Linux下串口编程所要知道的那些事

合集下载

07实验七 Linux环境下的串行通信实验

07实验七 Linux环境下的串行通信实验

连接驱动器的使能端,使得当RTS设置成高(逻辑1)时,有效RS485驱动器;设置RTS为低 时,使驱动器处于三态,这时候实际上从总线上断开了驱动器,从而允许其他节点可以使 用同一传输线。当使用RTS时,必须确保发送数据前将RTS设置成高,在发送完数据的最 后一位后,将RTS线设成低。。另一种可选方法是自动发送数据控制。这种方法要求特殊 的电路,当数据传输时自动使能或无效驱动器。它减少了软件开销和程序员的潜在错误。
五、基础知识
串行通信 1、基本原理 串行端口的本质功能是作为CPU和串行设备间的编码转换器。当数据从CPU经过串行 端口发送出去时,字节数据转换为串行的位。在接收数据时,串行的位被转换为字节数据。 串口是系统资源的一部分,应用程序要使用串口进行通信,必须在使用之前向操作系统提 出资源申请要求(打开串口),通信完成后必须释放资源(关闭串口)。 2、串口通信的基本任务 (1) 实现数据格式化:因为来自CPU的是普通的并行数据,所以,接口电路应具有实 现不同串行通信方式下的数据格式化的任务。在异步通信方式下,接口自动生成起止式的 帧数据格式。在面向字符的同步方式下,接口要在待传送的数据块前加上同步字符。 (2) 进行串-并转换:串行传送,数据是一位一位串行传送的,而计算机处理数据是 并行数据。所以当数据由计算机送至数据发送器时,首先把串行数据转换为并行数才能送 入计算机处理。因此串并转换是串行接口电路的重要任务。 (3) 控制数据传输速率:串行通信接口电路应具有对数据传输速率——波特率进行选 择和控制的能力。 (4) 进行错误检测:在发送时接口电路对传送的字符数据自动生成奇偶校验位或其他 校验码。在接收时,接口电路检查字符的奇偶校验或其他校验码,确定是否发生传送错误。 (5) 进行TTL与EIA电平转换:CPU和终端均采用TTL电平及正逻辑,它们与EIA采用

嵌入式Linux下串口应用编程

嵌入式Linux下串口应用编程
_
式标志
ns u i ne g d s h o r t c
_
I f l a g  ̄ l i n e ,
式标志
ns u i ne g d s h o r t c
_

u ns i ne g d s h o r t C
_
r e a d ( ) 函数立 即返 回。若有可读 的数据时 ,则 读 取数据并返 回被 读取的字节 数,否则读取 失 败 并返 回0 ( 2 ) M I N 大于0 ,T I M E 为0 :r e a d ( ) 函数会等 待 到有M I N 个字节可 以被读取 ,否则一直处于 阻塞状态 。 ( 3 ) M I N 为0 ,而 T I M E > O : 只要满 足 两种情 形下:a 、存在数 据可读 ;b 、阻塞T I M E 的十 分 之一秒 ,r e a d 函数 就会返 回,其中返 回值为 读 取到的字节数 。如果在有数据 可读前超 时,则 r e a d ( ) 函数返 回值为0 。 ( 4 ) M I N 和T I M E 全 都大于0 : 只有满足如 下 两种情形之一 时,r e a d 0函数才会返 回 : 缓存 区 中有 M I N 个字节 ,或 者在两个 字符 之 间超 时 T I 艇个 十分之 一秒 。 从严格意义上 来讲,原始模式是一 种特 殊 的非规范模 式。在原始模 式下,对输入数据 的 处理方式是按 字节为单位 ,并且终端是 不可回 显的 。通过 调用C f m a k e r a w ( ) 函数就 可 以将 把 终端的该工作模式设置为原始模式 。 三 、简单 的串口设置详解流程 下面 以指 纹识别系统为例介 绍下串 口的操 作流程 。 本 系统 中,对串 口的操作和使用 可 以分为 如下几个 部分 :串口的初 始化 ( 包括 串 口设备 的打开 、串 口设备属 性的设置 )、串 口数据单 字节读取 、串 口数据 的多字节读取 、串 口数据 的单字节 写入、串 口数据 的多字节写入 串 口 设备的关闭 。 I . 串口设备 的初始化过程 ( 1 ) 打开 串口 在L i n u x 系统 中,对设 备的操 作如 同普通 文件 一样,在本系统 中打开串 口设备 的代码如 下所示 :

Linux下串口通信编程

Linux下串口通信编程

Linux下串口通信编程一、什么是串口通信?串口通信是指计算机主机与外设之间以及主机系统与主机系统之间数据的串行传送。

使用串口通信时,发送和接收到的每一个字符实际上都是一次一位的传送的,每一位为1或者为0。

二、串口通信的分类串口通信可以分为同步通信和异步通信两类。

同步通信是按照软件识别同步字符来实现数据的发送和接收,异步通信是一种利用字符的再同步技术的通信方式。

2.1 同步通信同步通信是一种连续串行传送数据的通信方式,一次通信只传送一帧信息。

这里的信息帧与异步通信中的字符帧不同,通常含有若干个数据字符。

它们均由同步字符、数据字符和校验字符(CRC)组成。

其中同步字符位于帧开头,用于确认数据字符的开始。

数据字符在同步字符之后,个数没有限制,由所需传输的数据块长度来决定;校验字符有1到2个,用于接收端对接收到的字符序列进行正确性的校验。

同步通信的缺点是要求发送时钟和接收时钟保持严格的同步。

2.2 异步通信异步通信中,数据通常以字符或者字节为单位组成字符帧传送。

字符帧由发送端逐帧发送,通过传输线被接收设备逐帧接收。

发送端和接收端可以由各自的时钟来控制数据的发送和接收,这两个时钟源彼此独立,互不同步。

接收端检测到传输线上发送过来的低电平逻辑"0"(即字符帧起始位)时,确定发送端已开始发送数据,每当接收端收到字符帧中的停止位时,就知道一帧字符已经发送完毕。

在异步通行中有两个比较重要的指标:字符帧格式和波特率。

(1)字符帧,由起始位、数据位、奇偶校验位和停止位组成。

1.起始位:位于字符帧开头,占1位,始终为逻辑0电平,用于向接收设备表示发送端开始发送一帧信息。

2.数据位:紧跟在起始位之后,可以设置为5位、6位、7位、8位,低位在前高位在后。

3.奇偶校验位:位于数据位之后,仅占一位,用于表示串行通信中采用奇校验还是偶校验。

(2)波特率,波特率是每秒钟传送二进制数码的位数,单位是b/s。

异步通信的优点是不需要传送同步脉冲,字符帧长度也不受到限制。

linux串口编程参数配置详解

linux串口编程参数配置详解

linux串口编程参数配置详解1.linux串口编程需要的头文件#include <stdio.h> //标准输入输出定义#include <stdlib.h> //标准函数库定义#include <unistd.h> //Unix标准函数定义#include <sys/types.h>#include <sys/stat.h>#include <fcntl.h> //文件控制定义#include <termios.h> //POSIX中断控制定义#include <errno.h> //错误号定义2.打开串口串口位于/dev中,可作为标准文件的形式打开,其中:串口1 /dev/ttyS0串口2 /dev/ttyS1代码如下:int fd;fd = open(“/dev/ttyS0”, O_RDWR);if(fd == -1){Perror(“串口1打开失败!”);}//else//fcntl(fd, F_SETFL, FNDELAY);除了使用O_RDWR标志之外,通常还会使用O_NOCTTY和O_NDELAY这两个标志。

O_NOCTTY:告诉Unix这个程序不想成为“控制终端”控制的程序,不说明这个标志的话,任何输入都会影响你的程序。

O_NDELAY:告诉Unix这个程序不关心DCD信号线状态,即其他端口是否运行,不说明这个标志的话,该程序就会在DCD信号线为低电平时停止。

3.设置波特率最基本的串口设置包括波特率、校验位和停止位设置,且串口设置主要使用termios.h头文件中定义的termios结构,如下:struct termios{tcflag_t c_iflag; //输入模式标志tcflag_t c_oflag; //输出模式标志tcflag_t c_cflag; //控制模式标志tcflag_t c_lflag; //本地模式标志cc_t c_line; //line disciplinecc_t c_cc[NCC]; //control characters}代码如下:int speed_arr[] = { B38400, B19200, B9600, B4800, B2400, B1200, B300, B384 00, B19200, B9600, B4800, B2400, B1200, B300, };int name_arr[] = {38400, 19200, 9600, 4800, 2400, 1200, 300, 38400, 19200, 9 600, 4800, 2400, 1200, 300, };void SetSpeed(int fd, int speed){int i;struct termios Opt; //定义termios结构if(tcgetattr(fd, &Opt) != 0){perror(“tcgetattr fd”);return;}for(i = 0; i < sizeof(speed_arr) / sizeof(int); i++){if(speed == name_arr[i]){tcflush(fd, TCIOFLUSH);cfsetispeed(&Opt, speed_arr[i]);cfsetospeed(&Opt, speed_arr[i]);if(tcsetattr(fd, TCSANOW, &Opt) != 0){perror(“tcsetattr fd”);return;}tcflush(fd, TCIOFLUSH);}}}注意tcsetattr函数中使用的标志:TCSANOW:立即执行而不等待数据发送或者接受完成。

linux_虚拟串口实现方法_概述及解释说明

linux_虚拟串口实现方法_概述及解释说明

linux 虚拟串口实现方法概述及解释说明1. 引言1.1 概述本文将介绍Linux下实现虚拟串口的方法,并对每种方法进行解释说明。

虚拟串口指的是一种软件仿真的串口设备,可以模拟物理串口的功能,实现数据的收发和传输。

在Linux系统中,使用虚拟串口可以满足一些特定场景下的需求,如开发、测试和调试等。

1.2 文章结构本文按照以下结构进行组织:- 第一部分为引言,对文章进行概述,并介绍文章的结构和目标;- 第二部分将介绍虚拟串口的背景知识,包括串口通信原理、虚拟串口定义与作用以及Linux中虚拟串口的应用场景;- 第三部分将详细介绍Linux下实现虚拟串口的三种方法:内核模块方式、用户空间模拟方式和设备树(DT)方式;- 第四部分将对每种实现方法进行解释说明,包括其原理、特点和适用情况;- 第五部分为总结与展望,对文章内容进行总结并展望未来发展方向。

1.3 目的本文旨在提供一个全面且清晰的介绍Linux下实现虚拟串口方法的资料,帮助读者理解虚拟串口的概念和原理,并根据实际需求选择合适的实现方法。

通过阅读本文,读者将了解到不同实现方法的优缺点,以及它们在不同场景下的应用情况。

同时,本文也对未来虚拟串口技术的发展进行展望。

2. 虚拟串口的背景:2.1 串口通信的基本原理:串口是一种用于在计算机和外部设备之间进行数据传输的通信接口。

它通过一个物理连接,使用一组控制信号和数据信号来实现双向通信。

串口通信具有简单、可靠、广泛应用等特点,因此在许多领域都得到了广泛应用,如电脑与打印机、调制解调器、路由器等设备之间的连接。

2.2 虚拟串口的定义与作用:虚拟串口是对物理串口进行仿真或模拟的一种技术。

它通过软件方式模拟了一个不存在的串行接口,使得应用程序可以通过虚拟串口与外部设备进行通信。

虚拟串口具有操作灵活、易于扩展等特点,可以提供与物理串口相似或更强大的功能。

2.3 虚拟串口在Linux中的应用场景:在Linux系统中,虚拟串口广泛应用于各种嵌入式系统开发和调试场景。

嵌入式操作系统Linux中的串口应用编程

嵌入式操作系统Linux中的串口应用编程


嵌入式操作系统 L x 的审口应用编程 iu 中 n
■ 厦 门 大 学 唐 建 东 卢 贵 主
针 对 嵌 入 式 Linux 操 作 系统 的 特 点 , 分 析 在 该 系统 下 串行 通 信 口编 程 控 制 的 方 法 , 总 结 程 序


设 计 的 步 骤 ; 在 嵌 入 式 Linux 系 统 上 , 编 写控 制 程 序 , 成 功 地 实 现 嵌 入 式 系统 与微 机 系 统

Te s I s r m e s, U SA .TM ¥3 0C X / X / xa n t u nt 2 l C2
更详 细 的 内容 在 此 不 再 多述 , 本 人将 另 文 介 绍 。■ _
参考 文献
l 彭 启 琮 , 李 玉 柏 ,管 庆 .DS P与 实 时 数 字 信 号 处 理 .成 都 :电 子 科 技 大 学 出版 社 , l 9 5 9 2 戴 明 桢 .数 字 信 号 处理 的 硬 件 实现 . 北 京 :
根 据 不 同 条 件 控 制 不 同 的 设 备 。 基 于 美 国 电 子 工 业 协 会 E A 的 串 口通 信 标 准 一 I RS 3 , 是 目前 广 泛 使 22 用 的 设备 控 制 通 信 接 口 。在 嵌 入 式 系统 中实 现 串 口 通 信 , 可 延 伸 系 统 的 应 用 触 角 , 扩 大 系 统 的 数 据 采
# k od iln m e il tpe u b r um b r m n f e a f ey n m e n l e2
1 嵌 入式 操作 系统 L n x串 口模 块 u i
L n x操 作 系 统 的 主 要 优 点 是 稳 定 、 内 核 可 重 iu 新 编 译 、 提 供 开 放 的 内 核 源 代 码 。 Li u 内 核 采 用 n x

嵌入式linux串口应用程序编写流程

嵌入式linux串口应用程序编写流程

嵌入式linux串口应用程序编写流程嵌入式Linux系统提供了丰富的串口接口,可以通过串口与其他设备进行通信,这为开发嵌入式系统提供了很多可能性。

下面是编写嵌入式Linux串口应用程序的流程:1. 确定串口设备:首先要确定要使用的串口设备,可以使用命令`ls /dev/tty*`来查看系统中可用的串口设备列表。

根据需要选择合适的串口设备。

2. 打开串口设备:在Linux系统中,使用文件的方式来操作串口设备。

可以使用C语言中的open函数来打开串口设备文件,并返回串口设备的文件描述符。

例如:`int serial_fd = open("/dev/ttyUSB0", O_RDWR | O_NOCTTY | O_NDELAY);`。

其中,`O_RDWR`表示以读写模式打开串口设备,`O_NOCTTY`表示打开设备后不会成为该进程的控制终端,`O_NDELAY`表示非阻塞模式。

3. 配置串口参数:打开串口设备后,需要配置串口参数,包括波特率、数据位、停止位、校验位等。

可以使用C语言中的termios库来进行串口参数的配置。

例如:```cstruct termios serial_config;tcgetattr(serial_fd, &serial_config);cfsetispeed(&serial_config, B115200);cfsetospeed(&serial_config, B115200);serial_config.c_cflag |= CS8;serial_config.c_cflag &= ~PARENB;serial_config.c_cflag &= ~CSTOPB;tcsetattr(serial_fd, TCSANOW, &serial_config);```上述代码将波特率设置为115200,数据位设置为8位,无校验位,一个停止位。

linux下的串口通信原理及编程实例

linux下的串口通信原理及编程实例

linux下的串⼝通信原理及编程实例linux下的串⼝通信原理及编程实例⼀、串⼝的基本原理1 串⼝通讯串⼝通讯(Serial Communication),是指外设和计算机间,通过数据信号线、地线等,按位进⾏传输数据的⼀种通讯⽅式。

串⼝是⼀种接⼝标准,它规定了接⼝的电⽓标准,没有规定接⼝插件电缆以及使⽤的协议。

2 串⼝通讯的数据格式 ⼀个字符⼀个字符地传输,每个字符⼀位⼀位地传输,并且传输⼀个字符时,总是以“起始位”开始,以“停⽌位”结束,字符之间没有固定的时间间隔要求。

每⼀个字符的前⾯都有⼀位起始位(低电平),字符本⾝由7位数据位组成,接着字符后⾯是⼀位校验位(检验位可以是奇校验、偶校验或⽆校验位),最后是⼀位或⼀位半或⼆位停⽌位,停⽌位后⾯是不定长的空闲位,停⽌位和空闲位都规定为⾼电平。

实际传输时每⼀位的信号宽度与波特率有关,波特率越⾼,宽度越⼩,在进⾏传输之前,双⽅⼀定要使⽤同⼀个波特率设置。

3 通讯⽅式单⼯模式(Simplex Communication)的数据传输是单向的。

通信双⽅中,⼀⽅固定为发送端,⼀⽅则固定为接收端。

信息只能沿⼀个⽅向传输,使⽤⼀根传输线。

半双⼯模式(Half Duplex)通信使⽤同⼀根传输线,既可以发送数据⼜可以接收数据,但不能同时进⾏发送和接收。

数据传输允许数据在两个⽅向上传输,但是,在任何时刻只能由其中的⼀⽅发送数据,另⼀⽅接收数据。

因此半双⼯模式既可以使⽤⼀条数据线,也可以使⽤两条数据线。

半双⼯通信中每端需有⼀个收发切换电⼦开关,通过切换来决定数据向哪个⽅向传输。

因为有切换,所以会产⽣时间延迟,信息传输效率低些。

全双⼯模式(Full Duplex)通信允许数据同时在两个⽅向上传输。

因此,全双⼯通信是两个单⼯通信⽅式的结合,它要求发送设备和接收设备都有独⽴的接收和发送能⼒。

在全双⼯模式中,每⼀端都有发送器和接收器,有两条传输线,信息传输效率⾼。

显然,在其它参数都⼀样的情况下,全双⼯⽐半双⼯传输速度要快,效率要⾼。

Linux串口通信编程

Linux串口通信编程

2) 设置属性:奇偶校验位、数据位、停止位。

主要设置<termbits.h>中的termios3) 打开、关闭和读写串口。

串口作为设备文件,可以直接用文件描述符来进行网上的一个例子:/*串口设备无论是在工控领域,还是在嵌入式设备领域,应用都非常广泛。

而串口编程也就显得必不可少。

偶然的一次机会,需要使用串口,而且操作系统还要求是Linux,因此,趁着这次机会,综合别人的代码,进行了一次整理和封装。

具体的封装格式为C代码,这样做是为了很好的移植性,使它可以在C和C++环境下,都可以编译和使用。

代码的头文件如下: *//////////////////////////////////////////////////////////////////// //////////////filename:stty.h#ifndef__STTY_H__#define__STTY_H__//包含头文件#include<stdio.h>#include<stdlib.h>#include<unistd.h>#include<sys/types.h>#include<sys/stat.h>#include<fcntl.h>#include<termios.h>#include<errno.h>#include<pthread.h>//// 串口设备信息结构typedef struct tty_info_t{int fd;// 串口设备IDpthread_mutex_t mt;// 线程同步互斥对象char name[24];// 串口设备名称,例:"/dev/ttyS0"struct termios ntm;// 新的串口设备选项struct termios otm;// 旧的串口设备选项}TTY_INFO;//// 串口操作函数TTY_INFO *readyTTY(int id);int setTTYSpeed(TTY_INFO *ptty,int speed);int setTTYParity(TTY_INFO *ptty,int databits,int parity,int st opbits);int cleanTTY(TTY_INFO *ptty);int sendnTTY(TTY_INFO *ptty,char*pbuf,int size);int recvnTTY(TTY_INFO *ptty,char*pbuf,int size);int lockTTY(TTY_INFO *ptty);int unlockTTY(TTY_INFO *ptty);#endif/*从头文件中的函数定义不难看出,函数的功能,使用过程如下:(1)打开串口设备,调用函数setTTYSpeed();(2)设置串口读写的波特率,调用函数setTTYSpeed();(3)设置串口的属性,包括停止位、校验位、数据位等,调用函数setTTYParity ();(4)向串口写入数据,调用函数sendnTTY();(5)从串口读出数据,调用函数recvnTTY();(6)操作完成后,需要调用函数cleanTTY()来释放申请的串口信息接口;其中,lockTTY()和unlockTTY()是为了能够在多线程中使用。

linux下tty,控制台,虚拟终端,串口,console(控制台终端)详解

linux下tty,控制台,虚拟终端,串口,console(控制台终端)详解

linux下tty,控制台,虚拟终端,串口,console(控制台终端)详解首先:1。

终端和控制台都不是个人电脑的概念,而是多人共用的小型中型大型计算机上的概念.一台主机,连很多终端,终端为主机提供了人机接口,每个人都通过终端使用主机的资源. 终端有字符哑终端和图形终端两种.控制台是另一种人机接口, 不通过终端与主机相连, 而是通过显示卡-显示器和键盘接口分别与主机相连, 这是人控制主机的第一人机接口.话回到个人计算机上,个人计算机只有控制台,没有终端. 当然愿意的话, 可以在串口上连一两台字符哑终端. 但是linux偏要按POSIX标准把个人计算机当成小型机来用,那么就在控制台上通过getty软件虚拟了六个字符哑终端(或者叫控制台终端tty1-tty6)(数量可以在/etc/inittab里自己调)和一个图型终端, 在虚拟图形终端中又可以通过软件(如rxvt)再虚拟无限多个虚拟字符哑终端(pts/0....). 记住,这全是虚拟的,用起来一样,但实际上并不是.所以在个人计算机上,只有一个实际的控制台,没有终端,所有终端都是在控制台上用软件模拟的.要把个人计算机当主机再通过串口或网卡外连真正的物理终端也可以,但由于真正的物理终端并不比个人计算机本身便宜,一般没有人这么做.2.如同其他UNIX类系统,Linux本身也是基于命令行的。

试试“Ctrl”+“Alt”+“Fx”。

这就是控制台,算是Linux的本来面目。

至于使用方法,除了多出登录注销外,其它操作和我们在linux图形界面(X—window)下的终端操作是一样的,在X-Window出问题或不运行X-Window的时候,操作主要在这里完成。

Linux在控制台下提供了不止一个(字符哑)终端,支持多用户同时登录,包括在本机同时登录。

控制台“Alt”+“Fx”能够切换到第x个(字符哑)终端。

如果需要从X-Window里跳到第(字符哑)终端,需要“Ctrl”+“Alt”+“Fx”。

Linux_C_C++串口读写串口读写

Linux_C_C++串口读写串口读写

Linux C/C++串口读写串口简介串行口是计算机一种常用的接口,具有连接线少,通讯简单,得到广泛的使用。

常用的串口是RS-232-C 接口(又称EIA RS-232-C)它是在1970 年由美国电子工业协会(EIA)联合贝尔系统、调制解调器厂家及计算机终端生产厂家共同制定的用于串行通讯的标准。

它的全名是"数据终端设备(DTE)和数据通讯设备(DCE)之间串行二进制数据交换接口技术标准"该标准规定采用一个25 个脚的DB25 连接器,对连接器的每个引脚的信号内容加以规定,还对各种信号的电平加以规定。

传输距离在码元畸变小于4% 的情况下,传输电缆长度应为50 英尺。

Linux 操作系统从一开始就对串行口提供了很好的支持串口操作打开串口在Linux 下串口文件是位于/dev 下的串口一为/dev/ttyS0串口二为/dev/ttyS1设置串口最基本的设置串口包括波特率设置,效验位和停止位设置。

设置这个结构体很复杂,我这里就只说说常见的一些设置:波特率设置设置波特率的例子函数:/***@brief 设置串口通信速率*@param fd 类型 int 打开串口的文件句柄*@param speed 类型 int 串口速度*@return void*/int speed_arr[] = { B38400, B19200, B9600, B4800, B2400, B1200, B300,B38400, B19200, B9600, B4800, B2400,B1200, B300, };int name_arr[] ={38400, 19200, 9600, 4800, 2400, 1200, 300, 38400, 19200, 9600, 4800, 2400, 1200, 300, }; void set_speed(int fd, int speed){int i;int status;struct termios Opt;tcgetattr(fd, &Opt);for ( i= 0; i < sizeof(speed_arr) / sizeof(int); i++) {if (speed == name_arr[i]) {/*** tcflush函数刷清(抛弃)输入缓存(终端驱动程序已接收到,但用户程序尚未读)或输出缓存(用户程序已经写,但尚未发送)。

Linux C 串口编程

Linux C 串口编程

Linux C 串口编程arch/arm/include/asm/termbits.hstruct termios {tcflag_t c_iflag; /* input mode flags */tcflag_t c_oflag; /* output mode flags */tcflag_t c_cflag; /* control mode flags */tcflag_t c_lflag; /* local mode flags */cc_t c_line; /* line discipline */cc_t c_cc[NCCS]; /* control characters */ };串口的设置主要是设置struct termios结构体的各成员/***测试的时候应用程序在后台运行./serial_test &*/#include <stdio.h>#include <stdlib.h>#include <unistd.h>#include <sys/types.h>#include <sys/stat.h>#include <fcntl.h> //文件控制定义#include <termios.h>//终端控制定义#include <errno.h>#define DEVICE "/dev/s3c2410_serial0"int serial_fd = 0;//打开串口并初始化设置init_serial(void){serial_fd = open(DEVICE, O_RDWR | O_NOCTTY | O_NDELAY);if (serial_fd < 0) {perror("open");return -1;}//串口主要设置结构体termios <termios.h>struct termios options;/**1. tcgetattr函数用于获取与终端相关的参数。

linux c语言 串口读取数据的方法

linux c语言 串口读取数据的方法

linux c语言串口读取数据的方法Linux下使用C语言读取串口数据的方法引言:串口是计算机和外部设备进行通信的一种重要的通信接口。

在Linux系统中,要使用C语言读取串口数据,需要通过打开串口设备文件,设置串口参数,并进行读取数据的操作。

本文将介绍如何通过C语言在Linux下读取串口数据的方法。

目录:1. 了解串口的工作原理2. 打开串口设备文件3. 设置串口参数4. 读取串口数据5. 示例程序6. 总结1. 了解串口的工作原理:在开始编写C语言读取串口数据的方法前,首先需要了解串口的工作原理。

串口是通过硬件电路实现两台设备之间的数据传输,属于一种异步串行通信方式。

典型的串口包含发送数据引脚(TX)、接收数据引脚(RX)、数据位、停止位、奇偶校验位等。

2. 打开串口设备文件:在Linux系统中,每个串口设备都被映射到一个设备文件上,例如/dev/ttyS0代表第一个串口设备,/dev/ttyUSB0代表第一个USB串口设备。

要使用C语言读取串口数据,需要首先打开相应的串口设备文件。

在C语言中,使用open()函数打开串口设备文件。

open()函数的原型如下:cint open(const char *pathname, int flags);其中pathname参数指定要打开的串口设备文件路径,flags参数指定打开方式。

常用的flags参数有O_RDONLY(只读方式打开)、O_WRONLY (只写方式打开)和O_RDWR(读写方式打开)。

例如,要打开第一个串口设备文件,可以调用open()函数如下:cint fd = open("/dev/ttyS0", O_RDWR);if (fd == -1){perror("Error opening serial port");return -1;}当open()函数成功打开串口设备文件时,会返回一个非负整数的文件描述符fd,用于后续的操作。

Linux串口编程笔记-详细剖析

Linux串口编程笔记-详细剖析

这半个月因肺部感染而不得不暂时终止那令人生厌的中石油巡检工作,闭门在家安静的修养。

整月的工钱自然是泡汤了,可却得来了极其珍贵的个人闲暇时光,让我能淋漓尽致的做软件方面的研究,虽是粗茶淡饭,针剂苦药,但可静心埋头于书房,却比天堂还甜美!恍惚已至月末,工作单位来了音讯,让我一下子从甜美的梦中惊醒,从哪里来,回哪里去,这种如"主体思想"一样可怕的思维是我挥之不去的梦魇,无奈、不知所措、病弱的身体却不由自主的向那发声的地方靠去!好了,还是不再发牢骚了,只是个人觉得这种臃肿低效的国企能够存在,本身就是对“国富论”绝佳的嘲讽,我只能用世界是多元的来啊Q一下了!切入正题,这段时间做GSM/GPRG和GPS的小东西,需要通过串口发送AT指令来控制,以前调试一直在用串口助手和minicom之类的现成软件,可是一点都不爽,为什么不自己写个操作串口的软件,就像在ARM和stm32上一样!这文章其实只是我的一个笔记,分为两篇,一篇是《storysnail的Windows串口编程笔记》,另一篇是《storysnail的Linux串口编程笔记》,由于网上已经有非常多的类似文章,有些大论,有些短小精悍,连我自己都思考过是否有必要再写一篇,但在Ling的鼓动下还是写了!本篇是Linux串口编程笔记,详细介绍了串口通信会用到的api函数,并提供了一个示例程序,这个示例程序是在EEEPC701的debian系统上编写测试的。

一:写串口程序用到的函数1:Linux与windows串口设备文件名对照2:写串口程序用到的函数串行通讯函数定义在termios.h头文件中,所以需要包含该文件。

下面是要介绍的函数列表open用途:打开串口原型:int open( const char * pathname,int flags);参数说明:pathname: 指向欲打开的文件路径字符串flags 所能使用的标志位:O_RDONLY 以只读方式打开文件O_WRONLY 以只写方式打开文件O_RDWR 以可读写方式打开文件。

简单的Linux串口通信程序

简单的Linux串口通信程序

int fd; /*以读写方式打开串口*/ fd = open( "/dev/ttyS0", O_RDWR); if (-1 == fd){ perror("error"); }
17:43
3. 设置串口
最基本的设置串口包括波特率设置,校验位和停止位设置,数 据位。串口的设置主要是设置struct termios结构体的各成员值。
1
• 实验步骤
– 1.阅读理解源码
• 源码位置:serial\serial.c • 阅读源码方法
– Linux下使用gedit编辑器 – windows下使用SourceInsight软件
– 2.编译应用程序
2
【基础知识】
Linux操作系统从一开始就对串行口提供了很好的支持,为进行
串行通讯提供了大量的函数,本实验主要是为掌握在Linux中进行 串行通讯编程的基本方法。
2. 打开串口
在Linux 下串口文件是位于/dev 下,com1为/dev/ttyS0 ,com2 为/dev/ttyS1 操作系统 串口1 Windows COM1 Linux /dev/ttyS0 串口2 COM2 /dev/ttyS1 USB/RS-232转换器 /dev/ttyUSB0
打开串口是通过使用标准的文件打开函数操作:
struct termios { unsigned short c_iflag; /* 输入模式标志*/ unsigned short c_oflag; /* 输出模式标志*/ unsigned short c_cflag; /* 控制模式标志*/ unsigned short c_lflag; /* local mode flags */ unsigned char c_line; /* line discipline */ unsigned char c_cc[NCC]; /* control characters */ };

Linux 串口读写

Linux 串口读写

Linux 串口读写串口简介串行口是计算机一种常用的接口,具有连接线少,通讯简单,得到广泛的使用。

常用的串口是RS-232-C 接口(又称EIA RS-232-C)它是在1970 年由美国电子工业协会(EIA)联合贝尔系统、调制解调器厂家及计算机终端生产厂家共同制定的用于串行通讯的标准。

它的全名是"数据终端设备(DTE)和数据通讯设备(DCE)之间串行二进制数据交换接口技术标准"该标准规定采用一个25 个脚的DB25 连接器,对连接器的每个引脚的信号内容加以规定,还对各种信号的电平加以规定。

传输距离在码元畸变小于4% 的情况下,传输电缆长度应为50 英尺。

Linux 操作系统从一开始就对串行口提供了很好的支持串口操作打开串口在Linux 下串口文件是位于/dev 下的串口一为/dev/ttyS0串口二为/dev/ttyS1设置串口最基本的设置串口包括波特率设置,效验位和停止位设置。

设置这个结构体很复杂,我这里就只说说常见的一些设置:波特率设置设置波特率的例子函数:/***@brief 设置串口通信速率*@param fd 类型 int 打开串口的文件句柄*@param speed 类型 int 串口速度*@return void*/int speed_arr[] = { B38400, B19200, B9600, B4800, B2400, B1200, B300,B38400, B19200, B9600, B4800, B2400,B1200, B300, };int name_arr[] ={38400, 19200, 9600, 4800, 2400, 1200, 300, 38400, 19200, 9600, 4800, 2400, 1200, 300, }; void set_speed(int fd, int speed){int i;int status;struct termios Opt;tcgetattr(fd, &Opt);for ( i= 0; i < sizeof(speed_arr) / sizeof(int); i++) {if (speed == name_arr[i]) {/*** tcflush函数刷清(抛弃)输入缓存(终端驱动程序已接收到,但用户程序尚未读)或输出缓存(用户程序已经写,但尚未发送)。

Linux串口编程的一些问题解决(0x11 ,0x13 ,0x0d)

Linux串口编程的一些问题解决(0x11 ,0x13 ,0x0d)
status |= TIOCM_RTS; // RTS 引脚低电平
printf("status = x\n", status);
ioctl(fd, TIOCMSET, &status);
ioctl(fd, TIOCMGET, &status);
printf("status = x\n", status);
term.c_iflag &= ~(BRKINT | ICRNL | INPCK | ISTRIP | IXON);
屏蔽了许多属性,怪不得有人说如果是使用串口通讯c_iflag和c_oflag都设置为0就行了!
以下是我的设置的一些重要的串口属性
term.c_cflag |= CLOCAL | CREAD;
if (controlbits & TIOCM_CTS)
printf(“有信号\n”);
else
printf(“无信号\n”);
设置:
ioctl(fd, TIOCMGET, &ctrlbits);
if (flag)
ctrlbits |= TIOCM_RTS;
else
ctrlbits &= ~TIOCM_RTS;
len = read(fd, sbuf, sizeof(sbuf));
if(len == -1)
printf("sbuf error.\n");
else
opt.c_cflag &= ~PARENB;
opt.c_cflag |= IXON|IXOFF|IXANY; // 软件数据流控制
// opt.c_cflag |= CRTSCTS; // 硬件数据流控制

串口编程的一般步骤及相关函数讲解

串口编程的一般步骤及相关函数讲解

串口编程的一般步骤及相关函数讲解串口编程是指通过串口与外部设备进行通信的程序设计。

一般步骤包括串口初始化、设置串口参数、打开串口、发送数据、接收数据和关闭串口等。

1. 串口初始化:首先需要导入串口编程相关的库文件,如pyserial 库。

然后通过serial.Serial(函数创建一个串口对象,指定串口号、波特率、停止位、数据位等参数,如:``````这里将串口号设置为/dev/ttyUSB0,波特率设置为9600,超时时间设置为1秒。

2.设置串口参数:通过串口对象的相关方法设置串口参数,如:```serial_port.setBaudrate(9600)serial_port.setParity(serial.PARITY_NONE)serial_port.setStopbits(serial.STOPBITS_ONE)serial_port.setByteSize(serial.EIGHTBITS)```这里设置了波特率为9600,无奇偶校验位,1位停止位,8位数据位。

3. 打开串口:使用串口对象的open(方法打开串口,如:serial_port.open```注意,打开串口之前要确保串口没有被其他程序占用。

4. 发送数据:使用串口对象的write(方法向串口发送数据,如:```data = 'Hello, World!'serial_port.write(data.encode()```这里将字符串'Hello, World!'转码为字节型数据并发送到串口。

5. 接收数据:使用串口对象的read(方法从串口读取数据,如:```received_data = serial_port.read(10)print(received_data.decode()```这里从串口读取10字节的数据,并将其解码为字符串输出。

6. 关闭串口:使用串口对象的close(方法关闭串口,如:```serial_port.close在程序结束时,记得关闭串口以释放资源。

linux串口编程原理

linux串口编程原理

Linux串口编程原理1.介绍串口是计算机与外部设备之间传输数据的一种常用方式,它通过发送和接收字符流来进行通信。

L in ux系统提供了强大的串口编程接口,开发者可以使用这些接口来实现与串口设备的通信。

本文将介绍L in ux串口编程的原理和基本概念。

2.串口基础知识2.1串口通信原理串口通信是通过发送和接收电平状态的变化来传输数据的。

在串口通信中,数据以字节的形式传输,并通过串口线路经过物理转换实现数据的发送和接收。

通常,串口通信包含三个主要的组成部分:-串行数据传输线(T X D、RX D):用于发送和接收数据的物理线路。

-数据帧(F ra me):包含了要发送或接收的数据,通常包括起始位、数据位、校验位和停止位。

-波特率(B au dR at e):表示每秒钟传输的波特数,它决定了数据传输的速度。

2.2串口设备文件在L in ux系统中,串口设备会在`/de v`目录下生成对应的设备文件,以便开发者对串口设备进行操作。

设备文件的命名方式为`tty S x`或`t ty US Bx`,其中`x`表示串口的编号。

例如,`/d ev/t ty S0`表示第一个串口设备,`/d ev/t t y US B0`表示第一个US B串口设备。

开发者可以通过打开设备文件并向其写入或读取数据来进行串口通信。

3. Li nux串口编程接口3.1打开串口在L in ux中,使用C语言编写串口程序需要先打开串口设备文件。

可以通过调用`op en()`系统调用打开串口设备文件,并设置合适的访问权限。

#i nc lu de<f cn tl.h>#i nc lu de<u ni st d.h>i n to pe n(co ns tc har*pa th na me,i nt fla g s);3.2配置串口打开串口后,需要对串口进行正确的配置,包括波特率、数据位、校验位和停止位等参数。

L in ux提供了`ter m io s`结构体和相关函数来配置串口。

linux串口配置参数

linux串口配置参数

linux串口配置参数Linux操作系统提供了丰富的串口资源,支持通过串口与外部设备进行通信。

在Linux下配置串口参数需要关注以下几个关键要素:串口号、波特率、数据位、停止位、校验位和流控制等。

下面将详细介绍如何配置这些参数。

一、确定串口号在Linux系统中,每个串口设备都有一个唯一的串口号,可以通过ls/dev/tty*命令查看系统中的所有串口设备。

在配置串口参数之前,需要确定要使用的串口号。

通常,串口号以/dev/ttyS或/dev/ttyUSB开头,可以根据实际情况进行判断。

二、配置波特率波特率是串口通信中最基本的参数之一,它决定了数据传输的速度。

在Linux系统中,可以使用minicom或screen等终端仿真器进行串口通信,这些工具默认使用9600波特率。

可以根据实际需求进行调整,常见的波特率有115200、57600等。

可以使用cat/proc/stty串口文件查看当前配置的波特率。

三、设置数据位、停止位和校验位数据位、停止位和校验位是串口通信中的其他重要参数。

数据位决定了传输的数据位数,常见的有5、6、7和8位等;停止位决定了传输的停顿时间,常见的有1、1.5和2位等;校验位则用于检查数据传输过程中的错误,常见的有奇校验和偶校验等。

这些参数可以在终端仿真器的配置中进行设置,也可以使用stty命令进行全局配置。

四、启用流控制流控制用于控制数据传输过程中的流量,避免数据传输过快导致丢包或溢出等问题。

常见的流控制方式有软件流控制(xon/xoff)和硬件流控制(rts/cts)。

软件流控制通过检测串口输入流控制信号(xon/xoff)来实现流量控制;硬件流控制通过控制数据端口的电平来实现流量控制。

可以在终端仿真器的配置中启用相应的流控制方式。

五、测试配置效果完成串口参数配置后,可以通过串口通信测试来验证配置是否正确。

可以使用cat或echo命令将数据发送到串口设备,并使用另一终端仿真器接收数据,观察是否能够正常通信。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Linux下串口编程所要知道的那些事
[日期:2011-
来源:csdn 作者:tiger-john
1. 波特率
1> 表示每秒传输的比特数。

2> 说明:若波特率为115200,它表示什么呢?
Ø 对于发送断,即每秒钟发送115200bit。

Ø 对于接收端,115200波特率意味着串口通信在数据线上的采样率为115200HZ.
注:波特率和距离之间成反比,距离相隔很近的设备之间可以实现高波特率通信。

2. 数据位
1> 表示通信中实际数据位的参数。

在计算机发送的数据包中,实际的数据往往不会是8位。

2> 说明:在串口通信中,可以选择5,6,7,8位。

设定数据位时,主要考虑所要传输的数据内容。

3> 事例:如果要传输的是标准的ASCII码。

那么又该如何设定数据位呢?
Ø 由于ASCII码的范围是0~127,因此设定数据位为7就OK了。

Ø 若为扩展ASCII码,其范围是0~255,必须使用8位。

注:7位或8位数据中不仅仅是数据,还包括开始/停止位,数据位以及奇偶校验位等。

3. 奇偶校验位
1> 作用:该位用于串口通信中的简单检验错。

2> 类型:主要有偶校验,奇校验,标记,空格的方式
在ARM7(LPC2200)中,只有偶校验,奇校验两种方式。

3> 方法:如何进行校验?
Ø 奇偶校验是通过统计数据中高位或低位的个数来实现校验的。

Ø 标记,空格并不是真正校验错误的,只是通过简单的置位来实现对
数据的检测。

通过置位方式,可以判断出是否存在噪声干扰数据通信或数据传输,以及是否存在不同步的现象
4. 停止位
1> 作用:停止位用于标志该数据包数据结束,可以取1位,1.5位或2位。

在ARM7(lpc2200中)停止位可以取1位,2位或不取
2> 说明:
Ø 停止位不仅仅用于数据包的传输结束标志,还提供了计算机之间校正同步时钟的机会。

Ø 用于停止位的位数越多,不同时钟同步的容忍程序越大。

Ø 但是由于停止位占用了数据空间,过多的停止位将导致数据传输速度的下降。

5. 数据流控制
1> 通过串口传输数据时,由于计算机之间处理速度或其他因素的影响,会造成丢失数据的现象。

2> 作用:数据流控制用于解决上面的问题,通过控制发送数据的速度,确保数据不会出现丢失。

3> 类型:数据流控制可以分为软件流控制(Xon/Xoff)和硬件流控制,当然你可以选择不使用数据流控制。

Ø 软件流控制使用特殊的字符作为启动或停止的标志
Ø 硬件流控制通过使用硬件信号(CTR/RTS)来实现。

注:使用硬件流控制时,在接收端准备好接收数据后,设为CTS为1,否则CTS为0。

同样,如果发送端准备好要发送数据时,则设定RTS为1;如果还未准备好,设置CTS为0.
二. Linux串口下编程所要考虑的问题
1. Linux下编写串口程序的思想
看图:
1> 在Linux中,一切设备皆为文件。

因此对串口的操作都转化为对文件的操作。

(在Ucos-II操作系统中是直接对寄存器操作来对串口进行编程的)2> Linux设备驱动工作流程:
Ø 在Linux系统启动时,设备驱动将被加载。

Ø 设备驱动成功加载后,将向系统反馈一个主设备号,驱动程序将根据该主设备号在/dev目录下创建对应的设备文件。

Ø 程序(进程)就可以使用open,read,write函数或命令来实现对设备的访问了。

Tiger-John说明:
在linux中,系统对上层程序人员把底层对寄存器的操作屏蔽了,提供了统一的ARI接口。

我们只要通过这些统一的接口(open,write,read)来对UART0串口进行操作。

相关文档
最新文档