.1 9E-3,Izz: 3.83e-6(1号实常数用于顶梁和侧梁) →Apply →input Real Constants Set No. : 2 , AREA: 1.18 5E-3,Izz: 1.87E-6 (2号实常数用于弦杆)→Apply →input Real Constants Set No. : 3, AREA: 3.031E-3,Izz: 8.47E-6 (3号实常数用于底梁) →OK(back to Real Constants window) →Close (the Real Constants win dow)(5)定义材料参数ANSYS Main Menu: Preprocessor →Material Props →Material Model s →Structural →Linear→Elastic →Isotropic →input EX: 2.1e11, PRXY: 0.3(定义泊松比及弹性模量) →OK →Density (定义材料密度) →input DENS: 7800, →OK →Close(关闭材料定义窗口)(6)构造桁架桥模型生成桥体几何模型ANSYS Main Menu:Preprocessor →Modeling →Create →Keypoints →In Active CS →NPTKeypoint number:1,X,Y,Z Location in active CS:0,0 →Apply →同样输入其余15个特征点坐标(最左端为起始点,坐标分别为(4,0), (8,0), (12,0), (16,0), (20,0), (24,0), (28,0), (32,0), (4,5 .5), (8,5.5),(12,5.5), (16.5.5), (20,5.5), (24,5.5), (28,5.5))→Lines →Lines →Straight Line →依次分别连接特征点→OK网格划分ANSYS Main Menu: Preprocessor →Meshing →Mesh Attributes →P icked Lines →选择桥顶梁及侧梁→OK →select REAL: 1, TYPE: 1 →Apply →选择桥体弦杆→OK →select REAL: 2,TYPE: 1 →Apply →选择桥底梁→OK →select REAL: 3, TYPE:1 →OK →ANSYS Main Menu:Preprocessor →Meshing →MeshTool →位于Size Controls下的Lines:Set →Element Size on Picked→Pick all →Apply →NDIV:1 →OK →Mesh →Lines →Pick all →OK (划分网格)(7)模型加约束ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Displacement →OnNodes →选取桥身左端节点→OK →select Lab2: All DOF(施加全部约束) →Apply →选取桥身右端节点→OK →select Lab2: UY(施加Y方向约束) →OK(8)施加载荷ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Force/Moment →OnKeypoints →选取底梁上卡车两侧关键点(X坐标为12及20)→OK →select Lab: FY,Value: -5000→Apply →选取底梁上卡车中部关键点(X坐标为16)→OK →select Lab: FY,Value: -10000 →OK→ANSYS Utility Menu:→Select →Everything(9)计算分析ANSYS Main Menu:Solution →Solve →Current LS →OK(10)结果显示ANSYS Main Menu:General Postproc →Plot Results →Deformed shape →Def shape only →OK(返回到Plot Results)→Contour Plot →Nodal Solu →DOF Solution, Y-Component of D isplacement→OK(显示Y方向位移UY)(见图3-24(a))定义线性单元I节点的轴力ANSYS Main Menu →General Postproc →Element Table →Define Table →Add →Lab:[bar_I], By sequence num: [SMISC,1] →OK →Close定义线性单元J节点的轴力ANSYS Main Menu →General Postproc →Element Table →Define Table →Add →Lab:[bar_J], By sequence num: [SMISC,1] →OK →Close画出线性单元的受力图(见图3-24(b))ANSYS Main Menu →General Postproc →Plot Results →Contour Plot →Line Elem Res →LabI: [ bar_I], LabJ: [ bar_J], Fact: [1] →OK(11)退出系统ANSYS Utility Menu:File →Exit →Save Everything →OK(a)桥梁中部最大挠度值为0.003 374m (b)桥梁中部轴力最大值为25 380N图3.24桁架桥挠度UY以及单元轴力计算结果!%%%%% [ANSYS算例]3.4.2(2) %%%%% begin %%%%%%!------注:命令流中的符号$,可将多行命令流写成一行------/prep7 !进入前处理/PLOPTS,DATE,0 !设置不显示日期和时间!=====设置单元和材料ET,1,BEAM3 !定义单元类型R,1,2.19E-3,3.83e-6, , , , , !定义1号实常数用于顶梁侧梁R,2,1.185E-3,1.87e-6,0,0,0,0, !定义2号实常数用于弦杆R,3,3.031E-3,8.47E-6,0,0,0,0, !定义3号实常数用于底梁MP,EX,1,2.1E11 !定义材料弹性模量MP,PRXY,1,0.30 !定义材料泊松比MP,DENS,1,,7800 !定义材料密度!-----定义几何关键点K,1,0,0,, $ K,2,4,0,, $ K,3,8,0,, $K,4,12,0,, $K,5,16,0,, $K,6,20,0,, $K,7,24,0,, $K,8,28,0,, $K,9,32,0,, $K,10,4,5.5,,$K,11,8,5.5,, $K,12,12,5.5,, $K,13,16,5.5,, $K,14,20,5.5,, $K,15,24,5.5, , $K,16,28,5.5,,!-----通过几何点生成桥底梁的线L,1,2 $L,2,3 $L,3,4 $L,4,5 $L,5,6 $L,6,7 $L,7,8 $L,8,9!------生成桥顶梁和侧梁的线L,9,16 $L,15,16 $L,14,15 $L,13,14 $L,12,13 $L,11,12 $L,10,11 $L,1,10!------生成桥身弦杆的线L,2,10 $L,3,10 $L,3,11 $L,4,11 $L,4,12 $L,4,13 $L,5,13 $L,6,13 $L,6, 14 $L,6,15 $L,7,15 $L,7,16 $L,8,16!------选择桥顶梁和侧梁指定单元属性LSEL,S,,,9,16,1,LATT,1,1,1,,,,hhQÆRRN«•QQoomm QM•9NN•}!-----选择桥身弦杆指定单元属性LSEL,S,,,17,29,1,LATT,1,2,1,,,,!-----选择桥底梁指定单元属性LSEL,S,,,1,8,1,LATT,1,3,1,,,,!------划分网格AllSEL,all !再恢复选择所有对象LESIZE,all,,,1,,,,,1 !对所有对象进行单元划分前的分段设置LMESH,all !对所有几何线进行单元划分!=====在求解模块中,施加位移约束、外力,进行求解/soluNSEL,S,LOC,X,0 !根据几何位置选择节点D,all,,,,,,ALL,,,,, !对所选择的节点施加位移约束AllSEL,all !再恢复选择所有对象NSEL,S,LOC,X,32 !根据几何位置选择节点D,all,,,,,,,UY,,,, !对所选择的节点施加位移约束ALLSEL,all !再恢复选择所有对象!------基于几何关键点施加载荷FK,4,FY,-5000 $FK,6,FY,-5000 $FK,5,FY,-10000/replot !重画图形Allsel,all !选择所有信息(包括所有节点、单元和载荷等)solve !求解!=====进入一般的后处理模块/post1 !后处理PLNSOL, U,Y, 0,1.0 !显示Y方向位移PLNSOL, U,X, 0,1.0 !显示X方向位移!------显示线单元轴力------ETABLE,bar_I,SMISC, 1ETABLE,bar_J,SMISC, 1PLLS,BAR_I,BAR_J,0.5,1 !画出轴力图finish !结束你参考这个例题试一下。

相关文档
最新文档