abaqus有限元分析报告开裂梁
ABAQUS平台的扩展有限元方法模拟裂纹实现
![ABAQUS平台的扩展有限元方法模拟裂纹实现](https://img.taocdn.com/s3/m/b44603bd52ea551811a6870e.png)
ABAQUS平台的扩展有限元方法模拟裂纹实现1.1 扩展有限元方法(XFEM)在ABAQUS上的实现ABAQUS中XFEM的实现,两个步骤最为关键:1、选择模型中可能出现的裂纹区域,将其单元设为具有扩展有限元性质的enrichment element.2、其次重要的是选择恰当的破坏准则,使单元在达到给定的条件破坏,裂纹扩展。
在ABAQUS中模拟裂纹扩展的操作中,需要注意的是:1、在Property模块,添加损伤演化参数、破坏法则、损伤稳定性参数2、在Interaction模块,主菜单Special中创建XFEM的enrichment element对于固定的裂纹模型,采用ABAQUS/STANDARD中使用奇异渐进函数。
针对移动的裂纹问题,在XFEM中,有一种方法基于traction-separation cohesive behavior,即使用虚拟节点连续片段法进行移动裂纹建模,ABAQUS/STANDAR D 中用于计算脆性或韧性材料的裂纹初始化和扩展过程的模拟。
另外一种cohesive segments method (粘性片段方法)可用于bulk material中的任意路径的裂纹初始化模拟扩展过程,由于裂纹扩展不依赖于单元边界,在XFEM中,裂纹每扩展一次需要通过一个完整单元,避免尖端应力奇异性。
除此之外,ABAQUS为拥护提供了自定义子程序,来满足不同建模的需要。
ABAQUS/STANDARD中的任意力学本构模型均可用来模拟扩展裂纹的力学特性。
由于XFEM采用的形函数在求解过程中,很容易造成逼近线性相关,极大的增加了收敛难度,到目前为止,能够实现扩展有限元的商业软件只有ABAQUS,但是ABAQUS为了减少求解难度,做了大量简化,因此用ABAQUS 扩展有限元模拟裂纹扩展时,有一些局限[16]:1.扩展单元内不能同时存在两条裂纹,所以ABAQUS不能模拟分叉裂纹;2.在裂纹扩展分析过程中,每一个增量步的裂纹转角不允许超过90度;3.自适应的网格是不被支持的;4.固定裂纹中,只有各向同性材料的裂纹尖端渐进场才被考虑。
abaqus 模拟裂纹技术总结解析
![abaqus 模拟裂纹技术总结解析](https://img.taocdn.com/s3/m/67fee7343169a4517723a3c4.png)
理论
技术方法 debond
应用类型
LEFM cohesive element
脆性断裂
Damage
collapse element
韧性断裂
XFEM
理 论 模 型
1.线弹性断裂力学 (LEFM) 2.基于牵引分离规则的损伤力学 (damage base traction-separation laws)
开裂前:
开裂后:
特点: • • • • 适合模拟脆性或韧性裂纹 能输出裂纹扩展时的能量释放率 不一定要设置预置裂纹 只能沿预定裂纹扩展路径扩展
3. Collapes element
在abaqus中的操作步骤:
设置预制 裂纹的扩 展方向, 裂纹尖端 的奇异性 参数
实现 裂纹 扩展 模拟
实例:
开裂前:
开裂前:
开裂后:
特点: • 需预置裂纹和裂纹扩展路径 • 只适合于模拟脆性裂纹 • 能输出裂纹扩展时的能量释放率
2. Cohesive element
在abaqus中的操作步骤:
建立一个 连接两个 部件的part
给part设定 cohesive属 性断裂准则 和厚度
实现 裂纹 模拟
实例:
结果:
目的:通过对各种软件和技术的分析和实验找出适合于模 拟热障涂层裂纹的软件和技术
Chen X. Surface & Coatings Technology, 2006, 200: 3418-3427.
abaqus简介
• abaqus能提供从热障涂层建模到有限元计 算这整个过程所需的软件支持 • abaqus最擅长于动态非线性分析 • abaqus操作简单,使用方便
1.debond 2.cohesive element 3.collapes element 4.XFEM
基于ABAQUS纤维梁单元的钢筋混凝土柱受力破坏全过程数值模拟
![基于ABAQUS纤维梁单元的钢筋混凝土柱受力破坏全过程数值模拟](https://img.taocdn.com/s3/m/f1072251fd4ffe4733687e21af45b307e871f9ea.png)
基于ABAQUS纤维梁单元的钢筋混凝土柱受力破坏全过程数值模拟一、本文概述随着计算机技术的飞速发展和数值计算方法的不断完善,数值模拟已成为工程领域中研究和解决实际问题的重要手段。
ABAQUS作为一款功能强大的有限元分析软件,被广泛应用于各种复杂工程问题的模拟分析中。
本文旨在利用ABAQUS软件中的纤维梁单元,对钢筋混凝土柱在受力作用下的破坏全过程进行数值模拟,以期更深入地理解钢筋混凝土柱的受力性能,为实际工程设计和施工提供理论支撑和参考依据。
具体而言,本文将首先介绍钢筋混凝土柱的基本构造和受力特点,阐述钢筋混凝土柱破坏过程的复杂性和重要性。
将详细介绍ABAQUS软件及其纤维梁单元的基本原理和适用范围,说明选择纤维梁单元进行数值模拟的原因和优势。
接着,本文将构建钢筋混凝土柱的数值模型,包括材料本构关系的确定、单元类型的选择、网格划分以及边界条件和荷载的施加等。
在此基础上,将进行钢筋混凝土柱在不同受力情况下的数值模拟,分析钢筋混凝土柱的受力响应、裂缝开展、破坏模式以及承载能力等方面的变化。
本文将总结数值模拟的结果,并与实验结果或已有研究成果进行对比验证,评估数值模拟的准确性和可靠性。
通过本文的研究,不仅可以更深入地了解钢筋混凝土柱的受力破坏全过程,还可以为类似工程问题的数值模拟提供有益的参考和借鉴。
本文的研究成果也有助于推动数值模拟技术在土木工程领域的应用和发展。
二、钢筋混凝土柱受力破坏机理分析钢筋混凝土柱的受力破坏是一个复杂的过程,涉及到材料的非线性、几何的非线性以及接触和边界条件的复杂性。
通过数值模拟来研究其受力破坏的全过程显得尤为重要。
在受力初期,钢筋混凝土柱主要承受弹性变形。
此时,混凝土和钢筋均处于弹性工作状态,应力与应变之间呈线性关系。
随着荷载的增加,混凝土开始出现裂缝,裂缝的扩展和分布受到钢筋的约束作用,形成了一种复杂的应力传递机制。
钢筋通过裂缝与混凝土之间的粘结力传递应力,有效地延缓了裂缝的进一步发展。
abaqus有限元分析简支梁解析
![abaqus有限元分析简支梁解析](https://img.taocdn.com/s3/m/7569d317763231126edb11c3.png)
1.梁C 的主要参数:其中:梁长3000mm ,高为406mm ,上下部保护层厚度为38mm ,纵筋端部保护层厚度为25mm 抗压强度:35.1MPa 抗拉强度:2.721MPa受拉钢筋为2Y16,受压钢筋为2Y9.5,屈服强度均为440MPa 箍筋:Y7@102,屈服强度为596MPa2.混凝土及钢筋的本构关系1、运用陈光明老师的论文(Chen et al. 2011)来确定混凝土的本构关系: 受压强度:其中C a E ==28020,c f ρσ'=,0.002ρε= 2、受压强度与开裂位移的相互关系:其中123.0, 6.93c c == 3、损伤因子:其中2c h e = e=10(选取网格为10mm ) 4、钢筋取理想弹塑性5、名义应力应变和真实应力及对数应变的转换:ln (1)ln(1)true nom nom Pltruenom Eσσεσεε=+=+- 6、混凝土最终输入的本构关系如下:compressive behaviortensile behaviortension damageyield stress inelastic strain yield stress displacement parameter displacement21.50274036 02.721 025.56359281 2.72247E-05 2.683556882 0.0003129 0.18766492 0.0003129 28.88477336 8.85105E-05 2.646628319 0.0006258 0.31902609 0.0006258 31.43501884 0.000177278 2.610210508 0.0009387 0.41606933 0.0009387 33.24951537 0.000292271 2.574299562 0.0012516 0.49065237 0.0012516 34.40787673 0.000430648 2.538891515 0.0015645 0.54973463 0.0015645 35.01203181 0.000588772 2.503982327 0.0018774 0.5976698 0.0018774 35.16872106 0.000762833 2.46956789 0.0021903 0.63732097 0.0021903 34.97805548 0.000949259 2.435644029 0.0025032 0.67064827 0.0025032 34.52749204 0.001144928 2.402206512 0.0028161 0.69903885 0.0028161 33.88973649 0.001347245 2.369251048 0.003129 0.72350194 0.003129 33.17350898 0.001541185 2.336773294 0.0034419 0.74478941 0.0034419 32.38173508 0.001737792 2.30476886 0.0037548 0.76347284 0.0037548 31.54367693 30.68161799 0.001936023 0.002135082 2.27323331 2.242162167 0.0040677 0.0043806 0.77999451 0.79470205 0.0040677 0.004380629.81223971 0.002334374 2.211550916 0.0046935 0.8078724 0.0046935 28.94780823 0.002533461 2.181395011 0.0050064 0.81972898 0.0050064 28.09715868 0.002732028 2.151689871 0.0053193 0.83045397 0.0053193 27.26649041 0.002929854 2.12243089 0.0056322 0.84019745 0.0056322 26.45999792 0.003126788 2.093613436 0.0059451 0.84908413 0.0059451 25.68036458 0.003322736 2.065232857 0.006258 0.85721852 0.006258 24.9291453 0.003517641 1.811529794 0.00929484 0.91044231 0.00929484 24.20706088 0.003711478 1.594228557 0.01233168 0.93874748 0.01233168 23.51422292 0.003904244 1.409074138 0.01536852 0.95577145 0.01536852 22.85030486 0.004095949 1.251989877 0.01840536 0.96680725 0.01840536 22.21467144 0.004286616 1.119164686 0.0214422 0.97433278 0.0214422 21.60647616 0.004476276 1.007104262 0.02447904 0.97965764 0.02447904 21.02473425 0.004664963 0.912655765 0.02751588 0.98353505 0.02751588 19.46615199 0.005211136 0.83301335 0.03055272 0.98642583 0.03055272 18.09649573 0.005750325 0.76571027 0.03358956 0.98862533 0.03358956 16.88924056 0.006283479 0.70860194 0.0366264 0.99032981 0.0366264 15.82079897 0.006811438 0.659843281 0.03966324 0.99167339 0.03966324 14.87092257 0.007334926 0.617862826 0.04270008 0.9927498 0.04270008 14.0225145 0.007854553 0.581335427 0.04573692 0.99362574 0.04573692 13.26124068 0.008370831 0.549154863 0.04877376 0.9943494 0.04877376 12.57510634 0.008884188 0.520407288 0.0518106 0.994956 0.0518106 11.95406409 0.009394984 0.494346111 0.05484744 0.99547154 0.05484744 11.38967485 0.009903518 0.470368707 0.05788428 0.99591542 0.05788428 10.8748243 0.010410047 0.447995166 0.06092112 0.9963022 0.06092112 10.40348957 0.010914784 0.426849151 0.06395796 0.99664288 0.06395796 9.970548886 0.011417913 0.406640876 0.0669948 0.99694586 0.0669948 9.571626813 0.01191959 0.387152119 0.07003164 0.99721757 0.07003164 9.202968392 0.01241995 0.368223154 0.07306848 0.99746298 0.07306848 8.861336697 0.012919108 0.349741479 0.07610532 0.99768595 0.07610532 8.543929179 0.013417164 0.331632153 0.07914216 0.99788954 0.07914216 8.248309139 0.013914206 0.313849623 0.082179 0.99807615 0.082179 7.972349361 0.01441031 0.296370844 0.08521584 0.99824773 0.08521584 7.714185579 0.014905542 0.279189562 0.08825268 0.99840586 0.08825268 7.472177877 0.015399962 0.262311613 0.09128952 0.99855185 0.09128952 7.244878552 0.015893621 0.245751087 0.09432636 0.99868678 0.09432636 7.03100523 0.016386565 0.229527257 0.0973632 0.99881158 0.0973632 6.829418289 0.016878835 0.21366215 0.10040004 0.99892706 0.10040004 6.639101829 0.017370468 0.19817866 0.10343688 0.99903393 0.10343688 6.459147548 0.017861496 0.183099114 0.10647372 0.99913281 0.10647372 6.28874105 0.018351948 0.168444224 0.10951056 0.99922427 0.10951056 6.127150156 0.018841851 0.154232347 0.1125474 0.99930883 0.1125474 5.973714902 0.019331229 0.140478996 0.11558424 0.99938695 0.115584245.827838946 5.688982154 0.0198201040.0203084930.1271965570.114394170.118621080.121657920.999459090.999525640.118621080.121657925.556654195 0.020796417 0.102077724 0.12469476 0.999587 0.12469476 5.430408983 0.021283889 0.09024996 0.1277316 0.99964352 0.1277316 5.309839835 0.021770927 0.078910632 0.13076844 0.99969553 0.13076844 5.194575252 0.022257541 0.068056727 0.13380528 0.99974335 0.133805280.057682705 0.13684212 0.99978729 0.136842120.047780771 0.13987896 0.99982763 0.139878960.038341146 0.1429158 0.99986461 0.14291580.02935234 0.14595264 0.99989851 0.14595264 3.建模过程1、Part梁和垫块选择shell,钢筋选择wire2、Property混凝土:density以及Elastic的数值参考老师的论文Concrete damaged plasticity:数值为前面的本构关系值。
abaqus混凝土裂缝计算
![abaqus混凝土裂缝计算](https://img.taocdn.com/s3/m/517c8d65492fb4daa58da0116c175f0e7cd1193d.png)
abaqus混凝土裂缝计算摘要:一、引言二、abaqus软件介绍三、abaqus混凝土裂缝计算方法1.材料模型的选择2.边界条件和加载设定3.后处理分析裂缝四、结论正文:一、引言随着我国基础设施建设的快速发展,混凝土结构的工程应用越来越广泛。
在混凝土结构中,裂缝是一个常见的问题,它不仅影响美观,还可能影响结构的性能和使用寿命。
因此,对混凝土裂缝进行准确预测和控制具有重要意义。
本文将介绍如何使用abaqus软件进行混凝土裂缝计算。
二、abaqus软件介绍Abaqus是一款强大的有限元分析软件,广泛应用于各种工程领域。
它具有丰富的材料模型库,可以为用户提供多种分析功能,包括线弹性分析、非线性分析、热力学分析等。
三、abaqus混凝土裂缝计算方法1.材料模型的选择在abaqus中,混凝土的材料模型通常选择为C3D8。
此外,还需要定义混凝土的强度、弹性模量、泊松比等参数。
对于钢筋,可以选择C3D20或C3D20R模型,并定义钢筋的强度、弹性模量等参数。
2.边界条件和加载设定在建立模型之后,需要设置模型的边界条件。
对于固定边界,可以设置固定约束;对于转动约束,可以设置旋转约束。
在设置加载条件时,应根据实际工况选择合适的加载类型,如位移加载、力加载等。
3.后处理分析裂缝在abaqus中,可以通过后处理工具对模型进行分析。
在后处理中,可以查看混凝土和钢筋的应力、应变分布,以及裂缝的产生和发展情况。
此外,还可以通过输出裂缝的分布图、最大宽度等参数,以便对裂缝进行进一步分析。
四、结论使用abaqus软件进行混凝土裂缝计算,可以为实际工程提供有效的分析手段。
通过对材料模型、边界条件和加载条件的设置,可以模拟混凝土结构在各种工况下的裂缝发展情况。
某车型前悬架支座面板开裂的分析
![某车型前悬架支座面板开裂的分析](https://img.taocdn.com/s3/m/8c16f11f773231126edb6f1aff00bed5b9f373a1.png)
某车型前悬架支座面板开裂的分析廖鸿胡;徐龙;成艾国;张军【摘要】针对集车型前悬架支座面板在路试过程中出现开裂的问题,建立了有限元分析模型,采用Abaqus有限元分析软件对前悬架支座面板强度进行分析,找到了开裂原因,并提出了改进方案.改进后支座面板原开裂区域的强度明显提高,验证了改进方案的有效性.【期刊名称】《机械制造》【年(卷),期】2011(049)002【总页数】3页(P29-31)【关键词】前悬架支座面板;开裂;有限元;强度【作者】廖鸿胡;徐龙;成艾国;张军【作者单位】上汽通用五菱汽车股份有限公司,广西柳州,545007;湖南大学汽车车身先进设计制造国家重点实验室,长沙,410082;湖南大学汽车车身先进设计制造国家重点实验室,长沙,410082;湖南大学汽车车身先进设计制造国家重点实验室,长沙,410082【正文语种】中文【中图分类】TH114;U463.83为实现汽车的各种运动形式,地面必须提供给轮胎相应方向的力及力矩,除驱动力矩外,地面提供给轮胎的力及力矩又必须通过底盘各零部件传递到车身,所以传递力的底盘各零部件尤其是与车身相连部件的强度能否达到汽车实际行驶中所遇到的各种工况的要求,关系到汽车的安全性及操纵稳定性等主要性能。
汽车零部件的强度将直接影响汽车的有效使用寿命,零件的局部应力集中会导致零件的局部开裂甚至断裂。
一旦这些零部件强度不足,会造成很大的安全隐患[1]。
有限元方法是随着计算机技术而发展起来的用于各种结构分析的数值计算方法。
它运用离散概念,把连续体划分为有限个单元的集合,通过单元分析和组合,考虑边界条件和载荷,得到一组方程,求解此方程组可获得相应指标[2]。
目前,在计算汽车各部件强度时,有限元方法得到了广泛的使用。
采用有限元法可以全面细致地分析从零部件、总成到整车的强度问题,从而全面了解其应力分布情况,优化结构,实现设计目标[3]。
本文建立了以板壳为基本单元的有限元分析模型。
浙江大学abaqus裂纹技巧
![浙江大学abaqus裂纹技巧](https://img.taocdn.com/s3/m/f5120403a66e58fafab069dc5022aaea988f4156.png)
浙江大学abaqus裂纹技巧浙大BBS:abaqus分析技巧采用abaqus的cae进行力学问题的分析,其对模型的处理存在很多的技巧,对abaqus的一些分析技巧进行一些概述,希望对大家有所帮助1.abaqus的多图层绘图abaqus的cae默认一个视区仅仅绘出一个图形,譬如contor图,变形图,x-y 曲线图等,其实在abaqus里面存在一个类似于origin 里面的图层的概念,对于每个当前视区里面的图形都可以建立一个图层,并且可以将多个图层合并在一个图形里面,称之为Overlay Plot,譬如你可以在同一副图中,左边绘出contor图,右边绘出x-y图等等,并且在abaqus里面的操作也是很简单的。
1.首先进入可视化模块,当然要先打开你的模型数据文件(。
odb)2.第一步要先创建好你的图形,譬如变形图等等3.进入view里面的overlay plot,点击creat,创建一个图层,现在在viewport layer 里出现了你创建的图层了4.注意你创建的图层,可以看到在visible 下面有个选择的标记,表示在视区里面你的图层是否可见,和autocad里面是一样,取消则不可见current表示是否是当前图层,有些操作只能对当前图层操作有效,同cad name是你建立图层的名称,其他的属性值和你的模型数据库及图形的类型有关,一般不能改动的。
5.重复2-4步就可以创建多个图层了6.创建好之后就可以选择plot/apply,则在视区显示出所有的可见的图层1.什么是子结构子结构也叫超单元的(两者还是有点区别的,文后会谈到),子结构并不是abaqus 里面的新东东,而是有限元里面的一个概念,所谓子结构就是将一组单元组合为一个单元(称为超单元),注意是一个单元,这个单元和你用的其他任何一种类型的单元一样使用。
2.为什么要用子结构使用子结构并不是为了好玩,凡是建过大型有限元模型的兄弟们都可能碰到过计算一个问题要花几个小时,一两天甚至由于单元太多无法求解的情况,子结构正是针对这类问题的一种解决方法,所以子结构肯定是对一个大型的有限元模型的,譬如在求解非线性问题的时候,因为对于一个非线性问题,系统往往经过多次迭代,每次这个系统的刚度矩阵都会被重新计算,而一般来说一个大型问题往往有很大一部分的变形是很小的,把这部分作为一个子结构,其刚度矩阵仅要计算一次,大大节约了计算时间。
ABAQUS中的断裂力学及裂纹分析总结
![ABAQUS中的断裂力学及裂纹分析总结](https://img.taocdn.com/s3/m/858bcf8750e79b89680203d8ce2f0066f433644a.png)
ABAQUS中的断裂力学及裂纹分析总结ABAQUS中的断裂力学及裂纹分析总结(转自simwe)(1)做裂纹ABAQUS有几种常见方法。
最简单的是用debond命令, 定义*FRACTURE CRITERION, TYPE=XXX,参数。
***DEBOND, SLAVE=XXX, MASTER=XXX, time increment=XX 0,1,……......time,0要想看到开裂特别注意需要在指定的开裂路径上定义一个*Nset,然后在*INITIAL CONDITIONS, TYPE=CONTACT中定义master, slave, 及指定的Nset这种方法用途其实较为有限。
(2)另一种方法,在interaction模块,special, 定义crack seam, 网格最好细化,用collapse element模拟singularity. 这种方法可以计算J积分,应力强度因子等常用的断裂力学参数.裂尖及奇异性定义:在interaction-special,先定义crack, 定义好裂尖及方向, 然后在singularity选择:midside node parameter: 输入0.25, 然后选Collapsed element side, duplicate nodes,8节点单元对应(1/r)+(1/r^1/2)奇异性。
这里midside node parameter选0.25对应裂尖collapse成1/4节点单元。
如果midside nodes 不移动到1/4处, 则对应(1/r)奇异性,适合perfect plasticity的情况.网格划分:裂尖网格划分有一些技巧需要注意,partition后先处理最外面的正方形,先在对角线和边上布点,记住要点constraint, 然后选第三个选项do not allow the number of elements to change不准seed变化,密度可以自己调整. 最里面靠近圆的正方形可以只在对角线上布点. 也可以进一步分割内圆及在圆周上布点. 里面裂尖周围的内圆选free mesh, element type 选cps6或者cpe6,外面四边形选sweep mesh, element type选cps8或者cpe8, 记住把quad下那个缩减积分的勾去掉。
abaqus断裂准则详解
![abaqus断裂准则详解](https://img.taocdn.com/s3/m/492426190622192e453610661ed9ad51f01d5420.png)
abaqus断裂准则详解断裂是材料在受到外力作用下发生破裂的过程,它在工程设计和材料研究中具有重要的意义。
为了预测和分析材料断裂行为,需要使用合适的断裂准则。
本文将详细介绍abaqus断裂准则的原理和应用。
abaqus是一种常用的有限元分析软件,它可以用于模拟和分析各种结构和材料的力学性能。
在abaqus中,断裂准则是用来预测材料何时会发生破裂的方法。
abaqus提供了多种不同的断裂准则,包括线性弹性断裂准则、最大剪应力断裂准则、最大正应力断裂准则、最大应变断裂准则等。
线性弹性断裂准则是最简单的一种断裂准则,它假设材料在破裂前是线性弹性的,当应力达到材料的强度极限时,材料会发生破裂。
这种准则适用于某些脆性材料,如陶瓷和玻璃。
然而,对于许多金属和塑料等材料来说,线性弹性断裂准则并不适用,因为它们在破裂前会发生塑性变形。
最大剪应力断裂准则是一种常用的断裂准则,它假设材料在破裂前会发生最大剪应力。
当材料中的剪应力达到材料的剪切强度时,材料会发生破裂。
这种准则适用于某些金属材料,如铝合金和钢材。
最大正应力断裂准则是另一种常用的断裂准则,它假设材料在破裂前会发生最大正应力。
当材料中的正应力达到材料的抗拉强度时,材料会发生破裂。
这种准则适用于某些脆性材料和复合材料。
最大应变断裂准则是一种基于材料的最大应变来判断破裂的准则。
当材料中的应变达到材料的应变极限时,材料会发生破裂。
这种准则适用于某些塑性材料,如聚合物和橡胶。
除了上述几种常用的断裂准则外,abaqus还提供了其他一些断裂准则,如能量释放率准则、J积分准则等。
这些准则可以更准确地预测材料的断裂行为,但需要更复杂的计算和分析。
在abaqus中,断裂准则的选择取决于材料的特性和所需的分析结果。
根据不同的应用场景和材料类型,选择合适的断裂准则可以提高模拟和分析的准确性。
同时,也需要注意断裂准则的局限性,避免错误的预测和分析结果。
abaqus断裂准则是用来预测材料何时会发生破裂的方法。
ABAQUS中分析裂纹问题常用方法概述
![ABAQUS中分析裂纹问题常用方法概述](https://img.taocdn.com/s3/m/ef2a233d974bcf84b9d528ea81c758f5f61f29dc.png)
ABAQUS中分析裂纹问题常用方法概述
1、用定义seam的方法来预设裂纹扩展路径,随着载荷的施加,裂纹会沿seam扩展。
这种方法可以模拟裂纹尖端的奇异性(通过在ABAQUS中设置实现),能很方便的计算出应力强度因子、J积分等断裂参量。
2、用debond命令实现裂纹开裂,为了观察开裂需要在指定的路径上定义一个集合,这种方法简单,但实际应用范围相当有限。
3、用cohesive单元,通过设置damage initiation和evolution 准则等相关参数实现裂纹问题的模拟,同时,ABAQUS提供了多种准则可供选择,后处理时通过dispaly group可以观察裂纹扩展。
此功能用途较广,而且通过在ABAQUS平台上开发实现多裂纹扩展的模拟。
4、在ABAQUS 6.9中推出的新功能XFEM(扩展有限元),利用XFEM能够很好的模拟裂纹的扩展,而无需用户提前定义扩展路径。
通过设置损伤起始的判据,损伤演化规律,损伤稳定性控制等相关参数实现裂纹扩展。
5、除此之外,对于裂纹问题,还可以通过二次开发、模型对称性、边界条件随分析步的改变等方式实现。
总之,ABAQUS处理裂纹问题的手段很多,功能也十分强大,若能获得较准确的相关材料数据,数值模拟的结果是很有参考价值的。
ABAQUS中的断裂力学及裂纹分析总结
![ABAQUS中的断裂力学及裂纹分析总结](https://img.taocdn.com/s3/m/ba3953afd1f34693daef3ed8.png)
也许要暂别simwe一段时间了,在论坛获益良多,作为回报把自己这段时间在ABAQUS断裂方面的一些断断续续的心得整理如下,希望对打算研究断裂的新手有一点帮助,大牛请直接跳过。
本贴所有内容均为原创,转贴请注明,谢谢。
引言:我们知道从1914年Ingless和1921年Griffith提出断裂力学开始,一直到60年代都停留在线弹性断裂力学(LEFM)的层次。
后来由於发现在裂纹尖端进入塑性区后用LEF仍然无法解决stress singularity的问题。
1960年由Barenblatt 和Dugdale率先提出了nonlinear/plastic fracture mechnics的概念,在裂纹前端引入了plastic zone,这也就是我们现在用的cohesive fracture mechnics的前身。
当时这个概念还没引起学术界的轰动。
直到1966年Rice发现J-integral及随后发现在LEFM中J-integral是等于energy release rate的关系。
随后在工程中发现了越来越多的LEFM无法解释的问题。
cohesive fracture mechnics开始引起更多的关注。
在研究以混凝土为代表的quassi-brittle material时,cohesive fracture mechnics提供了非常好的结果,所以在70年代到90年代,cohesive fracture mechnics被大量应用于混凝土研究中。
目前比较常用的方法主要是fictitious crack approach和effective-elastic crack approach或是称为equivalent-elastic crack approach. 其中fictitious crack approach只考虑了Dugdale-Barenblatt energymechanism而effective-elastic crack approach只考虑了基於LEFM的Griffith-Irwinenergy dissipation mechanism,但作了一些修正。
abaqus有限元实验报告
![abaqus有限元实验报告](https://img.taocdn.com/s3/m/b5736c3b178884868762caaedd3383c4bb4cb4fc.png)
abaqus有限元实验报告Abaqus有限元实验报告引言:有限元分析是一种广泛应用于工程领域的数值计算方法,它通过将复杂的连续体问题离散化为有限数量的简单元素,从而近似求解连续体的行为。
Abaqus是一款常用的有限元分析软件,具有强大的建模和求解能力。
本实验报告将介绍在使用Abaqus进行有限元分析时所进行的一系列实验。
实验一:材料力学性质分析在材料力学性质分析实验中,我们选择了一块钢材进行测试。
首先,我们使用Abaqus建立了一个包含钢材样本的三维模型,并定义了材料的弹性模量和泊松比等力学性质参数。
通过施加不同的载荷和边界条件,我们模拟了材料在拉伸、压缩和弯曲等不同加载情况下的应力和应变分布。
通过分析模型的应力-应变曲线,我们可以得到材料的屈服强度、延伸率等重要力学性能指标。
实验二:结构静力学分析在结构静力学分析实验中,我们以一座桥梁为例进行研究。
首先,我们使用Abaqus建立了桥梁的有限元模型,包括桥墩、梁体和支座等组成部分。
通过施加不同的荷载和边界条件,我们模拟了桥梁在正常使用状态下的受力情况。
通过分析模型的位移、应力和应变分布,我们可以评估桥梁的结构稳定性和安全性。
此外,我们还可以通过模拟不同荷载情况下的桥梁响应,预测桥梁在极端情况下的破坏模式和承载能力。
实验三:热传导分析在热传导分析实验中,我们研究了一个导热材料的温度分布和传热性能。
我们使用Abaqus建立了一个包含导热材料的二维模型,并定义了材料的热导率和热容等热学性质参数。
通过施加不同的热源和边界条件,我们模拟了导热材料在不同温度场下的热传导行为。
通过分析模型的温度分布和传热速率,我们可以评估材料的导热性能和热响应特性。
实验四:流体力学分析在流体力学分析实验中,我们研究了一个液体在容器内的流动行为。
我们使用Abaqus建立了一个包含液体和容器的三维模型,并定义了液体的密度、粘度和流动速度等流体性质参数。
通过施加不同的入口流速和边界条件,我们模拟了液体在容器内的流动速度、压力分布和涡旋形态等。
abaqus裂纹设置
![abaqus裂纹设置](https://img.taocdn.com/s3/m/f4d318690166f5335a8102d276a20029bd646303.png)
Abaqus裂纹设置引言Abaqus是一种广泛使用的有限元分析软件,它可以用于模拟和分析各种工程结构的力学行为。
在许多工程应用中,裂纹是一个重要的研究对象。
通过合理地设置裂纹参数,可以模拟和分析材料在裂纹影响下的力学行为,从而为工程设计提供有价值的指导。
本文将介绍如何在Abaqus中设置裂纹。
Abaqus中的裂纹设置在Abaqus中,裂纹是通过创建几何实体和使用合适的单元类型来表示的。
以下是一些常用的裂纹设置技巧:1.创建几何实体:在Abaqus中,裂纹通常被视为特殊的几何实体。
可以使用Abaqus的几何建模工具来创建裂纹的几何形状。
一般情况下,裂纹可以通过将几个点连接起来或从一个面切割出来来表示。
2.设置裂纹的尺寸:在Abaqus中,可以通过调整裂纹的尺寸参数来模拟不同大小的裂纹。
一般情况下,裂纹的尺寸可以通过修改几何实体的尺寸参数来实现。
3.选择适当的单元类型:在Abaqus中,有多种单元类型可供选择。
对于裂纹分析,一般使用包含自由节点的单元类型。
例如,在二维裂纹分析中,常用的单元类型有二维平面应力单元(CPS4)和二维平面应变单元(CPE4)等。
4.定义边界条件:在Abaqus中,边界条件是模拟裂纹行为的关键。
通过适当地定义边界条件,可以模拟不同类型的裂纹行为,例如张开的裂纹、剪切裂纹等。
常用的边界条件有固定边界条件、施加外力等。
5.设置材料参数:在Abaqus中,材料参数的设置对于裂纹分析至关重要。
通过设置合适的材料参数,可以模拟材料在裂纹作用下的力学行为。
常用的材料参数有杨氏模量、泊松比等。
示例:使用Abaqus设置一个二维张开裂纹以下示例将介绍如何使用Abaqus设置一个二维张开裂纹:1.创建几何实体:在Abaqus中,打开几何建模工具,创建一个长方形的几何实体。
2.定义裂纹几何形状:通过选择切割工具,在长方形的一侧切割出一个直线形状的几何实体。
3.设置裂纹的尺寸:通过调整切割线的长度来设置裂纹的长度。
abaqus参数报告
![abaqus参数报告](https://img.taocdn.com/s3/m/a0666ea8f524ccbff1218488.png)
断裂模拟方法:一.弥散裂缝模型弥散裂缝模型也可以称为分布裂缝模型,是在年提出的`叫。
此模型假设当单元的最大主应力超过混凝土抗拉强度时,单元在最大主应力垂直的方向形成无数平行的微裂纹如图一所示。
单元发生损伤,需对单元的本构矩阵进行调整。
弥散裂缝模型认为开裂的混凝土还具有一定的连续性,将实际的裂缝“弥散”到整个单元中。
在第一条裂缝出现后,认为混凝土变成了一种“正交异性体”。
裂缝不是离散的或单个的。
此模型一开始认为,当单元开裂时,沿裂纹面垂直方向的应力立刻为零,裂纹面垂直方向与裂纹面切线方向失去了任何抵抗拉应力、剪应力的能力,而另外方向的刚度不变,如果三个方面都发生开裂,则认为这个单元完全失效。
因而单元的弹性矩阵为零。
后来人们发现混凝土开裂后,由于裂纹面颗粒与颗粒之间的相互叹合,裂纹面的抗拉能力并不立即降为零,并且裂纹面还具有一定的抗剪能力。
并且,应力应变曲线具有明显的下降阶段。
于是在本构模型中引进了剪力传递系数,它反映了骨料咬合作用,并且考虑开裂的受拉软化特性,在应变可加性基础上建立开裂单元的本构关系,得到有多条、固定裂纹的单元本构关系或考虑最大主应力方向在加载过程中不断改变的旋转裂纹模型、考虑材料塑性的弹塑性断裂模型。
因为此类模型只需改变开裂单元的本构关系,无须改变单元形式或重新划分单元网格,因此,广泛使用于混凝土结构断裂模拟。
,提出裂缝带模型和非局部连续模型,引入裂缝带、断裂能概念,减少了单元尺寸的影响。
但裂缝带模型假设断裂过程区的宽度是单元的宽度与实际不符。
非局部连续模型的物理意义不明确,且只针对工型张开型裂缝。
二.据北建工一常使用损伤模型的学生说,用损伤模型模拟效果也不错。
《混凝土抗压强度与断裂参数尺寸效应的数值模拟研究》三.《混凝土塑性弥散裂缝模型和应用》混凝土梁的尺寸为600 mm×180 mm ×100 mm[3],2 个支撑点间长度为500 mm,载荷作用点离左端支撑点距离为175 mm,预设在混凝土梁上的裂缝深度为30 mm,见图1.试验中混凝土参数属性见表1.四.ABAQUS中的混凝土模型开裂问题应用弥散裂纹模型。
ABAQUS有限元分析钢筋混凝土连续梁内力重分布的影响因素
![ABAQUS有限元分析钢筋混凝土连续梁内力重分布的影响因素](https://img.taocdn.com/s3/m/64562454f4335a8102d276a20029bd64783e62fa.png)
ABAQUS有限元分析钢筋混凝土连续梁内力重分布的影响因素随着工程建设和技术水平的不断提升,ABAQUS有限元分析技术被广泛应用于工程力学领域,特别是结构力学方面的研究中。
钢筋混凝土连续梁是一种常见的工程结构,在受力过程中会出现内力分布的变化。
本文将以ABAQUS有限元分析钢筋混凝土连续梁内力重分布的影响因素为主题,对此进行探讨。
1. 梁的几何形状和区间长度钢筋混凝土连续梁的几何形状和区间长度是影响内力分布的主要因素之一。
随着几何形状的变化,梁的受力情况也会发生变化,因此影响内力分布的因素包括梁的截面形状、宽度、高度等方面,以及不同区间长度的差异等。
2. 材料性质材料性质是影响钢筋混凝土梁内力分布的另一个关键因素。
钢筋混凝土的强度、韧性等基本性质都会对内力分布产生重要的影响。
在ABAQUS有限元分析中,材料性质的设定是十分重要的,包括混凝土、钢筋的材料性质等方面。
3. 荷载类型和荷载大小荷载类型和荷载大小都对内力分布产生重要的影响。
不同类型的荷载会产生不同的力学响应,从而影响内力的分布情况。
同时,荷载大小的不同也会影响内力分布的程度和形态。
4. 支座形式支座形式是钢筋混凝土连续梁内力分布的另一个重要因素。
不同的支座形式会对梁的刚度产生不同的影响,从而对内力分布产生不同的影响。
在ABAQUS有限元分析中,支座形式的设定需要考虑支座的类型、位置、刚度等因素。
综上所述,钢筋混凝土连续梁内力重分布的影响因素包括梁的几何形状和区间长度、材料性质、荷载类型和荷载大小、支座形式等方面。
针对这些因素,我们可以通过ABAQUS有限元分析工具,对钢筋混凝土连续梁内力分布情况进行模拟和计算,并针对不同的影响因素进行分析和改进,进一步提高工程建设的质量和性能。
为了更好地分析钢筋混凝土连续梁内力重分布的影响因素,我们需要收集和整理相关的数据,进行量化和分析。
以下是一些可能的数据类型和分析方法。
1. 梁的截面面积和惯性矩梁的截面面积和惯性矩是直接影响内力分布的因素之一。
裂纹扩展扩展有限元(xfem)模拟实例详解
![裂纹扩展扩展有限元(xfem)模拟实例详解](https://img.taocdn.com/s3/m/b840696377232f60ddcca159.png)
基于ABAQUS 扩展有限元的裂纹模拟化工过程机械622080706010 李建1 引言1.1 ABAQUS 断裂力学问题模拟方法在abaqus中求解断裂问题有两种方法(途径):一种是基于经典断裂力学的模型;一种是基于损伤力学的模型。
断裂力学模型就是基于线弹性断裂力学及其基础上发展的弹塑性断裂力学等。
如果不考虑裂纹的扩展,abaqus可采用seam型裂纹来分析(也可以不建seam,如notch型裂纹),这就是基于断裂力学的方法。
这种方法可以计算裂纹的应力强度因子,J积分及T-应力等。
损伤力学模型是指基于损伤力学发展而来的方法,单元在达到失效的条件后,刚度不断折减,并可能达到完全失效,最后形成断裂带。
这两个模型是为解决不同的问题而提出来的,当然他们所处理的问题也有交叉的地方。
1.2 ABAQUS 裂纹扩展数值模拟方法考虑模拟裂纹扩展,目前abaqus有两种技术:一种是基于debond的技术(包括VCCT);一种是基于cohesive技术。
debond即节点松绑,或者称为节点释放,当满足一定得释放条件后(COD 等,目前abaqus提供了5种断裂准则),节点释放即裂纹扩展,采用这种方法时也可以计算出围线积分。
cohesive有人把它译为粘聚区模型,或带屈曲模型,多用于模拟film、裂纹扩展及复合材料层间开裂等。
cohesive模型属于损伤力学模型,最先由Barenblatt 引入,使用拉伸-张开法则(traction-separation law)来模拟原子晶格的减聚力。
这样就避免了裂纹尖端的奇异性。
Cohesive 模型与有限元方法结合首先被用于混凝土计算和模拟,后来也被引入金属及复合材料。
Cohesive界面单元要服从cohesive 分离法则,法则范围可包括粘塑性、粘弹性、破裂、纤维断裂、动力学失效及循环载荷失效等行为。
此外,从abaqus6.9版本开始还引入了扩展有限元法(XFEM),它既可以模拟静态裂纹,计算应力强度因子和J积分等参量,也可以模拟裂纹的开裂过程。
基于Abaqus对钢纤维增强混凝土断裂性能的研究
![基于Abaqus对钢纤维增强混凝土断裂性能的研究](https://img.taocdn.com/s3/m/090513d1767f5acfa1c7cdb7.png)
河南建材201812019年第4期基于Abaqus对钢纤维增强混凝土断裂性能的研究李妍曲畅姜麒任吉林建筑大学土木工程学院(130118)摘要:将1.5%的钢纤维掺入到混凝土当中形成新型复合材料———钢纤维混凝土。
由于钢纤维能够延缓混凝土裂缝扩展,从而使其断裂性能较素混凝土有明显的提升。
文章通过Abaqus软件对素混凝土梁和钢纤维混凝土梁的三点弯曲数值模拟,并运用纤维间距理论,分析对比钢纤维对混凝土梁的增强机理。
关键词:钢纤维;断裂性能;三点弯曲;纤维间距理论0引言混凝土材料是现如今国际上应用最广泛的建筑材料。
但是随着越来越多的自然灾害出现,混凝土的自重大、脆性大、抗拉强度低等弱点使其应用得到了限制。
因此,近年来一种新型复合材料纤维混凝土在国内外很快的发展起来,其中钢纤维混凝土的发展尤为迅速。
它以其优良的抗弯、抗拉、抗剪、阻裂、高韧性、耐疲劳、耐冲击等性能得到更多工程的青睐。
近年来,随着国内外对钢筋混凝土抗震性能要求的提高,混凝土结构的断裂行为成为国际上研究的热点。
浙江大学长江学者的徐世烺[1]教授提出了裂缝扩展的双K断裂准则。
长沙理工大学的唐雪松教授提出了钢筋混凝土结构损伤破坏过程的数值模拟方法[2]。
文章基于模拟软件Abaqus 平台,运用纤维间距理论[3~5]来分析钢纤维对混凝土断裂性能的增强机理。
1纤维间距理论纤维间距理论是建立在线弹性力学的基础上,认为在混凝土初期,内部会有不同程度的空隙、缺陷和微裂缝,在外部施加荷载时,裂缝周围将发生大的应力集中现象,尤其是裂缝尖端部位,会加速裂缝的扩展,最终导致承载力丧失。
因此,缩小裂缝的尺寸和减少裂缝的数量,提高混凝土一类脆性材料的抗拉强度、提高抑制裂缝引伸与发展的能力,延缓裂缝尖端应力集中程度是至关重要的。
因此,在脆性基体中掺入钢纤维后,在复合材料受力破坏和结构形成的过程中,很好地提高了复合材料受力前后阻止裂缝引发和扩展的能力,达到纤维对混凝土增强与增韧的目的。
abaqus 钢拉伸断裂 本构
![abaqus 钢拉伸断裂 本构](https://img.taocdn.com/s3/m/d056723a1611cc7931b765ce05087632311274d2.png)
abaqus 钢拉伸断裂本构Abaqus钢拉伸断裂本构模型引言:钢材具有广泛应用于结构工程和制造领域的优异性能。
对于钢材的拉伸断裂性能的研究对于提高结构工程的安全性和可靠性具有重要意义。
本文将以Abaqus软件为工具,详细介绍钢材拉伸断裂本构模型的建立和分析方法。
一、拉伸断裂本构模型的基本原理拉伸断裂本构模型是用来描述材料受拉应力时产生断裂的模型。
在Abaqus中,常用的模型有线性弹性模型、虚伪贝努力模型和真实贝努力模型等。
这些模型基于材料力学、断裂力学及实验数据等理论基础,通过对应力应变关系的描述,可以模拟钢材在拉伸断裂过程中的力学行为。
二、Abaqus软件中钢材断裂本构模型的建立1. 定义材料属性:在Abaqus中,首先需要定义材料的力学特性。
对于钢材,可以通过实验数据获取材料的弹性模量、屈服强度、断裂强度等力学特性参数。
2. 选择本构模型:根据所选材料的特性,选择合适的本构模型。
常用的本构模型有线性弹性模型、虚伪贝努力模型和真实贝努力模型等,根据具体研究需求选择适用的模型。
3. 定义本构模型参数:根据所选本构模型,定义相应的本构模型参数。
不同的模型有不同的参数定义,根据实际需求确定参数取值。
4. 建立材料模型:在Abaqus中,通过使用材料模型定义命令,将材料的力学特性和本构模型参数输入软件中。
通过这一步骤,软件就能够了解钢材的力学特性和本构行为。
三、Abaqus软件中钢材断裂分析的步骤1. 几何建模:在Abaqus中,首先需要进行几何建模。
根据具体的分析需求,绘制钢材的几何模型。
可以通过三维建模软件创建几何模型,也可以通过Abaqus软件中的几何建模功能直接创建几何模型。
2. 定义材料属性和本构模型:在建模过程中,需要定义材料的力学特性和选择合适的本构模型。
可根据前文所述的步骤进行定义。
3. 定义边界条件:根据实际需求,定义钢材的边界条件。
这些条件可以包括拉伸速度、约束条件、初始应力等。
abaqus裂纹设置
![abaqus裂纹设置](https://img.taocdn.com/s3/m/ffd60a70effdc8d376eeaeaad1f34693dbef1069.png)
裂纹应用:将裂纹 应用于模型中的特 定区域或边界
裂纹激活:在模拟 过程中激活裂纹并 进行相应的计算和 分析
abaqus裂纹分析 结果解读
裂纹应力分布
裂纹扩展应力:分析裂纹扩 展过程中的应力变化
裂纹尖端应力:描述裂纹尖 端附近的应力集中情况
应力强度因子:计算裂纹尖 端的应力强度因子,评估裂
纹扩展的驱动力
裂纹模型选择
裂纹模型分类: 线性和非线性
裂纹扩展准则: 应力强度因子、 能量释放率等
裂纹闭合准则: 闭合准则的选择 对计算精度和计 算效率的影响
裂纹扩展方向: 裂纹扩展方向对 计算结果的影响
abaqus裂纹设置 步骤来自 创建裂纹打开abaqus软件,进入模型模块 在模型树中选择需要创建裂纹的部件 在工具栏中选择“创建裂纹”按钮 在弹出的对话框中设置裂纹参数,如裂纹类型、位置、大小等 点击“确定”按钮,完成裂纹的创建
感谢您的观看
汇报人:
abaqus裂纹设置
汇报人:
目录
裂纹类型和模型
01
abaqus裂纹设置步骤
02
abaqus裂纹分析结果 解读
03
裂纹类型和模型
裂纹类型介绍
裂纹类型:I型裂纹、II型裂纹、III型裂纹 裂纹模型:线弹性断裂力学模型、弹塑性断裂力学模型 裂纹扩展准则:最大周向应力准则、应力强度因子准则 裂纹扩展路径:沿晶界扩展、穿晶扩展
应力分布特征:分析裂纹在 不同材料、不同加载条件下
的应力分布特点
裂纹扩展路径
裂纹起始位置 裂纹扩展方向 裂纹扩展长度 裂纹扩展速率
裂纹扩展速度
定义:裂纹扩展 速度是指裂纹在 材料中扩展的速 度
影响因素:材料 性能、裂纹类型、 应力状态等
abaqus分析中的断裂判据
![abaqus分析中的断裂判据](https://img.taocdn.com/s3/m/a357e5758e9951e79b89272d.png)
abaqus 分析中的断裂判据
在abaqus 分析中,常用以下两种断裂判据用于判定断裂现象的发生:
1.COD 准则:适用于韧性材料
格式: *FRACTURE CRITERION, TYPE=COD
该准则的定义式为:c
f δδ=,其中δ为在裂纹尖端之后某DISTANCE 处测得的张开位移值,c δ为张开位移的临界值。
其中DISTANCE 的具体值需要在分析中设定。
断裂失效的判定公式为:())f 1(f f 1tol tol +≤≤−,其中默认值是0.1
tol f 2.CRITICAL STRESS 准则:适用于脆性材料
格式: *FRACTURE CRITERION, TYPE=CRITICAL STRESS 该准则的定义式为:2
222112⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎠⎞⎜⎝⎛=f f f n f ττττσσ,其中n σ为界面拉应力,2,1τ为界面剪应力。
CRITICAL STRESS 的测定点位于裂纹尖端之前某DISTANCE 处。
该DISTANCE 的具体值需要在分析中设定。
断裂失效的判定公式:())f 1(f f 1tol tol +≤≤−,其中默认值是0.1 tol f。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Abaqus梁的开裂模拟计算报告1.问题描述利用ABAQUS有限元软件分析如图1.1所示的钢筋混凝土梁的裂缝开展。
参考文献Brena et al.(2003)得到梁的基本数据:图1.1 Brena et al.(2003)中梁C尺寸几何尺寸:跨度3000mm,截面宽203mm,高406mm的钢筋混凝土梁由文献Chen et al. 2011得材料特性:1.混凝土:抗压强度f c’=35.1MPa,抗拉强度f t=2.721MPa,泊松比ν=0.2,弹性模量E c=28020MPa;2.钢筋:弹性模量为E c=200GPa,屈服强度f ys=f yc=440MPa,f yv=596MPa3.混凝土垫块:弹性模量为E c=28020MPa,泊松比ν=0.22.建模过程1)Part打开ABAQUS使用功能模块,弹出窗口Create Part,参数为:Name:beam;ModelingSpace:2D;Type:Deformable;Base Feature─Shell;Approximate size:2000。
点击Continue 进入Sketch二维绘图区。
由于该梁关于Y轴对称,建模的时候取沿X轴的一半作为模拟对象。
使用功能模块,分别键入独立点(0,0),(1600,0),(1600,406),(406,0),(0,0)并按下下方提示区的Done,完成草图。
图2.1 beam 部件二维几何模型相同的方法建立混凝土垫块:图2.2 plate 部件二维几何模型所选用的点有(0,0),(40,0),(40,10),(0,10)受压区钢筋:在选择钢筋的base feature的时候选择wire,即线模型。
图2.3 compression bar 部件二维几何模型选取的点(0,0),(1575,0)受拉区钢筋:图2.4 tension bar 部件二维几何模型选取的点(0,0),(1575,0)箍筋:图2.5 stirrup 部件二维几何模型选取的点为(0,0),(0,330)另外,此文里面为了作对比,部分的模型输入尺寸的时候为m,下面无特别说明尺寸都为mm。
2) PropertyModule 中选择property ,然后选择功能模块对不同的材料进行赋值,下面是各种材料输入时候的数据:① 混凝土本构关系:模型一:(该模型的尺寸单位为m )在弹出的对话框中命名为beam ,在Mechanical 选项中点击Elastic ,在Young ’s Modulus 中输入28020000000,Poisson ’s Ratio 为0.2;类似的方法找到Concrete Damaged Plasticity ,按混凝土结构设计规范对受压取点8个,受拉取点7个。
下面是计算过程:由规范中附录C 中C2 混凝土本构关系:C.2.3混凝土单轴受拉的应力-应变曲线公式:εσc t E d )1(-=,所用参数可以参考规范(混凝土结构设计规范GB50010-2010)C.2.4混凝土单轴受压的应力-应变曲线公式:εσc c E d )1(-=,所用参数可以参考规范以及塑性应变与总应变的关系:pl el εεε+=,其中E el σε=以及塑性应变与总应变的关系:cr el εεε+=,el ε与上式相同借助matlab 软件计算受压、拉时的本构关系方程,其中塑性应变分别取0、0.0005、0.001、0.002、0.003、0.004、0.005、0.008得对应应力为23171225.88、35072364.4、32320980.31、24236963.88、17763125.96、13340141.18、10334750.06、5892086.123;开裂应变分别取0、0.001、0.003、0.005、0.008、0.01、0.05得对应应力2721000、2648625.968、875761.085、511922.937、334706.391、50489.31、16333.482。
由于水平限制,算得的受拉损伤因子未能通过abaqus 的算前检测,这里没有输入。
模型二:(该模型单元尺寸为m )Elastic 中的设置与模型一相同,计算其本构关系的时候按照文献Finite-Element Modeling of Intermediate Crack Debonding in FRP-Plated RC Beams ,G. M. Chen 中的公式: 单轴受压:2)/()/](2)/[(1p p p p εεεεσαεαεσ+-+=,所用参数可见于引用的文献;受压的时候为了寻找输入塑性应变的起始点,令abaqus 中提供的应力--应变输入方式的名义值与真实值关系公式为0,有:2)/()/](2)/[(10)1()1ln(ρρρρεεεεσαεαεσεσεnom nom nom nom nom nom nom E +-+==+-+解之得:=nom σ22.76652048MPa ,=nom ε0.00081284,=pl ln ε0。
nom ε从点0.00081284开始以步长0.0002得到83个点。
在输入到abaqus 前使用公式)1()1()1ln(ln nom nom true nom nom nom pl E εσσεσεε+=+-+=进行转换,输入的具体值可见附录。
单轴受拉:)(31)(3122)1(])(1[c crt w w c cr t t t e c w w e w w c f cr t --+-+=σ,所用参数可见于引用文献; 由于hc 为裂缝带宽(上面提到的文献中也命名为平面四节点单元的特征裂缝长度),取e 2,其中e 为单元网格长度,这里取10mm ,即hc 为14mm 。
在清华江见鲸或者J.G . ROTS 撰写的文献中都能找到其他单元类型的hc 与e 的换算公式,这里提到的hc 也可称为Lcr ,这提供了把本文中的开裂位移转化为开裂应变的方法:cr cr t L w ε=对wt 进行离散是采用前密后疏的方法,一开始的10个点步长为0.00012,中间,28个点步长为0.0012,最后13个点步长为0.006,加上零点一共53个点。
把位移转换成应变以后,同样地,使用名义值--真实值的转换公式得到数据,具体数值可见于附录。
由于水平问题,算得的受拉损伤因子未能通过abaqus 的算前检测,这里没有输入。
模型三:该模型使用的尺寸单位为mm ,受压时的取值只需在模型二的取值基础上进行单位换算即可。
本构关系的输入方式为应力--位移的方法,在输入类型中选择Displacement单轴受拉:对wt 进行离散,取等步长0.0012,共51个点。
这里还进行了受拉损伤因子dt 的计算,按公式:]/)([c t c t t t E h w w d σ+=,具体数据可见附录。
② 钢筋本构关系:类似的,把钢筋的杨氏模量输入到Elastic 中,三个模型的受拉受压钢筋都是200GPa ,在Plastic 中按照名义值--真实值得方法,取得两个点:屈服强度440MPa ,塑性应变为0;屈服强度448.8MPa ,塑性应变为0.02。
箍筋的屈服强度取596MPa ,塑性应变为0。
③ 垫块的本构关系:这里垫块的本构可以按混凝土的本构输入,也可以按钢筋的输入,为了方便计算取钢筋的本构关系作为其材料属性。
建立完本构关系后需对混凝土等截面属性进行赋值,点击,弹出Create Section 对话框,将Category 设为solid ,Type 设为Homogeneous ,其余参数保持默认,点击Continue ,material 为beam ,thickness 为203mm ,垫块也是类似的输入方式;对于钢筋,Category 设为beam ,Type 设为truss ,如受拉钢筋,由文献得直径为16mm ,面积为200.96(mm 2),由于同一水平面上有两根,取值402;受压钢筋和箍筋分别按直径9.5mm 和7mm 计算。
然后再同一个环境栏中使用,提示区要求用户选择赋予截面的部件,分别对上述创建过的部件赋予材料属性,完成操作。
3) Assembly进入Assembly模块,如图2.6 装配完毕的模型所示进行装配。
图2.6 装配完毕的模型垫块的位置和钢筋的布置严格按照文献Finite-Element Modeling of Intermediate Crack Debonding in FRP-Plated RC Beams,G. M. Chen进行。
为了后期布置网格时候的方便,使用对所有钢筋进行组合,然后对组合后的钢筋在模型树中的instance进行操作‘make independent’。
4)Step在环境栏的Module列表中进入Step模块。
点击如下图进行设置:图2.7 Step-1的Basic选项图2.8 Step-1的Incrementation选项图中,Minimum不需要设置很小,Maximum number of increments也不需要设置很大,当模型真的不收敛的时候这两项的影响比较小,Maximun的设置回影响到Job中计算时的总增量步数目。
5)Interaction图2.9 约束管理器图2.10 加载点coupling约束图2.11 钢筋与混凝土的embeded region约束图2.12 垫块与混凝土梁的tie约束按照上述图示的对象设置相关约束,完毕后结束该操作。
6)Load如下图所示,在环境栏的Module列表中选择Load模块,进行荷载与边界条件的定义。
①定义边界条件点击,弹出对话框create boundary condition,step选择initial,category选择mechanical,types for selected step选择symmetry/antisymmetry/encastre,点击continue,选择对称轴,边界类型选择XSYMM(锁定转角是因为对称的位置需要承受弯矩)。
对于垫块上的边界条件,step选择initial,category选择mechanical,types for selected step选择displacement/rotation,点击continue,然后选择左下角垫块下部的最左边角点(这里选择下部的边上一点就可以,具体的位置对模拟影响不大)上约束类型限制U2。
图2.13 梁的约束示意图②施加荷载这里采用的是位移加载法,设置见图2.14。
图2.14 位移和在的施加上图中,U2是施加在Y轴方向上的位移,负号指向向下,模型一为-0.02(单位为米)、模型二为-0.02(单位为米)、模型三为-3(单位为毫米)7)Mesh首先使用工具对钢筋单元默认的beam单元更改为truss单元。