数字钟时钟电路图(毕业论文)

合集下载

数字电子钟毕业设计(数字IC构成)

数字电子钟毕业设计(数字IC构成)

论文题目:数字电子时钟一、设计题目数字电子钟设计二、设计要求1.能够利用软件设计数字电子钟电路原理图。

2.要求熟悉集成芯片功能。

前言目前市场上提供的无论是机械钟还是石英钟在晚上无照明的情况下都是不可见的。

要知道当前的时间,必须先开灯,故较为不便。

现在市场上出现了这样一类的电子钟,它以六只LED数码管来显示时分秒,与传统的以指针显示秒的方式不同,超越了人们传统的习惯与理念。

数字电子钟是一种用数字显示秒、分、时的计时装置,与传统的机械钟相比,具有走时准确、显示直观、无机械传动装置等优点,因而得到广泛的应用。

如,日常生活中的电子手表,车站、码头、机场等公共场所的大型数显电子钟。

要实现数字电子钟的设计可以由单片机控制或者由数字IC构成。

这里我们要做的是一个由数字IC构成的数字电子钟设计。

目录1 设计功能要求 (1)2 设计方案 (2)3设计中所用到的元器件 (3)3.1译码器 (3)3.2计数器 (4)3.3显示器 (5)3.4振荡器 (5)4 电路设计 (7)4.1时分秒计数器 (7)4.1.1秒计数器的设计 (7)4.1.2分计数器的设计 (8)4.1.3时计数器的设计 (8)4.2校时电路 (9)4.3译码显示电路 (10)4.4总体电路 (11)5器件清单 (13)结束语 (14)致谢 (15)参考文献 (16)附录A 数字电子钟整体体电路图 (17)1 设计功能要求设计一数字钟,该数字钟能够准确计时,以数字形式显示时、分、秒的时间和校时功能。

在电路中,振荡电路提供的1Hz脉冲信号。

在计时出现误差时电路还可以进行校时、校分和校秒的功能。

并且要用数码管显示时、分、秒,各位均为两位显示。

具体要求如下:1.时的计时要求为“23置0”,分和秒的计时要求为60进制。

2.准确计时,以数字形式显示时,分,秒的时间。

3.校正时间。

2 设计方案根据设计要求首先建立了一个多功能数字钟电路系统的组成框图,框图如图2.1所示。

(完整版)基于51单片机的数字钟毕业论文

(完整版)基于51单片机的数字钟毕业论文

西安邮电学院毕 业 设 计(论 文)题 目: 基于51单片机的数字钟设计院 (系):专 业:班 级:学生姓名:导师姓名: 职称:基于单片机的数字钟毕业论文摘要…………………………………………………………………………… ⅠAbstract……………………………………………………………………… (Ⅱ)第1章 绪 论 (2)1.1 课题背景 (2)1.2 课题来源 (2)1.3 本章小结 (3)第2章 MCS-51单片机的结构 (4)2.1 控制器 (4)2.2 存储器的结构 (4)2.3 并行IO口 (5)2.4 时钟电路与时序 (5)2.5 单片机的应用领域 (6)2.6 本章小结 (6)第3章 电路的硬件设计 (7)3.1 复位电路 (7)3.2 时钟电路 (7)3.3 按键电路 (8)3.4 相关控制电路 (9)3.4.1 控制打铃电路 (9)3.4.2 时间表显示电路 (9)3.5 数码管显示电路 (10)3.6 电源电路设计 (10)3.7 本章小结 (10)第4章 电路的软件设计 (11)4.1 软件程序内容 (11)4.2 软件流程图 (11)4.3 定时程序设计 (12)4.3.1实时时钟实现的基本方法 . (13)4.3.2 实时时钟程序设计步骤 (13)4.4程序说明 (13)4.5 本章小结 (14)第5章 结论与展望 (15)5.1 结论 (15)5.2 单片机的发展趋势 (15)参考文献 (17)附录………………………………………………………………………………18第1章 绪 论1.1 课题背景单片机自1976年由Intel公司推出MCS-48开始,迄今已有二十多年了。

由于单片机集成度高、功能强、可靠性高、体积小、功耗地、使用方便、价格低廉等一系列优点,目前已经渗入到人们工作和生活的方方面面,几乎“无处不在,无所不为”。

单片机的应用领域已从面向工业控制、通讯、交通、智能仪表等迅速发展到家用消费产品、办公自动化、汽车电子、PC 机外围以及网络通讯等广大领域。

基于555定时器的数字电子钟的设计毕业设计(论文)

基于555定时器的数字电子钟的设计毕业设计(论文)

一、绪论1.1课题说明1.2方案设计目的1.3技术指标1.4方案设计及论证二、核心部件简介2.1 555时基电路2.2 74LS90异步加法计数器三、各部分电路组成部分及其设计原理3.1数字电子钟的构成框图3.2数字电子钟的模块及其工作原理3.2.1晶体振荡器电路3.2.2计数器电路3.3秒、分、时译码显示模块3.4校时电路四、说明各部分功能的实现4.1开始状态4.2时、分、秒分别校时4.3满60秒向分钟进位状态满60分向小时进位状态4.4 23:59:59向00:00:00进位状态五、整体电路图六、实验室调试6.1元件清单6.2调试过程6.3调试结果6.4调试心得体会一、绪论1.1 课题说明由于现代社会模拟电子技术基础和数字电子技术基础的高速发展,因而由这技术制造出来的越来越先进,数字钟体积小,安装使用方便,不仅可以作为家用电子钟,而且可以广泛用于车站、体育场馆等公共场所。

虽然数字钟的外形和功能不尽相同,但是用于制造数字钟的原理基本上都是一样的。

所谓数字钟,是指利用电子电路构成的计时器。

本次课程设计要求设计一个数字钟,基本要求为数字钟的时间周期为24小时,数字钟显示时、分、秒,数字钟的时间基准一秒对应现实生活中的时钟的一秒。

供扩展的方面涉及到整点报时、定时闹钟等。

1.2 方案设计目的用中小规模集成电路设计一台能显示时、分、秒的数字电子钟,要求如下:1.由晶体振荡电路产生1HZ的标准脉冲信号。

2.秒、分为00——59 六十进制计数器。

3.时为00——23 二十四进制计数器4.可手动校准。

只要将开关置于校准位置,即可对分别对分、时进行手动脉冲输入校准或连续脉冲校准调整。

5.用Multisim画出整个系统电路图,进行仿真与调试;6.实现整个数字电子钟电路各项任务的正常工作。

7. 撰写设计报告:写出设计过程,和调试结果,写上心得体会。

1.3 技术指标1. 显示时、分、秒的是24小时制。

3. 具有校时功能:可以对小时和分单独校时,对分校时的时候,停止分向小时进位。

数字电子钟毕业设计

数字电子钟毕业设计

1.数字钟的组成和基本工作原理数字钟实际上是一个对标准频率进行计数的计数电路。

它的计时周期是24小时,由于计数器的起始时间不可能与标准时间(如北京时间)一致所以采用校准功能和报时功能。

数字钟电路主要由译码显示器、校准电路、报时电路、时计数、分计数、秒计数器,振荡电路和单次脉冲产生电路组成。

其中电路系统由秒信号发生器、“时”、“分”、“秒”计数器、译码器及显示器、校准电路、整点报时电路组成。

秒信号产生器是整个系统的时基信号,它直接决定计时系统的精度,一般用石英晶体振荡器加分频器来实现,将标准秒信号送入“秒计数器”,“秒计数器”采用60进制计数器,每累计60秒发出一个“分脉冲”信号,该信号将作为“分计数器”的时钟脉冲。

“分计数器”也采用60进制计数器,每累计60分钟,发出一个时脉冲信号,该信号将被送到时计数器。

时计数器采用24进制计时器,可实现对一天24小时的计时。

译码显示电路将“时”、“分”、“秒”计数器的输出状态通过显示驱动电路,七段显示译码器译码,在经过六位LED 七段显示器显示出来。

整点报时电路时根据计时系统的输出状态产生一个脉冲信号,然后去触发一音频发生器实现低、高音报时。

校准电路时用来对“时”、“分”、“秒”显示数字进行校对调整的。

如图1所示多功能数字钟的组成框图。

图1 数字钟组成框图1.1振荡器振荡器是数字钟的核心,其的作用是产生一个频率标准时间频率信号,然后再由分频器分秒脉冲,因此,振荡器频率的精度与稳定度基本决定了数字电子钟的质量。

振荡器的稳定度及频率的精确度决定了数字钟计时的准确程度,通常选用石英晶体构成振荡器电路。

一般来说,振荡器的频率越高,计时精度越高。

采用石英晶体振荡器经过分频得到这一个频率稳定准确的32768Hz的方波信号。

保证数字钟的走时准确及稳定。

1.2分频器电路分频器电路将32768Hz的高频方波信号经32768(215)次分频后得到1Hz的方波信号供秒计数器进行计数。

基于单片机的简易电子时钟设计_毕业设计论文 精品

基于单片机的简易电子时钟设计_毕业设计论文 精品

论文题目基于单片机的简易电子时钟设计班级:xxxxxx专业:电子信息工程学生姓名:xxxx指导教师:xxxx日期:xxxx-xx-xx摘要数字钟已成为人们日常生活中必不可少的必需品,广泛用于个人家庭以及办公室等公共场所,给人们的生活、学习、工作、娱乐带来极大的方便。

由于数字集成电路技术的发展和采用了先进的石英技术,使数字钟具有走时准确、性能稳定、携带方便等优点,它还用于计时、自动报时及自动控制等各个领域。

尽管目前市场上已有现成的数字钟集成电路芯片出售,价格便宜、使用也方便,但鉴于单片机的定时器功能也可以完成数字钟电路的设计,因此进行数字钟的设计是必要的。

在这里我们将已学过的比较零散的数字电路的知识有机的、系统的联系起来用于实际,来培养我们的综合分析和设计电路,写程序、调试电路的能力。

单片机具有体积小、功能强可靠性高、价格低廉等一系列优点,不仅已成为工业测控领域普遍采用的智能化控制工具,而且已渗入到人们工作和和生活的各个角落,有力地推动了各行业的技术改造和产品的更新换代,应用前景广阔。

关键字:单片机,数字时钟。

AbstractDigital clock has become an indispensable necessities in People's Daily life, widely used in personal family and office and other public places, to people's life, study, work, entertainment, bring great convenience. Due to the development of the digital integrated circuit technology and adopts the advanced quartz technology, walking make digital clock has advantages of accurate, stable performance, easy to carry, it is also used in timing, automatic feed and automatic control and other fields. Although already on the market at present the ready-made digital clock chip for sale, cheap, use is convenient, but in view of the single chip microcomputer timer function also can complete the design of the digital clock circuit, therefore is necessary for the design of digital clock. Here we will have learned more fragmented knowledge of digital circuit of the organic link, the system used in practice, to develop our comprehensive analysis and circuit design, programming, debugging circuit ability.SCM has small volume and powerful function, high reliability, low price and a series of advantages, not only has become widely used in the field of industrial measurement and control intelligent control instruments, and has penetrated into every corner of the people work and life, effectively promote the industry's technological transformation and upgrading of products, the wide prospect of application.Keywords: Single chip microcomputer,Digital clock.目录第一章设计方案 (1)1.1 课程设计目的 (1)1.2 设计要求 (1)1.3 实现时钟计时的基本方法 (1)1.4 电子钟的时间显示 (1)1.5 电子钟的时间调整 (2)1.6 总体方案介绍 (2)1.6.1 计时方案 (2)1.6.2 控制方案 (2)第二章系统硬件电路设计 (3)2.1 单片机模块设计 (3)2.1.1 芯片分析 (3)2.1.2 晶振电路 (4)2.1.3 复位电路 (5)2.2 数码显示模块设计 (5)2.3 按键模块 (8)第三章系统软件设计 (9)3.1 软件设计分析 (9)3.2 系统软件设计流程图 (9)3.2.1 主程序流程图 (9)3.2.2 定时器流程图 (9)3.2.3 按键检测流程图 (10)3.2.4 时间显示流程图 (10)3.3 源程序清单 (11)第四章系统仿真与实验测试 (16)4.1 系统仿真 (16)4.2 实验测试 (16)小结 (17)致谢 (18)参考文献 (19)附录 (20)第一章设计方案1.1 课程设计目的(1)巩固、加深和扩大单片机应用的知识面,提高综合及灵活运用所学知识解决工业控制的能力;(2)培养针对课题需要,选择和查阅有关手册、图表及文献资料的自学能力,提高组成系统、编程、调试的动手能力;(3)过对课题设计方案的分析、选择、比较、熟悉单片机用系统开发、研制的过程,软硬件设计的方法、内容及步骤。

纯数字电路数字时钟原理图(免费)

纯数字电路数字时钟原理图(免费)

做成时钟,并不难,把十进改成6进就行了如下:1,震荡电路的电容用晶震,记时准确.2, 时:用2块计数器,十位的用1和2(记时脚)两个脚.分:用2块计数器,十位的用1,2,3,4,5,6,(记时脚)6个脚.秒:同分.评论:74系列的集成块不如40系列的,如:用CD4069产生震荡,CD4017记数,译码外加.电压5V.比74LS160 74LS112 74LS00好的.而且CD4069外围元件及少.如有需要我可以做给你.首先需要产生1hz的信号,一般采用CD4060对32768hz进行14分频得到2hz,然后再进行一次分频。

(关于此类内容请参考数字电路书中同步计数器一章)(原文件名:4060.JPG)一种分频电路:(原文件名:秒信号1.JPG)采用cd4518进行第二次分频另一种可以采用cd4040进行第二次分频第三种比较麻烦,是对1mhz进行的分频(原文件名:秒信号2.JPG)介绍一下cd4518:CD4518,该IC是一种同步加计数器,在一个封装中含有两个可互换二/十进制计数器,其功能引脚分别为1~7和9~{15}。

该计数器是单路系列脉冲输入(1脚或2脚;9脚或10脚),4路BCD码信号输出(3脚~6脚;{11}脚~{14}脚)。

此外还必须掌握其控制功能,否则无法工作。

手册中给有控制功能的真值(又称功能表),即集成块的使用条件,如表2所示。

从表2看出,CD4518有两个时钟输入端CP和EN,若用时钟上升沿触发,信号由CP输入,此时EN端应接高电平“1”,若用时钟下降沿触发,信号由EN端输入,此时CP端应接低电平“0”,不仅如此,清零(又称复位)端Cr也应保持低电平“0”,只有满足了这些条件时,电路才会处于计数状态,若不满足则IC不工作。

计数时,其电路的输入输出状态如表3所示。

值得注意,因表3输出是二/十进制的BCD码,所以输入端的记数脉冲到第十个时,电路自动复位0000状态(参看连载五)。

另外,该CD4518无进位功能的引脚,但从表3看出,电路在第十个脉冲作用下,会自动复位,同时,第6脚或第{14}脚将输出下降沿的脉冲,利用该脉冲和EN端功能,就可作为计数的电路进位脉冲和进位功能端供多位数显用。

数字电子时钟设计原理

数字电子时钟设计原理

毕业设计论文论文题目:数字电子时钟设计原理某职业技术学院电气工程系毕业设计任务书1.能够利用软件设计数字电子钟电路原理图。

2.要求熟悉集成芯片功能。

3.具有时、分、秒显示功能。

三、毕业设计进程表毕业设计进程表起止日期设计内容备注第1周资料准备,查阅相关文献第2周设计电路第3-4周编写说明书,交指导老师审阅第5周整理资料,准备答辩前言目前市场上提供的无论是机械钟还是石英钟在晚上无照明的情况下都是不可见的。

要知道当前的时间,必须先开灯,故较为不便。

现在市场上出现了这样一类的电子钟,它以六只LED数码管来显示时分秒,与传统的以指针显示秒的方式不同,超越了人们传统的习惯与理念。

数字电子钟是一种用数字显示秒、分、时的计时装置,与传统的机械钟相比,具有走时准确、显示直观、无机械传动装置等优点,因而得到广泛的应用。

如,日常生活中的电子手表,车站、码头、机场等公共场所的大型数显电子钟。

要实现数字电子钟的设计可以由单片机控制或者由数字IC构成。

这里我们要做的是一个由数字IC构成的数字电子钟设计。

目录1 设计功能要求 (1)2 设计方案 (1)3设计中所用到的元器件 (2)3.1译码器 (2)3.2计数器 (4)3.3显示器 (4)3.4振荡器 (5)4 电路设计 (6)4.1时分秒计数器 (6)4.1.1秒计数器的设计 (6)4.1.2分计数器的设计 (8)4.1.3时计数器的设计 (8)4.2校时电路 (8)4.3译码显示电路 (10)4.4总体电路 (11)5器件清单 (13)结束语 (14)致谢 (15)参考文献 (16)附录A 数字电子钟整体体电路图 (17)1 设计功能要求设计一数字钟,该数字钟能够准确计时,以数字形式显示时、分、秒的时间和校时功能。

在电路中,振荡电路提供的1Hz脉冲信号。

在计时出现误差时电路还可以进行校时、校分和校秒的功能。

并且要用数码管显示时、分、秒,各位均为两位显示。

具体要求如下:1.时的计时要求为“23置0”,分和秒的计时要求为60进制。

毕业设计基于单片机的数字钟设计与制作

毕业设计基于单片机的数字钟设计与制作

毕业设计课题名称:基于单片机技术数字钟电路的设计系部:电子信息工程系班级:电子信息工程(1)班姓名:刘七七学号:102212114指导教师:刘星慧、刘昆山2010年 10 月 8 日论文/设计/报告原创性声明本人郑重声明:所呈交的论文/设计/报告是本人在导师的指导下进行研究所取得的研究成果。

除了论文/设计/报告中特别加以标注引用的内容外,本论文/设计/报告不包含任何其他个人或集体已经发表或撰写的成果作品。

本人完全意识到本声明的法律后果由本人承担。

作者签名:2010 年10月8 日论文/设计/报告版权使用授权书本论文/设计/报告作者完全了解学校有关保障、使用学位论文/设计/报告的规定,同意学校保留并向有关论文/设计/报告管理部门或机构送交论文/设计/报告的复印件和电子版,允许论文/设计/报告被查阅和借阅。

本人授权省级优秀论文/设计/报告评选机构将本论文/设计/报告的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本论文/设计/报告。

本论文/设计/报告属于1、保密□,在_________年解密后适用本授权书。

2、不保密□。

(请在以上相应方框内打“√”)作者本人签名:2010 年10 月8日指导教师签名:年月日目录一、摘要 (4)二、简单设计思路 (5)2.1课题设计要求 (5)2.2设计基本原理简介 (5)三、整体设计方案 (6)3.1硬件电路设计 (6)3.1.1原理图的设计 (6)3.1.2 PCB板的设计 (7)3.2软件编程 (7)3.3单片机下载 (8)四、电路安装与调试 (11)4.1电路的安装 (11)4.2电路的调试 (11)五、改进与应用 (12)六、参考资料 (12)附录 (13)附录一 (13)附录二 (14)一、摘要近年来随着计算机在社会领域的渗透和大规模集成电路的发展,单片机的应用正在不断地走向深入,由于它具有功能强,体积小,功耗低,价格便宜,工作可靠,使用方便等特点,因此特别适合于与控制有关的系统,越来越广泛地应用于自动控制,智能化仪器,仪表,数据采集,军工产品以及家用电器等各个领域,单片机往往是作为一个核心部件来使用,在根据具体硬件结构,以及针对具体应用对象特点的软件结合,以作完善。

数字时钟电路图

数字时钟电路图

多功能数字计时器设计姓名:杨会章学号: 1004220242专业:通信工程学院:电光学院指导教师:2021-9-15目录一、设计内容简介 (3)二、电路功能设计要求 (3)三、电路原理简介 (3)四、各单元电路原理1、脉冲发生电路 (3)2、计时电路 (4)3、译码显示电路 (4)5、校分电路 (5)4、清零电路 (6)6、报时电路 (7)7、基本电路原理图 (8)8、动态显示原理 (9)9、动态显示原理图 (10)10、波形图 (11)五、实验中问题及解决办法 (11)六、附录 (12)1、元件清单 (12)2、芯片引脚图和功能表 (12)3、参考文献 (15)一、设计内容简介实验采用中小规模集成电路设计一个数字计时器。

数字计时器是由脉冲发生电路,计时电路,译码显示电路,和附加电路控制电路几部分组成。

其中控制电路由清零电路,校分电路和报时电路组成。

附加电路采用动态显示。

二、电路功能设计要求1、设计制作一个0分00秒~9分59秒的多功能计时器,设计要求如下:1)设计一个脉冲发生电路,为计时器提供秒脉冲(1HZ),为报时电路提供驱动蜂鸣器的高低脉冲信号(1KHZ、2KHZ);2)设计计时电路:完成0分00秒~9分59秒的计时、译码、显示功能;3)设计清零电路:具有开机自动清零功能,并且在任何时候,按动清零开关,可以对计时器进行手动清零。

4)设计校分电路:在任何时候,拨动校分开关,可进行快速校分。

(校分隔秒)5)设计报时电路:使数字计时器从9分53秒开始报时,每隔一秒发一声,共发三声低音,一声高音;即9分53秒、9分55秒、9分57秒发低音(频率1kHz),9分59秒发高音(频率2kHz);6)系统级联。

将以上电路进行级联完成计时器的所有功能。

7)可以增加数字计时器附加功能:定时、动态显示等。

三、电路原理简介32678Hz石英晶体振荡器产生的稳定的高频脉冲信号,作为数字钟的时间基准,再经分频器、D触发器输出标准秒脉冲。

数字电子时钟总体设计结构框图及分析(毕业论文)

  数字电子时钟总体设计结构框图及分析(毕业论文)

哈尔滨工业大学学位论文数字电子时钟总体设计结构框图及分析The Operating Theory of Essential Truth in Journalism作者姓名:学科、专业:学号:指导教师:完成日期:哈尔滨工业大学Shandong University摘要数字电子钟在我们日常生活和工作中得到了广泛的应用,本课程设计中采用中小规模集成芯片设计多功能数字钟,实现其准确计时,以数字形式显示时(00~23)、分(00~59)、秒(00~59)的时间;具有校时功能,可以对时和分单独校时,对分校时的时候,停止分向小时进位等功能。

根据该课程设计任务书要求、现有实验条件及本人所学的数电、模电等相关知识,选择的主要元器件有:二-五-十进制异步加法计数器74LS290、 74LS74CMOS BCD-7段锁存/译码/LED驱动、7SEG-COM-CAT-GRN共阳七段数码管、以及74HC00D等器件。

用32768Hz的CMOS石英谐振器制作信号产生器,产生1Hz时钟脉冲;用74LS290设计两个六十进制的计数器对“分”、“秒”信号计数,二十四进制计数器对“时”信号计数、再通过“时”、“分”校正电路进行时间的校正,实现数字电子钟的功能。

关键词:数字电子钟;中小规模集成芯片;计数器;数字电子技术目录摘要错误!未定义书签。

第一章数字电子钟简介及思路设计...................... 错误!未定义书签。

1.1 基本原理 (3)1.2 设计任务和要求 (3)1.3 设计软件和硬件设备环境 (3)第二章总体设计...................................... 错误!未定义书签。

2.1 数字电子时钟总体设计结构框图 (4)第三章各控制电路模块设计............................. 错误!未定义书签。

3.1 时钟信号产生电路 (6)3.2 校时电路 (8)第四章时、分、秒计数电路 (9)4.1 74LS290介绍 (9)4.2 “分”信号和“秒”信号 (11)4.3 “时”信号 (12)第五章 BCD-七段译码器电路 (13)5.1 4511芯片介绍 (13)5.2 CD4511真值表 (13)5.3 CD4511引脚图 (14)5.4 译码器电路 (15)第六章数字电路总电路仿真图 (17)总结17参考文献18第一章数字电子钟简介及思路设计数字式电子时钟是一种用数字电子技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性、直观性和便携性、使用寿命更长,因此在日常的生活和工作中得到了广泛的应用。

简易数字钟电路的设计毕业设计(论文)说明书

简易数字钟电路的设计毕业设计(论文)说明书

数字钟在日常生活中最常见,应用也最广泛。

随着科学技术不断地发展,人们对于数字钟的要求也在不断地提高,而传统的数字钟,多数只能显示小时、分钟等信息,功能单一,而且大都采用LED数码管作为显示器件,功耗大,不能令消费者满意。

因此有必要对数字钟进行改进。

本课题设计是基于数字钟的原理,在经典基本电路上加以改进,设计并制作符合指标要求的多功能数字时钟。

该多功能数字钟设计基于单片机技术原理,以单片机芯片AT89S51作为核心控制器,通过硬件电路的制作以及软件程序的编制来完成。

本文详细叙述了系统硬件、软件的具体实现过程,重点阐述时钟系统硬件中时钟主控模块、键盘模块、报时模块、液晶显示模块的模块化设计与制作;软件中同样采用模块化的设计,主要包括键盘模块、时钟主控模块、报时模块、时间调整模块设计,并采用简单流通性强的C语言编程实现。

本设计实现了显示年、月、日、时、分、秒、星期的功能,按键调整时间,仿电台整点报时功能。

该系统功能实用,实现方法简单,具有工作稳定、使用方便等特点,可以广泛应用于人们日常生活中。

关键字:单片机AT89S51;数字钟;LCD1602;报时。

The digital clock is used widely in our daily life. With the development of science and technology, the performance of digital clock has been improving for people’s requirements. However, the most traditional digital clocks can only show some messages such as hours, minutes, etc. For the single functions and high power consumption of the LED digital tube as display device, they cannot make customer satisfaction. There is a need to improve on the digital clock.The subject of design is based on the principle of digital clock, in the classic to be improved on the basic circuit design and production meet the index requirements of multi-functional digital clock.The multi-function digital clock design principles based on microcontroller technology to chip AT89S51 microcontroller as the core controller, through the production of hardware and software to complete the preparation process.This paper describes the system hardware and software realization process, we focus on the design and production of the hardware keyboard module clock system, the clock master module, alarm module, LCD module;in the design of the software,modular design is also adopt , the keyboard module, the clock master module, alarm module, ime adjustment and timing module are all included, and with a simple C language programming,we achieve the function of software control.With the device,the function of display the year, month, day, hour, minute, second, week of features, buttons to adjust time, set the alarm of time, the whole point timekeeping of imitation radio is realized. Considering the system is functional、practical、simple to achieve、stable and easy to use , it can be widely used in our daily life.Key words:Singlechip AT89S52;Digital clock;LCD1602;alarm clock.目录1绪论 (1)1.1课题的提出及研究意义 (1)1.1.1课题的提出 (1)1.1.2课题研究的意义 (1)1.2数字时钟的发展现状 (2)1.3课题研究目的、研究内容及设计方案选择 (3)1.3.1课题研究目的 (3)1.3.2课题研究内容 (3)1.3.3课题设计方案选择 (4)2 多功能数字时钟硬件设计 (4)2.1主控制模块设计 (5)2.1.1单片机AT89S51的特性概述 (5)2.1.2单片机AT89S51管脚说明 (5)2.1.3单片机AT89S51最小系统 (7)2.2显示模块设计 (8)2.2.1LCD1602显示器的结构 (8)2.2.2LCD1602数据原理 (9)2.2.3显示模块的数据连接 (10)2.3键盘模块设计 (11)2.4报时电路模块设计 (12)2.5本章小结 (13)3软件设计部分 (13)3.1软件总体框图主函数的设计 (13)3.2LCD1602显示模块程序的编写 (14)3.3键盘模块程序的编写 (16)3.4中断模块程序的编写 (18)3.4.1中断初始化函数 (18)3.4.2中断程序 (18)3.5报时模块程序的编写 (19)3.6延时模块程序的编写 (20)3.7进位模块程序编写 (20)3.8本章小结 (20)4综合调试 (21)5结论 (21)谢辞 (23)参考文献 (24)附录 (25)1 绪论人类的生活和工作均离不开时钟。

基于单片机的多功能数字钟设计报告毕业设计(论文)

基于单片机的多功能数字钟设计报告毕业设计(论文)

目录1..............设计整体思路2.............基本原理3.............单元电路设计及单元电路4..............安装调试步骤5..............故障分析与电路改进6..............总结与体会7..............参考文献8..............附录(元器件清单及总电路图)一.设计的整体思路:1.课程设计要求:要用时序逻辑电路设计出一个多功能可调的数字钟,这个数字钟要可调,能显示时分秒,并且要能准确的显示。

2.设计的目的:1 掌握集成电路的引脚安排2 掌握各芯片的逻辑功能及使用方法3 理解数字钟的组成和工作原理4 熟悉数字钟的设计与制作要求:时间以24小时为一个计时周期显示时分秒有校时功能,可以分别对时分进行校时计数器有整点报时功能须有晶体振荡器提供表针时间基准信号画出电路原理图元器件及参数选择电路仿真及调试自行装配和调试,并能发现问题和解决问题编写设计报告二.基本原理及其框图1.主电路是由一个4060芯片,六个74161四位同步二进制计数器和六个CD4511七段显示译码器构成。

其中4060是用来产生始终脉冲信号,74161是用来计数的工作时,每秒一次的方波作为“秒”脉冲信号,因每分钟有60秒,所以“秒”计数器为六十进制计数器,“分”的计数器亦同,而“时”采用二十四进制计数器。

当“秒”计数器满60时,输出秒进位脉冲,送“分”计数器;当“分”计数器满60时,输出“分”进位脉冲,送“时”计数器计数;当“时”计数器满24小时候,“时”“分”“秒”计数器同时自动复零。

每个计数器输出均要经过译码器,显示器显示时钟的“时”“分”“秒”。

三.单元电路设计及单元电路1.如图所示:多谐振荡器该电路由一个4060,一个晶振和一个10M电阻两个22pf电容组成.如图所示2.译码显示电路如图所示:该电路由一个4511BD芯片与共阴极数码管构成图3——1该电路时有两个74LS161和一个74LS04与门,两个数码管和两个的CD4511译码器构成,他们构成一个六十进制计数器,是用来显示秒。

课程设计(论文)基于lcd液晶显示的多功能数字钟的设计(附pcb图及电路原理图)

课程设计(论文)基于lcd液晶显示的多功能数字钟的设计(附pcb图及电路原理图)

目录1前言 (1)2总体方案设计 (2)2.1设计内容 (2)2.2设计内容 (2)2.3方案论证 (3)2.4方案选择 (4)3单元模块设计 (5)3.1各单元模块功能介绍及电路设计 (5)3.1.1 温度采集电路 (5)3.1.2 DS1302时钟电路 (5)3.1.3 串行通信接口电路 (6)3.1.4 USB连接电路 (6)3.1.5 按键电路 (7)3.1.6液晶显示显示电路 (7)3.2特殊器件介绍 (7)3.2.1 STC89C52单片机芯片 (7)3.2.2 DS1302介绍 (8)3.2.3 温度传感器DS18B20 (9)3.2.4 液晶显示LCD1602 (9)4软件设计 (10)4.1软件选择 (10)4.2软件设计流程 (10)4.2.1 温度采集流程 (11)4.2.2 日期数据处理流程 (12)5系统的仿真及调试 (13)5.1系统仿真 (13)5.2硬件调试 (13)5.3软件调试 (14)6结论 (16)7总结与体会 (17)7.1设计小结 (17)7.2设计收获及改进 (17)7.3致谢 (17)8参考文献 (18)附录: (19)1前言单片机是指一个集成在一块芯片上的完整计算机系统。

尽管他的大部分功能集成在一块小芯片上,但是它具有一个完整计算机所需要的大部分部件:CPU、内存、内部和外部总线系统,目前大部分还会具有外存。

同时集成诸如通讯接口、定时器,实时时钟等外围设备。

而现在最强大的单片机系统甚至可以将声音、图像、网络、复杂的输入输出系统集成在一块芯片上。

单片机也被称为微控制器(Microcontroller),它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。

概括的讲:一块芯片就成了一台计算机。

它的体积小、质量轻、价格便宜、为学习、应用和开发提供了便利条件。

单片机诞生于20世纪70年代末,经历了SCM、MCU、SOC三大阶段。

STC单片机完全兼容51单片机,并有其独到之处,其抗干扰性强,加密性强,超低功耗,可以远程升级,内部有专用复位电路,价格也较便宜,由于这些特点使得 STC 系列单片机的应用日趋广泛。

本科毕业设计论文--eda课程设计报告多功能数字钟设计

本科毕业设计论文--eda课程设计报告多功能数字钟设计

湖北大学物电学院EDA课程设计报告(论文)题目:多功能数字钟设计专业班级: 14微电子科学与工程*名:**时间:2016年12月20日指导教师:万美琳卢仕完成日期:2015年12月20日多功能数字钟设计任务书1.设计目的与要求了解多功能数字钟的工作原理,加深利用EDA技术实现数字系统的理解2.设计内容1,能正常走时,时分秒各占2个数码管,时分秒之间用小时个位和分钟个位所在数码管的小数点隔开;2,能用按键调时调分;3,能整点报时,到达整点时,蜂鸣器响一秒;4,拓展功能:秒表,闹钟,闹钟可调3.编写设计报告写出设计的全过程,附上有关资料和图纸,有心得体会。

4.答辩在规定时间内,完成叙述并回答问题。

目录(四号仿宋_GB2312加粗居中)(空一行)1 引言 (1)2 总体设计方案 (1)2.1 设计思路 (1)2.2总体设计框图 (2)3设计原理分析 (3)3.1分频器 (4)3.2计时器和时间调节 (4)3.3秒表模块 (5)3.4状态机模块 (6)3.5数码管显示模块 (7)3.6顶层模块 (8)3.7管脚绑定和顶层原理图 (9)4 总结与体会 (11)多功能电子表摘要:本EDA课程主要利用QuartusII软件Verilog语言的基本运用设计一个多功能数字钟,进行试验设计和软件仿真调试,分别实现时分秒计时,闹钟闹铃,时分手动较时,时分秒清零,时间保持和整点报时等多种基本功能关键词:Verilog语言,多功能数字钟,数码管显示;1 引言QuartusII是Altera公司的综合性PLD/FPGA开发软件,支持原理图、VHDL、VerilogHDL 以及AHDL(Altera Hardware Description Language)等多种设计输入形式,内嵌自有的综合器以及仿真器,可以完成从设计输入到硬件配置的完整PLD设计流程,解决了传统硬件电路连线麻烦,出错率高且不易修改,很难控制成本的缺点。

利用软件电路设计连线方便,修改容易;电路结构清楚,功能一目了然2 总体设计方案2.1 设计思路根据系统设计的要求,系统设计采用自顶层向下的设计方法,由时钟分频部分,计时部分,按键调时部分,数码管显示部分,蜂鸣器四部分组成。

数字钟电路设计与制作毕业论文

数字钟电路设计与制作毕业论文
电子钟是人们日常生活中常用的计时工具,而数字式电子钟又有其体积小、重量轻、走时准确、结构简单、耗电量少等优点而在生活中被广泛应用,因此本次设计就用数字集成电路和一些简单的逻辑门电路来设计一个数字式电子钟,使其完成时间及星期的显示功能。
本次设计以数字电子为主,分别对1S时钟信号源、秒计时显示、分计时显示、小时计时显示、星期计时显示、整点报时及校时电路进行设计,然后将它们组合,来完成时、分、秒及一星期七天的显示并且有整点报时和走时校准的功能。
方案二:首先构成一个由32768Hz的石英晶体振荡器和由CD4060构成的分频器构成的产生震荡周期为一秒的标准秒脉冲,由74LS160采用清零法分别组成六十进制的秒计数器、六十进制分计数器、二十四进制时计数器和七进制的周计数器。使用由32768Hz的石英晶体振荡器和由CD4060构成的分频器构成的产生震荡周期为一秒的标准秒脉冲,把秒计数器地进位输出作为分计数器的CP脉冲,分计数器的进位输出作为时计数器的CP脉冲。使用74LS48为驱动器,DpyGreen-CC数码管作为显示器。
在本次设计,电路是由许多单元电路组成的,因此首先必须对各个单元电路进行设计。
4.
振荡电路由石英晶体振荡器和分频器产生 1Hz时钟脉冲,下面对石英晶体振荡器和分频器两部分进行介绍。
(1)石英晶体振荡器
石英晶体的固有频率十分稳定。另外石英晶体的振动具有多谐性,除了基频振动外,还有奇次谐次泛音振动,对于石英晶体,既可利用基频振动,也可利用泛音振动。前者称为基频晶体,后者称为泛音晶体,晶片厚度与振动频率成反比,工作频率越高,要求晶片厚度越薄。将石英晶体作为高Q值谐振回路元件接入反馈电路中,就组成了晶体振荡器。
方案三:用专用集成电路设计的秒表&时钟电路。应用时钟芯片可以驱动6位的7段发光二极管显示时间。主要特点是:电路设计容易,计时精确,但成本较高。

毕业设计(论文)-数字时钟显示电路模板

毕业设计(论文)-数字时钟显示电路模板

摘要单片微型计算机简称单片机,它是把微型计算机的各个功能部件:中央处理器CPU、随机存取存储器RAM、只读存储器ROM、I/O接口、定时器/计数器以及串行通信接口等待集成在一块芯片上,构成一个完整的微型计算机,故又把它称为单片微型计算机。

当今信息科技高速发展,使用方便、低成本电子设备已逐步成为我们日常生活中电子产品的主力军。

用软件代替硬件的电子设备能大大地节省成本,且有利于资源的节约,因此,以软代硬的设计必将成为我们现代设计的主流。

本毕业设计采用keil单片机编程软件和protues单片机仿真软件,进行编写整理和实时仿真完成。

关键字:数字时钟显示C语言keil protues目录摘要 (1)目录 (1)第一章绪论 (3)1.1数字电子钟的背景 (3)1.2数字电子钟的意义 (3)1.3数字电子钟的应用 (4)第二章整体设计方案 (4)2.1 单片机的选择 (4)2.1.1多功能 (4)2.1.2高效率和高性能 (4)2.1.3低电压和低功耗 (5)2.1.4低价格 (5)2.2单片机的主要应用领域和特点 (5)2.2.1家用电器领域 (5)2.2.2办公自动化领域 (5)2.2.3商业应用领域 (5)2.2.4工业自动化 (6)2.2.5智能仪表与集成智能传感器 (6)2.2.6现代交通与航空航天领域 (6)2.3 单片机的基本结构 (7)2.3.1中央处理器: (7)2.3.2数据存储器(RAM) (7)2.3.3程序存储器(ROM): (7)2.3.4定时/计数器(ROM): (8)2.3.5并行输入输出(I/O)口: (8)2.3.6全双工串行口: (8)2.3.7中断系统: (8)第三章数字钟的硬件设计 (11)3.1单片机最小应用系统 (11)3.2 LED显示电路 (13)3.3 键盘控制电路 (15)第四章数字钟的软件设计 (16)4.1 系统软件设计流程图 (16)4.2 数字钟的原理图 (20)4.3 主程序 (21)4.4 时钟设置子程序 (22)4.5 定时器中断子程序 (22)4.6 LED显示程序 (23)4.7 按键控制子程序 (25)第五章系统仿真 (26)5.1 PROTUES软件介绍 (26)5.2 电子钟系统PROTUES仿真 (26)第六章调试与功能说明 (27)6.1 硬盘调试 (27)6.2 系统性能测试与功能说明 (28)6.3 系统时钟误差分析 (28)6.4 软件调试问题及解决 (28)结束语 (29)致谢 (29)参考文献、资料索引 (30)第一章绪论1.1数字电子钟的背景电子钟有着很长的历史,从民国19年的电钟,研制始於60年代中期的国内电晶体、半导体管钟,到研制始於70年代末的石英电子钟,再到今天我们所用的智能电子钟。

基于FPGA的数字时钟设计毕业设计论文

基于FPGA的数字时钟设计毕业设计论文

摘要之阿布丰王创作本设计为一个多功能的数字时钟,具有时、分、秒计数显示功能,以24小时循环计数;具有校对功能. 本设计采纳EDA技术,以硬件描述语言Verilog HDL为系统逻辑描述语言设计文件,在QUARTUSII工具软件环境下,采纳自顶向下的设计方法,由各个基本模块共同构建了一个基于FPGA的数字钟.系统由时钟模块、控制模块、计时模块、数据译码模块、显示以及组成.经编译和仿真所设计的法式,在可编程逻辑器件上下载验证,本系统能够完成时、分、秒的分别显示,按键进行校准,整点报时,闹钟功能.关键词:数字时钟,硬件描述语言,Verilog HDL,FPGAAbstractThe design for a multi-functional digital clock, with hours, minutes and seconds count display to a 24-hour cycle count; have proof functions function. The use of EDA design technology, hardware-description language VHDL description logic means for the system design documents, in QUAETUSII tools environment, a top-down design, by the various modules together build a FPGA-based digital clock. The main system make up of the clock module, control module, time module, data decoding module, display and broadcast module. After compiling the design and simulation procedures, the programmable logic device to download verification, the system can complete the hours, minutes and seconds respectively, using keys to cleared , to calibrating time. And on time alarm and clock for digital clock.Keywords:digital clock,hardware description language,Verilog HDL,FPGA目录第一章绪论1.1.选题意义与研究现状在这个时间就是金钱的年代里,数字电子钟已成为人们生活中的必需品.目前应用的数字钟不单可以实现对年、月、日、时、分、秒的数字显示,还能实现对电子钟所在地址的温度显示和智能闹钟功能,广泛应用于车站、医院、机场、码头、茅厕等公共场所的时间显示.随着现场可编程门阵列( field program-mable gate array ,FPGA) 的呈现,电子系统向集成化、年夜规模和高速度等方向发展的趋势更加明显, 作为可编程的集成度较高的ASIC,可在芯片级实现任意数字逻辑电路,从而可以简化硬件电路,提高系统工作速度,缩短产物研发周期.故利用 FPGA这一新的技术手段来研究电子钟有重要的现实意义.设计采纳FPGA现场可编程技术,运用自顶向下的设计思想设计电子钟.防止了硬件电路的焊接与调试,而且由于FPGA的 I /O 端口丰富,内部逻辑可随意更改,使得数字电子钟的实现较为方便.本课题使用Cyclone EP1C6Q240的FPGA器件,完成实现一个可以计时的数字时钟.该系统具有显示时、分、秒,智能闹钟,按键实现校准时钟,整点报时等功能.满足人们获得精确时间以及时间提醒的需求,方便人们生活.1.2.国内外研究及趋势随着人们生活水平的提高和生活节奏的加快,对时间的要求越来越高,精准数字计时的消费需求也是越来越多.二十一世纪的今天,最具代表性的计时产物就是电子时钟,它是近代世界钟表业界的第三次革命.第一次是摆和摆轮游丝的发明,相对稳定的机械振荡频率源使钟表的走时差从分级缩小到秒级,代表性的产物就是带有摆或摆轮游丝的机械钟或表.第二次革命是石英晶体振荡器的应用,发明了走时精度更高的石英电子钟表,使钟表的走时月差从分级缩小到秒级.第三次革命就是单片机数码计时技术的应用,使计时产物的走时日差从分级缩小到1/600万秒,从原有传统指针计时的方式发展为人们日常更为熟悉的夜光数字显示方式,直观明了,并增加了全自动日期、星期的显示功能,它更符合消费者的生活需求!因此,电子时钟的呈现带来了钟表计时业界跨跃性的进步.我国生产的电子时钟有很多种,总体上来说以研究多功能电子时钟为主,使电子时钟除原有的显示时间基本功能外,还具有闹铃,报警等功能.商家生产的电子时钟更从质量,价格,实用上考虑,不竭的改进电子时钟的设计,使其更加的具有市场.1.3.论文结构第一章详细论述了近些年来,数字化时钟系统研究领域的静态及整个数字化时钟系统的发展状况,同时分析了所面临的问题与解决方案,从而提出了本论文的研究任务.第二章从研究任务着手,选择符合设计要求的经常使用芯片及其它元器件,详细论述了各接口电路的设计与连接,以模块化的形式,整合数字化时钟硬件的设计从小到年夜,从局部到整体,循序渐进,最终实现一个功能齐全的数字化时钟系统.第三章根据系统设计要求,着手对数字化时钟系统软件进行功能的实现,将各功能模块有机结合,实现时钟走时,实现闹铃、整点报时附加功能.第四章依照设计思路,在联机调试过程中,对时钟系统的缺乏和缺点进行分析,将调试过程作重点的记录.第五章对全文的总结,对本系统功能实现以及制作过程中需要注意的方面,及整个系统软件编写中所吸取的经验教训进行论述,同时,也对整个研究应用进行展望.第二章编程软件及语言介绍2.1Quarters II编程环境介绍运行环境设计采纳quartus II软件实现,因此针对软件需要用到的一些功能在这里进行描述.Quartus II软件界面简单易把持,如下图2.1:图2.1Quartus II软件界面图2.1.1菜单栏1)【File】菜单Quartus II的【 File】菜单除具有文件管理的功能外,还有许多其他选项图2.2Quartus II菜单栏图(1)【New 】选项:新建工程或文件,其下还有子菜单【New Quartus II Project】选项:新建工程.【Design File】选项:新建设计文件,经常使用的有:AHDL文本文件、VHDL文本文件、Verilog HDL文本文件、原理图文件等.【Vector Waveform Five】选项:矢量波形文件.(2)【Open】选项:翻开一个文件.(3)【New Project Wizard 】选项:创立新工程.点击后弹出对话框.单击对话框最上第一栏右侧的“…”按钮,找到文件夹已存盘的文件,再单击翻开按钮,既呈现如图所示的设置情况.对话框中第一行暗示工程所在的工作库文件夹,第二行暗示此项工程的工程名,第三行暗示顶层文件的实体名,一般与工程名相同.图2.3Quartus II新建工程图(4)【creat /update】选项:生成元件符号.可以将设计的电路封装成一个元件符号,供以后在原理图编纂器下进行条理设计时调用.2)【View】菜单:进行全屏显示或对窗口进行切换,包括条理窗口、状态窗口、消息窗口等.图2.4Quartus II菜单栏全屏切换图3)【Assignments】菜单(1)【Device】选项:为以后设计选择器件.(2)【Pin】选项:为以后条理树的一个或多个逻辑功能块分配芯片引脚或芯片内的位置.(3)【Timing Ananlysis Setting】选项:为以后设计的 tpd、tco、tsu、fmax 等时间参数设按时序要求.(4)【EDA tool setting】选项:EDA 设置工具.使用此工具可以对工程进行综合、仿真、时序分析,等等.EDA 设置工具属于第三方工具.(5)【Setting】选项:设置控制.可以使用它对工程、文件、参数等进行修改,还可以设置编译器、仿真器、时序分析、功耗分析等.(6)【assignment editor】选项:任务编纂器.(7)【pin planner 】选项:可以使用它将所设计电路的 I/O 引脚合理的分配到已设定器件的引脚上.图2.5Quartus II菜单栏设定引脚下拉图4)【processing】菜单【processing】菜单的功能是对所设计的电路进行编译和检查设计的正确性. (1)【Stop process】选项:停止编译设计项目.(2)【Start Compilation】选项:开始完全编译过程,这里包括分析与综合、适配、装配文件、按时分析、网表文件提取等过程.(3)【analyze current file】选项:分析以后的设计文件,主要是对以后设计文件的语法、语序进行检查.(4)【compilation report】选项:适配信息陈说,通过它可以检查详细的适配信息,包括设置和适配结果等.(5)【start simulation】选项:开始功能仿真.(6)【simulation report】选项:生胜利能仿真陈说.(7)【compiler tool】选项:它是一个编译工具,可以有选择对项目中的各个文件进行分别编译.(8)【simulation tool】选项:对编译过电路进行功能仿真和时序仿真. (9)【classic timing analyzer tool】选项:classic时序仿真工具.(10)【powerplay power analyzer tool】选项:PowerPlay 功耗分析工具.图2.6Quartus II菜单栏运行下拉图5)【tools】菜单【tools 】菜单的功能是(1)【run EDA simulation tool 】选项:运行EDA仿真工具,EDA是第三方仿真工具.(2)【run EDA timing analyzer tool 】选项:运行EDA时序分析工具,EDA 是第三方仿真工具.(3)【Programmer 】选项:翻开编程器窗口,以便对Altera 的器件进行下载编程.图2.7Quartus II仿真菜单下拉图2.1.2工具栏工具栏紧邻菜单栏下方,它其实是各菜单功能的快捷按钮组合区.2.8Quartus II菜单栏图图2.9Quartus II菜单栏按键功能图2.1.3功能仿真流程1、新建仿真文件图2.10Quartus II菜单栏新建文件夹图2、功能方正把持在菜单上点processing在下拉菜单中,如下图:图2.11Quartus II菜单栏processing下拉图2.2Verilog HDL语言介2.2.1什么是verilog HDL语言Verilog HDL是一种硬件描述语言,用于从算法级、门级到开关级的多种笼统设计条理的数字系统建模.被建模的数字系统对象的复杂性可以介于简单的门和完整的电子数字系统之间.数字系统能够按条理描述,并可在相同描述中显式地进行时序建模.Verilog HDL 语言具有下述描述能力:设计的行为特性、设计的数据流特性、设计的结构组成以及包括响应监控和设计验证方面的时延和波形发生机制.所有这些都使用同一种建模语言.另外,Verilog HDL语言提供了编程语言接口,通过该接口可以在模拟、验证期间从设计外部访问设计,包括模拟的具体控制和运行.Verilog HDL语言不单界说了语法,而且对每个语法结构都界说了清晰的模拟、仿真语义.因此,用这种语言编写的模型能够使用Ve rilog仿真器进行验证.语言从C编程语言中继承了多种把持符和结构.Verilog HDL提供了扩展的建模能力,其中许多扩展最初很难理解.可是,Verilog HDL语言的核心子集非常易于学习和使用,这对年夜大都建模应用来说已经足够.固然,完整的硬件描述语言足以对从最复杂的芯片到完整的电子系统进行描述.2.2.2主要功能下面列出的是Verilog硬件描述语言的主要能力:●基本逻辑门,例如and、or和nan d等都内置在语言中.●用户界说原语(UP)创立的灵活性.用户界说的原语既可以是组合逻辑原语,也可以是时序逻辑原语.●开关级基本结构模型,例如pmos和nmos等也被内置在语言中.●提供显式语言结构指定设计中的端口到端口的时延及路径时延和设计的时序检查.●可采纳三种分歧方式或混合方式对设计建模.这些方式包括:行为描述方式—使用过程化结构建模;数据流方式—使用连续赋值语句方式建模;结构化方式—使用门和模块实例语句描述建模.●Verilog HDL中有两类数据类型:线网数据类型和寄存器数据类型.线网类型暗示构件间的物理连线,而寄存器类型暗示笼统的数据存储元件.●能够描述条理设计,可使用模块实例结构描述任何条理.●设计的规模可以是任意的;语言分歧毛病设计的规模(年夜小)施加任何限制.●Verilog HDL不再是某些公司的专有语言而是IEEE标准.●人和机器都可阅读Verilog语言,因此它可作为EDA的工具和设计者之间的交互语言.●Verilog HDL语言的描述能力能够通过使用编程语言接口(PLI)机制进一步扩展.PLI是允许外部函数访问Verilog模块内信息、允许设计者与模拟器交互的例程集合.●设计能够在多个条理上加以描述,从开关级、门级、寄存器传送级(RTL)到算法级,包括进程和队列级.●能够使用内置开关级原语在开关级对设计完整建模.●同一语言可用于生成模拟激励和指定测试的验证约束条件,例如输入值的指定.●Verilog HDL能够监控模拟验证的执行,即模拟验证执行过程中设计的值能够被监控和显示.这些值也能够用于与期望值比力,在不匹配的情况下,打印陈说消息.●在行为级描述中,Verilog HDL不单能够在RTL级上进行设计描述,而且能够在体系结构级描述及其算法级行为上进行设计描述.●能够使用门和模块实例化语句在结构级进行结构描述.●如图显示了Verilog HDL的混合方式建模能力,即在一个设计中每个模块均可以在分歧设计条理上建模.●Verilog HDL还具有内置逻辑函数,例如&(按位与)和|(按位或).●对高级编程语言结构,例如条件语句、情况语句和循环语句,语言中都可以使用.●可以显式地对并发和按时进行建模.●提供强有力的文件读写能力.●语言在特定情况下是非确定性的,即在分歧的模拟器上模型可以发生分歧的结果;例如,事件队列上的事件顺序在标准中没有界说.图2.12混合设计条理图第三章数字化时钟系统硬件设计3.1系统核心板电路分析本系统采纳的开发平台标配的核心板是QuickSOPC,可以实现EDA、SOP 和DSP的实验及研发.本系统采纳QuickSOPC标准配置为Altera公司的EP1C6Q240C8芯片.(1)核心板的硬件资源核心板采纳4层板精心设计,采纳120针接口.QuickSOPC核心板的硬件原图3.1QuickSOPC硬件方块图(2)FPGA电路核心板QuickSOPC上所用的FPGA为Altera公司Cyclone系列的EP1C6Q240.EP1C6Q240包括有5980个逻辑单位和92Kbit的片上RAM.EP1C6Q240有185个用户I/O口,封装为240-Pin PQFP.核心板EP1C6Q240器件特性如表2-1.表3-1核心EP1C6Q240器件特性:特性核心板EP1C6Q240器件逻辑单位(LE)5980M4K RAM 块20RAM总量(bit)92160PLL(个) 2185最年夜用户I/O数(个)1167216配置二进制文件(.rbf)年夜小(bit)可选串行主动配置器件EPCS1/ EPCS4/ EPCS16(3)配置电路Cyclone FPGA的配置方式包括:主动配置模式、主动配置模式以及JTAG配置模式.本系统采纳的是JTAG配置模式下载配置数据到FPGA.通过JTAG结果,利用Quartus II软件可以直接对FPGA进行独自的硬件重新配置.Quartus II软件在编译时会自动生成用于JTAG配置的.sof文件.Cyclone FPGA设计成的JTAG指令比其他任何器件把持模式的优先级都高,因此JTAG配置可随时进行而不用等候其他配置模式完成.JTAG模式使用4个专门的信号引脚:TDI、TDO、TMS以及TCK.JTAG的3个输入脚TDI、TMS 和TCK具有内部弱上拉,上拉电阻年夜约为25kΩ.在JGTA进行配置的时候,所有用户I/O扣都为高阻态.(4)时钟电路FPGA内部没振荡电路,使用有源晶振是比力理想的选择.EP1C6Q240C8的输入的时钟频率范围为15.625~387MHz,经过内部的PLL电路后可输出15.625~275MHz的系统时钟.当输入时钟频率较低时,可以使用FPGA的内部PLL 调整FPGA所需的系统时钟,使系统运行速度更快.核心板包括一个48MHz的有源晶振作为系统的时钟源.如图2-2所示.为了获得一个稳定、精确的时钟频率,有源晶振的供电电源经过了LC滤波.本系统硬件整体设计框图如图2-3所示:图3.2数字时钟系统硬件电路总体框图3.2系统主板电路分析3.2.1时钟模块电路FPGA内部没振荡电路,使用有源晶振是比力理想的选择.EP1C6Q240C8的输入的时钟频率范围为15.625~387MHz,经过内部的PLL电路后可输出15.625~275MHz的系统时钟.当输入时钟频率较低时,可以使用FPGA的内部PLL 调整FPGA所需的系统时钟,使系统运行速度更快.核心板包括一个50MHz的有源晶振作为系统的时钟源.为了获得一个稳定、精确的时钟频率,有源晶振的供电电源经过了LC滤波.图3.3系统时钟电路图3.2.2显示电路由于本设计需要显示时间信息包括:时、分、秒,显所以采纳主板上七段数码管显示电路与系统连接实现显示模块的功能.主板上七段数码管显示电路如图2-4 所示,RP4和 RP6 是段码上的限流电阻,位码由于电流较年夜,采纳了三极管驱动.图3.4七段数码管显示电路图数码管 LED显示是工程项目中使用较广的一种输出显示器件.罕见的数管有共阴和共阳 2 种.共阴数码管是将 8 个发光二极管的阴极连接在一起作为公共端,而共阳数码管是将 8 个发光二极管的阳极连接在一起作为公共端.公共端常被称作位码,而将其他的 8 位称作段码.如图 2-5所示为共阳数码管及其电路,数码管有 8 个段分别为:h、g、f、e、d、c、b 和a(h 为小数点) ,只要公共端为高电平“1” ,某个段输出低电平“0”则相应的段就亮.图3.5七段数码管显示电路图从电路可以看出,数码管是共阳的,当位码驱动信号为 0时,对应的数码管才华把持;当段码驱动信号为 0 时,对应的段码点亮.3.2.3键盘控制电路键盘控制电路要实现时钟系统调时的功能和闹铃开关的功能.本设计采纳主板上的自力键盘来实现这两个功能.当键盘被按下是为“0”,未被按下是为“1”.电路连接图如图2-6所示.电路中为了防止FPGA的I/O设为输出且为高电平在按键下直接对地短路,电阻RP9、RP10对此都能起到呵护作用.图3.6 键盘电路图3.2.4蜂鸣电路设计如图2-7所示,蜂鸣器使用 PNP三极管进行驱动控制,蜂鸣器使用的是交流蜂鸣器.当在BEEP输入一定频率的脉冲时,蜂鸣器蜂鸣,改变输入频率可以改变蜂鸣器的响声.因此可以利用一个PWM 来控制BEEP,通过改变PWM 的频率来获得分歧的声响,也可以用来播放音乐.若把 JP7断开,Q4 截止,蜂鸣器停止蜂鸣.图3.7蜂鸣电路图第四章数字化时钟系统软件设计4.1整体方案介绍4.1.1整体设计描述设计中的数字时钟,带有按键校准,定点报时,数码管显示等功能.因此数字时钟所包括的模块可分为,分频模块,按键模块,计时校准模块,闹钟模块,LED显示模块,模块之间的关系下图:图4.1整体模块框图针对框图流程,设定出各个模块的需求:1、分频电路:针对计时器模块与闹钟设定模块的需求,可以知道分频模块需要生成一个1Hz的频率信号,确保计时模块可以正常计数.2、计时器模块:计数模块的作用是收到分频模块1Hz频率的信号线,能进行正确计时,而且可以通过按键进行时间的修改,且当整点时,给蜂鸣器发生使能信号,进行整点报时,播放音乐.3、闹钟设定模块:可根据按键的设定闹钟的时间,当计时模块的时间与闹钟设定模块的时间相等的时候,给蜂鸣器一个使能信号,蜂鸣器闹铃..4、蜂鸣器模块:根据计时模块,闹钟模块给出的使能信号,判定蜂鸣器是整点报时,还是闹钟响铃.整点报时会播放音乐,闹钟时嘀嘀嘀报警.5、LED显示模块:根据实际的需求显示计时模块的时间,还是闹钟设定模块的时间,8个七段码LED数码管,进行扫描方式显示数据.4.1.2整体信号界说对整个模块进行信号界说.接口及寄存器界说module clock(clk,key,dig,seg,beep);// 模块名 clockinput clk; // 输入时钟input [4:0] key; //输入按键,key[3:0]分别为秒,分钟,小时的增加按键.Key[4]为闹钟设置按键,key[5]为校准设置按键.output [7:0] dig; // 数码管选择输出引脚 aoutput [7:0] seg; // 数码管段输出引脚output beep; //蜂鸣器输出端reg [7:0] seg_r = 8'h0; //界说数码管输出寄存器reg [7:0] dig_r; //界说数码管选择输出寄存器reg [3:0] disp_dat; // 界说显示数据寄存器reg [8:0] count1; //界说计数寄存器reg [14:0] count; //界说计数中间寄存器reg [23:0] hour = 24'h235956; // 界说现在时刻寄存器reg [23:0] clktime = 24'h000000; //界说设定闹钟reg [1:0] keyen = 2'b11; // 界说标识表记标帜位reg [4:0] dout1 = 5'b11111;reg [4:0] dout2 = 5'b11111;reg [4:0] dout3 = 5'b11111; // 寄存器wire [4:0] key_done; // 按键消抖输出reg [15:0] beep_count = 16'h0; //蜂鸣器寄存器reg [15:0] beep_count_end = 16'hffff; //蜂鸣器截止寄存器reg clktime_en = 1'b1; //闹钟使能寄存器reg sec ; //1秒时钟reg clk1; //1ms时钟reg beep_r; //寄存器wire beepen; //闹钟使能信号4.1.3模块框图通过quartus II的creat symble for current file功能生成框图如下:图4.2生成的符号图分频模块实现,计数电路所需时钟信号为1HZ,而系统时钟为48MHZ,所以要对系统时钟进行分频以来满足电路的需要.4.2分频模块实现4.2.1分频模块描述对分频模块,关键是生成个1Hz的时钟信号.考虑到仿真的需要,模块中间生成1个1kHz的时钟信号.1Hz的信号的发生用来发生时钟的秒脉冲,框图如下图4.2:图4.3分频模块图4.2.2分频模块设计本系统法式设计时钟的准确与否主要取决于秒脉冲的精确度.为了保证计时准确,我们对系统时钟48MHz进行了48000分频生成1kHz信号clk1,在通过1kHz信号,生成1Hz信号clk.//1ms信号发生部份always @(posedge clk) // 界说 clock 上升沿触发begincount = count + 1'b1;if(count == 15'd24000) //0.5mS到了吗?begincount = 15'd0; //计数器清零clk1 = ~clk1; //置位秒标识表记标帜endend//秒信号发生部份always @(posedge clk1) // 界说 clock 上升沿触发begincount1 = count1 + 1'b1;if(count1 == 9'd500) //0.5S到了吗?begincount1 = 9'd0; //计数器清零sec = ~sec; //置位秒标识表记标帜endEnd4.2.3分频模块仿真通过设置功能仿真,检查代码的正确性5仿真结果图4.4分频模块波形仿真图右上图可以知道,计数寄存器count累加到23999时,重新酿成0,共计数了24000个值.触发clk1跳变,使得count1加一,count1累加到499的时候,下一个数据为0,共技术500个值.所以,sec信号的频率为1Hz,满足设计要求.5.1计时模块实现5.1.1计时模块描述与实现计时模块是采纳16进制来实现的,将hour[23,0]界说为其时分秒,其中hour[3,0]为其秒钟上的个位数值,hour[4,7]为其秒钟上的十位数值,以此类推分钟、时钟的个位和十位.当clk脉冲过来时,秒个位hour[3,0]便开始加1,当加到9时,秒十位加1,与此同时秒个位清零,继续加1.当秒十位hour[7,4]为5秒个位为9时(即59秒),分个位hour[11,8]加1,与此同时秒个位和秒十位都清零.以此类推,当分十位hour[15,12]为5和分个位为9时(即59分),时个位加1,与此同时分个位hour[19,16]和分十位都清零.那时分十位[23,20]为2和分个位为4,全部清零,开始重新计时.从功能上讲分别为模60计数器,模60计数器和模24计数器.//时间计算及校准部份always @(negedge sec)//计时处置beginhour[3:0] = hour[3:0] + 1'b1;//秒加 1if(hour[3:0] >= 4'ha)//加到10,复位beginhour[3:0] = 4'h0;hour[7:4] = hour[7:4] + 1'b1;// 秒的十位加一if(hour[7:4] >= 4'h6)//加到6,复位beginhour[7:4] = 4'h0;hour[11:8] = hour[11:8] + 1'b1;//分个位加一if(hour[11:8] >= 4'ha)//加到10,复位beginhour[11:8] = 4'h0;hour[15:12] = hour[15:12] + 1'b1;//分十位加一if(hour[15:12] >= 4'h6)//加到6,复位beginhour[15:12] = 4'h0;hour[19:16] = hour[19:16] + 1'b1;//时个位加一if(hour[19:16] >= 4'ha)//加到10,复位beginhour[19:16] = 4'h0;hour[23:20] = hour[23:20] + 1'b1;//时十位加一endif(hour[23:16] >= 8'h24)//加到24,复位hour[23:16] = 8'h0;endendendendendend5.1.2计时模块仿真对计时模块进行仿真,记录仿真波形图4.5计时模块仿真图由上图可见,当sec信号下降沿跳变时,hour寄出去会加1,也就相当于跳了一秒钟时间.当hour的时间为235959是,下一个计数器的值为000000,hour寄存器归零,相当于三更0点的时刻.仿真的结果达到预期,通过.5.2按键处置模块实现5.2.1按键处置模块描述框图如下图4.4:图4.6按键控制功能图模块讲计时部份和时间调整部份整合到一起,正常态的时候,时间正常运行,当key[5]被按下时,进入时间校准,可以通过key[2:0]三个键,分别对秒,分,时进行加1把持,从而进行时间校准.当key[3]被按下时,进入闹钟设定,可以通过key[2:0]三个键,分别对秒,分,时进行加1把持,从而进行闹钟的设定.图4.7按键模块仿真图通过按键key进行仿真控制,可以发现clktime会随着按键的按下,分别有时钟,分钟秒钟加1,仿真结果满足设计要求.5.2.2按键去抖处置模块设计按键模块实现去抖处置,及乒乓按键设计,确保后面的计时模块与闹钟模块的功能实现.assign key_done = key|dout3; // 按键消抖输出always @(posedge count1[5]) //按键去噪声begindout1 <= key;dout2 <= dout1;dout3 <= dout2; //连续赋值endalways @(negedge key_done[4])beginkeyen[1] = ~keyen[1]; //校准按键转换乒乓按键endalways @(negedge key_done[3])beginkeyen[0] = ~keyen[0]; //按时按键转换乒乓按键End5.2.3按键模块去抖仿真对按键去颤动仿真,同样才用功能仿真方式,这里不再重复设置与把持,如同上面的分频模块进行设置并进行仿真.Key寄存器为输入按键,初始化电路为高电平,当有按键按下去的时候,酿成低电平.因此改变key的值,观察仿真结果是否正确.功能仿真,记录仿真结果,如下图:图4.8按键模块仿真图通过上图可以知道,key_done会随着key的变动而发生相应的变动,并有消除噪声的作用,功能仿真正确,达到设计目的.5.3闹钟模块实现5.3.1闹钟模块设计本设计中,判断闹铃时间到,是通过判按时钟系统实时时间的时钟与分钟是否分别即是设定的闹铃时间的时钟、分钟、秒钟.那时间(hour[23:0])即是设定的闹钟时间(clktime[23:0])时,闹钟触发时,播放嘀嘀嘀报警声,闹钟会响10秒的时间(clktime[23:0]+10 >=hour[23:0]).正常情况下,闹铃时间到会进行为时1分钟的蜂鸣报时,可以通过按下闹钟按键key[3]使其停止.当闹铃设置为整点是,会先进行整点报时,然后进入闹铃.图4.9闹钟控制键功能图5.3.2闹钟设定模块仿真图4.10闹钟模块仿真图通过按键key进行仿真控制,可以发现clktime会随着按键的按下,分别有时钟,分钟秒钟加1,仿真结果满足设计要求.5.4蜂鸣器模块实现5.4.1蜂鸣器模块描述蜂鸣器模块负责整点报时,和闹铃的时候进行作声的作用.整点报时的时候,播放音乐,10秒音乐播报完后停止整点报时.闹钟触发时,播放嘀嘀嘀报警声.当闹铃设置为整点是,会先进行整点报时,然后进入闹铃.当闹钟设定键被按下,响起的蜂鸣声会被屏蔽.模块框图如下图4.9:5.4.2蜂鸣器模块实现//蜂鸣器的计数按时器always@(posedge clk)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机电工程系2010届毕业生毕业论文题目:__数字钟电路院系:_ 机电工程系_ _ 班级:_ 应用电子0601___ 姓名:___ *** _______ 指导老师:_ *** ***__时间:5月1日中文摘要:加入世贸组织以后,中国会面临激烈的竞争。

这种竞争将是一场科技实力、管理水平和人才素质的较量,风险和机遇共存,同时电子产品的研发日新月异,不仅是在通信技术方面数字化取代于模拟信号,就连我们的日常生活也进于让数字化取缔。

说明数字时代已经到来,而且渗透于我们生活的方方面面。

就拿我们生活的实例来说明一下“数字”给我们带来的便捷。

下面我们就以数字钟为例简单介绍一下。

数字钟我们听到这几个字,第一反应就是我们所说的数字,不错数字钟就是以数字显示取代模拟表盘的钟表,在显示上它用数字反应出此时的时间,相比模拟钟能给人一种一目了然的感觉,不仅如此它还能同时显示时、分、秒。

而且能对时、分、秒准确校时,这是普通钟所不及的。

与此同时数字钟还能准确定时,在你所规定的时间里准确无误的想你发出报时声音,提醒你在此时所需要去做的事。

与旧式钟表相比它更适用于现代人的生活。

在毕业之际恰好遇上学校的毕业课题电子时钟设计毕业论文。

因而在所学专业的基础上做了以下毕业设计。

希望给大家带来方便的同时,使自己对所学专业有进一步的了解!目录前言: (3)1.设计目的 (5)2.设计功能要求 (6)3.电路设计 (6)3.1设计方案 (6)3.2单元电路的设计 (7)3.2.1主体电路部分 (7)3.2.1.1振荡电路 (8)3.2.1.2 计数电路 (12)3.2.1.3 校时电路 (17)3.2.1.4译码与显示电路 (19)3.2.2扩展功功能电路的设计 (21)3.2.2.1定时控制电路 (21)3.2.2.2 仿广播电台正点报时电路 (23)3.2.2.3自动报整点时数电路 (24)3.2.2.4触摸报整点时数电路 (25)4.调试 (26)4.1主体电路部分 (26)4.2 扩展电路部分 (28)5.总结 (30)致谢 (31)参考文献 (32)附录 (33)前言:中国是世界上最早发明计时仪器的国家。

有史料记载,汉武帝太初年间(纪元前104-101年)由落下闳创造了我国最早的表示天体运行的仪器——浑天仪。

东汉时期(公元130年)张衡创造了水运浑天仪,为世界上最早的以水为动力的观测天象的机械计时器,是世界机械天文钟的先驱。

盛唐时代,公元725年张遂(又称一行)和梁令瓒等人创制了水运浑天铜仪,它不但能演示天球和日、月的运动,而且立了两个木人,按时击鼓,按时打钟。

第一个机械钟的灵魂——擒纵器用于计时器,这是中国科学家对人类计时科学的伟大贡献。

它比十四世纪欧洲出现的机械钟先行了六个世纪。

第一只石英钟出现在二十世纪二十年代,从三十年代开始得到了推广,从六十年代开始,由于应用半导体技术,成功地解决了制造日用石英钟问题,石英电子技术在计时领域得到了广泛的应用。

并取代机械钟做了更精确的时间标准。

早在1880年,法国人皮埃尔·居里和保罗·雅克·居里就发现了石英晶体有压电的特性,这是制造钟表“心脏”的良好材料。

科学家以石英晶体制成的振荡计时器和电子钟组合制成了石英钟。

经过测试,一只高精度的石英钟表,每年的误差仅为3-5秒。

1942年,著名的英国格林尼治天文台也开始采用了石英钟作为计时工具。

在许多场合,它还经常被列为频率的基本标准,用于日常测量与检测。

大约在 1970 年前后,石英钟表开始进入市场,风靡全球。

随着科学的进步,精密的电子元件不断涌现,石英钟表也开始变得小巧精致,它既是实用品,也是装饰品。

它为人们的生活提供方便,更为人们的生活增添了新的色彩。

在现行情况下根据简单实用强的、走时准确进行设计。

而实验证明,钟表的振荡部分采用石英晶体作为时基信号源时,走时更精确、调整更方便。

钟是一种计时的器具,它的出现开拓了时间计量的新里程。

提起时钟大家都很熟悉,它是给我们指明时间的一种计时器,并且我们每天都要用到它。

二十世纪八十年代中国的钟表业经历了一场翻天覆地的大转折。

其表现在三个方面:(1)从生产机械表转为石英电子表;(2)曾占据中国消费市场四十多年的大型国有企业突然被刚刚冒起的“组业”所取代,钟表生产中心转向中国南方沿海一带;(3)中国钟表业发展从以机芯为龙头改为以手表外观件为龙头。

这场转折以迅雷不及掩耳的速度,冲击着传统的中国钟表工业。

中国的钟表业从技术简单、零件少的石英钟机芯制造入手。

最初石英钟机芯全靠从日本、德国进口,1989年开始完全自己生产,包括模具的制造加工。

近十余年,逐渐提高机芯质量的稳定性,同时转向对手表机芯研制与开发。

目前石英钟表机芯生产主要在福建省福州、广东东莞、番禺;机械钟表机芯在上海、山东等地。

现在我国的电子业发展非常快速,电子业的发展有利于钟表业的发展。

在中国钟表发展史上,国产机芯研制的失败已经成为过去,“组装业”作为新兴钟表工业的起步阶段也已成为过去。

一支新的充满智慧的钟表精英在成长。

我们相信在科技高速发展的今天,钟表业运用当今材料工业、电子工业和其他领域的最新技术,一定会生产出代表中国科学水平的产品。

我们希望钟表业的精英们在提高制造技术水平中不断创新,培育出拥有自主知识产权的品牌。

这正是中国钟表业发展的希望。

数字钟被广泛用于个人家庭,车站, 码头、办公室等公共场所,成为人们日常生活中的必需品。

由于数字集成电路的发展和石英晶体振荡器的广泛应用,使得数字钟的精度,运用超过老式钟表, 钟表的数字化给人们生产生活带来了极大的方便,而且大大地扩展了钟表原先的报时功能。

诸如定时自动报警、按时自动打铃、时间程序自动控制、定时广播、自动起闭路灯、定时开关烘箱、通断动力设备、甚至各种定时电气的自动启用等,所有这些,都是以钟表数字化为基础的。

因此,研究数字钟及扩大其应用,有着非常现实的意义。

1.设计目的设计一种多功能数字钟,该数字钟具有基本功能和扩展功能两部分。

其中,基本功能部分的有准确计时,以数字形式显示时、分、秒的时间和校时功能。

扩展功能部分则具有:定时控制、仿广播电台正点报时、自动报整点时数和触摸报正点的功能。

数字钟的电路也是由主体电路和扩展电路两部分构成,在电路中,基本功能部分由主体电路实现,而扩展功能部电路实现。

这两部分都有一个共同特点就是它们都要用到振荡电路提供的1Hz脉冲信号。

在计时出现误差时电路还可以进行校时和校分,为了使电路简单所设计的电路不具备校秒的功能。

并且要用数码管显示时、分、秒,各位均为两位显示,扩展部分要有相应的响应电路。

分则由扩展2.设计功能要求基本功能:(1)时的计时要求为“12翻1”,分和秒的计时要求为60进制(2)准确计时,以数字形式显示时,分,秒的时间(3)校正时间扩展功能:(1)定时控制;(2)仿广播电台报时功能;(3)自动报整点时数;(4)触摸报整点时数;3.电路设计3.1设计方案根据设计要求首先建立了一个多功能数字钟电路系统的组成框图,框图如图1所示。

主体电路扩展电路图1由图1可知,电路的工作原理是:多功能数字钟电路由主体电路和扩展电路两大部分组成。

其中主体电路完成数字钟的基本功能,扩展电路完成数字钟的扩展功能。

振荡器产生的高脉冲信号作为数字钟的振源,再经分频器输出标准秒脉冲。

秒计数器计满60后向分计数器个位进位,分计数器计满60后向小时计数器个位进位并且小时计数器按照“12翻1”的规律计数。

计数器的输出经译码器送显示器。

计时出现误差时电路进行校时、校分、校秒。

扩展电路必须在主体电路正常运行的情况下才能进行扩展功能。

3.2单元电路的设计数字电子钟的设计方法很多种,例如,可用中小规模集成电路组成电子钟;也可以利用专用的电子钟芯片配以显示电路及其所需要的外围电路组成电子钟;还可以利用单片机来实现电子钟等。

在本次设计,电路是由许多单元电路组成的,因此首先必须对各个单元电路进行设计。

3.2.1主体电路部分主体电路部分的电路主要由振荡电路、计数电路、显示电路以及校时电路四大部分组成。

下面将对各部分电路进行设计。

3.2.1.1振荡电路振荡电路由振荡器和分频器产生 1Hz时钟脉冲和扩展部分所需的频率,下面对振荡器和分频器两部分进行介绍。

(1)振荡器数字电路中的时钟是由振荡器产生的,振荡器是数字钟的核心。

振荡器的稳定度及频率的精度决定了数字钟计时的准确程度,一般来说,振荡器的频率越高,计时精度越高。

它利用某种反馈方式产生时钟信号。

对数字电路来说,振荡器的输出的幅度范围为0v—5v的方波信号而不是锯齿波、三角波或其他形式。

典型的振荡器是弛豫振荡器,它通过一个RC网络将反相器的输出反馈回来并存在一定的工作延迟时间。

基本的电路如图2所示。

图2在上述电路中,RI-C网络由第一个反相器驱动,具有RC特性曲线的响应信号被反馈给反相器的输入。

当电容上的电压达到施密特触发器输入反相器的门限电压的时候,反相器的状态发生改变,并输出一个新的电压值。

这个输出电压经过一定的延迟时间再次通过RI—C反馈回来,直到电容电压再次达到门限电压为止。

用施密特触发器输入器件(如74HC04),但是由于电容的参考电压在每个临界点都要发生变化,所以施密特触发器不是必需的。

由于电容与输出相连,每次状态改变时,电容的充电电压会超过5V。

从这一点来说,输出电压会改变电容的充电电压,直到电容两端的电压变为74HC04的门限电压(2.5V)为止。

振荡器输出状态的改变发生在电容上的电压达到2.5V时。

弛豫振荡器对许多低成本而精度要求又不高的场所非常适合,但是并不推荐在任何有精度要求的实际应用电路采用它。

如果想要获得高的精度,就应该在振荡电路中使用石英晶体作振源。

在数字钟的设计与制作中应采用石英晶体振荡器,因为石英晶体具有压电效应,是一个压电器件。

当交流电压加在晶体两端,晶体先随电压变化产生对应的变化,然后机械振动又使晶体表面产生交变电荷。

当晶体几何尺寸和结构一定时,它本生有一个固定的机械频率。

当外加交流电压的频率等于晶体的固有频率时,晶体片的机械振动最大,晶体表面电荷量最多,外电路的交流电流最强,于是产生振荡,因此将石英晶体按一定方位切割成片,两边傅以电极,焊上引线,再用金属或玻璃外壳封装即构成石英晶体。

石英晶体的固有频率十分稳定。

另外石英晶体的振动具有多谐性,除了基频振动外,还有奇次谐次泛音振动,对于石英晶体,既可利用基频振动,也可利用泛音振动。

前者称为基频晶体,后者称为泛音晶体,晶片厚度与振动频率成反比,工作频率越高,要求晶片厚度越薄。

将石英晶体作为高Q值谐振回路元件接入反馈电路中,就组成了晶体振荡器。

在设计中所用的振荡器的电路图如图3所示。

该电路能产生1MHz的方波脉冲振荡信号。

相关文档
最新文档