数字图像处理实验报告材料
数字图像处理实验报告
数字图像处理实验报告实验一数字图像处理编程基础一、实验目的1. 了解MATLAB图像处理工具箱;2. 掌握MATLAB的基本应用方法;3. 掌握MATLAB图像存储/图像数据类型/图像类型;4. 掌握图像文件的读/写/信息查询;5. 掌握图像显示--显示多幅图像、4种图像类型的显示方法;6. 编程实现图像类型间的转换。
二、实验内容1. 实现对图像文件的读/写/信息查询,图像显示--显示多幅图像、4种图像类型的显示方法、图像类型间的转换。
2. 运行图像处理程序,并保存处理结果图像。
三、源代码I=imread('cameraman.tif')imshow(I);subplot(221),title('图像1');imwrite('cameraman.tif')M=imread('pout.tif')imview(M)subplot(222),imshow(M);title('图像2');imread('pout.bmp')N=imread('eight.tif')imview(N)subplot(223),imshow(N);title('图像3');V=imread('circuit.tif')imview(V)subplot(224),imshow(V);title('图像4');N=imread('C:\Users\Administrator\Desktop\1.jpg')imshow(N);I=rgb2gary(GRB)[X.map]=gary2ind(N,2)RGB=ind2 rgb(X,map)[X.map]=gary2ind(I,2)I=ind2 gary(X,map)I=imread('C:\Users\dell\Desktop\111.jpg');subplot(231),imshow(I);title('原图');M=rgb2gray(I);subplot(232),imshow(M);[X,map]=gray2ind(M,100);subplot(233),imshow(X);RGB=ind2rgb(X,map);subplot(234),imshow(X);[X,map]=rbg2ind(I);subplot(235),imshow(X);四、实验效果实验二 图像几何变换实验一、实验目的1.学习几种常见的图像几何变换,并通过实验体会几何变换的效果;2.掌握图像平移、剪切、缩放、旋转、镜像等几何变换的算法原理及编程实现;3.掌握matlab 编程环境中基本的图像处理函数。
数字图像处理实验报告
数字图像处理实验报告数字图像处理实验报告161420230 蔡讴实验一1.获取实验用图像:rice.jpg. 使用imread函数将图像读入Matlab。
a=imread('D\:rice.png');figure;title(‘原图’);axis on;imshow(a);2.产生灰度变换函数T1,使得:0.3r r < 0.35s = 0.105 + 2.6333(r –0.35) 0.35 ≤r ≤0.651 + 0.3(r – 1) r > 0.65用T1对原图像rice.jpg进行处理,使用imwrite函数保存处理后的新图像。
a=double(a)/256;figure,imhist(a),title('原直方图');axis on;r=[0:0.001:1];s1=[r<0.35].*r*0.3+[r<=0.65].*[r>=0.35].*(0.105+2.6333*(r-0.35))+[ r>0.65].*(1+0.3*(r-1));a1=[a<0.35].*a*0.3+[a<=0.65].*[a>=0.35].*(0.105+2.6333*(a -0.35)) +[a>0.65].*(1+0.3*(a-1));figure,imshow(a1),title('改后一');axis on;figure,imhist(a1),title('改后直方图一');axis on;imwrite(a1,'改后rice一.jpg');3.产生灰度变换函数T2,使得:s =用T2对原图像rice.jpg 进行处理,使用imwrite 保存处理后的新图像。
r2=[0:0.001:1];t2=[r2<=0.5].*(15.9744*r2.^5)+[r2>0.5].*((r2-0.5).^0.2+0.12); subplot(2,3,5); plot(r2,t2,'r'); title('更改后直方图');subplot(2,3,4); imshow(a); title('更改后');A3=[a<=0.5].*(15.9744*a.^5)+[a>0.5].*((a-0.5).^0.2+0.12); subplot(2,3,6); imshow(A3); title('更改后');imwrite(A3,'更改_3.jpg','jpg');15.9744r 5 r ≤ 0.5 (r – 0.5)0.2+ 0.12 r > 0.54.分别用s = r0.6; s = r0.4; s = r0.3对kids.tiff图像进行处理。
数字图像处理实验报告——图像分割实验
实验报告课程名称数字图像处理导论专业班级_______________姓名 _______________学号_______________电气与信息学院与谐勤奋求就是创新一.实验目得1.理解图像分割得基本概念;2.理解图像边缘提取得基本概念;3.掌握进行边缘提取得基本方法;4.掌握用阈值法进行图像分割得基本方法.二。
实验内容1.分别用Roberts,Sobel与拉普拉斯高斯算子对图像进行边缘检测。
比较三种算子处理得不同之处;2.设计一个检测图1中边缘得程序,要求结果类似图2,并附原理说明。
3.任选一种阈值法进行图像分割、图1 图2三.实验具体实现1.分别用Roberts,Sobel与拉普拉斯高斯算子对图像进行边缘检测。
比较三种算子处理得不同之处;I=imread(’mri、tif');imshow(I)BW1=edge(I,’roberts’);figure ,imshow(BW1),title(’用Roberts算子’)BW2=edge(I,’sobel’);figure,imshow(BW2),title(’用Sobel算子 ')BW3=edge(I,’log’);figure,imshow(BW3),title(’用拉普拉斯高斯算子’)比较提取边缘得效果可以瞧出,sober算子就是一种微分算子,对边缘得定位较精确,但就是会漏去一些边缘细节.而Laplacian—Gaussian算子就是一种二阶边缘检测方法,它通过寻找图象灰度值中二阶过零点来检测边缘并将边缘提取出来,边缘得细节比较丰富。
通过比较可以瞧出Laplacian-Gaussian算子比sober算子边缘更完整,效果更好。
2.设计一个检测图1中边缘得程序,要求结果类似图2,并附原理说明.i=imread('m83、tif’);subplot(1,2,1);imhist(i);title('原始图像直方图');thread=130/255;subplot(1,2,2);i3=im2bw(i,thread);imshow(i3);title('分割结果’);3.任选一种阈值法进行图像分割、i=imread('trees、tif’);subplot(1,2,1);imhist(i);title('原始图像直方图’);thread=100/255;subplot(1,2,2);i3=im2bw(i,thread);imshow(i3);title('分割结果’)1、分别用Roberts,Sobel与拉普拉斯高斯算子对图像进行边缘检测。
数字图像处理实验报告 (图像编码)
实验三图像编码一、实验内容:用Matlab语言、C语言或C++语言编制图像处理软件,对某幅图像进行时域和频域的编码压缩。
二、实验目的和意义:1. 掌握哈夫曼编码、香农-范诺编码、行程编码2.了解图像压缩国际标准三、实验原理与主要框架:3.1实验所用编程环境:Visual C++6.0(简称VC)3.2实验处理的对象:256色的BMP(BIT MAP )格式图像BMP(BIT MAP )位图的文件结构:(如图3.1)图3.1 位图的文件结构具体组成图:单色DIB 有2个表项16色DIB 有16个表项或更少 256色DIB 有256个表项或更少 真彩色DIB 没有调色板每个表项长度为4字节(32位) 像素按照每行每列的顺序排列每一行的字节数必须是4的整数倍biSize biWidth biHeight biPlanes biBitCount biCompression biSizeImagebiXPelsPerMeter biYPelsPerMeter biClrUsedbiClrImportantbfType=”BM ” bfSizebfReserved1 bfReserved2 bfOffBits BITMAPFILEHEADER位图文件头 (只用于BMP 文件)BITMAPINFOHEADER位图信息头Palette 调色板DIB Pixels DIB 图像数据3.3 数字图像基本概念数字图像是连续图像(,)f x y 的一种近似表示,通常用由采样点的值所组成的矩阵来表示:(0,0)(0,1)...(0,1)(1,0)(1,1)...(1,1).........(1,0)(1,1)...(1,1)f f f M f f f M f N f N f N M -⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥----⎣⎦每一个采样单元叫做一个像素(pixel ),上式(2.1)中,M 、N 分别为数字图像在横(行)、纵(列)方向上的像素总数。
数字图像处理实验报告
数字图像处理实验报告数字图像处理实验报告(一)实验目的1.理解数字图像处理的基本概念与原理。
2.掌握数字图像处理的基本方法。
3.掌握常用数字滤波器的性质和使用方法。
4.熟练应用数字图像处理软件进行图像处理。
实验器材计算机、MATLAB软件实验内容1.图像的读写与显示首先,我们需要在MATLAB中读入一幅图像,并进行显示。
% 导入图像文件I = imread('myimage.jpg');% 显示图像imshow(I);2.图像的分辨率与色彩空间转换数字图像处理中的一个重要概念是图像的分辨率,通常用像素数量表示。
图像的分辨率越高,代表着图像包含更多的像素,从而更具细节和清晰度。
在数字图像处理中,常常需要将一幅图像从一种色彩空间转换为另一种色彩空间。
RGB色彩空间是最常见的图像色彩空间之一,并且常常作为其他色彩空间的基础。
% 转换图像色彩空间J = rgb2gray(I);% 显示转换后的图像imshow(J);3.图像的增强与滤波图像的增强通常指的是对图像的对比度、亮度和清晰度等方面进行调整,以改善图像的质量和可读性。
数字图像处理中的滤波是一种常用的图像增强方法。
滤波器是一个能够对图像进行局部操作的矩阵,它能够提取或抑制特定的图像特征。
% 对图像进行平滑滤波K = imgaussfilt(J, 1);% 显示滤波后的图像imshow(K);4.数字图像处理在实际应用中的例子数字图像处理在很多实际应用中被广泛应用。
这些应用包括医疗成像、计算机视觉、人脸识别、安防监控等。
下面是数字图像处理在人脸识别应用中的一个简单例子。
% 导入图像文件I = imread('face.jpg');% 进行人脸检测faceDetector = vision.CascadeObjectDetector;bbox = step(faceDetector, I);% 在图像上标记人脸位置IFaces = insertObjectAnnotation(I, 'rectangle', bbox, 'Face');imshow(IFaces);实验结论通过本次实验,我已经能够理解数字图像处理的基本概念与原理,掌握数字图像处理的基本方法,熟练应用数字图像处理软件进行图像处理。
数字图像处理实验报告
数字图像处理实验报告数字图像处理实验报告1一. 实验内容:主要是图像的几何变换的编程实现,具体包括图像的读取、改写,图像平移,图像的镜像,图像的转置,比例缩放,旋转变换等.具体要求如下:1.编程实现图像平移,要求平移后的图像大小不变;2.编程实现图像的镜像;3.编程实现图像的转置;4.编程实现图像的比例缩放,要求分别用双线性插值和最近邻插值两种方法来实现,并比较两种方法的缩放效果;5.编程实现以任意角度对图像进行旋转变换,要求分别用双线性插值和最近邻插值两种方法来实现,并比较两种方法的旋转效果.二.实验目的和意义:本实验的目的是使学生熟悉并掌握图像处理编程环境,掌握图像平移、镜像、转置和旋转等几何变换的方法,并能通过程序设计实现图像文件的读、写操作,及图像平移、镜像、转置和旋转等几何变换的程序实现.三.实验原理与主要框架:3.1 实验所用编程环境:Visual C++(简称VC)是微软公司提供的基于C/C++的应用程序集成开发工具.VC拥有丰富的功能和大量的扩展库,使用它能有效的创建高性能的Windows应用程序和Web应用程序.VC除了提供高效的C/C++编译器外,还提供了大量的可重用类和组件,包括著名的微软基础类库(MFC)和活动模板类库(ATL),因此它是软件开发人员不可多得的开发工具.VC丰富的功能和大量的扩展库,类的重用特性以及它对函数库、DLL库的支持能使程序更好的模块化,并且通过向导程序大大简化了库资源的使用和应用程序的开发,正由于VC具有明显的优势,因而我选择了它来作为数字图像几何变换的开发工具.在本程序的开发过程中,VC的核心知识、消息映射机制、对话框控件编程等都得到了生动的体现和灵活的应用.3.2 实验处理的对象:256色的BMP(BIT MAP )格式图像BMP(BIT MAP )位图的文件结构:具体组成图: BITMAPFILEHEADER位图文件头(只用于BMP文件) bfType=”BM” bfSize bfReserved1bfReserved2bfOffBitsbiSizebiWidthbiHeightbiPlanesbiBitCountbiCompressionbiSizeImagebiXPelsPerMeterbiYPelsPerMeterbiClrUsedbiClrImportant单色DIB有2个表项16色DIB有16个表项或更少256色DIB有256个表项或更少真彩色DIB没有调色板每个表项长度为4字节(32位)像素按照每行每列的顺序排列每一行的字节数必须是4的整数倍BITMAPINFOHEADER 位图信息头 Palette 调色板 DIB Pixels DIB图像数据1. BMP文件组成BMP文件由文件头、位图信息头、颜色信息和图形数据四部分组成.2. BMP文件头BMP文件头数据结构含有BMP文件的类型(必须为BMP)、文件大小(以字节为单位)、位图文件保留字(必须为0)和位图起始位置(以相对于位图文件头的偏移量表示)等信息.3. 位图信息头BMP位图信息头数据用于说明位图的尺寸(宽度,高度等都是以像素为单位,大小以字节为单位, 水平和垂直分辨率以每米像素数为单位) ,目标设备的级别,每个像素所需的位数, 位图压缩类型(必须是 0)等信息.4. 颜色表颜色表用于说明位图中的颜色,它有若干个表项,每一个表项是一个RGBQUAD类型的结构,定义一种颜色.具体包含蓝色、红色、绿色的亮度(值范围为0-255)位图信息头和颜色表组成位图信息5. 位图数据位图数据记录了位图的每一个像素值,记录顺序是在扫描行内是从左到右,扫描行之间是从下到上.Windows规定一个扫描行所占的字节数必须是4的倍数(即以long为单位),不足的以0填充.3.3 BMP(BIT MAP )位图的显示:①一般显示方法:1. 申请内存空间用于存放位图文件2. 位图文件读入所申请内存空间中3. 在函数中用创建显示用位图, 用函数创建兼容DC,用函数选择显示删除位图但以上方法的缺点是: 1)显示速度慢; 2) 内存占用大; 3) 位图在缩小显示时图形失真大,(可通过安装字体平滑软件来解决); 4) 在低颜色位数的设备上(如256显示模式)显示高颜色位数的图形(如真彩色)图形失真严重.②BMP位图缩放显示 :用视频函数来显示位图,内存占用少,速度快,而且还可以对图形进行淡化(Dithering )处理.淡化处理是一种图形算法,可以用来在一个支持比图像所用颜色要少的设备上显示彩色图像.BMP位图显示方法如下:1. 打开视频函数,一般放在在构造函数中2. 申请内存空间用于存放位图文件3. 位图文件读入所申请内存空间中4. 在函数中显示位图5. 关闭视频函数 ,一般放在在析构函数中以上方法的优点是: 1)显示速度快; 2) 内存占用少; 3) 缩放显示时图形失真小,4) 在低颜色位数的设备上显示高颜色位数的图形图形时失真小; 5) 通过直接处理位图数据,可以制作简单动画.3.4 程序中用到的访问函数Windows支持一些重要的DIB访问函数,但是这些函数都还没有被封装到MFC中,这些函数主要有:1. SetDIBitsToDevice函数:该函数可以直接在显示器或打印机上显示DIB. 在显示时不进行缩放处理.2. StretchDIBits函数:该函数可以缩放显示DIB于显示器和打印机上.3. GetDIBits函数:还函数利用申请到的内存,由GDI位图来构造DIB.通过该函数,可以对DIB的格式进行控制,可以指定每个像素颜色的位数,而且可以指定是否进行压缩.4. CreateDIBitmap函数:利用该函数可以从DIB出发来创建GDI 位图.5. CreateDIBSection函数:该函数能创建一种特殊的DIB,称为DIB项,然后返回一个GDI位图句柄.6. LoadImage函数:该函数可以直接从磁盘文件中读入一个位图,并返回一个DIB句柄.7. DrawDibDraw函数:Windows提供了窗口视频(VFW)组件,Visual C++支持该组件.VFW中的DrawDibDraw函数是一个可以替代StretchDIBits 的函数.它的最主要的优点是可以使用抖动颜色,并且提高显示DIB的速度,缺点是必须将VFW代码连接到进程中.3.5 图像的几何变换图像的几何变换,通常包括图像的平移、图像的镜像变换、图像的转置、图像的缩放和图像的旋转等.数字图像处理实验报告2一、实验的目的和意义实验目的:本实验内容旨在让学生通过用VC等高级语言编写数字图像处理的一些基本算法程序,来巩固和掌握图像处理技术的基本技能,提高实际动手能力,并通过实际编程了解图像处理软件的实现的基本原理。
数字图像处理 实验报告(完整版)
数字图像处理实验一 MATLAB数字图像处理初步一、显示图像1.利用imread( )函数读取一幅图像,假设其名为lily.tif,存入一个数组中;2.利用whos 命令提取该读入图像flower.tif的基本信息;3.利用imshow()函数来显示这幅图像;实验结果如下图:源代码:>>I=imread('lily.tif')>> whos I>> imshow(I)二、压缩图像4.利用imfinfo函数来获取图像文件的压缩,颜色等等其他的详细信息;5.利用imwrite()函数来压缩这幅图象,将其保存为一幅压缩了像素的jpg文件,设为lily.jpg;语法:imwrite(原图像,新图像,‘quality’,q), q取0-100。
6.同样利用imwrite()函数将最初读入的tif图象另存为一幅bmp图像,设为flily.bmp。
7.用imread()读入图像Sunset.jpg和Winter.jpg;8.用imfinfo()获取图像Sunset.jpg和Winter.jpg的大小;9.用figure,imshow()分别将Sunset.jpg和Winter.jpg显示出来,观察两幅图像的质量。
其中9的实验结果如下图:源代码:4~6(接上面两个) >>I=imread('lily.tif')>> imfinfo 'lily.tif';>> imwrite(I,'lily.jpg','quality',20);>> imwrite(I,'lily.bmp');7~9 >>I=imread('Sunset.jpg');>>J=imread('Winter.jpg')>>imfinfo 'Sunset.jpg'>> imfinfo 'Winter.jpg'>>figure(1),imshow('Sunset.jpg')>>figure(2),imshow('Winter.jpg')三、二值化图像10.用im2bw将一幅灰度图像转化为二值图像,并且用imshow显示出来观察图像的特征。
数字图像实验报告
数字图像实验报告数字图像实验报告引言:数字图像处理是一门涉及计算机科学和电子工程的学科,它通过对图像进行数字化处理,实现对图像的分析、增强和改变。
本实验报告旨在介绍数字图像处理的基本概念和实验结果,以及对实验结果的分析和讨论。
一、实验目的本次实验的主要目的是了解数字图像处理的基本原理和方法,通过实践掌握常见的图像处理技术,并对实验结果进行分析和评估。
二、实验过程1. 图像获取在本次实验中,我们使用了一张自然风光的彩色图像作为实验对象。
这张图像包含了丰富的颜色和细节,能够很好地展示数字图像处理的效果。
2. 图像预处理在进行图像处理之前,我们需要对图像进行预处理,以便更好地进行后续处理。
预处理包括图像去噪、增强和边缘检测等步骤。
我们使用了常见的滤波算法对图像进行去噪处理,然后使用直方图均衡化技术对图像进行增强,最后使用边缘检测算法提取图像的边缘信息。
3. 图像分割图像分割是将图像分成若干个具有独立特征的区域的过程。
我们使用了基于阈值的分割方法对图像进行分割,通过调整阈值的大小,可以得到不同的分割结果。
4. 特征提取特征提取是从图像中提取出具有代表性的特征,用于进一步分析和处理。
我们使用了常见的特征提取算法,如边缘检测、角点检测和纹理特征提取等,从图像中提取出了边缘、角点和纹理等特征。
5. 图像重建图像重建是将经过处理的图像恢复到原始状态的过程。
我们使用了图像插值算法对图像进行重建,通过插值算法,可以将图像的分辨率提高,从而得到更清晰的图像。
三、实验结果经过以上的处理步骤,我们得到了一系列经过处理的图像。
通过对比原始图像和处理后的图像,我们可以看到图像处理对图像的改变和影响。
在图像去噪和增强的过程中,我们成功地去除了图像中的噪声,并增强了图像的对比度和细节。
在图像分割和特征提取的过程中,我们成功地将图像分割成若干个具有独立特征的区域,并提取出了图像的边缘、角点和纹理等特征。
在图像重建的过程中,我们成功地提高了图像的分辨率,得到了更清晰的图像。
数字图像处理基本操作及灰度调整实验报告
数字图像处理基本操作及灰度调整实验报告实验目的1.掌握数字图像处理的基本概念和原理。
2.学会使用Python编程语言进行图像处理。
3.理解并实现图像灰度调整的方法。
4.分析实验结果,讨论图像处理方法的优缺点。
2.1 数字图像处理概述数字图像处理(Digital Image Processing,DIP)是一门研究使用计算机对图像进行处理的技术。
它的目的是改善图像的质量,使之更适合人类或计算机对图像进行观察和分析。
数字图像处理涉及到图像采集、存储、传输、分析以及图像的恢复等方面。
2.2 图像的表示和描述数字图像由图像元素(像素)组成,每个像素有一个对应的灰度值。
灰度值表示像素的亮度,通常用8位二进制数表示,其范围为0~255。
像素的灰度值越高,亮度越高。
数字图像可以表示为一个矩阵,矩阵中的每个元素对应一个像素的灰度值。
彩色图像通常采用RGB颜色模型,每个像素包含三个分量,分别对应红色、绿色和蓝色通道的亮度。
2.3 图像灰度调整图像灰度调整是指调整图像像素的灰度值,以改善图像的质量。
常用的图像灰度调整方法有:1.线性灰度变换:通过线性映射关系改变图像灰度值,可以实现图像亮度的调整和对比度的拉伸。
2.直方图均衡化:通过调整图像的灰度直方图,使其均匀分布,可以提高图像的对比度。
•操作系统:Windows 10•编程语言:Python 3.8•图像处理库:OpenCV 4.5.2•集成开发环境:Visual Studio Code4.1 图像读取和显示首先,我们需要使用OpenCV库读取和显示图像。
以下是读取和显示图像的Python代码:4.2 图像灰度化为了便于后续的灰度调整操作,我们需要将彩色图像转换为灰度图像。
以下是图像灰度化的Python代码:4.3 灰度调整接下来,我们将对图像进行灰度调整。
首先,实现线性灰度变换。
以下是线性灰度变换的Python代码:4.4 图像直方图均衡化直方图均衡化是一种能够提高图像对比度的方法。
数字图像处理实验报告
数字图像处理实验报告目录1.数字图像处理简介2.实验目的3.实验内容4.实验结果及代码展示5.算法综述6.M atlab优势7.总结8.存在问题一、数字图像处理简介图像处理,是对图像进行分析、加工、和处理,使其满足视觉、心理以及其他要求的技术。
图像处理是信号处理在图像域上的一个应用。
目前大多数的图像是以数字形式存储,因而图像处理很多情况下指数字图像处理。
此外,基于光学理论的处理方法依然占有重要的地位。
图像处理是信号处理的子类,另外与计算机科学、人工智能等领域也有密切的关系。
传统的一维信号处理的方法和概念很多仍然可以直接应用在图像处理上,比如降噪、量化等。
然而,图像属于二维信号,和一维信号相比,它有自己特殊的一面,处理的方式和角度也有所不同。
二、实验目的巩固所学知识,提高所学能力三、实验内容利用matlab的GUI程序设计一个简单的图像处理程序,并含有如下基本功能:1. 读入一幅RGB图像,变换为灰度图像和二值图像,并在同一个窗口内分成三个子窗口来分别显示RGB图像和灰度图像,注上文字标题2. 对给定图像进行旋转3.对给定的图像添加噪声(椒盐噪声、高斯噪声)四、实验结果及代码展示1.软件设计界面2.各模块功能展示以及程序代码(1)读入一幅RGB图像,变换为灰度图像和二值图像,并在同一个窗口内分成三个子窗口来分别显示RGB图像和灰度图像,注上文字标题效果展示:代码:a = imread('C:\Documents and Settings\Administrator\桌面\数字图像\舞美.JPG');i = rgb2gray(a);I = im2bw(a,0.5);subplot(3,1,1);imshow(a);title('源图像')subplot(3,1,2);imshow(i);title('灰度图像')subplot(3,1,3);imshow(I);title('二值图像')(2)图像旋转原图效果展示:代码:clc;clear all;close all;Img=imread('D:\My Documents\My Pictures\5.JPG'); Img=double(Img);[h w]=size(Img);alpha=pi/4;wnew=w*cos(alpha)+h*sin(alpha);hnew=w*sin(alpha)+h*cos(alpha);wnew=ceil(wnew);hnew=ceil(hnew); u0=w*sin(alpha);T=[cos(alpha),sin(alpha);-sin(alpha),cos(alpha)]; Imgnew2=zeros(hnew,wnew);Imgnew1=zeros(hnew,wnew); for u=1:hnewfor v=1:wnewtem=T*([u;v]-[u0;0]);x=tem(1);y=tem(2);if x>=1&&x<=h&&y>=1&&y<=wx_low=floor(x);x_up=ceil(x);y_low=floor(y);y_up=ceil(y);if (x-x_low)<=(x_up-x)x=x_low;elsex=x_up;endif (y-y_low)<=(y_up-y)y=y_low;elsey=y_up;endp1=Img(x_low,y_low);p2=Img(x_up,y_low);p3=Img(x_low,y_low);p4=Img(x_up,y_up);s=x-x_low;t=y-y_low;Imgnew1(u,v)=Img(x,y);Imgnew2(u,v)=(1-s)*(1-t)*p1+(1-s)*t*p3+(1-t)*s*p2+s*t*p4;endendendfigure;imshow(Imgnew2,[]);B=imrotate(Img,alpha/pi*180);figure;imshow(B,[]);(3)对给定的图像添加噪声(斑点噪声、高斯噪声)效果展示:代码:I= imread('D:\My Documents\My Pictures\5.JPG');figure,subplot(211);imshow(I);title('原图');J1=imnoise(I,'gaussian',0,0.02);subplot(223);imshow(J);title('添加高斯噪声');J=imnoise(I,'speckle',0.04);subplot(224);imshow(J);title('添加斑点噪声');五、算法综述灰度图像:一幅完整的图像,是由红色、绿色、蓝色三个通道组成的。
数字图像处理实验报告
数字图像处理实验报告引言数字图像处理是一门研究如何对图像进行数字化处理的学科,它的应用广泛,涵盖了图像的获取、增强、压缩、分割等多个方面。
本次实验旨在探索数字图像处理的基本原理和常用技术,并通过实践操作加深对数字图像处理的理解。
实验目的1.学习掌握数字图像处理的基本原理;2.熟悉常用的数字图像处理工具和方法;3.实践应用数字图像处理技术解决实际问题。
实验环境在本次实验中,我们使用了以下环境和工具:- 操作系统:Windows 10 - 编程语言:Python - 图像处理库:OpenCV实验步骤步骤一:图像获取与显示首先,我们需要获取一张待处理的图像,并对其进行显示。
在Python中,我们可以使用OpenCV库来实现图像的读取和显示。
以下是示例代码:import cv2# 读取图像image = cv2.imread('image.jpg')# 显示图像cv2.imshow('Image', image)cv2.waitKey(0)cv2.destroyAllWindows()步骤二:图像增强图像增强是数字图像处理中常用的技术之一,旨在改善图像的质量和可视化效果。
常见的图像增强技术包括灰度转换、直方图均衡化、滤波器等。
以下是示例代码:import cv2# 读取图像image = cv2.imread('image.jpg')# 灰度转换gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GR AY)# 直方图均衡化equalized_image = cv2.equalizeHist(gray_image)# 高斯滤波器blurred_image = cv2.GaussianBlur(equalized_image, (5, 5), 0)# 边缘增强enhanced_image = cv2.Canny(blurred_image, 100, 20 0)# 显示图像cv2.imshow('Enhanced Image', enhanced_image)cv2.waitKey(0)cv2.destroyAllWindows()步骤三:图像压缩图像压缩是数字图像处理中的重要话题,旨在减少图像的存储空间和传输带宽。
数字图像处理实验报告
数字图像处理试验报告实验二:数字图像的空间滤波与频域滤波姓名:XX学号:2XXXXXXX 实验日期:2017 年4 月26 日1、实验目的1、掌握图像滤波的基本定义及目的。
2、理解空间域滤波的基本原理及方法。
3、掌握进行图像的空域滤波的方法。
4、掌握傅立叶变换及逆变换的基本原理方法。
5、理解频域滤波的基本原理及方法。
6、掌握进行图像的频域滤波的方法。
2、实验内容与要求1、平滑空间滤波:1) 读出一幅图像,给这幅图像分别加入椒盐噪声与高斯噪声后并与前一张图显示在同一图像窗口中。
2) 对加入噪声图像选用不同的平滑(低通)模板做运算,对比不同模板所形成的效果, 要求在同一窗口中显示。
3) 使用函数 imfilter 时, 分别采用不同的填充方法( 或边界选项, 如零填充、’replicate’、’symmetric’、’circular’)进行低通滤波,显示处理后的图像。
4) 运用for 循环,将加有椒盐噪声的图像进行10 次,20 次均值滤波,查瞧其特点, 显示均值处理后的图像(提示:利用fspecial 函数的’average’类型生成均值滤波器)。
5) 对加入椒盐噪声的图像分别采用均值滤波法,与中值滤波法对有噪声的图像做处理,要求在同一窗口中显示结果。
6) 自己设计平滑空间滤波器,并将其对噪声图像进行处理,显示处理后的图像。
2、锐化空间滤波1) 读出一幅图像,采用3×3 的拉普拉斯算子 w = [ 1, 1, 1; 1 – 8 1; 1, 1, 1]对其进行滤波。
2) 编写函数w = genlaplacian(n),自动产生任一奇数尺寸n 的拉普拉斯算子,如5×5的拉普拉斯算子w = [ 1 1 1 1 11 1 1 1 11 1 -24 1 11 1 1 1 11 1 1 1 1]3) 分别采用5×5,9×9,15×15与25×25大小的拉普拉斯算子对blurry_moon、tiff (x, y) -∇2 f (x, y) 完成图像的锐化增强,观察其有何进行锐化滤波,并利用式g(x, y) =不同,要求在同一窗口中显示。
数字图像处理 实验报告(完整版).doc
数字图像处理实验一 MATLAB数字图像处理初步一、显示图像1.利用imread( )函数读取一幅图像,假设其名为lily.tif,存入一个数组中;2.利用whos 命令提取该读入图像flower.tif的基本信息;3.利用imshow()函数来显示这幅图像;实验结果如下图:源代码:>>I=imread('lily.tif')>> whos I>> imshow(I)二、压缩图像4.利用imfinfo函数来获取图像文件的压缩,颜色等等其他的详细信息;5.利用imwrite()函数来压缩这幅图象,将其保存为一幅压缩了像素的jpg文件,设为lily.jpg;语法:imwrite(原图像,新图像,‘quality’,q), q取0-100。
6.同样利用imwrite()函数将最初读入的tif图象另存为一幅bmp图像,设为flily.bmp。
7.用imread()读入图像Sunset.jpg和Winter.jpg;8.用imfinfo()获取图像Sunset.jpg和Winter.jpg的大小;9.用figure,imshow()分别将Sunset.jpg和Winter.jpg显示出来,观察两幅图像的质量。
其中9的实验结果如下图:源代码:4~6(接上面两个) >>I=imread('lily.tif')>> imfinfo 'lily.tif';>> imwrite(I,'lily.jpg','quality',20);>> imwrite(I,'lily.bmp');7~9 >>I=imread('Sunset.jpg');>>J=imread('Winter.jpg')>>imfinfo 'Sunset.jpg'>> imfinfo 'Winter.jpg'>>figure(1),imshow('Sunset.jpg')>>figure(2),imshow('Winter.jpg')三、二值化图像10.用im2bw将一幅灰度图像转化为二值图像,并且用imshow显示出来观察图像的特征。
数字图像处理实验报告
数字图像处理实验报告图像处理课程的目标是培养学生的试验综合素质与能力。
使学生通过实践,理解相关理论学问,将各类学问信息进行新的组合,制造出新的方法和新的思路,提高学生的科学试验与实际动手操作能力[1]。
从影像科筛选有价值的图像,建成影像学数字化试验教育平台,系统运行正常;具备图像上传、图像管理、图像检索与扫瞄、试验报告提交、老师批阅等功能;能满意使用要求[2]。
1.试验内容设计思路1.1项目建设内容和方法数字图像处理的内容:完整的数字图像处理大体上分为图像信息的猎取,存储,传送,处理,输出,和显示几个方面。
数字图像信息的猎取主要是把一幅图像转换成适合输入计算机和数字设备的数字信号,包括摄取图像,光、电转换及数字化。
数字图像信息的存储,数字图像信息的突出特点是数据量巨大,为了解决海量存储问题,数字图像的存储主要研究图像压缩,图像格式及图像数据库技术。
数字图像信息的传送数字图像信息的传送可分为系统内部传送与远距离传送[4]数字图像信息处理包括图像变换,图像增加,图像复原,彩色与多光谱处理图像重建,小波变换,图像编码,形态学,目标表示与描述。
数字图像输出和显示,最终目的是为人和机器供应一幅便于解释和识别的图像,数字图像的输出和显示也是数字图像处理的重要内容之一。
1.2数字图像处理的方法大致可以分为两大类,既空域法和频域法空域法:是把图像看做平面中各个像素组成的集合,然后直接对一维和二维函数进行相应处理,依据新图像生成方法的不同,空域处理法可为点处理法,区处理法,叠代处理法,跟踪处理法,位移不变与位移可变处理法。
点处理法的优点,点处理的典型用途a)灰度处理b)图像二值处理点处理方法的优点a)可用LUT方法快速实现b)节省存储空间。
区处理法,邻域处理法。
它依据输入图像的小邻域的像素值,按某些函数得到输出像素。
区处理法主要用于图象平滑和图像的锐化。
叠代处理法:叠代就是反复进行某些处理运算,图像叠代处理也是如此,拉普拉斯算子或平滑处理的结果是物体轮廓,该图像轮廓边缘太宽或粗细不一,要经过多次叠代把它处理成单像素轮廓——图像细化。
数字图像处理——彩色图像实验报告
数字图像处理——彩色图像实验报告第一篇:数字图像处理——彩色图像实验报告6.3实验步骤(1)对彩色图像的表达和显示* * * * * * * * * * * *显示彩色立方体* * * * * * * * * * * * *rgbcube(0,0,10);%从正面观察彩色立方体rgbcube(10,0,10);%从侧面观察彩色立方rgbcube(10,10,10);%从对角线观察彩色立方体%* * * * * * * * * *索引图像的显示和转换* * * * * * * * * f=imread('D:PictureFig0604(a)(iris).tif');figure,imshow(f);%f是RGB真彩图像%rgb图像转换成8色索引图像,不采用抖动方式[X1,map1]=rgb2ind(f,8,'nodither');figure,imshow(X1,map1);%采用抖动方式转换到8色索引图像[X2,map2]=rgb2ind(f,8,'dither');figure,imshow(X2,map2);%显示效果要好一些 g=rgb2gray(f);%f转换为灰度图像g1=dither(g);%将灰色图像经过抖动处理,转换打二值图像figure,imshow(g);%显示灰度图像figure,imshow(g1);%显示抖动处理后的二值图像程序运行结果:*彩色立方体原图不采用抖动方式转换到8色索引图像采用抖动方式转换到8色索引图像灰度图像抖动处理后的二值图像(2)彩色空间转换f=imread('D:PictureFig0604(a)(iris).tif');figure,imshow(f);%转换到NTSC彩色空间%f是RGB真彩图像ntsc_image=rgb2ntsc(f);figure,imshow(ntsc_image(:,:,1));%显示亮度信息figure,imshow(ntsc_image(:,:,2));%显示色差信息figure,imshow(ntsc_image(:,:,3));%显示色差信息%转换到HIS彩色空间hsi_image=rgb2hsi(f);figure,imshow(hsi_image(:,:,1));%显示色度信息figure,imshow(hsi_image(:,:,2));%显示饱和度信息figure,imshow(hsi_image(:,:,3));%显示亮度信息程序运行结果:原图转换到NTSC彩色空间显示亮度信息显示色差信息显示色差信息转换到HIS彩色空间显示色差信息显示饱和度信显示亮度信息(3)彩色变换f=imread('D:PictureFig0614(a)(Chalk Original).tif');G=ice('image',f);%打开ice窗口对图像进行调整%在窗口中执行以下操作:%a)得到图像的补色%b)拖动映射曲线,对图像显示效果进行修改%c)在颜色通道中选中某一颜色,然后对映射曲线进行修改程序运行结果(1):全彩色图片ICE窗口它的补色ICE窗口拖动映射曲线,图像的显示效果ICE窗口f2=imread('D:Picture JLK Magenta.tif');figure,imshow(f2);%在CMYK彩色空间内打开图像选择RedICE窗口g2=ice('image',f2,'space','CMYK');%f2的图像色彩偏红,拖动映射曲线,%调整映射参数,使图像的色彩看起来比较正常。
数字图像处理实验报告
数字图像处理实验报告一、引言数字图像处理是一门涉及图像获取、图像处理和图像分析的重要学科,广泛应用于计算机科学、电子工程、通信技术等领域。
本报告旨在介绍并总结我所进行的数字图像处理实验,讨论实验的目的、方法、结果和分析。
二、实验目的通过本次实验,旨在掌握和理解数字图像处理的基本原理和常见技术,包括灰度变换、空间域滤波、频域滤波等,以及层次分割、边缘检测和形态学处理等高级应用技术。
三、实验方法1. 寻找合适的图像在实验中,我选用了一张自然风景图像作为处理对象。
这张图像包含丰富的纹理和颜色信息,适合用于多种图像处理方法的验证和比较。
2. 灰度变换灰度变换是数字图像处理中常见的基础操作,可以通过对图像的像素灰度值进行线性或非线性变换,来调整图像的对比度、亮度等特征。
在实验中,我利用线性灰度变换方法将原始彩色图像转换为灰度图像,并进行对比度的调整,观察处理结果的变化。
3. 空间域滤波空间域滤波是一种基于像素邻域的图像处理方法,常用于图像去噪、边缘增强等应用。
我使用了平滑滤波和锐化滤波两种方法,并针对不同的滤波算子和参数进行了实验和比较,评估其对图像细节和边缘保留的影响。
4. 频域滤波频域滤波是一种基于图像的频谱特征的图像处理方法,广泛应用于图像增强、去噪和特征提取等方面。
我利用傅里叶变换将图像从空间域转换到频域,采用理想低通滤波器和巴特沃斯低通滤波器进行图像的模糊处理,并进行了实验对比和分析。
5. 高级应用技术在实验中,我还研究了数字图像处理中的一些高级应用技术,包括层次分割、边缘检测和形态学处理。
通过应用不同的算法和参数,我实现了图像区域分割、提取图像边缘和形态学形状变换等效果,评估处理结果的准确性和稳定性。
四、实验结果与分析通过对以上实验方法的实施,我获得了一系列处理后的图像,并进行了结果的比较和分析。
在灰度变换实验中,我发现线性变换对图像的对比度有较大影响,但对图像的细节变化不敏感;在空间域滤波实验中,平滑滤波可以有效降噪,但会导致图像细节损失,而锐化滤波可以增强图像的边缘效果,但也容易引入噪声;在频域滤波实验中,理想低通滤波对图像的模糊效果明显,而巴特沃斯低通滤波器可以在一定程度上保留图像的高频细节信息;在高级应用技术实验中,边缘检测和形态学处理对提取图像边缘和形状变换非常有效,但参数的选择会对结果产生较大影响。
数字图像处理实验报告
数字图像处理实验报告重庆邮电⼤学《数字图像处理》课程上机实验学院⽣物信息学院专业⽣物医学⼯程班级 0611302姓名李霞学号 2013211957实验⼀MATLAB数字图像处理初步⼀、实验⽬的与要求1.熟悉及掌握在MATLAB中能够处理哪些格式图像。
2.熟练掌握在MATLAB中如何读取图像。
3.掌握如何利⽤MATLAB来获取图像的⼤⼩、颜⾊、⾼度、宽度等等相关信息。
4.掌握如何在MATLAB中按照指定要求存储⼀幅图像的⽅法。
5.图像间如何转化。
⼆、实验原理及知识点1、数字图像的表⽰和类别⼀幅图像可以被定义为⼀个⼆维函数f(x,y),其中x和y是空间(平⾯)坐标,f 在任何坐标处(x,y)处的振幅称为图像在该点的亮度。
灰度是⽤来表⽰⿊⽩图像亮度的⼀个术语,⽽彩⾊图像是由单个⼆维图像组合形成的。
例如,在RGB彩⾊系统中,⼀幅彩⾊图像是由三幅独⽴的分量图像(红、绿、蓝)组成的。
因此,许多为⿊⽩图像处理开发的技术适⽤于彩⾊图像处理,⽅法是分别处理三副独⽴的分量图像即可。
图像关于x和y坐标以及振幅连续。
要将这样的⼀幅图像转化为数字形式,就要求数字化坐标和振幅。
将坐标值数字化成为取样;将振幅数字化成为量化。
采样和量化的过程如图1所⽰。
因此,当f的x、y分量和振幅都是有限且离散的量时,称该图像为数字图像。
作为MATLAB基本数据类型的数值数组本⾝⼗分适于表达图像,矩阵的元素和图像的像素之间有着⼗分⾃然的对应关系。
根据图像数据矩阵解释⽅法的不同,MA TLAB把其处理为4类:亮度图像(Intensity images)⼆值图像(Binary images)索引图像(Indexed images)RGB图像(RGB images)(1) 亮度图像⼀幅亮度图像是⼀个数据矩阵,其归⼀化的取值表⽰亮度。
若亮度图像的像素都是uint8类或uint16类,则它们的整数值范围分别是[0,255]和[0,65536]。
若图像是double类,则像素取值就是浮点数。
数字图像处理实验报告
数字图像处理实验报告数字图像处理实验报告实验⼀数字图像基本操作及灰度调整⼀、实验⽬的1)掌握读、写图像的基本⽅法。
2)掌握MATLAB语⾔中图像数据与信息的读取⽅法。
3)理解图像灰度变换处理在图像增强的作⽤。
4)掌握绘制灰度直⽅图的⽅法,理解灰度直⽅图的灰度变换及均衡化的⽅法。
⼆、实验内容与要求1.熟悉MATLAB语⾔中对图像数据读取,显⽰等基本函数特别需要熟悉下列命令:熟悉imread()函数、imwrite()函数、size()函数、Subplot()函数、Figure()函数。
1)将MATLAB⽬录下work⽂件夹中的forest.tif图像⽂件读出.⽤到imread,imfinfo等⽂件,观察⼀下图像数据,了解⼀下数字图像在MATLAB中的处理就是处理⼀个矩阵。
将这个图像显⽰出来(⽤imshow)。
尝试修改map颜⾊矩阵的值,再将图像显⽰出来,观察图像颜⾊的变化。
2)将MATLAB⽬录下work⽂件夹中的b747.jpg图像⽂件读出,⽤rgb2gray()将其转化为灰度图像,记为变量B。
2.图像灰度变换处理在图像增强的作⽤读⼊不同情况的图像,请⾃⼰编程和调⽤Matlab函数⽤常⽤灰度变换函数对输⼊图像进⾏灰度变换,⽐较相应的处理效果。
3.绘制图像灰度直⽅图的⽅法,对图像进⾏均衡化处理请⾃⼰编程和调⽤Matlab函数完成如下实验。
1)显⽰B的图像及灰度直⽅图,可以发现其灰度值集中在⼀段区域,⽤imadjust函数将它的灰度值调整到[0,1]之间,并观察调整后的图像与原图像的差别,调整后的灰度直⽅图与原灰度直⽅图的区别。
2) 对B 进⾏直⽅图均衡化处理,试⽐较与源图的异同。
3) 对B 进⾏如图所⽰的分段线形变换处理,试⽐较与直⽅图均衡化处理的异同。
图1.1 分段线性变换函数三、实验原理与算法分析1. 灰度变换灰度变换是图像增强的⼀种重要⼿段,它常⽤于改变图象的灰度范围及分布,是图象数字化及图象显⽰的重要⼯具。
数字图像处理实验报告图像增强处理与几何变换
实验图像增强处理与几何变换一、实验目的利用Matlab图像处理工具箱中的函数实现图像点处理、空间域平滑和锐化处理、彩色图像处理、几何处理,巩固其原理与计算方法学习,深化课程理论认知。
二、实验内容1、图像点处理:灰度变换、直方图均衡化和直方图规定处理;2、图像均值滤波和中值滤波、图像锐化处理;3、图像几何变换处理;4、图像彩色合成和彩色变换处理;三、实验步骤1、图像点处理:灰度变换、直方图均衡化和直方图规定处理;1.1图像的灰度变换启用MATLAB,输入以下代码运行I= imread('cameraman-8.bmp','bmp');figure; subplot(2,2,1), imshow(I);%获取图像直方图subplot(2,2,2),imhist(I);[counts1,x1] = imhist(I);%观察Counts,x的值subplot(2,2,3),stem(x1,counts1);%图像灰度变换J=imadjust(I,[0.1 0.7],[0.0 0.9]);subplot(2,2,4), imshow (J);%对比灰度变换前后的图像及其直方图figure;subplot(2,3,1),imshow(I);subplot(2,3,2),imshow(J);subplot(2,3,4),imhist(I);subplot(2,3,5),imhist(J);[counts2,x2] = imhist(J);subplot(2,3,6), stem(x2,counts2);图 1.1.1图 1.1.21.2图像直方图均衡化启用MATLAB,输入以下代码运行I=imread('cameraman-8.bmp','bmp') ;%直方图均衡化处理J=histeq(I) ;%对比均衡化处理前后的图像及其直方图figure(1),subplot(2,2,1),imshow(I),subplot(2,2,2),imshow(J); figure(1),subplot(2,2,3),imhist(I),subplot(2,2,4),imhist(J);图 1.2 1.3直方图规定化启用MATLAB,输入以下代码运行I1=imread('TM5.bmp','bmp');I2=imread('TM3.bmp','bmp');%直方图规定化处理K1=histeq(I1,imhist(I2));%对比规定化处理前后的图像及其直方图figure;subplot(3,2,1),imshow(I1);subplot(3,2,2), imhist(I1);subplot(3,2,3),imshow(I2);subplot(3,2,4), imhist(I2);subplot(3,2,5),imshow(K1);subplot(3,2,6), imhist(K1);图 1.32、图像空间域平滑2.1 用均值滤波器实现图像空间域的平滑启用MATLAB,输入以下代码运行I=imread('cameraman-8.bmp','bmp');J=imnoise(I,'gaussian'); %添加高斯噪声K=imnoise(I,'salt & pepper'); %添加椒盐噪声M=imnoise(I,'speckle'); %添加乘性噪声H=ones(3,3)/9; %3*3的均值去噪模板%滤波去噪处理I1=imfilter(I,H);J1=imfilter(J,H);K1=imfilter(K,H);M1=imfilter(M,H) ;%对比线性滤波去噪处理前后的图像figure;subplot(2,4,1),imshow(I);title('原图');subplot(2,4,2),imshow(J); title('高斯噪声图像'); subplot(2,4,3),imshow(K); title('椒盐噪声图像'); subplot(2,4,4),imshow(M); title('乘性噪声图像'); subplot(2,4,6),imshow(J1); title('高斯噪声滤波图像'); subplot(2,4,7),imshow(K1); title('椒盐噪声滤波图像'); subplot(2,4,8),imshow(M1) ; title('乘性噪声滤波图像') ; 输出图像如下图 2.12.2 用中值滤波器实现图像空间域的平滑启用MATLAB,输入以下代码运行I=imread('cameraman-8.bmp');I1=imnoise(I,'gaussian');I2=imnoise(I,'salt & pepper',0.02);I3=imnoise(I,'speckle');%3×3中值滤波模板J=medfilt2(I,[3,3]);J1=medfilt2(I1,[3,3]);J2=medfilt2(I2,[3,3]);J3=medfilt2(I3,[3,3]);figure,subplot(2,4,1),imshow(I) ; title('原图') ;subplot(2,4,2),imshow(I1) ; title('添加高斯噪声') ;subplot(2,4,3),imshow(I2) ; title('添加椒盐噪声') ;subplot(2,4,4),imshow(I3) ; title('添加乘性噪声') ;subplot(2,4,6),imshow(J1) ;title('高斯噪声3*3中值滤波') ; subplot(2,4,7),imshow(J2) ;title('椒盐噪声3*3中值滤波') ; subplot(2,4,8),imshow(J3) ;title('乘性噪声3*3中值滤波') ;K=medfilt2(I, [5,5]); %5×5中值滤波模板K1=medfilt2(I1,[5,5]);K2=medfilt2(I2,[5,5]);K3=medfilt2(I3,[5,5]);figure;subplot(2,2,1),imshow(K); title('原图5*5中值滤波'); subplot(2,2,2),imshow(K1) ; title('高斯噪声5*5中值滤波') ; subplot(2,2,3),imshow(K2); title('椒盐噪声5*5中值滤波'); subplot(2,2,4),imshow(K3) ; title('乘性噪声5*5中值滤波'); 输出结果如下图 2.2.1图 2.2.22.3 图像空间域锐化启用MATLAB,输入以下代码运行I=imread('cameraman-8.bmp','bmp')H=fspecial('sobel')%用sobel算子做模板%锐化处理J=imfilter(I,H)%锐化处理前后图像对比figure,subplot(1,2,1),imshow(I),subplot(1,2,2),imshow(J); 输出图像如下图 2.33、图像几何变换3.1 缩放启用MATLAB,输入以下代码运行I=imread('cameraman-8.bmp', 'bmp') ;%放大图像J=imresize(I,2) ;%缩小图像K=imresize(I,0.5) ;%图像对比figure(1),subplot(),imshow(I),title('原图'),figure(2),subplot(),imshow(J),title('放大两倍的图'),figure(3),subplot(),imshow(K),title('缩小0.5倍的图') ;输出图像如下图 3.1.1 图3.1.2图 3.1.33.2旋转启用MATLAB,输入以下代码运行I=imread('cameraman-8.bmp', 'bmp') ;%旋转图像M=imrotate(I,45) ;%图像对比figure;subplot(1,2,1),imshow(I),subplot(1,2,2),imshow(M) ;输出图像如下图 3.24、彩色图像处理4.1彩色合成启用MATLAB,输入以下代码运行I=imread('peppers.bmp','bmp');J1=I; J2=I;J3=I; J4=I;J5=I;%改变J1、J2、J3、J4、J5中的波段次序,组合成新的波段合成J1(:,:,1)=I(:,:,2); J1(:,:,2)=I(:,:,3); J1(:,:,3)=I(:,:,1) ;J2(:,:,1)=I(:,:,1); J2(:,:,2)=I(:,:,3); J2(:,:,3)=I(:,:,2) ;J3(:,:,1)=I(:,:,2); J3(:,:,2)=I(:,:,1); J3(:,:,3)=I(:,:,3) ;J4(:,:,1)=I(:,:,3); J4(:,:,2)=I(:,:,2); J4(:,:,3)=I(:,:,1) ;J5(:,:,1)=I(:,:,3); J5(:,:,2)=I(:,:,1); J5(:,:,3)=I(:,:,2) ;%对比原图像I与新图像J1、J2、J3、J4、J5的彩色差异,理解假彩色合成figure,subplot(2,3,1),imshow(I),title('原图');subplot(2,3,2),imshow(J1),title('变换一') ;subplot(2,3,3),imshow(J2),title('变换二') ;subplot(2,3,4),imshow(J3),title('变换三') ;subplot(2,3,5),imshow(J4),title('变换四') ;subplot(2,3,6),imshow(J5),title('变换五');输出图像如下图4.1 4.2彩色变换启用MATLAB,输入以下代码运行I=imread('peppers.bmp','bmp');HSV=rgb2hsv(I) ;RGB=hsv2rgb(HSV) ;%对比彩色变换前后的图像figure;subplot(1,3,1),imshow(I),title('原图'),subplot(1,3,2),imshow(HSV),title('HSV图像'); subplot(1,3,3),imshow(RGB),title('RGB图像') ;输出结果如下图 4.2四、实验算法要点总结1、图像点处理直方图修正法通常分为直方图均衡化和直方图规定化两类2、图像均值滤波和中值滤波、图像锐化处理3、图像几何变换处理4、图像彩色合成和彩色变换处理通过映射函数将彩色图像或多光谱图像变换成新的三基色分量线性假彩色映射表示为:。
数字图像处理实验报告
目录实验一:数字图像的基本处理操作 (2)1。
1:实验目的 (2)1。
2:实验任务和要求 (2)1.3:实验步骤和结果 (2)1。
4:结果分析 (6)实验二:图像的灰度变换和直方图变换 (7)2.1:实验目的 (7)2.2:实验任务和要求 (7)2。
3:实验步骤和结果 (7)2。
4:结果分析 (11)实验三:图像的平滑处理 (12)3.1:实验目的 (12)3。
2:实验任务和要求 (12)3。
3:实验步骤和结果 (12)3。
4:结果分析 (16)实验四:图像的锐化处理 (17)4.1:实验目的 (17)4.2:实验任务和要求 (17)4。
3:实验步骤和结果 (17)4.4:结果分析 (19)实验一:数字图像的基本处理操作1.1:实验目的1、熟悉并掌握MATLAB、PHOTOSHOP等工具的使用;2、实现图像的读取、显示、代数运算和简单变换。
3、熟悉及掌握图像的傅里叶变换原理及性质,实现图像的傅里叶变换。
1。
2:实验任务和要求1.读入一幅RGB图像,变换为灰度图像和二值图像,并在同一个窗口内分成三个子窗口来分别显示RGB图像和灰度图像,注上文字标题。
2.对两幅不同图像执行加、减、乘、除操作,在同一个窗口内分成五个子窗口来分别显示,注上文字标题.3.对一幅图像进行平移,显示原始图像与处理后图像,分别对其进行傅里叶变换,显示变换后结果,分析原图的傅里叶谱与平移后傅里叶频谱的对应关系。
4.对一幅图像进行旋转,显示原始图像与处理后图像,分别对其进行傅里叶变换,显示变换后结果,分析原图的傅里叶谱与旋转后傅里叶频谱的对应关系。
1.3:实验步骤和结果1.对实验任务1的实现代码如下:a=imread(’d:\tp.jpg’);i=rgb2gray(a);I=im2bw(a,0。
5);subplot(1,3,1);imshow(a);title('原图像');subplot(1,3,2);imshow(i);title(’灰度图像’);subplot(1,3,3);imshow(I);title('二值图像’);subplot(1,3,1);imshow(a);title('原图像');结果如图1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录实验一:数字图像的基本处理操作 (3)1.1:实验目的 (3)1.2:实验任务和要求 (3)1.3:实验步骤和结果 (3)1.4:结果分析 (10)实验二:图像的灰度变换和直方图变换 (10)2.1:实验目的 (10)2.2:实验任务和要求 (11)2.3:实验步骤和结果 (11)2.4:结果分析 (16)实验三:图像的平滑处理 (17)3.1:实验目的 (17)3.2:实验任务和要求 (17)3.3:实验步骤和结果 (18)3.4:结果分析 (23)实验四:图像的锐化处理 (24)4.1:实验目的 (24)4.2:实验任务和要求 (24)4.3:实验步骤和结果 (25)4.4:结果分析 (28)实验一:数字图像的基本处理操作1.1:实验目的1、熟悉并掌握MATLAB、PHOTOSHOP等工具的使用;2、实现图像的读取、显示、代数运算和简单变换。
3、熟悉及掌握图像的傅里叶变换原理及性质,实现图像的傅里叶变换。
1.2:实验任务和要求1.读入一幅RGB图像,变换为灰度图像和二值图像,并在同一个窗口内分成三个子窗口来分别显示RGB图像和灰度图像,注上文字标题。
2.对两幅不同图像执行加、减、乘、除操作,在同一个窗口内分成五个子窗口来分别显示,注上文字标题。
3.对一幅图像进行平移,显示原始图像与处理后图像,分别对其进行傅里叶变换,显示变换后结果,分析原图的傅里叶谱与平移后傅里叶频谱的对应关系。
4.对一幅图像进行旋转,显示原始图像与处理后图像,分别对其进行傅里叶变换,显示变换后结果,分析原图的傅里叶谱与旋转后傅里叶频谱的对应关系。
1.3:实验步骤和结果1.对实验任务1的实现代码如下:a=imread('d:\tp.jpg');i=rgb2gray(a);I=im2bw(a,0.5);subplot(1,3,1);imshow(a);title('原图像'); subplot(1,3,2);imshow(i);title('灰度图像'); subplot(1,3,3);imshow(I);title('二值图像'); subplot(1,3,1);imshow(a);title('原图像');结果如图1.1 所示:图1.1 原图及其灰度图像,二值图像2.对实验任务2的实现代码如下:a=imread('d:\tp.jpg');A=imresize(a,[800 800]);b=imread('d:\tp2.jpg');B=imresize(b,[800 800]);Z1=imadd(A,B);Z2=imsubtract(A,B);Z3=immultiply(A,B);Z4=imdivide(A,B);subplot(3,2,1);imshow(A);title('原图像A'); subplot(3,2,2);imshow(B);title('原图像B'); subplot(3,2,3);imshow(Z1);title('加法图像'); subplot(3,2,4);imshow(Z2);title('减法图像'); subplot(3,2,5);imshow(Z3);title('乘法图像'); subplot(3,2,6);imshow(Z2);title('除法图像');结果如图1.2所示:3.对实验任务3的实现代码如下:s=imread('d:\tp3.jpg');i=rgb2gray(s);i=double(i);j=fft2(i);k=fftshift(j); %直流分量移到频谱中心I=log(abs(k)); %对数变换m=fftshift(j); %直流分量移到频谱中心RR=real(m); %取傅里叶变换的实部II=imag(m); %取傅里叶变换的虚部A=sqrt(RR.^2+II.^2);A=(A-min(min(A)))/(max(max(A)))*255;b=circshift(s,[800 450]);b=rgb2gray(b);b=double(b);c=fft2(b);e=fftshift(c);I=log(abs(e));f=fftshift(c);WW=real(f);ZZ=imag(f);B=sqrt(WW.^2+ZZ.^2);B=(B-min(min(B)))/(max(max(B)))*255;subplot(2,2,1);imshow(s);title('原图像');subplot(2,2,2);imshow(uint8(b));title('平移图像');subplot(2,2,3);imshow(A);title('离散傅里叶变换频谱'); subplot(2,2,4);imshow(B);title('平移图像离散傅里叶变换频谱'); 结果如图1.3所示:4.对实验任务4的实现代码如下:s=imread('d:\tp3.jpg');i=rgb2gray(s);i=double(i);j=fft2(i);k=fftshift(j);I=log(abs(k));m=fftshift(j);RR=real(m);II=imag(m);A=sqrt(RR.^2+II.^2);A=(A-min(min(A)))/(max(max(A)))*255;b=imrotate(s,-90);b=rgb2gray(b);b=double(b);c=fft2(b);e=fftshift(c);I=log(abs(e));f=fftshift(c);WW=real(f);ZZ=imag(f);B=sqrt(WW.^2+ZZ.^2);B=(B-min(min(B)))/(max(max(B)))*255;subplot(2,2,1);imshow(s);title('原图像');subplot(2,2,2);imshow(uint8(b));title('平移图像'); subplot(2,2,3);imshow(A);title('离散傅里叶频谱'); subplot(2,2,4);imshow(B);title('平移图像离散傅里叶频谱');结果如图1.4所示:1.4:结果分析对MATLAB软件的操作开始时不太熟悉,许多语法和函数都不会使用,写出程序后,调试运行,最开始无法显示图像,检查原因,是有些标点符号没有在英文状态下输入和一些其他的细节,学会了imread(),imshow(),rgb2gray()等函数。
实验二:图像的灰度变换和直方图变换2.1:实验目的1、熟悉及掌握图像的采样原理,实现图像的采样过程,进行图像的灰度转换。
2、理解直方图的概念及应用,实现图像直方图的显示,及通过直方图均衡对图像进行修正。
2.2:实验任务和要求1、对一幅图像进行2倍、4倍、8倍和16倍减采样,显示结果。
2、显示一幅灰度图像a,改变图像亮度使其整体变暗得到图像b,显示两幅图像的直方图。
3、对一幅图像进行灰度变化,实现图像变亮、变暗和负片效果,在同一个窗口内分成四个子窗口来分别显示,注上文字标题。
4、对一副图像进行直方图均衡化,显示结果图像和对应直方图。
5、对一副图像进行如图所示的分段线形变换处理,试比较与直方图均衡化处理的异同。
2.3:实验步骤和结果1.对实验任务1的实现代码如下:a=imread('d:\tp2.jpg');b=rgb2gray(a);for m=1:4figure[width,height]=size(b);quartimage=zeros(floor(width/(m)),floor(height/(2*m))); k=1;n=1;for i=1:(m):widthfor j=1:(2*m):heightquartimage(k,n)=b(i,j);n=n+1;endk=k+1;n=1;endimshow(unit8(quartimage));end结果如图所示:2. 对实验任务2的实现代码如下:a=imread('d:\tp2.jpg');c=rgb2gray(a);b=c-46;subplot(3,2,1);imshow(c);title('原图像')subplot(3,2,2);imhist(c);title('原图像的直方图') subplot(3,2,3);imshow(b);title('变暗后的图像') subplot(3,2,4);imhist(b);title('变暗后的图像直方图'); d=imadjust(c,[0,1],[1,0]);subplot(3,2,5);imshow(d);title('反转图像');结果如图2.2所示:3. 对实验任务3的实现代码如下:a=imread('d:\tp.jpg');m=imadjust(a,[,],[0.5;1]);%图像变亮n=imadjust(a,[,],[0;0.5]);%图像变暗g=255-a;%负片效果subplot(2,2,1);imshow(a);title('原图像'); subplot(2,2,2);imshow(m);title('图像变亮'); subplot(2,2,3);imshow(n);title('图像变暗'); subplot(2,2,4);imshow(g);title('负片效果');结果如图所示:4. 对实验任务4的实现代码如下:b=imread('d:\tp.jpg');c=rgb2gray(b);j=histeq(c);subplot(2,2,1),imshow(c);subplot(2,2,2),imshow(j);subplot(2,2,3),imhist(c);subplot(2,2,4),imhist(j);结果如图2.4所示:5. 对实验任务5的实现代码如下:x1=0:0.01:0.125;x2=0.125:0.01:0.75;x3=0.75:0.01:1;y1=2*x1;y2=0.25+0.6*(x2-0.125);y3=0.625+1.5*(x3-0.75);x=[x1,x2,x3];y=[y1,y2,y3];plot(x,y);结果如图所示:2.4:结果分析这次实验主要是对图像的灰度变换和直方图均衡化,实验内容包括灰度拉伸、图像反转、图像的二值化以及直方图均衡。