合成氨合成工艺

合成氨合成工艺
合成氨合成工艺

合成氨的生产工艺

目录

1.概述

1.1产品性质

1.2产品用途

2.生产方法

2.1 生产方法(流程图)

2.2 工艺过程简述

3.过程衡算及主要设备选择

4.主要设备一览表

5.环境保护、安全和工业卫生

1.概述

1.1产品的性质

氨(Ammonia,旧称阿莫尼亚)是重要的无机化工产品之一,在国民经济中占有重要地位。农业上使用的氮肥,除氨水外,诸如尿素、硝酸铵、磷酸铵、氯化铵以及各种含氮复合肥都是以氨为原料生产的。合成氨是大宗化工产品之一,世界每年合成氨产量已达到1亿吨以上,其中约有80%的氨用来生产化学肥料,20%作为其它化工产品的原料。

合成氨指由氮和氢在高温高压和催化剂存在下直接合成的氨。别名氨气,分子式为NH 3,英文名:synthetic ammonia。世界上的氨除少量从焦炉气中回收外,绝大部分是合成的氨。

德国化学家哈伯(F.Haber,1868-1934)从1902年开始研究由氮气和氢气直接合成氨。于1908年申请专利,即“循环法”,在此基础上,他继续研究,于1909年改进了合成,氨的含量达到6%以上。这是目前工业普遍采用的直接合成法。反应过程中为解决氢气和氮气合成转化率低的问题,将氨产品从合成反应后的气体中分离出来,未反应气和新鲜氢氮气混合重新参与合成反应。合成氨反应式如下:

N2+3H2≒2NH3(该反应为可逆反应,等号上反应条件为:"高温高压",下为:"催化剂") 合成氨的主要原料可分为固体原料、液体原料和气体原料。经过近百年的发展,合成氨技术趋于成熟,形成了一大批各有特色的工艺流程,但都是由三个基本部分组成,即原料气制备过程、净化过程以及氨合成过程。

1.2产品用途

氨主要用于制造氮肥和复合肥料,氨作为工业原料和氨化饲料,用量约占世界产量的12%。硝酸、各种含氮的无机盐及有机中间体、磺胺药、聚氨酯、聚酰胺纤维和丁腈橡胶等都需直接以氨为原料。液氨常用作制冷剂。

贮运商品氨中有一部分是以液态由制造厂运往外地。此外,为保证制造厂内合成氨和氨加工车间之间的供需平衡,防止因短期事故而停产,需设置液氨库。液氨库根据容量大小不同,有不冷冻、半冷冻和全冷冻三种类型。液氨的运输方式有海运、驳船运、管道运、槽车运、卡车运。

2.生产方法

2.1生产方法(流程图)

2.2工艺过程简述

(1)原料气制备将煤和天然气等原料制成含氢和氮的粗原料气。对于固体原料煤和焦炭,通常采用气化的方法制取合成气;渣油可采用非催化部分氧化的方法获得合成气;对气态烃类和石脑油,工业中利用二段蒸汽转化法制取合成气。

(2)净化对粗原料气进行净化处理,除去氢气和氮气以外的杂质,主要包括变换过程、脱硫脱碳过程以及气体精制过程。

①一氧化碳变换过程

在合成氨生产中,各种方法制取的原料气都含有CO,其体积分数一般为12%~40%。合成氨需要的两种组分是H2和N2,因此需要除去合成气中的CO。变换反应如下:CO+H2O→H2+CO2 =-41.2kJ/mol 0298ΔH

由于CO变换过程是强放热过程,必须分段进行以利于回收反应热,并控制变换段出口残余CO含量。第一步是高温变换,使大部分CO转变为CO2和H2;第二步是低温变换,将CO含量降至0.3%左右。因此,CO变换反应既是原料气制造的继续,又是净化的过程,为后续脱碳过程创造条件。

②脱硫脱碳过程

各种原料制取的粗原料气,都含有一些硫和碳的氧化物,为了防止合成氨生产过程催化剂的中毒,必须在氨合成工序前加以脱除,以天然气为原料的蒸汽转化法,第一道工序是脱硫,用以保护转化催化剂,以重油和煤为原料的部分氧化法,根据一氧化碳变换是否采用耐硫的催化剂而确定脱硫的位置。工业脱硫方法种类很多,通常是采用物理或化学吸收的方法,常用的有低温甲醇洗法(Rectisol)、聚乙二醇二甲醚法(Selexol)等。

粗原料气经CO变换以后,变换气中除H2外,还有CO2、CO和CH4等组分,其中以CO2含量最多。CO2既是氨合成催化剂的毒物,又是制造尿素、碳酸氢铵等氮肥的重要原料。因此变换气中CO2的脱除必须兼顾这两方面的要求。

一般采用溶液吸收法脱除CO2。根据吸收剂性能的不同,可分为两大类。一类是物理吸收法,如低温甲醇洗法(Rectisol),聚乙二醇二甲醚法(Selexol),碳酸丙烯酯法。一类是化学吸收法,如热钾碱法,低热耗本菲尔法,活化MDEA法,MEA法等。

③气体精制过程

经CO变换和CO2脱除后的原料气中尚含有少量残余的CO和CO2。为了防止对氨合成催化剂的毒害,规定CO和CO2总含量不得大于10cm3/m3(体积分数)。因此,原料气在进入合成工序前,必须进行原料气的最终净化,即精制过程。

目前在工业生产中,最终净化方法分为深冷分离法和甲烷化法。深冷分离法主要是液氮洗法,是在深度冷冻(<-100℃)条件下用液氮吸收分离少量CO,而且也能脱除甲烷和大部分氩,这样可以获得只含有惰性气体100cm3/m3以下的氢氮混合气,深冷净化法通常与空分以及低温甲醇洗结合。甲烷化法是在催化剂存在下使少量CO、CO2与H2反应生成CH4和H2O的一种净化工艺,要求入口原料气中碳的氧化物含量(体积分数)一般应小于0.7%。甲烷化法可以将气体中碳的氧化物(CO+CO2)含量脱除到10cm3/m3以下,但是需要消耗有效成分H2,并且增加了惰性气体CH4的含量。甲烷化反应如下:

CO+3H2→CH4+H2O =-206.2kJ/mol 0298HΔ

CO2+4H2→CH4+2H2O =-165.1kJ/mol 0298HΔ

(3)氨合成将纯净的氢、氮混合气压缩到高压,在催化剂的作用下合成氨。氨的合成是提供液氨产品的工序,是整个合成氨生产过程的核心部分。氨合成反应在较高压力和催化剂存在的条件下进行,由于反应后气体中氨含量不高,一般只有10%~20%,故采用未反应氢氮气循环的流程。氨合成反应式如下:

N2+3H2→2NH3(g) =-92.4kJ/mol

合成氨的催化机理

热力学计算表明,低温、高压对合成氨反应是有利的,但无催化剂时,反应的活化能很高,反应几乎不发生。当采用铁催化剂时,由于改变了反应历程,降低了反应的活化能,使反应以显著的速率进行。目前认为,合成氨反应的一种可能机理,首先是氮分子在铁催化剂表面上进行化学吸附,使氮原子间的化学键减弱。接着是化学吸附的氢原子不断地跟表面上的氮分子作用,在催化剂表面上逐步生成—NH、—NH2和NH3,最后氨分子在表面上脱吸而生成气态的氨。上述反应途径可简单地表示为:

xFe + N2→FexN

FexN +[H]吸→Fe xNH

FexNH +[H]吸→FexNH2

FexNH2 +[H]吸FexNH3xFe+NH3

在无催化剂时,氨的合成反应的活化能很高,大约335 kJ/mol。加入铁催化剂后,反应以生成氮化物和氮氢化物两个阶段进行。第一阶段的反应活化能为126 kJ/mol~167 kJ/mo l,第二阶段的反应活化能为13 kJ/mol。由于反应途径的改变(生成不稳定的中间化合物),降低了反应的活化能,因而反应速率加快了。

催化剂的中毒

催化剂的催化能力一般称为催化活性。有人认为:由于催化剂在反应前后的化学性质和质量不变,一旦制成一批催化剂之后,便可以永远使用下去。实际上许多催化剂在使用过程中,其活性从小到大,逐渐达到正常水平,这就是催化剂的成熟期。接着,催化剂活性在一段时间里保持稳定,然后再下降,一直到衰老而不能再使用。活性保持稳定的时间即为催化剂的寿命,其长短因催化剂的制备方法和使用条件而异。

催化剂在稳定活性期间,往往因接触少量的杂质而使活性明显下降甚至被破坏,这种现象称为催化剂的中毒。一般认为是由于催化剂表面的活性中心被杂质占据而引起中毒。中毒分为暂时性中毒和永久性中毒两种。例如,对于合成氨反应中的铁催化剂,O2、CO、CO2和水蒸气等都能使催化剂中毒。但利用纯净的氢、氮混合气体通过中毒的催化剂时,催化剂的活性又能恢复,因此这种中毒是暂时性中毒。相反,含P、S、As的化合物则可使铁催化剂永久性中毒。催化剂中毒后,往往完全失去活性,这时即使再用纯净的氢、氮混合气体处理,活性也很难恢复。催化剂中毒会严重影响生产的正常进行。工业上为了防止催化剂中毒,要把反应物原料加以净化,以除去毒物,这样就要增加设备,提高成本。因此,研制具有较强抗毒能力的新型催化剂,是一个重要的课题。

3.过程衡算及主要设备选择

过程衡算

在燃料气化过程中,转化到半水煤气组成中的碳量称为有效消耗。在实际气化过程中,还要以其他形式消耗大量的碳,如吹风过程中所燃烧的碳、灰渣中末燃尽的碳以及随着气体带走的尘粒中所含的碳等。事实上转化为半水煤气中的碳量,仅是整个煤气生产过程中原料消耗的一部分,其与有效消耗碳量的比值即为碳的有效利用率。生产中,希望有效消耗所占总消耗的比例越高越好,这就需要努力提高燃料的利用率,尽量减少其他形式的碳损失。

原料在气化过程中,转入到半水煤气中的碳,是以一氧化碳和二氧化碳2种形式存在的,生成甲烷则是不希望发生的副反应。假如使用的气化原料品种和气化条件已确定,则半水煤气中的一氧化碳和二氧化碳的总量也就相应为一定值。根据国内目前的煤气生产水平,半水煤气中一氧化碳含量一般在28% ~31%范围内,二氧化碳含量在7% ~8%之间。

例如,生产1 t氨,半水煤气的消耗量用V半表示,半水煤气中一氧化碳和二氧化碳总含量为30% +7.5% =37.5%,则每生产1t氨转入半水煤气中的碳含量为: 0.375 ×(12/22.4) ×V半

=0.200 9V半(kg/t)折成标准煤: 0.200 9V半÷0.84 =0.239V半(kg/t)式,0.375为半水煤气中CO +CO2组分百分含量;12为碳的原子量;22.4为标准状况下,每千摩尔体积,m3;V半为吨氨半水煤气消耗量,m;0.84为吨标准煤的含碳量。

若吨氨消耗半水煤气3 200 m,则在CO 含量30%,CO2含量7.5%的条件下(CH4不计),吨氨理论消耗碳量为:0.239 ×3 200 =764.8 (kg标准煤)。实际生产中,耗碳量并不是都转化到半水煤气中。若碳的有效利用率为65%,则吨氨耗标准煤为:764.8 ÷0.65 =1176.6 (kg)。碳的利用率提高到70%,则吨氨耗标准煤为:764.8 ÷0.7 =1092.6 (kg)。

如果碳的有效利用率由65%提高至70%,则吨氨标准煤可下降84 kg。由此可见,努力提高碳的利用率是降低消耗的主要途径,也是提高企业经济效益的关键。例如,1 个10 万t/a合成氨企业,煤气生产过程中碳的利用率由65%提高至70%,每年节约价值为:10

×0.084 ×800 =672 (万元/a)。式中,10为合成氨年产量,万t;0.084为吨氨节约标煤量,t;800为目前吨标准煤入炉价格,元。

提高碳的有效利用率的途径包括提高吹风效率和控制气效率、降低灰渣返炭率、减少吹风和制气带出物、减少热量损失等方面,以下分别阐述。提高吹风效率吹风的目的是提高气化层温度并积蓄热量为制气过程创造条件。吹风效率是积蓄于燃料层中的热量和消耗燃

料所具有的热值之比,其意义可用下式表示:E吹风=100(Q反- Q气)Q燃式中,E吹风为吹风阶段的效率, %;Q燃为吹风阶段消耗的燃料所具有的热值,kJ;Q反为吹风阶段化学反应放出的热量,kJ;Q气为吹风气带走的热量,kJ。很明显,要提高吹风效率(E吹风),只有努力增大Q反,降低Q气和Q燃。由吹风阶段化学反应可知,吹风阶段每消耗 1 kmol碳所放出的反应热Q反,同生成产物中一氧化碳和二氧化碳的含量有关。生成1 kmol二氧化碳放出热量为393.51 GJ,生成1 kmol一氧化碳仅放出热量110.52 GJ,后者放出的热量为前者的28.1%。因此,将气化层温度控制在适宜的范围内,提高空气流速(在炭层不吹翻的前提下),降低吹风气中的一氧化碳含量是十分重要的。吹风气中一氧化碳含量增加(吹风气中平均CO含量应小于6.0% )或吹风升温过高,Q气亦相应地提高,吹风效率就要降低。在实际生产中,随着吹风时间的延续,吹风气中一氧化碳含量逐渐升高是不可避免的。降低气化层温度可以减少二氧化碳还原为一氧化碳的反应,但是,炉温低将导致制气质量差、蒸汽分解率低,未分解的蒸汽从炉内带走了大量热量,对降低两煤消耗,提高煤气炉气化强度都是不利的。显然,吹风阶段与制气过程对气化层温度要求是矛盾的。为了保持气化层有较高的温度,又要减少吹风气中一氧化碳含量,可采用提高风机的风压、风量,减少吹风百分比等办法。然而风压、风量过大,不仅会导致吹风阶段带出物明显增多,而且炉内炭层容易吹翻,难以维持长期稳定运行;而风压、风量过小,则会导致煤气炉气化强度降低。降低空气流速有利于二氧化碳还原为一氧化碳,故吹风效率降低,增加了吹风阶段碳的消耗量,降低了碳的利用率。

根据各厂所用燃料的特性、粒度等条件,选择适宜的风压、风量参数的鼓风机、循环时间、吹风百分比,控制适宜的炭层高度和气化层温度、厚度、位置,全方位降低热量损失,是提高碳的利用率,降低两煤消耗的主要途径之一。<2 600 mm系列煤气炉的吹风强度宜控制在3 800~5 000 m/m·h(优质原料取高限,劣质原料取低限)。

一般情况下,<2 600 mm煤气炉吹风效率不到60%,在炉顶、炉下出气温度较高时,吹风效率仅为50%左右。为了使炭层中积蓄一份可供制气用的热量,往往要燃烧掉2倍于这份热量的燃料。炭层中的热量应尽可能地用于制气,采用其他任何热量用于过热入炉蒸汽或空气,为制气反应提供热量,都比用这些热量产生蒸汽来得合算。换句话说,从气化层移走的任何热量,尽管可以用来产生蒸汽并加以回收,但由于气化层中积蓄的热量效率太低因而是不经济的。通过计算,吹风时炉上温度由450℃降至250 ℃,吹风效率可提高6%左右。要达到理想的吹风效率,可采取如下措施: ①保持气化层温度在适宜的范围内,并选择适

宜的空速,尽量降低吹风气中一氧化碳含量; ②在煤气炉高径比允许的情况下,控制适宜

的炭层高度、气化层厚度和灰渣层厚度; ③保持较高的上预热层厚度(在风机能力允许的情况下),以增加煤气炉燃料层蓄热能力,为提高煤气炉的气化效率创造有利条件。在吹风阶段,碳与氧的反应是燃烧反应。实验证明,这一反应在800 ℃以上温度时,几乎是不可逆地自左向右进行,而且属于扩散控制。因此,在一般煤气发生炉操作的温度下,对于二氧化碳生成总反应速度来说,氧的扩散速度是该反应的主要控制因素。通过对碳与氧反应研究表明,这一反应在775 ℃以下时,属于动力学控制;在高于900 ℃时,属于扩散控制;在这2个温度区域之间时,可认为处于过渡区。根据固定层煤气炉气化过程的特点,碳与氧之间首先进行燃烧反应,然后产物CO2再与气化层上部的碳原子进行还原反应。一般认为,碳与二氧化碳之间的反应速度比碳燃烧速度要慢得多。温度在2 000 ℃以下时基本属于动力学控制,反应速度也大致为CO2的一级反应。根据吹风过程反应的特点,控制适宜的吹风强度和气化层温度,对提高吹风效率,降低原料煤及蒸汽消耗具有重要的意义。

提高制气效率制气阶段的效率E制气是指所获得半水煤气热值Q气与气化时所

消耗的燃料所具有的热值Q燃、气化剂(蒸汽)所带入的热量Q蒸以及吹风阶段时积蓄于

燃料层可利用的热量Q利用三者之和之比。E制气=Q气Q燃+Q蒸+Q利用×100%Q利用=Q反+Q气+Q损式中,Q反为制气反应吸收的热量,kJ/mol;Q气为水煤气及未分解蒸汽带出的热量,kJ/mol;Q损为夹套等热量损失,kJ;Q利用为吹风气储存到燃料层的热,kJ。

从上式中可以看出,要提高制气效率,必须提高Q气,即提高单位制气量和水煤气中的有效成分一氧化碳、氢气含量。在制气过程中,在Q燃消耗和气化剂蒸汽所带入热量Q 蒸一定的前提下,提高制气效率就是提高吹风时积蓄于燃料层内可以利用的热量Q利用的有效利用率。吹风时积蓄于燃料层内可以利用的热量Q利用,应相当于气化反应时所吸收的热量、反应后水煤气和末分解的水蒸气所带走的热量与损失热之和。换言之,夹套损失热一定,提高制气效率就是控制适宜的气化层温度,提高蒸汽分解率,降低炉上、炉下温度,减少热量损失,提高水煤气的数量和质量。

碳与蒸汽之间的反应,在400~1 000 ℃的温度范围内反应速度仍很慢,因此,属于动力学控制。温度超过1100 ℃以后,反应速度较快,开始为扩散控制。在高温下进行水蒸气与碳的反应达到平衡时,残余水蒸气量少,即水蒸气分解率高,水煤气中H2和CO的含量多。在相同温度下,随着压力的升高,气体中的H2 O,CO2和CH4含量增加,而H2和CO的含量减少。为制得CO和H2含量高的水煤气,从平衡角度认为,应在低压和高温下进行。

主要设备:

(1) 造气炉

(2) 压缩机

(3) 铜洗

(4) 合成塔

4.主要设备一览表

5.环境保护、安全和工业卫生

氨气中毒的防治

氨气的理化性质无色气体,有刺激性恶臭味,分子式NH3,分子量17.03,相对密度0.7714 g/L,熔点- 77.7 ℃,沸点-33.35 ℃,自燃点651.11 ℃,蒸气密度0.6,蒸气压1 013.08

kPa(25.7 ℃),蒸气与空气混合物爆炸极限16 % - 25 %(最易引燃体积分数17 %)。氨气的毒性对黏膜和皮肤有碱性刺激及腐蚀作用,可造成组织溶解性坏死。高浓度时可引起反射性呼吸停止和心脏停搏。人接触553 mg/ m可发生强烈的刺激症状,可耐受1.25 min;3.5-7 g/ m质量浓度下可立即死亡。氨气主要经呼吸道吸入。

氨气中毒的治疗吸入者应迅速脱离现场, 至空气新鲜处,维持呼吸功能,卧床静息。及时观察血气分析及胸部X线片变化。给对症、支持治疗。防治肺水肿、喉痉挛、水肿或支气管黏膜脱落造成窒息, 合理氧疗; 保持呼吸道通畅, 应用支气管舒缓剂; 早期、适量、短程应用糖皮质激素,如可按病情给地塞米松10-60 mg/d, 分次给药, 待病情好转后减量,大剂量应用一般不超过3-5 日。注意及时进行气管切开, 短期内限制液体入量。合理应用抗生素,脱水剂及吗啡应慎用,强心剂应减量应用。误服者给饮牛奶,有腐蚀症状时忌洗胃。对症处理,眼污染后立即用流动清水或凉开水冲洗至少10 min。皮肤污染时立即脱去污染的衣着,用流动清水冲洗至少30min。

燃烧爆炸及泄漏的处置

(1) 灭火剂可使用干粉、CO2,也可用水幕、雾状水或常规泡沫。在确保安全的前提下,将容器移离火场;禁止将水注入容器;损坏的钢瓶只能由专业人员处理。

(2) 储罐发生泄漏时,处置方法有: ①消除附近火源,穿全封闭防护服作业; ②禁止接触或跨越泄漏物; ③在保证安全的情况下堵漏或翻转泄漏的容器以避免液体漏出; ④防止

泄漏物进入水体、下水道、地下室或密闭性空间; ⑤禁止用水直接冲击泄漏物或泄漏源;

⑥喷雾状水抑制蒸气或改变蒸气云流向; ⑦隔离泄漏区直至气体散尽。

合成氨火灾爆炸危险性分析

(1) 氢的爆炸下限。氢的爆炸下限较低,爆炸浓度范围宽,加之其最小引爆能只有0.019 mJ,因此,当高压气体泄漏时,由于流速大,与设备剧烈摩擦产生的高温和静电可引起爆炸事故。

(2) 氨的合成反应。氨的合成反应是在高温高压下进行,氢在高温高压下对碳钢设备具有较强的渗透能力,造成“氢脆”,降低了设备的机械强度,而且高温生产条件也对设备材质提出

了极为严格的要求。

(3) 合成系统操作压力。有高压( ≥10.0 MPa) 和低压(0.1- 2.0 MPa)2 种,不同压力系统之间紧密相连,有可能会造成高压串入低压,导致爆炸事故的发生。

(4) 合成炉拆卸大、小盖时,有可能导致爆炸着火事故。

(5) 液氨库存量一般较大。根据我国重大危险源辩识规定,一般大、中型合成氨厂的储存区或中间罐均构成重大危险源。一旦库、罐出现泄漏,会影响人身安全,而且可能造成较大面积中毒和污染,甚至导致火灾和爆炸事故发生。

事故的预防措施

(1) 严格控制合成炉壁温,不准超过规定,以防止钢材高温脱碳,造成合成炉强度降低。合成系统的设备、管线、阀门必须根据其使用条件及材料性能,选择合适的材质,以防止脱碳、渗碳等情况出现。

(2) 必须严格控制冷凝器和氨分离器液面。防止液面过高造成液氨带入循环机或合成炉内,造成循环机损坏和合成炉炉温急剧下降及内筒脱焊;同时也要防止液面过低,造成高压气体串入低压系统,导致设备、管线爆炸。

(3) 合成炉拆卸大盖时,必须用氮气置换,分析H2 体积分数在0.5 %以下,禁止用铁钎撬击顶盖。打开大、小顶盖时的温度应为室温或接近室温,压力应小于196 Pa,高温带压情况下,禁止打开大、小顶盖。合成炉顶热电偶连接端的试漏,必须用变压器油,不准用肥皂沫试漏,以防碱液导电,引起短路。

(4) 液氨储罐区应设有喷淋水装置和排水收集处理系统,以处理液氨泄漏事故并防止环境污染事故出现。

(5) 系统局部充压、放压时,应控制放压速度,防止瞬间气体流速过大,引起静电火灾。放空管应配置氮气灭火器。

合成氨生产工艺流程长,设备复杂,其生产过程中原料、半成品及成品大多为易燃易爆、有毒有害物质,生产工艺条件为高温、高压、超低温、负压,充满了风险。只有充分认识到安全生产的重要性,切实加强事故的预防措施,强化管理,提高安全意识,才能真正把“以人为本,安全第一”落到实处。

合成氨工艺流程

合成氨工艺流程标准化管理部编码-[99968T-6889628-J68568-1689N]

将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化所生成的半水煤气经燃烧室、废热锅炉回收热量后送入气柜。 半水煤气由气柜进入电除尘器,除去固体颗粒后依次进入压缩机的Ⅰ、Ⅱ、Ⅲ段,加压到~,送入脱硫塔,用溶液或其他脱硫溶液洗涤,以除去硫化氢,随后,气体经饱和塔进入热交换器,加热升温后进入一氧化碳变换炉,用水蒸汽使气体中的一氧化碳变为氢。变换后的气体,返回热交换器进行降温,并经热水塔的进一步降温后,进入变换器脱硫塔,以除去变换时产生的硫化氢。然后,气体进入二氧化碳吸收塔,用水洗法除去大部分二氧化碳。脱碳后的原料进入压缩机Ⅳ、Ⅴ段,升压到压缩机~后,依次进入铜洗塔和碱洗塔,使气体中残余的一氧化碳和二氧化碳含量进一步降至20(ppm)以下,以满足合成氨的要求。 净化后的原料气进入压缩机的最后一段,升压到~MPa进入滤油器,在此与循环压缩机来的循环气混合,经除油后,进入冷凝塔和氨冷器的管内,再进入冷凝塔的下部,分离出液氨。分离出液氨后的气体进入冷凝塔上部的管间,与管内的气体换热升温后进入氨合成塔。在高温高压并有催化剂存在的条件下,将氮氢气合成氨。出合成塔的气体中,约含氨10~20%,经水冷器与氨冷器将氨液化并分离后,其气体进入循环压缩机循环使用。分离出的液氨进入液氨贮槽。 原料气的制备:制备氢氮比为3:1的半水煤气 即造气。将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化后生成氢氮比为3:1的半水煤气。整个生产过程由煤气发生炉、燃烧室、废热锅炉、气柜等设备组成。 固定床半水煤气制造过程由吹风、上吹制气、下吹制气、二次上吹、空气吹净等5个阶段构成,为了调节氢氮比,在吹风末端要将部分吹风气吹入煤气,这个过程通常称为吹风回收。 吹风阶段:空气从煤气炉的底部吹入,使燃料燃烧,热量贮存于燃料中,为制气阶段碳与水蒸汽的反应提供热量。吹风气经过燃烧室和废热锅炉后放空。上吹制气阶段:从煤气炉的底部通入混有适量空气的水蒸汽,和碳反应生成的半水煤气经过炉的顶部引出。向水蒸汽中加入的空气称为加氮空气。 下吹制气阶段:将水蒸汽和加氮空气由炉顶送入,生成的半水煤气由炉底引出。二次上吹制气阶段:水蒸汽和加氮空气自下而上通过燃料层,将炉底残留的半水煤气排净,为下一步送入空气创造安全条件。 空气吹净阶段:从炉底部吹入空气,所得吹风气为半水煤气中氮的主要来源,并将残留的半水煤气加以回收。 以上五个阶段完成了制造半水煤气的主过程,然后重新转入吹风阶段,进入下一个循环。原料气的净化:除去原料气中的硫化氢、二氧化碳等杂质,将一氧化碳转化为氢气本阶段由原料气脱硫、一氧化碳变换、水洗(脱除二氧化碳)、铜洗(脱除一氧化碳)、碱洗(脱除残余二氧化碳)等几个工段构成,主要设备有除尘器、压缩机、脱硫塔、饱和塔、热水塔、一氧化碳变换炉、二氧化碳吸收塔、铜洗塔、碱洗塔等。 脱硫:原料气中硫化物的存在加剧了管道及设备的腐蚀,而且能引起催化剂中毒,必须予以除去。脱硫方法可分为干法脱硫和湿法脱硫两大类。干法脱硫是用固体硫化剂,当气体通过脱硫剂时硫化物被固体脱硫剂吸附,脱除原料气中的少量硫化氢和有机硫化物。一般先进行湿法脱硫,再采用干法脱硫除去有机物和残余硫化氢。湿法脱硫所用的硫化剂为溶液,当含硫气体通过脱硫剂时,硫化物被液体剂吸收,除去气体中的绝大部分硫化氢。

-合成氨原料气的制备方法

年产五十万吨合成氨的原料气制备工艺筛选 合成氨生产工艺流程简介 合成氨因采用的工艺不同其生产流程也有一定的差别,但基本的生产过程都大同小异,基本上由原料气的生产、原料气的净化、合成气的压缩以及氨合成四个部分组成。 ●原料气的合成 固体燃料生产原料气:焦炭、煤 液体燃料生产原料气:石脑油、重油 气体燃料生产原料气:天然气 ●原料气的净化 CO变换 ●合成气的压缩 ●氨的合成 工业上因所用原料制备与净化方法不同,而组成不同的工艺流程,各种原料制氨的典型流程如下: 1)以焦炭(无烟煤)为原料的流程 50年代以前,世界上大多数合成氨厂采用哈伯-博施法流程。以焦炭为原料的吨氨能耗为88GJ,比理论能耗高4倍多。 我国在哈伯-博施流程基础上于50年代末60年代初开发了碳化工艺和三催化剂净化流程: ◆碳化工艺流程将加压水洗改用氨水脱除CO2得到的碳酸氢铵经结晶,分离后作 为产品。所以,流程的特点是气体净化与氨加工结合起来。 ◆三催化剂净化流程采用脱硫、低温变换及甲烷化三种催化剂来净化气体,以替代 传统的铜氨液洗涤工艺。 2)以天然气为原料的流程 天然气先要经过钴钼加氢催化剂将有机硫化物转化成无机硫,再用脱硫剂将硫含量脱除到以下,这样不仅保护了转化催化剂的正常使用,也为易受硫毒害的低温变换催化剂应用提供了条件。 3)以重油为原料的流程 以重油作为制氨原料时,采用部分氧化法造气。从气化炉出来的原料气先清除炭黑,经CO耐硫变换,低温甲醇洗和氮洗,再压缩和合成而得氨。 二、合成氨原料气的制备方法简述 天然气、油田气、炼厂气、焦炉气、石脑油、重油、焦炭和煤,都是生产合成氨的原料。除焦炭成分用C表示外,其他原料均可用C n H m来表示。它们呢在高温下与蒸汽作用生成以H2和CO为主要组分的粗原料气, 这些反应都应在高温条件下发生,而且为强吸热反应,工业生产中必须供给热量才能使其进行。 按原料不同分为如下几种制备方法: ●以煤为原料的合成氨工艺 各种工艺流程的区别主要在煤气化过程。 典型的大型煤气化工艺主要包括固定床碎煤加压气化工艺、德士古水煤浆加压气化工艺以及壳牌干煤粉加压气化工艺。 ①固定床碎煤气化

合成氨工艺简介模板

合成氨工艺简介模板 1

合成氨工艺控制方案总结 一合成氨工艺简介 中小型氮肥厂是以煤为主要原料, 采用固定层间歇气化法制造合成氨原料气。从原料气的制备、净化到氨的合成, 经过造气、脱硫、变换、碳化、压缩、精炼、合成等工段。工艺流程简图如下所示: 该装置主要的控制回路有: ( 1) 洗涤塔液位; ( 2) 洗涤气流量; ( 3) 合成塔触媒温度; ( 4) 中置锅炉液位; ( 5) 中置锅炉压力; ( 6) 冷凝塔液位; ( 7) 分离器液位; ( 8) 蒸发器液位。 其中触媒温度控制可采用全系数法自适应控制, 其它回路采用PID 控制。 2

二主要控制方案 ( 一) 造气工段控制 工艺简介: 固定床间歇气化法生产水煤气过程是以无烟煤为原料, 周期循环操作, 在每一循环时间里具体分为五个阶段; (1)吹风阶段约37s; (2)上吹阶段约39s; (3)下吹阶段约56s; (4)二上吹阶段约12s; (5)吹净阶段约6s. l、吹风阶段 此阶段是为了提高炉温为制气作准备的。这一阶段时间的长短决定炉温的高低, 时间过长, 炉温过高; 时间过短, 炉温偏低而且都影响发气量, 炉温主要由这一阶段控制。 般工艺要求此阶段的操作时间约为整个循环周期的18%左右。2、上吹加氮制气阶段 在此阶段是将水蒸汽和空气同时加入。空气的加入增加了气体中的氮气含量, 是调节 H2/N2的主要手段。可是为了保证造气炉的安全该段时间最多不超过整个循环周期的26%。 3、上吹制气阶段 该阶段与上吹加氯制气总时间为整个循环的32%, 随着上吹制气的进行下部炉温逐渐下降, 为了保证炉况和提高发气量, 在此 3

合成氨工作原理与工艺流程

合成氨工作原理与工艺流程 摘要:氨合成的基本原理氨是由气态氢和氮在氨触媒的作用下反应生成的,其反应式为3H2+N2=2NH3+热量这是一个可逆、放热、体积缩... 合成氨工艺包括:往复循环机工艺流程,透平循环机工艺流程,合成塔工艺流程。一.往复循环机工艺流程经合成反应,水冷器冷却、氨分离器分离后的混合气体,进入循环机气缸压缩提高压力,再送入系统与新鲜气混合进入合成塔。 关键词:氨工作;原理;工艺流程 Abstract: The basic principle of ammonia synthesis, ammonia by gaseous hydrogen and nitrogen in ammonia catalyst under reaction, the reaction equation: 3H2+N2 =2NH3 + heat which is a reversible exothermic, volume shrinkage... In synthetic ammonia process includes: reciprocating circulation machine process, turbine circulation machine process, synthetic tower process. Key words: ammonia; principle; technical process 一、氨合成的基本原理 氨是由气态氢和氮在氨触媒的作用下反应生成的,其反应式为:3H2+N2=2NH3+热量这是一个可逆、放热、体积缩小的反应,对其反应机理存在着不同的观点,一般认为:氮在铁催化剂上被活性吸附,离解为氮原子,然后逐步加氢,连续生成NH、NH2和NH3。即: N2(扩散)→2N(吸附)→2NH(吸附)→2NH2(吸附)→ 2NH3(脱附)→2NH3(扩散到气相)由质量作用定律和平衡移动原理可知:1.温度升高,不利于反应平衡而有利于反应速度。2.压力愈高愈有利于反应平衡和速度。3.氢氮气(比例3:1)含量越高越有利于反应和速度。4.触媒不影响反应平衡,但可以加快反应速度。 二、温度对氨合成反应的影响 1、氨合成反应是一个可逆放热反应。当反应温度升高时,平衡向着氨的分解方向移动;温度降低反应向着氨的生成方向移动。因此,从平衡观点来看,要使氨的平衡产率高,应该采取较低的反应温度。 2、但是从化学反应速度的观点来看,提高温度总能使反应的速度加快,这是因为温度升高分子的运动加快,分子间碰撞的机率增加,同时又使化合时分子克服阻力的能力加大,从而增加分子有效结合的机率。 3、总之,温度低时,反应有利于向合成氨的方向进行,但是氨合成的反应

合成氨工艺简介

合成氨工艺简介 标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

摘要 煤气化法是我国合成氨的主要制气方法,也是未来更替天然气和石油资源所必将采用的制气方法。即利用无烟煤、蒸汽和空气在碳发生炉内生产合成氨所需要的气体,俗称半水煤气。在已制得的半水煤气中,除了含有按合成工艺所需要的氮气和氢气外,还含有许多杂质和有害气体。由于这些杂质和有害气体很容易使合成触媒中毒而降低触媒效能。为保护触媒,延长其使用寿命,保证合成氨生产的正常进行,半水煤气中的杂质和有害气体必须在合成之前得以及时清除,这就需要对混合气体进行净化处理,并且要求连续性作业,以达到化学反应稳定进行,从而构成了合成氨工艺流程错综复杂和连续性强的生产特点。 一合成氨的生产方法简介 氨的合成,必须制备合成氨的氢、氮原料气。氮可取之于空气或将空气液化分离而制得,氮气或使空气通过燃料层汽化将产生CO或CO2转化为原料气。氢气一般常用含有烃类的各种燃料制取,亦通过焦碳,无烟煤,重油等为原料与水作用的方法制取。由于我国煤储量丰富,所以以煤为原料制氨在我国工业生产中广泛使用。 合成氨的过程一般可分为四个步骤: 1.造气:即制备出含有氮一定比例的原料气。 2.净化:任何制气方法所得的粗原料气,除含有氢和氮外,还含有硫化氢、有机硫、一氧化碳、二氧化碳和少量氧,这些物质对氨合成催化剂均有害,需进行脱除,直至百万分之几的数量级为止。在间歇式煤气炉制气流程中,脱硫置于变换之前,以保护变换催化剂的活性。 3.精炼:原料气的最终精炼包括清除微量一氧化碳、二氧化碳、氧、甲烷和过量氮,以确保氨合成催化剂活性和氨合成过程的经济运行。 4.合成:将合格的氢氮混合气体压缩到高压,在催化剂作用下合成氨气。 二合成氨反应的基本原理 1. 造气:合成氨的原料——氢氮可以用下列两种方法取得 (1)以焦碳与空气、水蒸气作用 (2)将空气分离制取氮,由焦炉气分离制氢 采用煤焦固定床间歇式汽化法。反应方程如下: C+H2O=CO +H2 (1) CO+O2=CO2 (2) 2.脱硫:无论以固体煤作原料还是以天然气、石油为原料制备氢氮原料气都含有一定成分的硫元素,无机硫主要含有硫化氢;有机硫主要含有二硫化碳、硫化氧碳等等。 硫化氢对合成氨生产有着严重危害,但不能与铁反应生成硫化亚铁,而且进入变换及合成系统能使铁催化剂中毒,进入铜洗系统使铜液的低价铜生成硫化亚铜的低价沉淀,使操作恶化,铜耗增加。所以半水煤气总的无机碳化物和有机硫化物必须在进入变换、合成系统前除去。

合成氨生产工艺介绍

1、合成氨生产工艺介绍 1)造气工段 造气实质上是碳与氧气和蒸汽的反应,主要过程为吹风和制气。具体分为吹风、上吹、下吹、二次上吹和空气吹净五个阶段。原料煤间歇送入固定层煤气发生炉内,先鼓入空气,提高炉温,然后加入水蒸气与加氮空气进行制气。所制的半水煤气进入洗涤塔进行除尘降温,最后送入半水煤气气柜。 造气工艺流程示意图 2)脱硫工段 煤中的硫在造气过程中大多以H2S的形式进入气相,它不仅会腐蚀工艺管道和设备,而且会使变换催化剂和合成催化剂中毒,因此脱硫工段的主要目的就是利用DDS脱硫剂脱出气体中的硫。气柜中的半水煤气经过静电除焦、罗茨风机增压冷却降温后进入半水煤气脱硫塔,脱除硫化氢后经过二次除焦、清洗降温送往压缩机一段入口。脱硫液再生后循环使用。

脱硫工艺流程图 3)变换工段 变换工段的主要任务是将半水煤气中的CO在催化剂的作用下与水蒸气发生放热反应,生成CO2和H2。河南中科化工有限责任公司采用的是中变串低变工艺流程。经过两段压缩后的半水煤气进入饱和塔升温增湿,并补充蒸汽后,经水分离器、预腐蚀器、热交换器升温后进入中变炉回收热量并降温后,进入低变炉,反应后的工艺气体经回收热量和冷却降温后作为变换气送往压缩机三段入口。

变换工艺流程图 4)变换气脱硫与脱碳 经变换后,气体中的有机硫转化为H2S,需要进行二次脱硫,使气体中的硫含量在25mg/m3。脱碳的主要任务是将变换气中的CO2脱除,对气体进行净化,河南中科化工有限责任公司采用变压吸附脱碳工艺。来自变换工段压力约为1.3MPa左右的变换气,进入水分离器,分离出来的水排到地沟。变换气进入吸附塔进行吸附,吸附后送往精脱硫工段。 被吸附剂吸附的杂质和少量氢氮气在减压和抽真空的状态下,将从吸附塔下端释放出来,这部分气体称为解析气,解析气分两步减压脱附,其中压力较高的部分在顺放阶段经管道进入气柜回收,低于常 压的解吸气经阻火器排入大气。

(工艺技术)合成氨工艺简介

合成氨工艺控制方案总结 一合成氨工艺简介 中小型氮肥厂是以煤为主要原料,采用固定层间歇气化法制造合成氨原料气。从原料气的制备、净化到氨的合成,经过造气、脱硫、变换、碳化、压缩、精炼、合成等工段。工艺流程简图如下所示: 该装置主要的控制回路有:(1)洗涤塔液位; (2)洗涤气流量; (3)合成塔触媒温度; (4)中置锅炉液位; (5)中置锅炉压力; (6)冷凝塔液位; (7)分离器液位; (8)蒸发器液位。 其中触媒温度控制可采用全系数法自适应控制,其他回路采用PID控制。 二主要控制方案 (一)造气工段控制 工艺简介: 固定床间歇气化法生产水煤气过程是以无烟煤为原料,周期循环操作,在每一循环时间里具体分为五个阶段;(1)吹风阶段约37s;(2)上吹阶段约39s;(3)下吹阶段约56s;(4)二上吹阶段约12s;(5)吹净阶段约6s. l、吹风阶段 此阶段是为了提高炉温为制气作准备的。这一阶段时间的长短决定炉温的高低, 时间过长,炉温过高;时间过短,炉温偏低并且都影响发气量,炉温主要由这一阶段控制。般工艺要求此阶段的操作时间约为整个循环周期的18%左右。 2、上吹加氮制气阶段 在此阶段是将水蒸汽和空气同时加入。空气的加入增加了气体中的氮气含量,是调节H2/N2的主要手段。但是为了保证造气炉的安全该段时间最多不超过整个循环周期的26%。 3、上吹制气阶段 该阶段与上吹加氯制气总时间为整个循环的32%,随着上吹制气的进行下部炉温逐渐下降,为了保证炉况和提高发气量,在此阶段蒸汽的流量最好能得以控制。 4、下吹制气阶段 为了充分地利用炉顶部高温、提高发气量,下吹制气也是很重要的一个阶段。这段时间

合成氨工作原理工艺流程

合成氨工作原理与工艺流程 摘要:本文通过介绍氨合成的基本原理,研究了温度,压力、空速以及氢氮比对氨合成反应的影响,阐述了往复循环机,透平循环机,合成塔工艺流程 关键词:氨工作;原理;工艺流程 abstract: this paper introduces the basic principle of ammonia synthesis, analyzes the effects of temperature, pressure, space velocity and ratio of hydrogen to nitrogen of ammonia synthesis reaction, elaborated the reciprocating cycle engine, turbine circulation machine, synthetic tower process key words: ammonia; principle; technical process 中图分类号:tu74文献标识码:a文章编号:2095-2104(2012)05-0020-02 一、氨合成的基本原理 氨是由气态氢和氮在氨触媒的作用下反应生成的,其反应式为:3h2+n2=2nh3+热量这是一个可逆、放热、体积缩小的反应,对其反应机理存在着不同的观点,一般认为:氮在铁催化剂上被活性吸附,离解为氮原子,然后逐步加氢,连续生成nh、nh2和nh3。即:n2(扩散)→2n(吸附)→2nh(吸附)→2nh2(吸附)→ 2nh 3(脱附)→2nh3(扩散到气相)由质量作用定律和平衡移动原理可知:1.温度升高,不利于反应平衡而有利于反应速度。 2.压

合成氨生产工艺简介

合成氨生产工艺简介 目前国内生产合成氨的工艺大同小异,忽略各自的设备差异和工艺上的微小不同,我们可以将氨的生产过程,粗略的讲可分成一下几步:造气;脱硫;变换;变换后脱硫;铜洗;氨合成几个步骤,如下是此类流程的一个极简示意图: 图1 合成氨的极简化流程 1造气工段 造气实质上是碳与氧气和蒸汽的反应,原料煤间歇送入固定层煤气发生炉内,先鼓入空气,提高炉温,然后加入水蒸气与加氮空气进行制气。所制的半水煤气(主要成分为CO和H2,另有其他杂质气体)进入洗涤塔进行除尘降温,最后送入半水煤气气柜。 造气工段脱 硫 工 段 变 换 工 段 煤块水蒸汽 CO, N2, H2 H2S等其他杂质 CO, N 2 , H 2 变 换 气 脱 硫 工 段 CO2, N 2 , H 2 H2S等其他杂质 甲 醇 合 成 工 段 少量CO, CO 2 , N 2, H 2 精 炼 工 段 N 2 , H 2 极少量CO X等其他杂质 氨 合 成 工 段 N 2 , H 2 冷 冻 工 段 NH 3液氨

图2 造气工艺流程示意图 2脱硫工段 煤中的硫在造气过程中大多以H2S的形式进入气相,它不仅会腐蚀工艺管道和设备,而且会使变换催化剂和合成催化剂中毒,因此脱硫工段的主要目的就是利用DDS脱硫剂脱出气体中的硫。气柜中的半水煤气经过静电除焦、罗茨风机增压冷却降温后进入半水煤气脱硫塔,脱除硫化氢后经过二次除焦、清洗降温送往压缩机一段入口。脱硫液再生后循环使用。 图3 脱硫工艺流程图 3变换工段 气体从脱硫工艺中处理过后,已不含H2S等有毒气体。变换工段的主要任务是将半水煤气中的CO在催化剂的作用下与水蒸气发生放热反应,生成CO2和H2。经过两段压缩后的半水煤气进入饱和塔升温增湿,并补充蒸汽后,经水分离器、预腐蚀器、热交换器升温后进入中变炉回收热量并降温后,进入低变炉,反应后的工艺气体经回收热量和冷却降温后作为变换气送往压缩机三段入口。 说明:合成气的中的CO(一氧化碳)经蒸汽转换成CO2(二氧化碳)与H2,转换后气体称为“变换气”。

合成氨工艺原理

合成氨工艺原理 合成氨不论采用什么原料与生产方法,大体上包括三个工艺过程:(1)原料气的制造;(2)原料气的净化(包括脱硫、变换脱除CO,碳化、脱碳脱除CO 2 ,精炼脱 除微量的CO、CO 2、H 2 S、O 2 等);(3)氨的合成与为了满足气体净化及合成各工序 工艺条件提供能量补偿的压缩工序。生产出氨以后再根据需要加工成碳铵、尿素、硝铵等。其详细原理如下(以煤为原料): 一、造气工段 合成氨生产所用的半水煤气,要求气体中(CO+H 2)与N 2 的比例为3:1左右。因 此生产上采用间歇地送入空气与蒸汽进行气化,将所得的水煤气配入部分吹风气制成半水煤气。即以石灰碳化煤球、无烟块煤为原料,在高温下交替与空气与过 热蒸汽进行气化反应(C+O点燃CO 2+Q 、2C+O点燃2CO+Q 、2CO+ O点燃2CO 2 + Q 2H 2O(气)+C△CO+2H 2 -Q制得半水煤气,半水煤气经过除尘,余热回收,水洗降温制 得合格的半水煤气,供后工段使用。 二、脱硫工段 从造气工段的半水煤气中,除氢气与氮气外,还含有27%左右CO、9%左右的CO 2 以及少量的硫化物,这些硫化物对合成氨生产就是有害的。它会腐蚀设备、管道,会引起催化剂中毒,会损坏铜液成份。因此,必须除去少量硫化物,其原理:用 稀氨水(10—15tt)与硫化氢反应(NH 3+H 2 S=NH 4 HS)将H 2 S脱除至0、07g/m3(标)以下, 使半水煤气净化,以满足合成氨生产工艺要求。 三、变换工段 将脱S后的半水煤气(含CO25%—28%)由压缩工段加压后经增温、加热,在一定的温度与压力下,在变换炉内借助催化剂的催化作用,使半水煤气中CO与H 2 O(气) 进行化学反应,转变为CO 2与H 2 (CO+H 2 O(气)催化剂高温CO 2 +H 2 +Q),制得合格的变 换气,以满足后工段的工艺要求。其次,系统中设有饱与热水塔、甲交、一水加、二水加、冷却塔等换热设备,以便合理利用反应热与充分回收余热,降低能耗,同时降低变换气温度。 四、碳化与脱碳工段 1、碳化

合成氨工艺流程

工艺流程说明: 将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化所生成的半水煤气经燃烧室、废热锅炉回收热量后送入气柜。 半水煤气由气柜进入电除尘器,除去固体颗粒后依次进入压缩机的Ⅰ、Ⅱ、Ⅲ段,加压到1.9~2.0Mpa,送入脱硫塔,用A.D.A.溶液或其他脱硫溶液洗涤,以除去硫化氢,随后,气体经饱和塔进入热交换器,加热升温后进入一氧化碳变换炉,用水蒸汽使气体中的一氧化碳变为氢。变换后的气体,返回热交换器进行降温,并经热水塔的进一步降温后,进入变换器脱硫塔,以除去变换时产生的硫化氢。然后,气体进入二氧化碳吸收塔,用水洗法除去大部分二氧化碳。脱碳后的原料进入压缩机Ⅳ、Ⅴ段,升压到压缩机12.09~13.0Mpa后,依次进入铜洗塔和碱洗塔,使气体中残余的一氧化碳和二氧化碳含量进一步降至20(ppm)以下,以满足合成氨的要求。 净化后的原料气进入压缩机的最后一段,升压到30.0~32.0 MPa进入滤油器,在此与循环压缩机来的循环气混合,经除油后,进入冷凝塔和氨冷器的管内,再进入冷凝塔的下部,分离出液氨。分离出液氨后的气体进入冷凝塔上部的管间,与管内的气体换热升温后进入氨合成塔。在高温高压并有催化剂存在的条件下,将氮氢气合成氨。出合成塔的气体中,约含氨10~20%,经水冷器与氨冷器将氨液化并分离后,其气体进入循环压缩机循环使用。分离出的液氨进入液氨贮槽。 原料气的制备:制备氢氮比为3:1的半水煤气 即造气。将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化后生成氢氮比为3:1的半水煤气。整个生产过程由煤气发生炉、燃烧室、废热锅炉、气柜等设备组成。 固定床半水煤气制造过程由吹风、上吹制气、下吹制气、二次上吹、空气吹净等5个阶段构成,为了调节氢氮比,在吹风末端要将部分吹风气吹入煤气,这个过程通常称为吹风回收。 吹风阶段:空气从煤气炉的底部吹入,使燃料燃烧,热量贮存于燃料中,为制气阶段碳与水蒸汽的反应提供热量。吹风气经过燃烧室和废热锅炉后放空。 上吹制气阶段:从煤气炉的底部通入混有适量空气的水蒸汽,和碳反应生成的半水煤气经过炉的顶部引出。向水蒸汽中加入的空气称为加氮空气。 下吹制气阶段:将水蒸汽和加氮空气由炉顶送入,生成的半水煤气由炉底引出。 二次上吹制气阶段:水蒸汽和加氮空气自下而上通过燃料层,将炉底残留的半水煤气排净,为下一步送入空气创造安全条件。 空气吹净阶段:从炉底部吹入空气,所得吹风气为半水煤气中氮的主要来源,并将残留的半水煤气加以回收。 以上五个阶段完成了制造半水煤气的主过程,然后重新转入吹风阶段,进入下一个循环。原料气的净化:除去原料气中的硫化氢、二氧化碳等杂质,将一氧化碳转化为氢气本阶段由原料气脱硫、一氧化碳变换、水洗(脱除二氧化碳)、铜洗(脱除一氧化碳)、碱洗(脱除残余二氧化碳)等几个工段构成,主要设备有除尘器、压缩机、脱硫塔、饱和塔、热水塔、一氧化碳变换炉、二氧化碳吸收塔、铜洗塔、碱洗塔等。 脱硫:原料气中硫化物的存在加剧了管道及设备的腐蚀,而且能引起催化剂中毒,必须予以除去。脱硫方法可分为干法脱硫和湿法脱硫两大类。干法脱硫是用固体硫化剂,当气体通过脱硫剂时硫化物被固体脱硫剂吸附,脱除原料气中的少量硫化氢和有机硫化物。一般先进行湿法脱硫,再采用干法脱硫除去有机物和残余硫化氢。湿法脱硫所用的硫化剂为溶液,当含硫气体通过脱硫剂时,硫化物被液体剂吸收,除去气体中的绝大部分硫化氢。 CO变换:一氧化碳对氨催化剂有毒害,因此在原料气进入合成氨工序之前必须将一氧

合成氨生产工艺介绍样本

1、合成氨生产工艺简介 1)造气工段 造气实质上是碳与氧气和蒸汽反映,重要过程为吹风和制气。详细分为吹风、上吹、下吹、二次上吹和空气吹净五个阶段。原料煤间歇送入固定层煤气发生炉内,先鼓入空气,提高炉温,然后加入水蒸气与加氮空气进行制气。所制半水煤气进入洗涤塔进行除尘降温,最后送入半水煤气气柜。 造气工艺流程示意图 2)脱硫工段 煤中硫在造气过程中大多以H2S形式进入气相,它不但会腐蚀工艺管道和设备,并且会使变换催化剂和合成催化剂中毒,因而脱硫工段重要目就是运用DDS脱硫剂脱出气体中硫。气柜中半水煤气通过静电除焦、罗茨风机增压冷却降温后进入半水煤气脱硫塔,脱除硫化氢后通过二次除焦、清洗降温送往压缩机一段入口。脱硫液再生后循环使用。

脱硫工艺流程图 3)变换工段 变换工段重要任务是将半水煤气中CO在催化剂作用下与水蒸气 发生放热反映,生成CO2和H2 。河南中科化工有限责任公司采用是中变串低变工艺流程。通过两段压缩后半水煤气进入饱和塔升温增湿,并补充蒸汽后,经水分离器、预腐蚀器、热互换器升温后进入中变炉回收热量并降温后,进入低变炉,反映后工艺气体经回收热量和冷却降温后作为变换气送往压缩机三段入口。

变换工艺流程图 4)变换气脱硫与脱碳 经变换后,气体中有机硫转化为H2S,需要进行二次脱硫,使气体中硫含量在25mg/m3。脱碳重要任务是将变换气中CO2脱除,对气体进行净化,河南中科化工有限责任公司采用变压吸附脱碳工艺。来自变换工段压力约为1.3MPa左右变换气,进入水分离器,分离出来水排到地沟。变换气进入吸附塔进行吸附,吸附后送往精脱硫工段。 被吸附剂吸附杂质和少量氢氮气在减压和抽真空状态下,将从吸附塔下端释放出来,这某些气体称为解析气,解析气分两步减压脱附,其中压力较高某些在顺放阶段经管道进入气柜回收,低于常压解吸气经阻火器排入大气。

合成氨工艺

合成氨工艺 合成氨的介绍 基本简介: 生产合成氨的主要原料有天然气、石脑油、重质油和煤(或焦炭)等。 ①天然气制氨。天然气先经脱硫,然后通过二次转化,再分别经过一氧化碳变换、二氧化碳脱除等工序,得到的氮氢混合气,其中尚含有一氧化碳和二氧化碳约0.1%~0.3%(体积),经甲烷化作用除去后,制得氢氮摩尔比为3的纯净气,经压缩机压缩而进入氨合成回路,制得产品氨。以石脑油为原料的合成氨生产流程与此流程相似。 ②重质油制氨。重质油包括各种深度加工所得的渣油,可用部分氧化法制得合成氨原料气,生产过程比天然气蒸气转化法简单,但需要有空气分离装置。空气分离装置制得的氧用于重质油气化,氮作为氨合成原料外,液态氮还用作脱除一氧化碳、甲烷及氩的洗涤剂。 ③煤(焦炭)制氨。随着石油化工和天然气化工的发展,以煤(焦炭)为原料制取氨的方式在世界上已很少采用。 用途氨主要用于制造氮肥和复合肥料,氨作为工业原料和氨化饲料,用量约占世界产量的12%。硝酸、各种含氮的无机盐及有机中间体、磺胺药、聚氨酯、聚酰胺纤维和丁腈橡胶等都需直接以氨为原料。液氨常用作制冷剂。

贮运商品氨中有一部分是以液态由制造厂运往外地。此外,为保证制造厂内合成氨和氨加工车间之间的供需平衡,防止因短期事故而停产,需设置液氨库。液氨库根据容量大小不同,有不冷冻、半冷冻和全冷冻三种类型。液氨的运输方式有海运、驳船运、管道运、槽车运、卡车运。直接合成氨。于1908年申请专利,即“循环法”,在此基础上,他继续研究,于1909年改进了合成,氨的含量达到6%以上。这是目前工业普遍采用的直接合成法。反应过程中为解决氢气和氮气合成转化率低的问题,将氨产品从合成反应后的气体中分离出来,未反应气和新鲜氢氮气混合重新参与合成反应。 合成氨反应式如下:N2+3H2≒2NH3(该反应为可逆反应,等号上反应条件为:“高温高压”,下为:“催化剂”) 合成氨的主要原料可分为固体原料、液体原料和气体原料。经过近百年的发展,合成氨技术趋于成熟,形成了一大批各有特色的工艺流程,但都是由三个基本部分组成,即原料气制备过程、净化过程以及氨合成过程。 氨是重要的无机化工产品之一,在国民经济中占有重要地位。除液氨可直接作为肥料外,农业上使用的氮肥,例如尿素、硝酸铵、磷酸铵、氯化铵以及各种含氮复合肥,都是以氨为原料的。合成氨是大宗化工产品之一,世界每年合成氨产量已达到1 亿吨以上,其中约有80%的氨用来生产

合成氨工艺流程

将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化所生成的半水煤气经燃烧室、废热锅炉回收热量后送入气柜。 半水煤气由气柜进入电除尘器,除去固体颗粒后依次进入压缩机的Ⅰ、Ⅱ、Ⅲ段,加压到1.9~2.0Mpa,送入脱硫塔,用A.D.A.溶液或其他脱硫溶液洗涤,以除去硫化氢,随后,气体经饱和塔进入热交换器,加热升温后进入一氧化碳变换炉,用水蒸汽使气体中的一氧化碳变为氢。变换后的气体,返回热交换器进行降温,并经热水塔的进一步降温后,进入变换器脱硫塔,以除去变换时产生的硫化氢。然后,气体进入二氧化碳吸收塔,用水洗法除去大部分二氧化碳。脱碳后的原料进入压缩机Ⅳ、Ⅴ段,升压到压缩机12.09~13.0Mpa后,依次进入铜洗塔和碱洗塔,使气体中残余的一氧化碳和二氧化碳含量进一步降至20(ppm)以下,以满足合成氨的要求。 净化后的原料气进入压缩机的最后一段,升压到30.0~32.0 MPa进入滤油器,在此与循环压缩机来的循环气混合,经除油后,进入冷凝塔和氨冷器的管内,再进入冷凝塔的下部,分离出液氨。分离出液氨后的气体进入冷凝塔上部的管间,与管内的气体换热升温后进入氨合成塔。在高温高压并有催化剂存在的条件下,将氮氢气合成氨。出合成塔的气体中,约含氨10~20%,经水冷器与氨冷器将氨液化并分离后,其气体进入循环压缩机循环使用。分离出的液氨进入液氨贮槽。 原料气的制备:制备氢氮比为3:1的半水煤气 即造气。将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化后生成氢氮比为3:1的半水煤气。整个生产过程由煤气发生炉、燃烧室、废热锅炉、气柜等设备组成。 固定床半水煤气制造过程由吹风、上吹制气、下吹制气、二次上吹、空气吹净等5个阶段构成,为了调节氢氮比,在吹风末端要将部分吹风气吹入煤气,这个过程通常称为吹风回收。吹风阶段:空气从煤气炉的底部吹入,使燃料燃烧,热量贮存于燃料中,为制气阶段碳与水蒸汽的反应提供热量。吹风气经过燃烧室和废热锅炉后放空。上吹制气阶段:从煤气炉的底部通入混有适量空气的水蒸汽,和碳反应生成的半水煤气经过炉的顶部引出。向水蒸汽中加入的空气称为加氮空气。 下吹制气阶段:将水蒸汽和加氮空气由炉顶送入,生成的半水煤气由炉底引出。二次上吹制气阶段:水蒸汽和加氮空气自下而上通过燃料层,将炉底残留的半水煤气排净,为下一步送入空气创造安全条件。 空气吹净阶段:从炉底部吹入空气,所得吹风气为半水煤气中氮的主要来源,并将残留的半水煤气加以回收。 以上五个阶段完成了制造半水煤气的主过程,然后重新转入吹风阶段,进入下一个循环。原料气的净化:除去原料气中的硫化氢、二氧化碳等杂质,将一氧化碳转化为氢气本阶段由原料气脱硫、一氧化碳变换、水洗(脱除二氧化碳)、铜洗(脱除一氧化碳)、碱洗(脱除残余二氧化碳)等几个工段构成,主要设备有除尘器、压缩机、脱硫塔、饱和塔、热水塔、一氧化碳变换炉、二氧化碳吸收塔、铜洗塔、碱洗塔等。 脱硫:原料气中硫化物的存在加剧了管道及设备的腐蚀,而且能引起催化剂中毒,必须予以除去。脱硫方法可分为干法脱硫和湿法脱硫两大类。干法脱硫是用固体硫化剂,当气体通过脱硫剂时硫化物被固体脱硫剂吸附,脱除原料气中的少量硫化氢和有机硫化物。一般先进行湿法脱硫,再采用干法脱硫除去有机物和残余硫化氢。湿法脱硫所用的硫化剂为溶液,当含硫气体通过脱硫剂时,硫化物被液体剂吸收,除去气体中的绝大部分硫化氢。 CO变换:一氧化碳对氨催化剂有毒害,因此在原料气进入合成氨工序之前必须将一氧化碳彻底清除。除去一氧化碳的方法,工业上采用两段法。第一步是把一氧化碳与水蒸汽作用生成氢和二氧化碳;第二步采用铜氨液洗涤法,液氨洗涤法或甲烷化法除去变换中残余的

煤为原料的合成氨工艺流程简图

以煤为原料的合成氨工艺 煤合成氨工艺的核心问题是制备纯净的氢气,而制备纯净的氢气,就涉及到脱硫脱碳工序!含硫、含碳的气体,都是酸性气体! C+H 2O(水蒸气)=CO+H 2 (水煤气法) CO+H 2 O=CO 2 +H 2 拥有氢气与氮气,即可制得氨。 氨与二氧化碳作用生成氨基甲酸铵(简称甲铵),进一步脱水生成尿素! 2NH 3+CO 2 ==COONH 2 NH 4 (放热),COONH 2 NH 4 ==CO(NH 2 ) 2 +H 2 O(吸热)。 尿素加热分解可以制成三聚氰胺 6CO(NH 2) 2 ==C 3 N 3 (NH 2 ) 3 (三聚氰胺)+3CO 2 +6NH 3。 工艺流程 (1)原料气制备 将煤和天然气等原料制成含氢和氮的粗原料气。对于固体原料煤和焦炭,通常采用气化的方法制取合成气;渣油可采用非催化部分氧化的方法获得合成气;对气态烃类和石脑油,工业中利用二段蒸汽转化法制取合成气。 (2)净化 对粗原料气进行净化处理,除去氢气和氮气以外的杂质,主要包括变换过程、脱硫脱碳过程以及气体精制过程。 ①一氧化碳变换过程 在合成氨生产中,各种方法制取的原料气都含有CO,其体积分数一般为12% 到40%。合成氨需要的两种组分是H 2和N 2 ,因此需要除去合成气中的CO。变换 反是: CO+H 2O→H 2 +CO 2 =-41.2kJ/mol 0298HΔ 由于CO变换过程是强放热过程,必须分段进行以利于回收反应热,并控制 变换段出口残余CO含量。第一步是高温变换,使大部分CO转变为CO 2和H 2 ;第 二步是低温变换,将CO含量降至0.3%左右。因此,CO变换反应既是原料气制造的继续,又是净化的过程,为后续脱碳过程创造条件。 ②脱硫脱碳过程 各种原料制取的粗原料气,都含有一些硫和碳的氧化物,为了防止合成氨生产过程催化剂的中毒,必须在氨合成工序前加以脱除,以天然气为原料的蒸汽转化法,第一道工序是脱硫,用以保护转化催化剂,以重油和煤为原料的部分氧化法,根据一氧化碳变换是否采用耐硫的催化剂而确定脱硫的位置。工业脱硫方法

合成氨生产工艺介绍

1、合成氨生产工艺介绍 令狐采学 1)造气工段 造气实质上是碳与氧气和蒸汽的反响,主要过程为吹风和制气。具体分为吹风、上吹、下吹、二次上吹和空气吹净五个阶段。原料煤间歇送入固定层煤气产生炉内,先鼓入空气,提高炉温,然后加入水蒸气与加氮空气进行制气。所制的半水煤气进入洗涤塔进行除尘降温,最后送入半水煤气气柜。 造气工艺流程示意图 2)脱硫工段 煤中的硫在造气过程中年夜多以H2S的形式进入气相,它不但会腐化工艺管道和设备,并且会使变换催化剂和合成催化剂中毒,因此脱硫工段的主要目的就是利用DDS脱硫剂脱出气体中的硫。气柜中的半水煤气经过静电除焦、罗茨风机增压冷却降温后进入半水煤气脱硫塔,脱除硫化氢后经过二次除焦、清洗降温送往压缩机一段入口。脱硫液再生后循环使用。 脱硫工艺流程图 3)变换工段 变换工段的主要任务是将半水煤气中的CO在催化剂的作用下与水蒸气产生放热反响,生成CO2和H2。河南中科化工有限责任公司采取的是中变串低变工艺流程。经过两段压缩后的半水煤气进入饱和塔升温增湿,并弥补蒸汽后,经水别离器、预腐化器、热交

换器升温后进入中变炉回收热量并降温后,进入低变炉,反响后的工艺气体经回收热量和冷却降温后作为变换气送往压缩机三段入口。 变换工艺流程图 4)变换气脱硫与脱碳 经变换后,气体中的有机硫转化为H2S,需要进行二次脱硫,使气体中的硫含量在25mg/m3。脱碳的主要任务是将变换气中的CO2脱除,对气体进行净化,河南中科化工有限责任公司采取变压吸附脱碳工艺。来自变换工段压力约为1.3MPa左右的变换气,进入水别离器,别离出来的水排到地沟。变换气进入吸附塔进行吸附,吸附后送往精脱硫工段。 被吸附剂吸附的杂质和少量氢氮气在减压和抽真空的状态下,将从吸附塔下端释放出来,这部分气体称为解析气,解析气分两步减压脱附,其中压力较高的部分在顺放阶段经管道进入气柜回收,低于常压的解吸气经阻火器排入年夜气。 变换与脱硫工艺流程图 5)碳化工段 5.1、气体流程 来自变换工段的变换气,依次由塔底进入碳化主塔、碳化付塔,变换气中的二氧化碳辨别在主塔和付塔内与碳化液和浓氨水进行反响而被吸收。反响热由冷却水箱内的冷却水移走。气体从付塔顶出来,进入尾气洗涤塔下部回收段,气体中的少量二氧化碳和微量的硫化氢被无硫氨水继续吸收,再进入上部清洗段。气体中微量二氧

合成氨工艺简介

合成氨工艺简介 一合成氨工艺简介 中小型氮肥厂是以煤为要紧原料,采纳固定层间歇气化法制造合成氨原料气。从原料气的制备、净化到氨的合成,通过造气、脱硫、变换、碳化、压缩、精炼、合成等工段。工艺流程简图如下所示: 该装置要紧的操纵回路有:(1)洗涤塔液位; (2)洗涤气流量; (3)合成塔触媒温度; (4)中置锅炉液位; (5)中置锅炉压力; (6)冷凝塔液位; (7)分离器液位; (8)蒸发器液位。 其中触媒温度操纵可采纳全系数法自适应操纵,其他回路采纳PID操纵。 二要紧操纵方案 (一)造气工段操纵 工艺简介: 固定床间歇气化法生产水煤气过程是以无烟煤为原料,周期循环操作,在每一循环时刻里具体分为五个时期;(1)吹风时期约37s;(2)上吹时期约3 9s;(3)下吹时期约56s;(4)二上吹时期约12s;(5)吹净时期约6s. l、吹风时期 现在期是为了提升炉温为制气作预备的。这一时期时刻的长短决定炉温的高低, 时刻过长,炉温过高;时刻过短,炉温偏低同时都阻碍发气量,炉温要紧由这一时期操纵。

般工艺要求现在期的操作时刻约为整个循环周期的18%左右。 2、上吹加氮制气时期 在现在期是将水蒸汽和空气同时加入。空气的加入增加了气体中的氮气含量,是调剂 H2/N2的要紧手段。然而为了保证造气炉的安全该段时刻最多不超过整个循环周期的26%。 3、上吹制气时期 该时期与上吹加氯制气总时刻为整个循环的32%,随着上吹制气的进行下部炉温逐步下降,为了保证炉况和提升发气量,在现在期蒸汽的流量最好能得以操纵。 4、下吹制气时期 为了充分地利用炉顶部高温、提升发气量,下吹制气也是专门重要的一个时期。这段时刻 约占整个循环的40%左右。 5、二次上吹时期 为了确保生产安全,造气炉再度进行吹风升温之前,须把下吹制气时留在炉底及下部管 道中的半水煤气吹净以防不测,故进行第二次上映。这段时刻约占7%左右。 6、吹净时期 这段时刻要紧是回收上行煤气管线及设备内的半水煤气。约占整个循环的3%。该时期是由吹风管路送风,该段时刻的长短直截了当阻碍H2/N2. 该操纵系统是一个较复杂的时变、间歇、非线性、大滞后操纵系统。故将该系统设计为串级操纵。 造气炉的工作方式分为开车、停车、正常造气、升温顺制惰等五种方式。每台造气炉需要操纵15个电磁阀,为了防止多台炉同时进入吹风时期而引起争风抢汽观象,各台炉之间必须进行吹风排队顺序操纵。

合成氨工艺流程

合成氨工艺流程 在200MPa的高压和500℃的高温和催化剂作用下,N2+3H2====2NH3,经过压缩冷凝后,将余料在送回反应器进行反应, 合成氨指由氮和氢在高温高压和催化剂存在下直接合成的氨。世界上的氨除少量从焦炉气中回收副产外,绝大部分是合成的氨。 合成氨主要用作化肥、冷冻剂和化工原料 生产方法生产合成氨的主要原料有天然气、石脑油、重质油和煤(或焦炭)等。 ①天然气制氨。天然气先经脱硫,然后通过二次转化,再分别经过一氧化碳变换、二氧化碳脱除等工序,得到的氮氢混合气,其中尚含有一氧化碳和二氧化碳约0.1%~0.3%(体积),经甲烷化作用除去后,制得氢氮摩尔比为3的纯净气,经压缩机压缩而进入氨合成回路,制得产品氨。以石脑油为原料的合成氨生产流程与此流程相似。 ②重质油制氨。重质油包括各种深度加工所得的渣油,可用部分氧化法制得合成氨原料气,生产过程比天然气蒸气转化法简单,但需要有空气分离装置。空气分离装置制得的氧用于重质油气化,氮作为氨合成原料外,液态氮还用作脱除一氧化碳、甲烷及氩的洗涤剂。 ③煤(焦炭)制氨。随着石油化工和天然气化工的发展,以煤(焦炭)为原料制取氨的方式在世界上已很少采用。 用途氨主要用于制造氮肥和复合肥料,氨作为工业原料和氨化饲料,用量约占世界产量的12%。硝酸、各种含氮的无机盐及有机中间体、磺胺药、聚氨酯、聚酰胺纤维和丁腈橡胶等都需直接以氨为原料。液氨常用作制冷剂。 贮运商品氨中有一部分是以液态由制造厂运往外地。此外,为保证制造厂内合成氨和氨加工车间之间的供需平衡,防止因短期事故而停产,需设置液氨库。液氨库根据容量大小不同,有不冷冻、半冷冻和全冷冻三种类型。液氨的运输方式有海运、驳船运、管道运、槽车运、卡车运 合成氨是以碳氨为主要原料, 我司可承包的合成氨生成成套项目, 规模有4×104 吨/年, 6×104 吨/年, 10×104 吨/年, 30×104 吨/年, 其产品质量符合中国国家标准. 1. 工艺路线: 以无烟煤为原料生成合成氨常见过程是: 造气-> 半水煤气脱硫-> 压缩机1,2工段-> 变换-> 变换气脱硫->压缩机3段-> 脱硫->压缩机4,5工段-> 铜洗-> 压缩机6段-> 氨合成-> 产品NH3 采用甲烷化法脱硫除原料气中CO. CO2 时, 合成氨工艺流程图如下: 造气->半水煤气脱硫->压缩机1,2段->变换-> 变换气脱硫-> 压缩机3段->脱碳-> 精脱硫->甲烷化->压缩机4,5,6段->氨合成->产品NH3 2. 技术指标: (1) 原料煤: 无烟煤: 粒度15-25mm 或25-100mm

相关文档
最新文档