matlab 绘图(超详细)
matlab绘图指令大全22页word文档
绘图指令1 二维曲线图指令图例Y=[1,3,6,5,9,0,2];plot(Y);X=0: pi/10: pi*2;Y=sin(X);plot(X,Y);X=0: pi/10: pi*2;Y1=sin(X);Y2=cos(X);Plot(X,Y1,X,Y2);调整坐标范围:axisaxis([0,300,0,2])DrawCircle.mfunction DrawCircle(Point,Radius)Hold ont=0: pi/10: 2*pi;x=Point(1)+ Radius*cos(t);y=Point(2)+ Radius*sin(t);plot(x,y);DrawCircle([10 10],1)DrawCircle([20 10],2)DrawCircle([10 20],3)显函数ezplot('sin(x)',[0,2*pi])隐函数ezplot('x^2+y^2-10',[-5,5],[-6,6])参数方程ezplot('cos(t)^3','sin(t)^3',[0,2*pi])function y=myf1(x)y=sqrt(100-x^2);fplot('myf1',[-15 15])fplot('[sin(x) cos(x) myf1(x)]',[-15 15])1.5 图形修饰设置颜色 y m c r g b w k设置线型 - : -. --指令图例Y=[1,3,6,5,9,0,2];plot(Y, 'r-+');X=0: pi/10: pi*2;Y1=sin(X); Y2=cos(X);plot(X,Y1,'r+-',X,Y2,'b-*');text(3.5, 0.6, '曲线比较');x=[1.6*pi, 1.6*pi]; y=[-0.3, 0.8];s=['曲线cos'; '曲线sin'];text(x,y,s);指令图例bar直方图X=0:pi/10:2*pi;Y=sin(X);bar(X,Y);polar极坐标图T=0: pi/10: 4*pi;R=T;polar(T, R);误差棒棒图X=0:pi/10:2*pi;Y=sin(X);e=0.2*rand(size(X)); errorbar(X,Y,e);火柴杆图X=0:pi/10:2*pi; Y=sin(X); stem(X,Y);stairs楼梯图X=0:pi/10:2*pi; Y=sin(X); stairs(X,Y);多边形填色图X=[1,2,3,4,5];Y=[3,5,2,1,6];fill(X,Y,'r');hold on; % 保持图形plot(X,Y,'o')1.7 数值函数的二维图fplot('0.5*cos(x)',[-pi,pi]) % 绘图[X,Y] = fplot('0.5*cos(x)',[-pi,pi]); % 返回点坐标fplot('cos(x)',[-pi,pi],'r-+'); % 观察点的位置控制采样点的密度fplot('cos(x)',[-pi,pi],'r-+',0.05);fplot('cos(x)',[-pi,pi],'r-+',0.1);可绘制系统函数,也可绘制自定义函数的图形。
matlab画图大全
@绘图%二维画图x=linspace(0,2*pi,30);y=sin(x);z=cos(x);plot(x,y,'r',x,z,'g')%ezplot符号函数(显函数、隐函数和参数方程)画图subplot(1,3,1)ezplot('cos(x)',[0,pi])subplot(1,3,2)ezplot('cos(t)^3','sin(t)^3',[0,2*pi])subplot(1,3,3)ezplot('exp(x)+sin(x*y)',[-2,0.5,0,2])%在[-2,0.5],[0,2](坐标轴的范围)上画隐函数的图.1%fplot(‘fun’,lims) 表示绘制字符串fun指定的函数在lims=[xmin,xmax]的图形.%[1] fun必须是M文件的函数名或是独立变量为x的字符串.%[2] fplot函数不能画参数方程和隐函数图形,但在一个图上可以画多个图形.fplot('tanh',[-2,2],':')hold onfplot('[tanh(x),sin(x),cos(x)]',2*pi*[-1 1 -1 1])%对数坐标图 loglog(Y):表示 x、y坐标都是对数坐标系 semilogx(Y):表示 x坐标轴是对数坐标系%semilogy(…):表示y坐标轴是对数坐标系 plotyy:有两个y坐标轴,一个在左边,一个在右边x=0:.1:10;semilogy(x,10.^x)2x=logspace(-1,2);loglog(x,exp(x),'-s')%-s是方形标注符grid onx=[1:1:100];subplot(2,3,1);plot(x,x.^3);grid on;title 'plot-y=x^3';subplot(2,3,2);3loglog(x,x.^3);grid on;title 'loglog-logy=3logx';subplot(2,3,3);plotyy(x,x.^3,x,x);grid on;title 'plotyy-y=x^3,logy=3logx';subplot(2,3,4);semilogx(x,x.^3);grid on;title 'semilogx-y=3logx';subplot(2,3,5);semilogy(x,x.^3);grid on;title 'semilogy-logy=x^3';%三维绘图%空间曲线 plot3(x,y,z,s) x,y,z为n维向量,分别表示曲线上点集的横坐标、纵坐标、函数值 s为指定颜色、线形等t=0:pi/50:10*pi;plot3(sin(t),cos(t),t)%在区间[0,10π]画出参数曲线 x=sint,y=cost,z=t.rotate3d %旋转图形 在图形窗口上面的选项栏里有4x=-3:0.1:3;y=1:0.1:5;[X,Y]=meshgrid(x,y);Z=(X+Y).^2;plot3(X,Y,Z)%其中x,y,z是都是m×n矩阵,其对应的每一列表示一条曲线.%%空间曲面 surf(x,y,z) x,y,z为数据矩阵.分别表示数据点的横坐标、纵坐标、函数值,画出数据点(x,y,z)表示的曲面x=-3:0.1:3;y=1:0.1:5;[X,Y]=meshgrid(x,y);%生成x,y的数据网格使曲面更光滑Z=(X+Y).^2;surf(X,Y,Z)shading flat%使图形变得光滑rotate3dshading interp%除去网格 只在surf函数下起作用 mesh不能5doc shading%shading flat; shading faceted(缺省); shading interp; shading (axes_handle,...)@%%mesh(x,y,z)x,y,z为数据矩阵.分别表示数据点的横坐标、纵坐标、函数值,画网格曲面(中间没有曲面)x=-3:0.1:3; y=1:0.1:5;[X,Y]=meshgrid(x,y);%在特定区域内生成网格Z=(X+Y).^2;mesh(X,Y,Z)6[X,Y]=meshgrid(-3:.125:3);Z=peaks(X,Y);subplot(1,2,1)meshz(X,Y,Z)subplot(1,2,2)surf(X,Y,Z)shading flat7%%图形处理%加栅格、图例和标注%grid off/onx=linspace(0,2*pi,30);y=sin(x);plot(x,y)xlabel('自变量X')ylabel('函数Y')title('示意图')grid on8% 命令gtext(‘string’)用鼠标放置标注在现有的图上. x=linspace(0,2*pi,30);y=sin(x);z=cos(x);plot(x,y,x,z)gtext('sin(x)');gtext('cos(x)');9% 命令gtext(‘string’)用鼠标放置标注在现有的图上. x=linspace(0,2*pi,30);y=sin(x);z=cos(x);plot(x,y,x,z)gtext('sin(x)');gtext('cos(x)');10%图形保持 hold on/offx=linspace(0,2*pi,30);z=cos(x);y=sin(x);plot(x,z,:)%“:”表示虚线hold onplot(x,y)zoom on%放大命令11%figure(h)新建h窗口,激活图形使其可见,并把它置于其它图形之上%割窗口 subplotx=linspace(0,2*pi,100);y=sin(x); z=cos(x);a=sin(x).*cos(x);b=sin(x)./(cos(x)+eps)subplot(2,2,1);plot(x,y),title('sin(x)')subplot(2,2,2);plot(x,z),title('cos(x)')subplot(2,2,3);plot(x,a),title('sin(x)cos(x)')subplot(2,2,4);plot(x,b),title('sin(x)/cos(x)')12%缩放模式:zoom on/off%改变视角:view(a,b)a为方位角,b为仰角;view([x,y,z])x,y,z为笛卡尔坐标x=-3:0.1:3; y=1:0.1:5;[X,Y]=meshgrid(x,y);Z=(X+Y).^2;subplot(2,2,1); mesh(X,Y,Z)subplot(2,2,2);mesh(X,Y,Z);view(50,-34)subplot(2,2,3);mesh(X,Y,Z);view(-60,70)subplot(2,2,4);mesh(X,Y,Z);view([0,1,1])13%%制作动画 Moviein(),getframe,movie():函数Moviein()产生一个帧矩阵来存放动画中的帧;函数getframe对当前的图像进行快照;函数movie()按顺序回放各帧.[x,y,z]=peaks(30);surf(x,y,z)axis([-3 3 -3 3 -10 10])axis offshading interpcolormap(hot)m=moviein(360);for i=1:360view(-37.5+1*(i-1),30)m(:,i)=getframe;endmovie(m)14%特殊图形%1. 极坐标图:polar (theta,rho,s)theta=linspace(0,2*pi),rho=sin(2*theta).*cos(2*theta);polar(theta,rho,'g')title('Polar plot of sin(2*theta).*cos(2*theta)');%2. 散点图: scatter(X,Y,S,C)在向量X和Y的指定位置显示彩色圈.X和Y必须维数相同.load seamountscatter(x,y,5,z)15%3. 平面等值线图: contour(x,y,z,n) 绘制n个等值线的二维等值线图[X,Y]=meshgrid(-2:.2:2,-2:.2:3);Z=X.*exp(-X.^2-Y.^2);[C,h]=contour(X,Y,Z);clabel(C,h)colormap cool16%空间等值线图:contour3(x,y,z,n)[x,y,z]=peaks;subplot(1,2,1)contour3(x,y,z,16,'s')grid, xlabel('x-axis'), ylabel('y-axis') zlabel('z-axis')title('contour3 of peaks');subplot(1,2,2)contour(x,y,z,16,'s');grid, xlabel('x-axis'), ylabel('y-axis') title('contour of peaks');17%三维散点图2. 三维散点图 scatter3(X,Y,Z,S,C) s为size c为color 在向量X,Y和Z指定的位置上显示彩色圆圈.向量X,Y和Z的维数必须相同. [x,y,z]=sphere(16);X=[x(:)*.5 x(:)*.75 x(:)];Y=[y(:)*.5 y(:)*.75 y(:)];Z=[z(:)*.5 z(:)*.75 z(:)];S=repmat([1 .75 .5]*10,numel(x),1);C=repmat([1 2 3],numel(x),1);scatter3(X(:),Y(:),Z(:),S(:),C(:),'filled'),view(-60,60)18%要在某山区方圆大约27km2范围内修建一条公路,从山脚出发经过一个居民区,再到达一个矿区.横向纵向分别每隔400m测量一次,得到一些地点的高程:(平面区域0≤x≤ 5600,0≤y≤4800),需作出该山区的地貌图和等高线图. x=0:400:5600;y=0:400:4800;z=[370 470 550 600 670 690 670 620 580 450 400 300 100 150 250;...510 620 730 800 850 870 850 780 720 650 500 200 300 350 320;...650 760 880 970 1020 1050 1020 830 900 700 300 500 550 480 350;...740 880 1080 1130 1250 1280 1230 1040 900 500 700 780 750 650 550;...830 980 1180 1320 1450 1420 1400 1300 700 900 850 840 380 780 750;...880 1060 1230 1390 1500 1500 1400 900 1100 1060 950 870 900 930 950;...910 1090 1270 1500 1200 1100 1350 1450 1200 1150 1010 880 1000 1050 1100;...950 1190 1370 1500 1200 1100 1550 1600 1550 1380 1070 900 1050 1150 1200;...1430 1430 1460 1500 1550 1600 1550 1600 1600 1600 1550 1500 1500 1550 1550;...1420 1430 1450 1480 1500 1550 1510 1430 1300 1200 980 850 750 550 500;...1380 1410 1430 1450 1470 1320 1280 1200 1080 940 780 620 460 370 350;...1370 1390 1410 1430 1440 1140 1110 1050 950 820 690 540 380 300 210;...1350 1370 1390 1400 1410 960 940 880 800 690 570 430 290 210 150];meshz(x,y,z)xlabel('X'),ylabel('Y'),zlabel('Z')%插值使曲面光滑[x1,y1]=meshgrid(0:10:5600,0:10:4800);z1=griddata(x,y,z,x1,y1,'cubic');figure(2),surf(x1,y1,z1)shading flatfigure(3)contour(x,y,z)19figure(4)contour3(x,y,z)202122。
MATLAB作图(超详细)
2020/5/31
数学建模
3. 对数坐标图
在很多工程问题中,通过对数据进行对数转换可以 更清晰地看出数据的某些特征,在对数坐标系中描绘数 据点的曲线,可以直接地表现对数转换.对数转换有双对 数坐标转换和单轴对数坐标转换两种.用loglog函数 可以实现双对数坐标转换,用semilogx和semilogy 函数可以实现单轴对数坐标转换. loglog(Y) 表示 x、y坐标都是对数坐标系
单击鼠标左键,则在当前图形窗口中,以鼠标点中的点为 中心的图形放大2倍;单击鼠标右键,则缩小2倍.
zoom off 关闭缩放模式
grid on
%标注格栅
MATLAB liti37
例 创建一个简单的半对数坐标图. 解 输入命令:
x=0:.1:10;
semilogy(x,10.^x)
MATLAB liti38
例 绘制y=x3的函数图、对数坐标图、半对数坐标图.
2020/5/31
MATLAB liti22 数学建模
返回
三维图形 1. 空间曲线 2. 空间曲面
semilogx(Y) 表示 x坐标轴是对数坐标系
semilogy(…) 表示y坐标轴是对数坐标系
plotyy 有两个y坐标轴,一个在左边,一个在右边
2020/5/31
数学建模
例 用方形标记创建一个简单的loglog.
解 输入命令:
x=logspace(-1,2);
loglog(x,exp(x),’-s’)
数学建模
返回
2. 定制坐标 Axis([xmin xmax ymin ymax zmin zmax])定制图形坐标
x、y、z的最大、最小值
Axis
将坐标轴返回到自动缺省值
教你如何用matlab绘图(全面)
强大的绘图功能是Matlab的特点之一,Matlab提供了一系列的绘图函数,用户不需要过多的考虑绘图的细节,只需要给出一些基本参数就能得到所需图形,这类函数称为高层绘图函数。
此外,Matlab还提供了直接对图形句柄进行操作的低层绘图操作。
这类操作将图形的每个图形元素(如坐标轴、曲线、文字等)看做一个独立的对象,系统给每个对象分配一个句柄,可以通过句柄对该图形元素进行操作,而不影响其他部分。
本章介绍绘制二维和三维图形的高层绘图函数以及其他图形控制函数的使用方法,在此基础上,再介绍可以操作和控制各种图形对象的低层绘图操作。
一.二维绘图二维图形是将平面坐标上的数据点连接起来的平面图形。
可以采用不同的坐标系,如直角坐标、对数坐标、极坐标等。
二维图形的绘制是其他绘图操作的基础。
一.绘制二维曲线的基本函数在Matlab中,最基本而且应用最为广泛的绘图函数为plot,利用它可以在二维平面上绘制出不同的曲线。
1.plot函数的基本用法plot函数用于绘制二维平面上的线性坐标曲线图,要提供一组x坐标和对应的y坐标,可以绘制分别以x和y为横、纵坐标的二维曲线。
plot函数的应用格式plot(x,y) 其中x,y为长度相同的向量,存储x坐标和y坐标。
例51 在[0 , 2pi]区间,绘制曲线程序如下:在命令窗口中输入以下命令>> x=0:pi/100:2*pi;>> y=2*exp(-0.5*x).*sin(2*pi*x);>> plot(x,y)程序执行后,打开一个图形窗口,在其中绘制出如下曲线注意:指数函数和正弦函数之间要用点乘运算,因为二者是向量。
例52 绘制曲线这是以参数形式给出的曲线方程,只要给定参数向量,再分别求出x,y向量即可输出曲线:>> t=-pi:pi/100:pi;>> x=t.*cos(3*t);>> y=t.*sin(t).*sin(t);>> plot(x,y)程序执行后,打开一个图形窗口,在其中绘制出如下曲线以上提到plot函数的自变量x,y为长度相同的向量,这是最常见、最基本的用法。
最全的MATLAB绘图命令
Matlab绘图强大的绘图功能是Matlab的特点之一,Matlab提供了一系列的绘图函数,用户不需要过多的考虑绘图的细节,只需要给出一些基本参数就能得到所需图形,这类函数称为高层绘图函数。
此外,Matlab还提供了直接对图形句柄进行操作的低层绘图操作。
这类操作将图形的每个图形元素(如坐标轴、曲线、文字等)看做一个独立的对象,系统给每个对象分配一个句柄,可以通过句柄对该图形元素进行操作,而不影响其他部分。
本章介绍绘制二维和三维图形的高层绘图函数以及其他图形控制函数的使用方法,在此基础上,再介绍可以操作和控制各种图形对象的低层绘图操作。
一.二维绘图二维图形是将平面坐标上的数据点连接起来的平面图形。
可以采用不同的坐标系,如直角坐标、对数坐标、极坐标等。
二维图形的绘制是其他绘图操作的基础。
一.绘制二维曲线的基本函数在Matlab中,最基本而且应用最为广泛的绘图函数为plot,利用它可以在二维平面上绘制出不同的曲线。
1. plot函数的基本用法plot函数用于绘制二维平面上的线性坐标曲线图,要提供一组x坐标和对应的y 坐标,可以绘制分别以x和y为横、纵坐标的二维曲线。
plot函数的应用格式plot(x,y) 其中x,y为长度相同的向量,存储x坐标和y坐标。
例51 在[0 , 2pi]区间,绘制曲线程序如下:在命令窗口中输入以下命令>> x=0:pi/100:2*pi;>> y=2*exp(-0.5*x).*sin(2*pi*x);>> plot(x,y)程序执行后,打开一个图形窗口,在其中绘制出如下曲线注意:指数函数和正弦函数之间要用点乘运算,因为二者是向量。
例52 绘制曲线这是以参数形式给出的曲线方程,只要给定参数向量,再分别求出x,y向量即可输出曲线:>> t=-pi:pi/100:pi;>> x=t.*cos(3*t);>> y=t.*sin(t).*sin(t);>> plot(x,y)程序执行后,打开一个图形窗口,在其中绘制出如下曲线以上提到plot函数的自变量x,y为长度相同的向量,这是最常见、最基本的用法。
matlab画图大全[资料]
matlab绘图大全Matlab绘图系列之高级绘图一、目录1.彗星图二维彗星图三维彗星图2.帧动画3.程序动画4.色图变换5.Voronoi图和三角剖分Voronoi图三角剖分6.四面体7.彩带图彩带图三维流彩带图8.伪彩图9.切片图切片图切片轮廓线图10.轮廓图显示轮廓线显示围裙瀑布效果带光照模式的阴影图11.函数绘图轮廓线、网格图、曲面图、轮廓网格图轮廓曲面图、二维曲线、极坐标曲线图、自定义函数12.三维图形控制视点灯光效果色彩控制二、图形示例1.彗星图二维彗星图t=0:.01:2*pi;x=cos(2*t).*(cos(t).^2);y=sin(2*t).*(sin(t).^2);comet(x,y);title('二维彗星轨迹图')hold onplot(x,y)三维彗星图a=12;b=9;T0=2*pi;%T0是轨道的周期T=5*T0;dt=pi/100;t=[0:dt:T]';f=sqrt(a^2-b^2);%地球与另一焦点的距离th=12.5*pi/180;%未经轨道与x-y平面的倾角E=exp(-t/20);%轨道收缩率x=E.*(a*cos(t)-f);y=E.*(b*cos(th)*sin(t));z=E.*(b*sin(th)*sin(t));plot3(x,y,z,'g')%画全程轨线hold on,sphere(20);%画地球axis offtitle('卫星返回地球示例')x1=-18*T0;x2=6*T0;y1=-12*T0;y2=12*T0;z1=-6*T0;z2=6*T0;axis([x1 x2 y1 y2 z1 z2])% axis([-15 10 -15 10 -10 10])axis equalcomet3(x,y,z,0.02);%画运动轨线hold off2.帧动画Z=peaks;surf(Z)%绘制网格表面图axis tightset(gca,'nextplot','replacechildren');%设定axis覆盖重画模式title('帧动画播放示例')for j=1:20surf(sin(2*pi*j/20)*Z,Z)%重新绘制网格表面图,这里后面一个Z当成了颜色矩阵F(j)=getframe;%创建帧endmovie(F,20)%播放动画20次3.程序动画t=0:pi/50:10*pii=1;h=plot3(sin(t(i)),cos(t(i)),t(i),'*','erasemode','none');%设定擦除模式grid onaxis([-2 2 -2 2 -1 10*pi])title('程序动画示例')for i=2:length(t)set(h,'xdata',sin(t(i)),'ydata',cos(t(i)),'zdata',t(i));drawnowpause(0.01)end4.色图变换load spineimage(X)colormap coolspinmap(10)5.Voronoi图和三角剖分Voronoi图rand('state',5)x=rand(1,10);y=rand(1,10);subplot(131)voronoi(x,y);%绘制voronoi图形axis equalaxis([-0.2 1.6 -0.5 2.5])subplot(132)[vx,vy]=voronoi(x,y);plot(x,y,'r+',vx,vy,'b-');%应用返回值绘制axis equalaxis([-0.2 1.6 -0.5 2.5])subplot(133)rand('state',5);x=rand(10,2);[v,c]=voronoin(x);%返回值v参数维voronoi顶点矩阵,返回值c 参数为voronoi元胞数组for i=1:length(c)if all(c{i}~=1)patch(v(c{i},1),v(c{i},2),i);%应用色图iendendaxis equalaxis([-0.2 1.6 -0.5 2.5])box on三角剖分[x,y]=meshgrid(1:15,1:15);tri=delaunay(x,y);z=peaks(15);trimesh(tri,x,y,z)6.四面体d=[-1 1];[x,y,z]=meshgrid(d,d,d);%定义一个立方体x=[x(:);0];y=[y(:);0];z=[z(:);0];%[x,y,z]分别为加上中心的立方体顶点X=[x(:) y(:) z(:)];Tes=delaunayn(X);%返回m×n的数组值tetramesh(Tes,X);%绘制四面体图camorbit(20,0);%旋转摄像目标位置7.彩带图彩带图[x,y]=meshgrid(-3:.5:3,-3:.1:3);z=peaks(x,y);ribbon(y,z)三维流彩带图load wind%打开保存的数据lims=[100.64 116.67 17.25 28.75 -0.02 6.86];%定义坐标轴范围[x,y,z,u,v,w]=subvolume(x,y,z,u,v,w,lims);%lims来定义数据子集[sx sy sz]=meshgrid(110,20:5:30,1:5);%定义网格点verts=stream3(x,y,z,u,v,w,sx,sy,sz,.5);%计算彩带顶点cav=curl(x,y,z,u,v,w);%计算卷曲角速度wind_speed=sqrt(u.^2+v.^2+w.^2);%计算流速h=streamribbon(verts,x,y,z,cav,wind_speed,2);%绘制流彩带图view(3)8.伪彩图n=6%定义轮数r=(0:n)'/n;%定义轮的半径theta=pi*(-n:n)/n;%定义轮的扇区角X=r*cos(theta);Y=r*sin(theta);%定义网格顶点C=r*cos(2*theta);%定义色图pcolor(X,Y,C)%绘制伪彩图axis equal tight9.切片图切片图[x,y,z] = meshgrid(-2:.2:2,-2:.25:2,-2:.16:2);v = x.*exp(-x.^2-y.^2-z.^2);xslice = [-1.2,.8,2]; yslice = 2; zslice = [-2,0];slice(x,y,z,v,xslice,yslice,zslice)colormap hsv切片轮廓线图[x y z v]=flow;%打开水流数据h=contourslice(x,y,z,v,[1:9],[],[0],linspace(-8,2,10));%切片轮廓线view([-12 30])10.轮廓图显示轮廓线[x,y,z]=peaks;subplot(1,2,1)meshc(x,y,z);%同时画出网格图与轮廓线title('meshc 网格图与轮廓线')axis([-inf inf -inf inf -inf inf]);subplot(1,2,2)surfc(x,y,z);%同时画出曲面图与轮廓线title('surfc 曲面图与轮廓线')axis([-inf inf -inf inf -inf inf]);显示围裙[x y z]=peaks;meshz(x,y,z);瀑布效果[X,Y,Z]=peaks(30);waterfall(X,Y,Z)带光照模式的阴影图[x,y]=meshgrid(-3:1/8:3);z=peaks(x,y);surfl(x,y,z);shading interp%着色处理colormap(gray);%灰度处理axis([-3 3 -3 3 -8 8])11.函数绘图轮廓线、网格图、曲面图、轮廓网格图%图1绘制轮廓线、网格图、曲面图、轮廓网格图subplot(221)f=['3*(1-x)^2*exp(-(x^2)-(y+1)^2)-10*(x/5-x^3-y^5)*exp(-x^2-y^2)-1/3*exp(-(x+1)^2-y^2)'];%定义双变量x、y的函数式ezcontour(f,[-3,3],49)%x、y为[-3 3],网格为49×49subplot(222)ezmesh('sqrt(x^2+y^2)');subplot(223)ezsurf('real(atan(x+i*y))')%经过滤波,如果相同数据surf绘图没有滤波subplot(224)ezmeshc('y/(1+x^2+y^2)',[-5,5,-2*pi,2*pi])%x、y的数值范围分别为[-5 5]、[-2*pi 2*pi]轮廓曲面图、二维曲线、极坐标曲线图、自定义函数%图2绘制轮廓曲面图、二维曲线、极坐标曲线图、自定义函数figure(2)subplot(221)ezsurfc('sin(u)*sin(v)')subplot(222)ezplot('x^2-y^4');subplot(223)ezpolar('1+cos(t)')subplot(224)fplot('myfun',[-20 20])function Y=myfun(x)Y(:,1)=200*sin(x(:))./x(:);Y(:,2)=x(:).^2;三维曲线图%绘制三维曲线图figure(3)ezplot3('sin(t)','cos(t)','t',[0,6*pi])12.三维图形控制视点View图形旋转subplot(121)surf(peaks);title('旋转前图形');subplot(122)h=surf(peaks);rotate(h,[1 0 1],180)title('旋转后图形');灯光效果%灯光效果(1)camlight(2)light(3)lightangle(4)lighting(5)materialsphere;camlight色彩控制%色彩控制(1)缺省设置colordef、whitebg(2)色图colormap(3)浓淡处理shadingload flujetimage(X)colormap(jet)subplot(131)sphere(16)axis squareshading flattitle('Flat Shading')subplot(132)sphere(16)axis squareshading facetedtitle('Faceted Shading') subplot(133)sphere(16)axis squareshading interptitle('Interpolated Shading')。
Matlab绘图教程(大量实例PPT)
MATLAB绘图二维数据曲线图pplot函数的基本调用格式为:x,y) )plot(plot(x,y其中x和y为长度相同的向量,分别用于存储x坐标和y坐标数据。
数据例1 在0≤x2π区间内,绘制曲线y=2e-0.5x cos(4πx)1≤区间内绘制曲线205x(4)程序如下:x=0:pi/100:2*pi;cos(4*pi*x);0.5*x).*cos(4*pi*x);y=2*exp(--0.5*x).*y=2*exp(x,y))plot(x,yplot(x yplot(x y)例2 绘制曲线。
绘制曲线程序如下:t=0:0.1:2*pi;x=t.sin(3t);x=t*sin(3*t);y=t.*sin(t).*sin(t); plot(x,y););plot(x,y数最简单的调用格式是包含个输参数plot函数最简单的调用格式是只包含一个输入参数:p()plot(x)在这种情况下,当x是实向量时,以该向量元素的下标为横坐标,元素值为纵坐标画出条连续曲线,标为横坐标,元素值为纵坐标画出一条连续曲线,这实际上是绘制折线图。
绘制多根二维曲线1.plot函数的输入参数是矩阵形式时数的输参数是矩阵形式时(1) 当x是向量,y是有一维与x同维的矩阵时,则绘制出多根不同颜色的曲线。
曲线条数等于y矩阵的另一维数,x被作为这些曲线共同的横坐标。
(2) 当x,y是同维矩阵时,则以x,y对应列元素为横、纵坐标分别绘制曲线,曲线条数等于矩阵的列数。
纵坐标分别绘制曲线曲线条数等于矩阵的列数(3) 对只包含一个输入参数的plot函数,当输入参数对包含个输参数的数当输参数是实矩阵时,则按列绘制每列元素值相对其下标的曲线曲线条数等于输入参数矩阵的列数的曲线,曲线条数等于输入参数矩阵的列数。
当输入参数是复数矩阵时,则按列分别以元素实部和虚部为横、纵坐标绘制多条曲线。
2.含多个输入参数的plot函数含多个输参数的数调用格式为:plot(x1,y1,x2,y2,…,xn,yn)(1) 当输入参数都为向量时,x1和y1,x2和y2,…,(1)当输入参数都为向量时xn和yn分别组成一组向量对,每一组向量对的长度可以不同每一向量对可以绘制出一条曲线度可以不同。
【matlab基础篇03】一文带你全面了解plot绘图函数的使用(超详细+图文并茂)
【matlab基础篇03】⼀⽂带你全⾯了解plot绘图函数的使⽤(超详细+图⽂并茂)快速⼊门matlab,系统地整理⼀遍,如何你和我⼀样是⼀个新⼿,那么此⽂很适合你;⽂章⽬录1 前⾔如果你是和我⼀样的⼩⽩,强烈推荐看看这⾥,需要合理地利⽤官⽅的⽂档,通常我觉得官⽅⽂档是最好的,没有之⼀,在命令终端输⼊help plot,可以看到详细的帮助⽂档;具体如下;>> help plotplot Linear plot.plot(X,Y) plots vector Y versus vector X. If X or Y is a matrix,then the vector is plotted versus the rows or columns of the matrix,whichever line up. If X is a scalar and Y is a vector, disconnectedline objects are created and plotted as discrete points vertically atX.plot(Y) plots the columns of Y versus their index.If Y is complex, plot(Y) is equivalent to plot(real(Y),imag(Y)).In all other uses of plot, the imaginary part is ignored.Various line types, plot symbols and colors may be obtained withplot(X,Y,S) where S is a character string made from one elementfrom any or all the following 3 columns:b blue . point - solidg green o circle : dottedr red x x-mark -. dashdotc cyan + plus -- dashedm magenta * star (none) no liney yellow s squarek black d diamondw white v triangle (down)^ triangle (up)< triangle (left)> triangle (right)p pentagramh hexagramFor example, plot(X,Y,'c+:') plots a cyan dotted line with a plusat each data point; plot(X,Y,'bd') plots blue diamond at each datapoint but does not draw any line.plot(X1,Y1,S1,X2,Y2,S2,X3,Y3,S3,...) combines the plots defined bythe (X,Y,S) triples, where the X's and Y's are vectors or matricesand the S's are strings.For example, plot(X,Y,'y-',X,Y,'go') plots the data twice, with asolid yellow line interpolating green circles at the data points.The plot command, if no color is specified, makes automatic use ofthe colors specified by the axes ColorOrder property. By default,plot cycles through the colors in the ColorOrder property. Formonochrome systems, plot cycles over the axes LineStyleOrder property.Note that RGB colors in the ColorOrder property may differ fromsimilarly-named colors in the (X,Y,S) triples. For example, thesecond axes ColorOrder property is medium green with RGB [0 .5 0],while plot(X,Y,'g') plots a green line with RGB [0 1 0].If you do not specify a marker type, plot uses no marker.If you do not specify a line style, plot uses a solid line.plot(AX,...) plots into the axes with handle AX.plot returns a column vector of handles to lineseries objects, onehandle per plotted line.The X,Y pairs, or X,Y,S triples, can be followed byparameter/value pairs to specify additional propertiesof the lines. For example, plot(X,Y,'LineWidth',2,'Color',[.6 0 0])will create a plot with a dark red line width of 2 points.Examplex = -pi:pi/10:pi;y = tan(sin(x)) - sin(tan(x));plot(x,y,'--rs','LineWidth',2,...'MarkerEdgeColor','k',...'MarkerFaceColor','g',...'MarkerSize',10)与plot相关的函数还有plottools, semilogx, semilogy, loglog, plotyy, plot3, grid,title, xlabel, ylabel, axis, axes, hold, legend, subplot, scatter.2 plot2.1 显⽰正弦波显⽰⼀个简单的正弦函数;x=0:2*pi/100:2*pi;y=sin(x);plot(x,y);2.2 修改颜⾊参数颜⾊bgrcmykw下⾯修改为红⾊:x=0:2*pi/100:2*pi;y=sin(x);plot(x,y,'r');结果如下:2.3 修改点的形状参数形状图标-solido circlex x-mark+plus*stars squared diamondv triangle (down)^triangle (up)<triangle (left)>triangle (right)ppentagram h hexagram参数形状图标将点形状显⽰为六边形;x=0:2*pi/20:2*pi;y=sin(x);plot(x,y,'h','MarkerSize',10);结果如下:相关参数:MarkerEdgeColor :点边框颜⾊;MarkerFaceColor :点表⾯颜⾊;MarkerSize :点的⼤⼩;2.4 修改线的形状符号形状:dotted -.dashdot --dashedx=0:2*pi/20:2*pi;y=sin(x);plot(x,y,':','LineWidth',3);LineWidth 的参数为线宽;x=0:2*pi/20:2*pi;y=sin(x);plot(x,y,'-.','LineWidth',3);x=0:2*pi/20:2*pi;y=sin(x);plot(x,y,'--','LineWidth',3);2.5 多个参数修改下⾯修改多个参数属性显⽰⼀下正弦波;x = 0:2*pi/100:2*pi;y = sin(x);plot(x,y,'--rs','LineWidth',2,...'MarkerEdgeColor','k',...'MarkerFaceColor','g',... 'MarkerSize',10);结果如下:3 subplotsubplot 的使⽤⽅法如下:subplot Create axes in tiled positions.H = subplot(m,n,p), or subplot(mnp), breaks the Figure windowinto an m-by-n matrix of small axes, selects the p-th axes forthe current plot, and returns the axes handle. The axes arecounted along the top row of the Figure window, then the second row, etc. For example,subplot(2,1,1), PLOT(income)subplot(2,1,2), PLOT(outgo)通俗的讲:subplot(⾏,列,index)注意:plot函数要在subplot表明位置之后再调⽤。
MATLAB中的绘图函数介绍
MATLAB中的绘图函数介绍概述:MATLAB是一种非常强大的数值计算和科学绘图软件,在各个领域中都得到广泛的应用。
在MATLAB中,绘图函数是其中一个非常重要的功能,它可以帮助我们将数据可视化,并进行分析和解释。
在本文中,我们将详细介绍一些常用的MATLAB绘图函数及其功能。
一、plot函数:plot函数是MATLAB中最基本的绘图函数之一,它可以绘制线性图。
通过将一系列的点连接起来,我们可以绘制出数据的变化趋势。
下面是plot函数的一个简单示例:```matlabx = 0:0.1:10;y = sin(x);plot(x, y);```在这个例子中,我们首先定义了x的取值范围为0到10,间隔为0.1。
然后通过使用sin函数计算出对应的y值。
最后,调用plot函数将x和y的数值传入,即可得到一条关于sin函数的图形。
除了基本的线性图,plot函数还可以绘制不同颜色和线型的曲线,并添加标题、标签等。
它是进行简单数据可视化的利器。
二、scatter函数:相比于plot函数,scatter函数可以绘制散点图,用于展示多个不同数据点之间的分布关系。
通过scatter函数,我们可以方便地比较不同变量之间的相关性。
以下是scatter函数的一个示例:```matlabx = randn(100,1);y = 0.5*x + randn(100,1);scatter(x, y);```在这个例子中,我们首先生成了两组随机数x和y。
然后使用scatter函数将它们绘制成散点图。
通过观察散点图的分布,我们可以判断出x和y之间是否存在线性相关性。
scatter函数还支持设置散点的颜色、大小和透明度等参数,以满足不同的需求。
它是进行多变量分析的重要工具之一。
三、bar函数:bar函数可以用于绘制柱状图,常用于展示各个类别的数据之间的差异。
通过柱状图,我们可以清晰地比较不同类别之间的数值大小。
以下是bar函数的一个示例:```matlabx = categorical({'A', 'B', 'C', 'D'});y = [10, 15, 8, 12];bar(x, y);```在这个例子中,我们首先定义了四个类别,分别是'A'、'B'、'C'和'D'。
MATLAB中绘图命令介绍
MATLAB中绘图命令介绍本节将介绍MATLAB基本xy平面及xyz空间的各项绘图命令,包含一维曲线及二维曲面的绘制。
plot是绘制一维曲线的基本函数,但在使用此函数之前,我们需先定义曲线上每一点的x 及y座标。
下例可画出一条正弦曲线:close all;x=linspace(0, 2*pi, 100); % 100个点的x坐标y=sin(x); % 对应的y坐标plot(x,y);小整理:MATLAB基本绘图函数plot: x轴与y轴均为线性刻度(Linear scale)loglog: x轴与y轴均为对数刻度(Logarithmic scale)semilogx: x轴为对数刻度,y轴为线性刻度semilogy: x轴为线性刻度,y轴为对数刻度若要画出多条曲线,只需将座标对依次放入plot函数即可:hold on 保持当前图形,以便继续画图到当前坐标窗口hold off 释放当前图形窗口title(’图形名称’)(都放在单引号内)xlabel(’x轴说明’)ylabel(’y轴说明’)text(x,y,’图形说明’)legend(’图例1’,’图例2’,…)plot(x, sin(x), x, cos(x));若要改变颜色,在座标对後面加上相关字串即可:plot(x, sin(x), 'c', x, cos(x), 'g');若要同时改变颜色及图线型态,也是在座标对後面加上相关字串即可:plot(x, sin(x), 'co', x, cos(x), 'g*');小整理:plot绘图函数的叁数字元、颜色元、图线型态,y 黄色 .点k 黑色o 圆w 白色x xb 蓝色++g 绿色* *r 红色- 实线c 亮青色: 点线m锰紫色-. 点虚线-- 虚线plot3 三维曲线作图图形完成后,我们可用axis([xmin,xmax,ymin,ymax])函数来调整图轴的范围: axis([0, 6, -1.2, 1.2]);axis函数的功能丰富,其常用的用法有:axis equal :纵横坐标轴采用等长刻度axis square:产生正方形坐标系(默认为矩形)axis auto:使用默认设置axis off:取消坐标轴axis on :显示坐标轴此外,MATLAB也可对图形加上各种注解与处理:xlabel('Input Value'); % x轴注解ylabel('Function Value'); % y轴注解title('Two Trigonometric Functions'); % 图形标题legend('y = sin(x)','y = cos(x)'); % 图形注解grid on; % 显示格线我们可用subplot来同时画出数个小图形於同一个视窗之中:subplot(2,2,1); plot(x, sin(x));subplot(2,2,2); plot(x, cos(x));subplot(2,2,3); plot(x, sinh(x));subplot(2,2,4); plot(x, cosh(x));MATLAB还有其他各种二维绘图函数,以适合不同的应用,详见下表。
第4章 MATLAB 绘图
4.图例标注
菜单Insert---legend 命令legend('string1','string2',...)
4.1.6 一个图形窗口多个子图的绘制
subplot(m,n,i)把图形窗口分为m*n个子图,并在第i个子图 中画图 例 4-11 在同一坐标系中画出两个函数,y=cos2x,y=sinxsin6x 的图形,自变量的范围为0≤ x ≤π,函数y=cos2x用红色星号,函数 y=sinxsin6x用蓝色实线,并加图名、坐标轴、图形、图例标注 解 MATLAB命令为: x=0:pi/50:pi; y1=cos(2*x);y2=sin(x).*sin(6*x); plot(x,y1,'r*',x,y2,'b-'),grid on title(‘曲线y1=cos(2x)曲线y2=sin(x)sin(6x)') xlabel('x轴'),ylabel('y轴') gtext('y1=cos(2x)'),gtext('y2=sin(x)sin(6x)') legend('y1=cos(2x)','y2=sin(x)sin(6x)')
group 8 6 4 2 0 10 30 20
stack
1
2
3
4 stack
5
6
0
1
2
3
4 stack
5
6
8 6 5 4 3 2 1 0 10 20 30 6 4 2 0
其它特殊绘图略(见教科书 )
1
2
3
4
5
6
4.3 三维曲线绘图
第五讲 MATLAB绘图
第五讲 MATLAB绘图y 内容 y 画图入门 y 打印图象 y 联合作图 y 图像设置 循 结构( 固) y 循环结构(巩固) y 目的 y 能够进行MATLAB绘图1画图入门y MATLAB的扩展性和机制独立的画图功能是一个极其重要的功能.这个功能使数据画图变得十分简单.画一个数据图, 首先要创建两个向量,由x, y构成,然后使用plot函数。
x=0:1:10; 0 1 10 y=x.^2-10*x+15; plot(x y); plot(x,y);2y 正如我们所看到的,在MATLAB中画图是十分容易的.只要任何 对向量的长度相同,那么它就可以就能可视化地画出 任何一对向量的长度相同 来。
但是这还不是最后的结果,因为它还没有标题,坐标轴 标签,网格线。
y 给图增加标题和坐标轴标签将会用到title, xlabel, ylable函数。
调用每个函数时将会有一个字符串,这个字符串包含了图 象标题和坐标轴标签的信息 用grid 象标题和坐标轴标签的信息。
用 id命令可使网格线出现 或消失在图象中,grid on代表在图象中出现网格线,grid off代表去除网格线。
3给图增加标题和坐标轴标签将会用到title, xlabel, ylable函数。
调用每个函数时将会有一个字符串,这个字 符串包含了图象标题和坐标轴标签的信息。
用grid命令可 使网格线出现或消失在图象中,grid on代表在图象中出现 网格线 grid 网格线, id off ff代表去除网格线。
代表去除网格线 x 0:1:10; x=0:1:10; y=x.^2-10*x+15; plot(x,y); title ('Plot of y=x.^2-10*x+15'); xlabel ('x'); ylabel l b l ('y'); (' ') grid on;4打印图象y 一个图象一旦建立,我们就可以用print命令在打印机上打印出这幅图,也可以单击图象窗口的打印图标或者在文件 印出这幅图 也可以单击图象窗口的打印图标或者在文件 菜单中选择打印项打印。
第5章 MATLAB绘图
例5-7 在0≤x≤2区间内,绘制曲线y1=2e-0.5x和 y2=cos(4πx),并给图形添加图形标注。
程序如下:
x=0:pi/100:2*pi;
y坐标数据。
例5-1 在0≤x≤2区间内,绘制曲线 y=2e-0.5xcos(4πx)
程序如下: x=0:pi/100:2*pi; y=2*exp(-0.5*x).*cos(4*pi*x); plot(x,y)
例5-2 绘制曲线。 程序如下: t=0:0.1:2*pi; x=t.*sin(3*t); y=t.*sin(t).*sin(t); plot(x,y);
例5-9 用fplot函数绘制f(x)=cos(tan(πx))的曲线。 命令如下: fplot('cos(tan(pi*x))',[ 0,1],1e-4)
5.1.7 图形窗口的分割
subplot函数的调用格式为:
subplot(m,n,p)
该函数将当前图形窗口分成m×n个绘图区, 即每行n个,共m行,区号按行优先编号, 且选定第p个区为当前活动区。在每一个绘 图区允许以不同的坐标系单独绘制图形。
第5章 MATLAB绘图 5.1 二维数据曲线图 5.2 其他二维图形 5.3 隐函数绘图 5.4 三维图形 5.5 图形修饰处理 5.6 图像处理与动画制作
5.1 二维数据曲线图 5.1.1 绘制单根二维曲线 plot函数的基本调用格式为:
plot(x,y) 其中x和y为长度相同的向量,分别用于存储x坐标和
(2) 当x,y是同维矩阵时,则以x,y对应列元素为横、 纵坐标分别绘制曲线,曲线条数等于矩阵的列数。
MATLAB三维绘图
第7讲 绘制三维图(第5章MATLAB 绘图)目的:1.掌握绘制三维图形的方法。
2.掌握绘制图形的辅助操作。
一、绘图时点坐标矩阵的生成。
绘图函数使用描点法绘图,所以在绘图前,需要建立空间点的概念,空间中的点需要三个坐标(,,)x y z ,matlab 使用三个矩阵来存储点的三个坐标,一个矩阵(比如A )存储点的x 坐标,一个矩阵(比如B )存储点的y 坐标,一个矩阵(比如C )存储点的z 坐标。
其中A 、B 、C 三矩阵是同型矩阵。
例如设矩阵123112X ⎛⎫⎪= ⎪ ⎪⎝⎭,014221Y −⎛⎫ ⎪= ⎪ ⎪⎝⎭,510113Z ⎛⎫ ⎪= ⎪ ⎪−⎝⎭则,matlab 绘图函数将绘制点()()1,0,5,(2,1,1),(3,4,0),,2,1,3−共6个点。
如果点的坐标没有规律那么我们需要手工输入坐标矩阵。
如果点的坐标有规律,那么我们可以使用矩阵运算或者matlab 产生点的函数来生成坐标矩阵。
例如,假设空间中点的纵横坐标如下图所示:图中点的坐标有规律:横坐标是(1,2,3,4),纵坐标是(1,2,3),所以可以使用如下方法得到点的坐标矩阵。
方法一:>> a=[1,2,3,4];b=[1,2,3];i=ones(1,3);j=ones(1,4);>>x=i’ *a; y=b‘ *j;方法二:使用matlab系统函数meshgrid(推荐使用)>> a=[1,2,3,4]; b=[1,2,3];>>[x,y]=meshgrid(a,b) % 该函数生成的x,y矩阵和方法一相同。
------------------我是华丽分割线-----------------除meshgrid外,还可以用peaks、cylinder函数等生成点坐标矩阵。
peaks(n): 本身是一个创建具有多个峰值的曲面图,例如:>> peaks(30) %产生的图如下:在matlab中可以使用,例如:命令[x,y,z]=peaks(30)取出曲面点的三个坐标矩阵x,y,z;[a,b]=peaks(30)取出曲面点的前两坐标矩阵x,y;%可以用逻辑运算a==x,b==y验证注意:命令a=peaks(30)取出的a不是曲面点的x坐标,而是点的z坐标;可以用二维绘图函数scatter(x,y)绘制散点图观察取出的坐标点:>>[x,y]=peaks(8);>>scatter(x,y)另一个可以用来取坐标点的函数是sphere(n),命令sphere(n):绘制一个具有n个纵列的单位球面。
MATLAB(matlab)二维绘图plot语句的应用示例汇总(非常全面)
Matlab二维绘图plot语句的帮助应用示例1、plot(X, Y)用法2、plot(X ,Y, LineSpec)用法基本线型、颜色和标记的参数表格3、plot(X1, Y1,…Xn, Yn)用法plot(X1,Y1,...,Xn,Yn)绘制多个X、Y对组的图,所有线条都使用相同的坐标轴。
4、plot(X1,Y1,LineSpec1,...,Xn,Yn,LineSpecn)用法plot(X1,Y1,LineSpec1,...,Xn,Yn,LineSpecn)设置每个线条的线型、标记符号和颜色。
您可以混用X、Y、LineSpec三元组和X、Y对组:例如,plot(X1,Y1,X2,Y2,LineSpec2,X3,Y3)。
5、plot(Y)用法创建Y中数据对每个值索引的二维线图。
如果Y是矢量,x轴的刻度范围是从1至length(Y)。
如果Y是矩阵,则plot函数绘制Y中各列对其行号的图。
x轴的刻度范围是从 1 到Y的行数。
如果Y是复数,则plot函数绘制Y的虚部对Y的实部的图,使得plot(Y)等效于plot(real(Y),imag(Y))。
(1)Y为矩阵y=magic(5) %将 Y 定义为 magic 函数返回的5×5矩阵plot(y)(2)Y为复数y=[1+2i 3+3i 5+6i]plot(y)6、plot(Y,LineSpec)用法:同plot(X, Y, LineSpec)一样7、plot( _,Name,Value)用法plot( _,Name,Value)使用一个或多个Name,Value对组参数指定线条的属性。
可以将这一选项与前面语法中的任何输入参数组合一起使用。
8、plot(ax,_ )用法plot(ax,_ )将在由ax指定的坐标区中而不是当前坐标区(gca)中创建线条。
选项ax可以位于前面的语法中任何输入参数组合之前。
9、h=plot( _ )用法h=plot( _ )将返回由图形线条对象组成的列向量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 0.8 0.6 0.4 0.2
0 -0.2 -0.4
y
y1 y2
例 3:y=sin(t);y1=sin(t+0.25);y2=sin(t+0.5); y3=cos(t);y4=cos(t+0.25);y5=cos(t+0.5); plot(t,[y',y1',y2',y3',y4',y5'])
>
右三角
square
正方形
diamond 菱形
pentagram 五角星
hexagram 六角星
1. 单窗口单曲线绘图
例1:x=[0, 0.48,0.84,1,0.91,0.6,0.14] figure,plot(x)
2. 单窗口多曲线绘图
例2:t=0:pi/100:2*pi; y=sin(t);y1=sin(t+0.25);y2=sin(t+0.5); plot(t,y,t,y1,t,y2)
-2
-1
0
1
2
3
x=magic(6);area(x)
120
100
80
60
40
20
0
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
6
x=[1 2 3 4 5 6 7];y=[0 0 0 1 0 0 0]; pie(x,y)
例:t=0:0.1:10 y1=sin(t);y2=cos(t);plot(t,y1,'r',t,y2,'b--'); x=[1.7*pi;1.6*pi]; y=[-0.3;0.8]; s=['sin(t)';'cos(t)']; text(x,y,s); title('正弦和余弦曲线'); legend('正弦','余弦') xlabel('时间t'),ylabel('正弦、余弦') grid
matlab 绘图
——matlab语言丰富的图形 表现方法,使得数学计算结 果可以方便地、多样性地实 现了可视化,这是其它语言 所不能比拟的。
一、二维绘图
(一)plot —— 最基本的二维图形指令 plot的功能: plot命令自动打开一个图形窗口Figure 用直线连接相邻两数据点来绘制图形 根据图形坐标大小自动缩扩坐标轴,将
-1
-0.5
0
0.5
1
x
(二) fill –––– 基本二维绘图函数
fill的功能: 绘制二维多边形并填充颜色 例:x=[1 2 3 4 5];y=[4 1 5 1 4]; fill(x,y,'r')
(三)特殊二维绘图函数
bar –––– 绘制直方图 polar –––– 绘制极坐标图 hist –––– 绘制统计直方图 stairs –––– 绘制阶梯图 stem –––– 绘制火柴杆图 rose –––– 绘制统计扇形图 comet –––– 绘制彗星曲线
1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 01234567
1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 01234567
1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 01234567
数据标尺及单位标注自动加到两个坐标 轴上,可自定坐标轴,可把x, y 轴用对 数坐标表示
如果已经存在一个图形窗口,plot命 令则清除当前图形,绘制新图形
可单窗口单曲线绘图;可单窗口多曲 线绘图;可单窗口多曲线分图绘图; 可多窗口绘图
可任意设定曲线颜色和线型 可给图形加坐标网线和图形加注功能
plot的调用格式
1 0.8 0.6 0.4 0.2
0 -0.2 -0.4 -0.6 -0.8
-1 0
1
0.8
0.6
0.4
0.2
0
-0.2
-0.4
-0.6
-0.8
-1
5
10 0
1
0.8
0.6
0.4
0.2
0
-0.2
-0.4
-0.6
-0.8
-1
5
10 0
5
10
1
0
-1 01234567 1
0
-1 01234567 1
0
1 0.8 0.6 0.4 0.2
0 -0.2 -0.4 -0.6 -0.8
-1 0
5
10
15
20
25
30
35
例:绘制彗星曲线图 t= -pi:pi/500:pi; y=tan(sin(t))-sin(tan(t)); comet(t,y)
2.5
2
1.5
1
0.5
0
-0.5
-1
-1.5
-2
-2.5
-3
8.ezplot ——符号函数的简易绘图函数
ezplot的调用格式: ezplot(f) —这里f为包含单个符号变量
x的符号表达式,在x轴的默认范围 [-2*pi 2*pi]内绘制f(x)的函数图 ezplot(f,xmin,xmax) — 给定区间 ezplot(f,[xmin,xmax],figure(n)) — 指 定绘图窗口绘图。
axis square
正弦、余弦
1 0.8 0.6 0.4 0.2
0 -0.2 -0.4 -0.6 -0.8
-1 02 2
正弦和余弦曲线 cos(t)
sin(t) 4 4 6 6 88
时间时t 间t
正余弦弦 1010
正正正正正
1 0.8 0.6 0.4 0.2
0 -0.2 -0.4 -0.6 -0.8
plot(x) —— 缺省自变量绘图格式, x为向量, 以x元素值为纵坐标,以相 应元素下标为横坐标绘图
plot(x,y) —— 基本格式,以y(x)的 函数关系作出直角坐标图,如果y为 n×m的矩阵,则以x 为自变量,作 出m条曲线
plot(x1,y1,x2,y2) —— 多条曲线绘 图格式
plot(x,y,’s’) —— 开关格式,开关量 字符串s设定曲线颜色和绘图方式,
如: plot(x1,y1,’y*’,x2,y2,’rO’,…)
S的标准设定值如下:
字母 y m c r g b w k
颜色 黄色 粉红 亮蓝 大红 绿色 蓝色 白色 黑色
标点
· ○ × + -
: -· (--)
线型 点线 圈线 ×线 +字线 实线 星形线 虚线 点划线
v
下பைடு நூலகம்角
^
上三角
<
左三角
1
0.8
0.6
0.4
0.2
0
-0.2
-0.4
-0.6
-0.8
-1
0
1
2
3
4
5
6
7
y3=cos(t);y4=cos(t+0.25);y5=cos(t+0.5); plot(t,y3);hold on; plot(t,y4); plot(t,y5);
1
0.8
0.6
0.4
0.2
0
-0.2
-0.4
-0.6
ezplot('sin(x)') ezplot('sin(x)','cos(y)',[-4*pi 4*pi],figure(2))
sin(x) 1
0.5
0
-0.5
-1
-6
-4
-2
0
2
4
6
x
y
x = sin(x), y = cos(y) 1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8
-0.5
-1
0
1
2
3
1
-1
0
1
2
3
0.5
0
-0.5
-1
0
0.5
1
1.5
2
2.5
3
4. 多窗口绘图
figure(n) —— 创建窗口函数,n为窗 口顺序号。
t=0:pi/100:2*pi; y=sin(t);y1=sin(t+0.25);y2=sin(t+0.5); plot(t,y) —— 自动出现第一个窗口 figure(2) plot(t,y1) —— 在第二窗口绘图 figure(3) plot(t,y2) ——在第三窗口绘图
120 150 180
901 60
0.8 0.6
30 0.4 0.2
0
210 240
270
330 300
例:绘制火柴杆绘图 t=0:0.2:2*pi; y=cos(t); stem(y)
1 0.8 0.6 0.4 0.2
0 -0.2 -0.4 -0.6 -0.8
-1 0
5
10
15
20
25
30
35
例:绘制直方图 t=0:0.2:2*pi; y=cos(t); bar(y)
例,绘制阶梯曲线 x=0:pi/20:2*pi;y=sin(x);stairs(x,y)
1
0.8
0.6
0.4
0.2
0
-0.2
-0.4
-0.6
-0.8
-1
0
1
2
3
4
5
6
7
例:阶梯绘图