分析化学(第二版)主要计算公式汇总(DOC)
分析化学有关计算公式
(2) 求极差
xn - x1
(3) 求可疑数据与相邻数据之差
xn - xn-1 或 x2 -x1
(4) 计算:
ቤተ መጻሕፍቲ ባይዱ
Q = xn − xn−1 或 Q = x2 − x1
xn − x1
xn − x1
Q值越大,说明离群越远,远至一定程度时则应将其舍去。故Q称为舍弃 商。
2. 格鲁布斯(Grubbs)检验法
=
[H + ]2
+
[H + ]2 Ka1[H+ ] +
K a1K a2
δ HA −
=
[HA − C
]
=
[H
2A]
[HA− ] + [HA− ]
+
[ A 2−
]
=
[H+
]2
[H+ ]K a1 + Ka1[H+ ] + Ka1Ka2
δ A 2−
= [A2− ] C
=
[H
2
A]
+
[ A 2− [HA
]
−
]
分析化学中有关计算公式汇集
赵剑英
第三章 误差分析和数据的处理
绝对误差: Ea = x − T
_
相对误差: Er
=
x−T T
×100%
=
Ea T
×100%
绝对偏差: di = xi − x
平均偏差: d = d1 + d2 +LL+ di ×100%
n
d = ∑ xi − x n
lim x = µ
元 弱
[H + ] = cK a
分析化学计算公式汇总
分析化学主要计算公式总结第二章误差和分析数据处理(1)误差绝对误差δ=x-μ相对误差=δ/μ*100%(2)绝对平均偏差:△=(│△1│+│△2│+……+│△n│)/n (△为平均绝对误差;△1、△2、……△n为各次测量的平均绝对误差)。
(3)标准偏差相对标准偏差(RSD)或称变异系数(CV) RSD=S/X*100% (4)平均值的置信区间:*真值落在μ±1σ区间的几率即置信度为68.3%*置信度——可靠程度*一定置信度下的置信区间——μ±1σ对于有限次数测定真值μ与平均值x之间有如下关系:s:为标准偏差n:为测定次数t:为选定的某一置信度下的几率系数(统计因子) (5)单个样本的t检验目的:比较样本均数所代表的未知总体均数μ和已知总体均数μ0。
计算公式:t统计量:自由度:v=n - 1适用条件:(1) 已知一个总体均数;(2) 可得到一个样本均数及该样本标准误;(3) 样本来自正态或近似正态总体。
例1 难产儿出生体重n=35, =3.42, S =0.40,一般婴儿出生体重μ0=3.30(大规模调查获得),问相同否?解:1.建立假设、确定检验水准αH0:μ = μ0(无效假设,null hypothesis)H1:(备择假设,alternative hypothesis,)双侧检验,检验水准:α=0.052.计算检验统计量,v=n-1=35-1=343.查相应界值表,确定P值,下结论查附表1,t0.05 / 2.34= 2.032,t< t0.05 / 2.34,P >0.05,按α=0.05水准,不拒绝H0,两者的差别无统计学意义(6)F检验法是英国统计学家Fisher提出的,主要通过比较两组数据的方差 S^2,以确定他们的精密度是否有显著性差异。
至于两组数据之间是否存在系统误差,则在进行F检验并确定它们的精密度没有显著性差异之后,再进行t 检验。
样本标准偏差的平方,即(“^2”是表示平方):S^2=∑(X-X平均)^2/(n-1)两组数据就能得到两个S^2值,S 大^2和S 小^2 F=S 大^2/S 小^2由表中f 大和f 小(f 为自由度n-1),查得F 表, 然后计算的F 值与查表得到的F 表值比较,如果 F < F 表 表明两组数据没有显著差异; F ≥ F 表 表明两组数据存在显著差异(7)可疑问值的取舍: G 检验法 G=Sxx第三章 滴定分析法概论 主要化学公式 (1)物质的量浓度 c B =n B /V B(2)物质的量与质量的关系 n B =m B /M B(3)滴定剂与待测物质相互作用的计算 c A V A =a/tc T V T c T V T =t/a(1000m A /M A )(4)滴定度与滴定剂浓度之间的关系 T T/A =a/tc T M A/1000(5)待测组分质量分数的计算ωA =(T T/A V T )/S*100%=ScTVTMA ta1000/*100%第4章 酸碱滴定法(1)共轭酸碱对Ka 与Kb 间的关系:KaKb=Kw(2)酸碱型体平衡浓度([ ]),分析浓度(c )和分布系数(δa )之间的关系(3)一元强酸溶液的pH 的计算 [H +]=24w2K c c ++ 精确式pH=-lg c 近似式 (4)一元弱酸溶液pH 的计算 [H +]=wa ]HA [K K + 精确式(5-11)(关于[H +]的一元三次方程)其中 [HA]=c [H +]/([H +]+K a )·若[A -]>20[OH -](即cK a >20K w ),可以忽略因水解离产生的H +PBE 简化为 [H +]≈[A -]∴ [H +]=a a])H [(]HA [K c K +-= (5-12)·若不但cK a >20K w ,而且c /K a >400(即c >20[A -]或c>20[H +]),也就是弱酸的解离度[A -]/c <0.05,就可以忽略因解离对弱酸浓度的影响,于是[HA]≈c∴ [H +]=acK最简式·若cK a >20K w ,c /K a <400,由式(5-12)可得[H +]=24a2a a cK K K ++- 近似式(1)·若cK a <20K w ,C/K a >400(适用于酸极弱、且浓度极小的情况,此时[HA]≈c ),由式(5-11)可得 [H +]=wa K cK +近似式(2)(5)多元酸溶液pH 的计算最简式 ][H A][H 1a 2cK c =∴≈+(6)两性物质(NaHA )溶液pH 的计算最简式][H 21a a K K =+(7)缓冲溶液pH 值的计算 最简式:[H+]=ca/cb*Ka第五章 络合滴定法 (1)酸效应系数:)(H Y α==][][][][][][][62'Y Y H Y H HY Y Y Y ++++= ==1/Y δ在副反应中分布分数Y δ与)(H Y α互为倒数⑴)(H Y α==621621211456][][][a a a a a a a a a K K K K K K H K K H K H ++++++++==1+4556][][][2a a a a K H K K H K H ++++++6534][aa a K K K H ++6534][a a a K K K H ++6534][a a a K K K H +(2)共存离子效应系数αY (N ))(N Y α==][][][Y NY Y + 因为[NY]==K NY [N][Y] 故:)(N Y α==1+ K NY [N](3)EDTA 与H+及N 同时发生副反应的总的副反应系数αY ,Y α==)(H Y α+1)(-N Y α(4)被测金属离子M 的副反应系数αM :][][][][][][][2')(M ML ML ML M M M n L M ++++==== α= 1+n nL L L ][][][221βββ+++ 若有P 个络合物与金属发生副反应,则:)(N Y α=)(1N Y α+)(2NY α+…+)(n N Y α-(n-1)化学计量点pM ’的计算 pM ’=1/2[p cM(sp)+lgK’MY](7)金属离子指示剂颜色转变点(变色点)pM t 值的计算 pM t =lgK MIn -lg αIn(H) (8)滴定终点误差%1001010',''⨯-==∆-∆MYSP M pM pM t K C E(9)直接准确滴定金属离子的可行性判据:6lg ',≥MYsp M KC第六章 氧化还原滴定法(1)氧化还原电对的电极电位——Nernst 方程式)Red ()Ox (lg0.059)Ox /Red ()Ox /Red (θa a n E E +=(2)以浓度替代活度,且考虑到副反应的影响,则电对在25C 时的条件电位lg059.0/OR RO n E Eαγαγθθ+=(3)氧化还原反应的条件平衡常数K ’(25C 时)059.0)n'E ' (E K' Lg 21︒-︒=(4)氧化还原滴定化学计量点时的电位值φsp212211sp n n 'E n 'E n E +︒+︒=(5)氧化还原滴定突跃范围计算式 φ2‘+0.59*3/n 2(V)—φ1‘+0.59*3/n 1(V) (6)氧化还原指示剂变色的电位范围 φ‘±0.059/n(V)第7章 沉淀滴定法和重量滴定法 主要计算公式(1)沉淀溶解积 pKsp=pAg+pX (2)化学计量点 pAg=pX+1/2pKsp (3)质量分数计算 ω=(CV*M/1000)/m s *100%(4)1:1型的MA 沉淀溶解度的计算 S='Ksp =KspaMaA(4)化学因数(或称换算因数)Fm ’=mF (m 为称量形式的质量,m ’为被测成分的质量) (6)被测成分的质量分数ω ω=mF/me*100%第八章 电位分析法及永停分析法 主要计算公式(1)电池电动势: E 电池=φ(+)-φ(-) (2)直接电位法测定溶液pH pH x =PH s +(E x -E s )/0.059(25C) (3)离子选择电极的电位φφ=K ±2.303RT/F*lg ai = K ’±2.303RT/F*lg ci K ’=K ±2.303RT/nF*lg(f i /a i )Ex-Es=±2.303RT/nF*(lg cx -lg cs ) (6)标准加入法计算待测溶液的离子浓度XSE S X SS X V V V V C C ⋅⋅+=⇒∆10)(nFRTS 303.2)1()2(=-式,且令式(7)直接电位法测量误差的计算式△c/c=nF/RT*△E ≈39n △E第9章 光学分析法概论主要计算公式(1)光的波动性用波长λ,波数σ和频率υ作为表征 λ是在波的传播路线上具有相同振动相位的相邻两点之间的线性距离,常用nm 作为单位。
分析化学(第二版)主要计算公式汇总
分析化学(第二版)主要计算公式汇总分析化学是研究物质组成、性质和变化的科学,它的核心是对实验数据的分析和计算。
在分析化学中,有许多重要的计算公式被广泛应用于各种实验和分析过程中。
下面是一些常见的分析化学计算公式的汇总。
1. 相对分子质量(Molecular Weight):相对分子质量是一种衡量物质质量的单位,也称为相对分子量或分子量。
它可以通过计算各个组成原子的原子质量的总和来确定。
相对分子质量(M)=各原子相对原子质量(A)的总和2. 摩尔浓度(Molar Concentration):摩尔浓度是溶液中溶质的摩尔量与溶液的体积之比。
它通常用于描述溶液的浓度。
摩尔浓度(C)=溶质摩尔量(n)/溶液体积(V)3. 检测极限(Detection Limit):检测极限是用于评估分析方法灵敏度的指标,它表示在一定置信水平下对所测分析物的最小浓度。
检测极限(DL)=3倍标准偏差(SD)/斜率(S)4. 线性相关系数(Linearity):线性相关系数是用于衡量分析方法的线性程度的指标。
它通常用于评估分析方法的合适性和准确性。
线性相关系数(r)= ∑[(xi- x均值)(yi-y均值)]/√(∑(xi- x均值)^2 *∑(yi-y均值)^2)5. 相对标准偏差(Relative Standard Deviation):相对标准偏差是用于衡量实验测量结果的精密度和可靠性的指标。
它表示数据的离散程度。
相对标准偏差(RSD)=(标准偏差/平均值)*100%6. 扩展不确定度(Expanded Uncertainty):扩展不确定度是用于表示测量结果不确定性的指标,它通常用于定义测量结果的可靠性范围。
扩展不确定度(U)=标准不确定度(u)*校正因子(k)除了以上例举的公式外,分析化学中还有许多其他常见的计算公式,如酸碱滴定、氧化还原反应的电荷平衡、络合反应中的配位数计算等等。
这些计算公式的应用范围非常广泛,可以适用于各种分析方法和技术,如色谱法、光谱法、电化学法等。
分析化学(第二版)主要计算公式汇总
(2)共存离子效应系数αY(N)
[Y ] [NY ]
== Y (N)
[Y ]
因为[NY]==KNY[N][Y]
故:Y(N) ==1+ KNY[N]
(3)EDTA 与 H+及 N 同时发生副反应的总的副反应系数αY,
== + Y Y (H ) Y (N ) 1 (4)被测金属离子 M 的副反应系数αM:
分析化学(第二版)主要计算公式总结
第二章 误差和分析数据处理 (1)误差
绝对误差δ=x-μ 相对误差=δ/μ*100% (2)绝对平均偏差: △=(│△1│+│△2│+„„+│△n│)/n (△为平均绝对误差;△1、△2、„„△n 为 各次测量的平均绝对误差)。 (3)标准偏差
相对标准偏差(RSD)或称变异系数(CV) RSD=S/X*100% (4)平均值的置信区间:
第 9 章 光学分析法概论 主要计算公式 (1)光的波动性用波长λ,波数σ和频率υ作为表征 λ是在波的传播路线上具有相同振动相 位的相邻两点之间的线性距离,常用 nm 作为单位。σ是每厘米长度中波的数目,单位 cm-1。υ 是每秒内的波动次数,单位 Hz。在真空中波长,波数和频率的关系为:v=c/λσ=1/λ=υ/c (2)光的微粒性用每个光子具有的能量 E 作为表征 光子的能量与频率成正比,与波长成反比。 它与频率、波长的关系为 E=hυ=hc/λ=hcσ 第 10 章 紫外-可见分光光度法 (1)Lamber-Beer 定律 A=-lgT=Ecl (2)摩尔吸光定律ε ε= E 1% * M
Cx=(Fx-F0)/(Fs-F0)*cs
第 12 章 原子吸收分光度法
主要计算公式
(1)波尔兹曼分布律
分析化学计算公式汇总
第二章 误差和分析数据处理 ( 1 )误差 绝对误差 δ =x- μ 相对误差 =δ / μ *100% (2) 绝对平均偏差: △ =(│△ 1│ +│△ 2│ +,,+ │△ n│) 对误差; △ 1 、 △ 2、 ,, △ ( 3 )标准偏差 /n (△为平均绝 。
n 为各次测量的平均绝对误差)
, v=n-1=35-1=34 3. 查相应界值表,确定 查附表 1, t 0.05 / 2.34 按 α =0.05 水准,不拒绝 (6)F 检验法是英国统计学家 较两组数据的方差 P 值,下结论
= 2.032, t < t 0.05 / 2.34,P >0.05 ,
0,两者的差别无统计学意义 H
第 11 章 荧光分析法
( 1 )荧光效率 φ t =发射荧光的光子数 / 吸收激发光的光子数 ( 2 )荧光强度 F 与荧光物质浓度 F=2.3 c 的关系( Ecl<0.05 )
K
' I0
Ecl
(3) 比例法: ( Fs-F 0) /(F x-F 0 )=c s /c Cx=(F x-F 0)/(F
i j
Ex-Es= ± 2.303RT/nF*(lg
cx
-lg
cs
)
(6) 标准加入法计算待测溶液的离子浓度
CX
( 2) 式
C SVS (V X VS ) 10
E S
VX
(1)式,且令 S
2.303RT nF
( 7 )直接电位法测量误差的计算式
△ c/c=nF/RT* △ E≈ 39n△ E
第 9 章 光学分析法概论 主要计算公式 ( 1 )光的波动性用波长 λ,波数 ζ和频率 υ 作为表征 λ是
分析化学主要计算公式(一)
分析化学主要计算公式(一)引言概述:分析化学是一门研究物质成分和性质的学科,其中计算在分析化学中起着非常重要的作用。
本文将重点介绍分析化学中的主要计算公式,以帮助读者更好地理解和应用这些公式。
在接下来的正文中,我们将对分析化学中的五个重要的计算公式进行详细的阐述和说明,涵盖了常见的浓度、摩尔质量、配位化学、催化反应等方面。
正文:1. 浓度计算公式1.1 质量浓度计算公式1.1.1 质量浓度的计算公式为质量浓度 = 质量 / 体积,其中质量浓度的单位可以是g/L,mg/mL等。
1.1.2 通过测量物质的质量和溶液的体积,可以计算出溶液中溶质的质量浓度。
1.2 摩尔浓度计算公式1.2.1 摩尔浓度的计算公式为摩尔浓度 = 物质的摩尔数 / 溶液的体积,其中摩尔浓度的单位可以是mol/L。
1.2.2 通过测量物质的摩尔数和溶液的体积,可以计算出溶液中溶质的摩尔浓度。
1.3 百分数体积计算公式1.3.1 百分数体积的计算公式为百分数体积 = 溶质的体积 / 溶液的体积× 100%。
1.3.2 通过测量溶质的体积和溶液的总体积,可以计算出溶液中溶质的百分数体积。
1.4 体积分数计算公式1.4.1 体积分数的计算公式为体积分数 = 溶质的体积 / 溶液的总体积。
1.4.2 通过测量溶质的体积和溶液的总体积,可以计算出溶液中溶质的体积分数。
1.5 摩尔分数计算公式1.5.1 摩尔分数的计算公式为摩尔分数 = 溶质的摩尔数 / 溶液的总摩尔数。
1.5.2 通过测量溶质的摩尔数和溶液的总摩尔数,可以计算出溶液中溶质的摩尔分数。
2. 摩尔质量计算公式2.1 摩尔质量的计算公式为摩尔质量 = 质量 / 物质的摩尔数,其中摩尔质量的单位可以是g/mol。
2.2 通过测量物质的质量和摩尔数,可以计算出物质的摩尔质量。
3. 配位化学计算公式3.1 配位数计算公式3.1.1 配位数是指一个中心金属离子周围配位体的个数,配位数的计算公式可以根据配位体的性质和配位子的排列情况进行确定。
分析化学计算公式汇总
分析化学主要计算公式总结第二章误差和分析数据处理(1)误差绝对误差δ=x- μ相对误差=δ/ μ*100%(2) 绝对平均偏差:△=(│△1│+│△2│+,,+ │△n│)/n (△为平均绝对误差;△1、△2、,, △n 为各次测量的平均绝对误差)。
(3)标准偏差相对标准偏差(RSD)或称变异系数(CV)RSD=S/X*100% (4) 平均值的置信区间:*真值落在μ±1ζ区间的几率即置信度为68.3%*置信度——可靠程度*一定置信度下的置信区间——μ±1ζ对于有限次数测定真值μ与平均值x 之间有如下关系:s:为标准偏差n:为测定次数t :为选定的某一置信度下的几率系数( 统计因子) (5) 单个样本的t 检验目的:比较样本均数所代表的未知总体均数μ和已知总体均数μ0。
计算公式:t 统计量:自由度:v=n - 1适用条件:(1) 已知一个总体均数;(2) 可得到一个样本均数及该样本标准误;(3) 样本来自正态或近似正态总体。
例1 难产儿出生体重n=35, =3.42, S =0.40,一般婴儿出生体重μ0=3.30 (大规模调查获得),问相同否?解:1. 建立假设、确定检验水准αH0:μ= μ0 (无效假设,null hypothesis )H1:(备择假设,alternative hypothesis ,)双侧检验,检验水准: α=0.052. 计算检验统计量,v=n-1=35-1=343. 查相应界值表,确定P值,下结论查附表1,t 0.05 / 2.34 = 2.032, t < t 0.05 / 2.34,P >0.05 ,H按α=0.05 水准,不拒绝0,两者的差别无统计学意义(6)F 检验法是英国统计学家Fisher 提出的,主要通过比较两组数据的方差S^2 ,以确定他们的精密度是否有显著行性差异。
至于两组数据之间是否存在系统误差,则在进F 检验并确定它们的精密度没有显著性差异之后,再进行t 检验。
分析化学主要计算公式(二)
分析化学主要计算公式(二)引言概述:分析化学是一门研究物质组成、结构和性质的科学,其主要目的是通过实验和计算来分析和解释化学现象。
在实际的实验室工作中,掌握一些主要的计算公式对于有效进行分析化学研究具有重要意义。
本文将介绍分析化学中的一些主要计算公式,帮助读者理解和应用这些公式。
正文内容:1. 比浓度计算公式1.1 质量浓度计算公式- 质量浓度的定义和计算方法- 实际案例分析- 测量误差和校正1.2 摩尔浓度计算公式- 摩尔浓度的定义和计算方法- 摩尔浓度与质量浓度的转换- 应用案例分析2. 溶液配制计算公式2.1 目标浓度计算公式- 目标浓度的定义和计算方法- 稀释和浓缩的计算方法- 实际应用案例分析2.2 溶液配制误差与调整- 稀释误差和溶液配制误差的来源- 误差分析和调整方法- 误差限制与可接受范围3. 酸碱中和反应计算公式3.1 酸碱滴定反应计算公式- 酸碱滴定反应的定义和计算方法- 酸碱滴定的计量原理- 酸碱指示剂的选择和使用3.2 酸碱反应的平衡计算- 酸碱反应平衡常数的计算- pH值的计算和预测- 酸碱滴定曲线的分析4. 数据处理和统计计算公式4.1 均值和标准偏差的计算- 数据的集中趋势和离散程度的计算方法 - 均值和标准偏差的意义和应用4.2 标准曲线的构建和拟合- 标准曲线的作用和构建方法- 数据拟合与回归分析- 实际应用案例分析5. 光谱分析计算公式5.1 吸光度和透过率的计算- 吸光度和透过率的定义和计算方法- Lambert-Beer定律的应用- 光谱分析数据的处理和解释5.2 样品浓度的定量分析- 样品浓度的计算方法- 标准曲线法和内标法的选择和应用- 实际应用案例分析总结:本文介绍了分析化学中的主要计算公式。
通过质量浓度、摩尔浓度等比浓度计算公式,可以计算物质溶液的浓度。
溶液配制计算公式帮助实验室准确配制所需浓度的溶液。
酸碱中和反应计算公式可以预测和计算酸碱滴定的终点和反应平衡。
分析化学公式
基本计算(1)绝对误差:δ=x—μ(2)相对误差:相对误差=(δ/μ)×100% 或相对误差=(δ/x)×100% (3)绝对偏差:d = x i-(4)平均偏差:(5)相对平均偏差:(6)标准偏差:或(7)相对标准偏差:(8)样本均值与标准值比较的t 检验:(9)两组数据均值比较的t检验:(10)两组数据方差比较的F检验:(S1>S2)(11)可疑数据取舍的Q检验:(12)可疑数据取舍的G检验:3.基本计算(1)滴定分析的化学计量关系:tT + bB = cC + dD,nT/nB=t/b(2)标准溶液配制:cT = mT/(VT×MT)(3)标准溶液的标定:(两种溶液)(B为固体基准物质)(4)被测物质质量:(5)有关滴定度计算:T T/B=mB/VT(与物质量浓度的关系)(6)林邦误差公式:pX为滴定过程中发生变化的与浓度相关的参数,如pH或pM;ΔpX为终点pX ep与计量点pX sp之差即ΔpX=pX ep–pX sp;Kt为滴定反应平衡常数即滴定常数;c与计量点时滴定产物的总浓度c sp有关。
3.基本计算(1)[H+]的计算:一元强酸(碱):若c a(b)≥20[OH-],用最简式:[H+]=c a;[OH—]=c b。
一元弱酸(碱):若cK a(b)≥20K w,c/K a(b)≥500,用最简式,。
多元弱酸(碱):若只考虑第一级离解,按一元弱酸(碱)处理:c a K a1(b1)≥20K w,c/K a1(b1)≥500,用最简式:;.酸式盐:若cK a2≥20K w,c≥20K a1,用最简式:。
弱酸弱碱盐:若cK a'≥20K w,c≥20K a,用最简式:.缓冲溶液:若c a〉20[OH-]、c b>20[H+],用最简式:(2)终点误差:强碱滴定强酸的滴定误差公式:强酸滴定强碱的滴定误差公式:一元弱酸的滴定误差公式:一元弱碱的滴定误差公式:(3)冰醋酸为溶剂的标准溶液的浓度校正:3.基本计算(1)条件稳定常数:lgK MY’=lgK MY—lgαM -lgαY+ lgαMY(2)滴定曲线上的pM’:(3)化学计量点的pM':pM’=0。
分析化学(第二版)主要计算公式汇总
分析化学(第二版)主要计算公式总结第二章误差和分析数据处理(1)误差绝对误差δ=x-μ相对误差=δ/μ*100%(2)绝对平均偏差:△=(│△1│+│△2│+……+│△n│)/n (△为平均绝对误差;△1、△2、……△n 为各次测量的平均绝对误差)。
(3)标准偏差相对标准偏差(RSD)或称变异系数(CV) RSD=S/X*100%(4)平均值的置信区间:*真值落在μ±1σ区间的几率即置信度为68.3%*置信度——可靠程度*一定置信度下的置信区间——μ±1σ对于有限次数测定真值μ与平均值x之间有如下关系:s:为标准偏差n:为测定次数t:为选定的某一置信度下的几率系数(统计因子)(5)单个样本的t检验目的:比较样本均数所代表的未知总体均数μ和已知总体均数μ0。
计算公式:t统计量:自由度:v=n - 1适用条件:(1) 已知一个总体均数;(2) 可得到一个样本均数及该样本标准误;(3) 样本来自正态或近似正态总体。
=3.42, S =0.40,:(备择假设,(6)F检验法是英国统计学家Fisher提出的,主要通过比较两组数据的方差 S^2,以确定他们的精密度是否有显著性差异。
至于两组数据之间是否存在系统误差,则在进行F 检验并确定它们的精密度没有显著性差异之后,再进行t 检验。
样本标准偏差的平方,即(“^2”是表示平方):S^2=∑(X-X平均)^2/(n-1)两组数据就能得到两个S^2值,S大^2和S小^2F=S大^2/S小^2由表中f大和f小(f为自由度n-1),查得F表,然后计算的F值与查表得到的F表值比较,如果F < F表表明两组数据没有显著差异;F ≥ F表表明两组数据存在显著差异(7)可疑问值的取舍: G检验法 G=S xx 第三章滴定分析法概论主要化学公式 (1)物质的量浓度 c B =n B /V B(2)物质的量与质量的关系 n B =m B /M B(3)滴定剂与待测物质相互作用的计算 c A V A =a/tc T V T c T V T =t/a(1000m A /M A )(4)滴定度与滴定剂浓度之间的关系 T T/A =a/tc T M A/1000(5)待测组分质量分数的计算ωA =(T T/A V T )/S*100%=ScTVTMA ta1000/*100%第4章 酸碱滴定法(1)共轭酸碱对Ka 与Kb 间的关系:KaKb=Kw(2)酸碱型体平衡浓度([ ]),分析浓度(c )和分布系数(δa )之间的关系 (3)一元强酸溶液的pH 的计算[H +]=24w2K c c ++ 精确式pH=-lg c 近似式 (4)一元弱酸溶液pH 的计算 [H +]=wa ]HA [K K + 精确式(5-11)(关于[H +]的一元三次方程)其中 [HA]=c [H +]/([H +]+K a )·若[A -]>20[OH -](即cK a >20K w ),可以忽略因水解离产生的H + PBE 简化为 [H +]≈[A -] ∴ [H +]=aa ])H [(]HA [K c K +-= (5-12)·若不但cK a >20K w ,而且c /K a >400(即c >20[A -]或c >20[H +]),也就是弱酸的解离度[A -]/c <0.05,就可以忽略因解离对弱酸浓度的影响,于是[HA]≈c∴ [H +]=a cK 最简式 ·若cK a >20K w ,c /K a <400,由式(5-12)可得[H +]=24a2a a cK K K ++- 近似式(1)·若cK a <20K w ,C/K a >400(适用于酸极弱、且浓度极小的情况,此时[HA]≈c ),由式(5-11)可得[H +]=wa K cK + 近似式(2)(5)多元酸溶液pH 的计算最简式 ][H A][H 1a 2cK c =∴≈+(6)两性物质(NaHA )溶液pH 的计算最简式 ][H 21a a K K =+(7)缓冲溶液pH 值的计算 最简式:[H+]=ca/cb*Ka第五章 络合滴定法 (1)酸效应系数:)(H Y α==][][][][][][][62'Y Y H Y H HY Y Y Y ++++= ==1/Y δ在副反应中分布分数Y δ与)(H Y α互为倒数⑴)(H Y α==621621211456][][][a a a a a a a a a K K K K K K H K K H K H ++++++++==1+4556][][][2aa a a K H K K H K H +++++ +6534][a a a K K K H ++6534][a a a K K K H ++6534][a a a K K K H +(2)共存离子效应系数αY (N ))(N Y α==][][][Y NY Y + 因为[NY]==K NY [N][Y]故:)(N Y α==1+ K NY [N](3)EDTA 与H+及N 同时发生副反应的总的副反应系数αY ,Y α==)(H Y α+1)(-N Y α(4)被测金属离子M 的副反应系数αM :][][][][][][][2')(M ML ML ML M M M n L M ++++==== α= 1+n nL L L ][][][221βββ+++ 若有P 个络合物与金属发生副反应,则:)(N Y α=)(1N Y α+)(2NY α+…+)(n N Y α-(n-1)化学计量点pM ’的计算pM ’=1/2[p cM(sp)+lgK ’MY ](7)金属离子指示剂颜色转变点(变色点)pM t 值的计算 pM t =lgK MIn -lg αIn(H)(8)滴定终点误差%1001010',''⨯-==∆-∆MYSP M pM pM t K C E(9)直接准确滴定金属离子的可行性判据:6lg ',≥MYsp M KC第六章 氧化还原滴定法(1)氧化还原电对的电极电位——Nernst 方程式)Red ()Ox (lg0.059)Ox /Red ()Ox /Red (θa a n E E +=(2)以浓度替代活度,且考虑到副反应的影响,则电对在25C 时的条件电位lg059.0/OR RO n E Eαγαγθθ+=(3)氧化还原反应的条件平衡常数K ’(25C 时)059.0)n'E ' (E K' Lg 21︒-︒=(4)氧化还原滴定化学计量点时的电位值φsp212211sp n n 'E n 'E n E +︒+︒=(5)氧化还原滴定突跃范围计算式φ2‘+0.59*3/n2(V)—φ1‘+0.59*3/n1(V) (6)氧化还原指示剂变色的电位范围φ‘±0.059/n(V)第7章沉淀滴定法和重量滴定法主要计算公式(1)沉淀溶解积 pKsp=pAg+pX(2)化学计量点 pAg=pX+1/2pKsp(3)质量分数计算ω=(CV*M/1000)/m s*100%(4)1:1型的MA沉淀溶解度的计算S='Ksp=KspaMaA(4)化学因数(或称换算因数)Fm’=mF (m为称量形式的质量,m’为被测成分的质量) (6)被测成分的质量分数ωω=mF/me*100%第八章电位分析法及永停分析法主要计算公式(1)电池电动势: E电池=φ(+)-φ(-)(2)直接电位法测定溶液pHpH x=PH s+(E x-E s)/0.059(25C)(3)离子选择电极的电位φφ=K ±2.303RT/F*lg ai = K ’±2.303RT/F*lg ci K ’=K ±2.303RT/nF*lg(f i /a i )(4)干扰响应离子存在时离子选择电极的电位值Ex-Es=±2.303RT/nF*(lg cx -lg cs ) (6)标准加入法计算待测溶液的离子浓度XS E S X SS X V V V V C C ⋅⋅+=⇒∆10)(nFRTS 303.2)1()2(=-式,且令式(7)直接电位法测量误差的计算式 △c/c=nF/RT*△E ≈39n △E第9章 光学分析法概论 主要计算公式(1)光的波动性用波长λ,波数σ和频率υ作为表征 λ是在波的传播路线上具有相同振动相位的相邻两点之间的线性距离,常用nm 作为单位。
分析化学主要计算公式
引言概述:
正文内容:
1.比例关系的计算公式
1.1质量比计算公式:质量比=m1/m2,其中m1和m2分别表示两种物质的质量。
1.2体积比计算公式:体积比=V1/V2,其中V1和V2分别表示两种物质的体积。
1.3摩尔比计算公式:摩尔比=n1/n2,其中n1和n2分别表示两种物质的物质的摩尔数。
2.平均值的计算公式
2.1算术平均值计算公式:平均值=(x1+x2++xn)/n,其中xi表示第i个数据点,n表示数据的个数。
2.2加权平均值计算公式:加权平均值
=(w1x1+w2x2++wnxn)/(w1+w2++wn),其中wi表示第i个数据点的权重。
3.浓度的计算公式
3.1质量浓度计算公式:质量浓度=质量/体积,其中质量和体积分别表示物质的质量和体积。
3.2摩尔浓度计算公式:摩尔浓度=物质的摩尔数/体积,其中物质的摩尔数和体积分别表示物质的摩尔数和体积。
4.反应速率的计算公式
4.1平均反应速率计算公式:反应速率=ΔC/Δt,其中ΔC表示物质浓度的变化量,Δt表示时间的变化量。
4.2初始反应速率计算公式:初始反应速率=ΔC/Δt,其中ΔC 表示初始时间内的物质浓度的变化量,Δt表示初始时间的变化量。
5.等效分析的计算公式
5.1等效质量计算公式:等效质量=1000/容量滴定体积,其中容量滴定体积表示溶液的滴定体积。
5.2等效浓度计算公式:等效浓度=等效质量/溶液的体积,其中等效质量和溶液的体积分别表示等效质量和溶液的体积。
总结:。
分析化学主要计算公式
分析化学主要计算公式分析化学是研究分析方法和技术的化学科学分支,其主要目的是确定和测定物质的化学组成和性质。
在实际实验和分析中,有一系列的计算公式被广泛应用。
以下是分析化学中常见的一些计算公式:1.摩尔浓度计算公式:摩尔浓度(M)是描述溶液中溶质数量的浓度单位。
对于一个溶解物质的浓度,摩尔浓度可以通过以下公式计算:M=n/V其中,M 是摩尔浓度(mol/L),n 是溶质的物质的物质量(mol),V 是溶剂的体积(L)。
2.相对分子质量计算公式:相对分子质量是描述分子的物质量大小。
对于一个化学分子,相对分子质量可以通过以下公式计算:Mr=m/n其中,Mr 是相对分子质量,m 是分子的质量(g),n 是分子的摩尔数(mol)。
3.相对原子质量计算公式:相对原子质量是描述一个元素原子质量的比较指标。
对于一个元素,相对原子质量可以通过以下公式计算:Ar=m/n其中,Ar 是相对原子质量,m 是元素的质量(g),n 是元素的摩尔数(mol)。
4.溶液的稀释计算公式:在实际实验和分析中,为了改变溶液的浓度,常常需要进行稀释操作。
溶液的稀释可以通过以下公式来计算:C1V1=C2V2其中,C1 是初始溶液的浓度(mol/L),V1 是初始溶液的体积(L),C2 是最终稀释溶液的浓度(mol/L),V2 是最终稀释溶液的体积(L)。
5.配位化学计算公式:在配位化学中,常常需要计算配合物的配位数和配位化学计算。
在一些常见的计算中,有以下公式可以使用:配位数: formla = [M(Ln)m]n+其中,formla 是配合物的化学式,M 是金属离子,Ln 是配体,m是金属的摩尔数,n 是配合物离子的电荷。
以上只是分析化学中的一部分计算公式,实际上,分析化学涵盖了非常广泛和复杂的分析方法和技术。
分析化学中的计算公式可以帮助化学家确定和解释实验结果,提高实验效率和准确性。
大多数计算公式都是基于基本的化学原理和物质守恒定律建立的。
分析化学有关计算公式
分析化学有关计算公式分析化学中常用的计算公式有很多,其中一些是基本计算,例如解析法计算物质的浓度、摩尔计算等;还有一些是用于分析化学方法的计算公式,如标准曲线拟合、校正因子计算等。
以下是一些常见的计算公式的详细分析。
1.浓度计算公式浓度是指溶液中溶质的物质量与溶液的体积比例。
常用的浓度计算公式包括:1.1质量浓度(C)C=m/V其中,C为质量浓度,m为溶质的质量,V为溶液的体积。
1.2体积浓度(Cv)Cv=n/V其中,Cv为体积浓度,n为溶质的物质量,V为溶液的体积。
1.3摩尔浓度(Cm)Cm=n/Vs其中,Cm为摩尔浓度,n为溶质的物质量,Vs为溶液的溶剂体积。
2.母液计算公式在实验中,为了制备特定体积或浓度的溶液,常常需要根据母液浓度和体积计算所需的母液量。
常用的母液计算公式包括:2.1母液体积计算公式V1C1=V2C2其中,V1和C1分别为母液的体积和浓度,V2和C2分别为所需要的溶液的体积和浓度。
2.2母液浓度计算公式C1V1=C2V2其中,C1和V1分别为母液的浓度和体积,C2和V2分别为所需要的溶液的浓度和体积。
3.标准曲线拟合公式标准曲线拟合是分析化学方法中常用的定量分析方法之一、拟合公式用于将测得的吸光度或峰面积与标准溶液中溶质浓度之间的关系进行拟合。
常用的拟合公式包括:3.1线性拟合公式y = mx + b其中,y为实验测得的吸光度或峰面积,x为标准溶液中溶质的浓度,m为直线的斜率,b为直线的截距。
3.2多项式拟合公式y=a0+a1x+a2x^2+...其中,a0、a1、a2等为拟合参数,x为标准溶液中溶质的浓度。
4.校正因子计算公式在一些定量分析中,需要使用校正因子来修正实验结果。
校正因子计算公式为:校正因子(F)=(C量值/C标称值)其中,C量值为使用实验方法得到的物质的量值,C标称值为标准物质的理论量值。
以上是分析化学中常见的一些计算公式的详细分析。
这些公式在实验中的应用非常广泛,能够帮助我们进行准确的实验计算和数据处理,从而得到更可靠的分析结果。
分析化学计算公式
分析化学主要计算公式总结第二章误差和分析数据处理(1)误差绝对误差δ=x-μ相对误差=δ/μ*100%(2)绝对平均偏差:△=(│△1│+│△2│+……+│△n│)/n (△为平均绝对误差;△1、△2、……△n为各次测量的平均绝对误差)。
(3)标准偏差相对标准偏差(RSD)或称变异系数(CV) RSD=S/X*100% (4)平均值的置信区间:*真值落在μ±1σ区间的几率即置信度为68.3%*置信度——可靠程度*一定置信度下的置信区间——μ±1σ对于有限次数测定真值μ与平均值x之间有如下关系:s:为标准偏差n:为测定次数t:为选定的某一置信度下的几率系数(统计因子) (5)单个样本的t检验目的:比较样本均数所代表的未知总体均数μ和已知总体均数μ0。
计算公式:t统计量:自由度:v=n - 1适用条件:(1) 已知一个总体均数;(2) 可得到一个样本均数及该样本标准误;(3) 样本来自正态或近似正态总体。
例1 难产儿出生体重n=35, =3.42, S =0.40,双侧检验,检验水准:α=0.05,v=n-1=35-1=343.查相应界值表,确定P值,下结论查附表1,t0.05 / 2.34= 2.032,t< t0.05 / 2.34,P >0.05,按α=0.05水准,不拒绝H0,两者的差别无统计学意义(6)F检验法是英国统计学家Fisher提出的,主要通过比较两组数据的方差 S^2,以确定他们的精密度是否有显著性差异。
至于两组数据之间是否存在系统误差,则在进行F检验并确定它们的精密度没有显著性差异之后,再进行t 检验。
样本标准偏差的平方,即(“^2”是表示平方):S^2=∑(X-X平均)^2/(n-1)两组数据就能得到两个S^2值,S 大^2和S 小^2 F=S 大^2/S 小^2由表中f 大和f 小(f 为自由度n-1),查得F 表, 然后计算的F 值与查表得到的F 表值比较,如果 F < F 表 表明两组数据没有显著差异; F ≥ F 表 表明两组数据存在显著差异(7)可疑问值的取舍: G 检验法 G=Sxx -第4章 酸碱滴定法(1)共轭酸碱对Ka 与Kb 间的关系:KaKb=Kw(2)酸碱型体平衡浓度([ ]),分析浓度(c )和分布系数(δa )之间的关系(3)一元强酸溶液的pH 的计算 [H +]=24w2K c c ++ 精确式pH=-lg c 近似式 (4)一元弱酸溶液pH 的计算 [H +]=wa ]HA [K K + 精确式(5-11)(关于[H +]的一元三次方程)其中 [HA]=c [H +]/([H +]+K a )·若[A -]>20[OH -](即cK a >20K w ),可以忽略因水解离产生的H +PBE 简化为 [H +]≈[A -]∴ [H +]=a a])H [(]HA [K c K +-= (5-12)·若不但cK a >20K w ,而且c /K a >400(即c >20[A -]或c >20[H +]),也就是弱酸的解离度[A -]/c <0.05,就可以忽略因解离对弱酸浓度的影响,于是[HA]≈c∴ [H +]=acK最简式·若cK a >20K w ,c /K a <400,由式(5-12)可得[H +]=24a2a a cK K K ++- 近似式(1)·若cK a <20K w ,C/K a >400(适用于酸极弱、且浓度极小的情况,此时[HA]≈c ),由式(5-11)可得 [H +]=wa K cK +近似式(2)(5)多元酸溶液pH 的计算最简式 ][H A][H 1a 2cK c =∴≈+Θ(6)两性物质(NaHA )溶液pH 的计算最简式][H 21a a K K =+(7)缓冲溶液pH 值的计算 最简式:[H+]=ca/cb*Ka第五章 络合滴定法 (1)酸效应系数:)(H Y α==][][][][][][][62'Y Y H Y H HY Y Y Y ++++=Λ ==1/Y δ在副反应中分布分数Y δ与)(H Y α互为倒数⑴)(H Y α==621621211456][][][a a a a a a a a a K K K K K K H K K H K H ΛΛΛ++++++++==1+4556][][][2a a a a K H K K H K H ++++++6534][aa a K K K H Λ++6534][a a a K K K H Λ++6534][a a a K K K H Λ+(2)共存离子效应系数αY (N ))(N Y α==][][][Y NY Y + 因为[NY]==K NY [N][Y] 故:)(N Y α==1+ K NY [N](3)EDTA 与H+及N 同时发生副反应的总的副反应系数αY ,Y α==)(H Y α+1)(-N Y α(4)被测金属离子M 的副反应系数αM :][][][][][][][2')(M ML ML ML M M M n L M ++++====Λα= 1+nn L L L ][][][221βββ+++Λ若有P 个络合物与金属发生副反应,则:)(N Y α=)(1N Y α+)(2NY α+…+)(n N Y α-(n-1)化学计量点pM ’的计算 pM ’=1/2[p cM(sp)+lgK’MY](7)金属离子指示剂颜色转变点(变色点)pM t 值的计算 pM t =lgK MIn -lg αIn(H) (8)滴定终点误差%1001010',''⨯-==∆-∆MYSP M pM pM t KC E(9)直接准确滴定金属离子的可行性判据:6lg ',≥MYsp M KC第六章 氧化还原滴定法(1)氧化还原电对的电极电位——Nernst 方程式)Red ()Ox (lg0.059)Ox /Red ()Ox /Red (θa a n E E +=(2)以浓度替代活度,且考虑到副反应的影响,则电对在25C 时的条件电位lg059.0/OR RO n E Eαγαγθθ+=(3)氧化还原反应的条件平衡常数K ’(25C 时)059.0)n'E ' (E K' Lg 21︒-︒=(4)氧化还原滴定化学计量点时的电位值φsp212211sp n n 'E n 'E n E +︒+︒=(5)氧化还原滴定突跃范围计算式 φ2‘+0.59*3/n 2(V)—φ1‘+0.59*3/n 1(V) (6)氧化还原指示剂变色的电位范围 φ‘±0.059/n(V)第7章沉淀滴定法和重量滴定法主要计算公式(1)沉淀溶解积 pKsp=pAg+pX(2)化学计量点 pAg=pX+1/2pKsp(3)质量分数计算ω=(CV*M/1000)/m s*100%(4)1:1型的MA沉淀溶解度的计算S='Ksp=KspaMaA(4)化学因数(或称换算因数)Fm’=mF (m为称量形式的质量,m’为被测成分的质量) (6)被测成分的质量分数ωω=mF/me*100%第八章电位分析法及永停分析法主要计算公式(1)电池电动势: E电池=φ(+)-φ(-)(2)直接电位法测定溶液pHpH x=PH s+(E x-E s)/0.059(25C)(3)离子选择电极的电位φφ=K±2.303RT/F*lg ai= K’±2.303RT/F*lg ciK’=K±2.303RT/nF*lg(f i/a i)(5)离子选择电极两次测量法计算待测溶液中离子的浓度 Ex-Es=±2.303RT/nF*(lg cx -lg cs ) (6)标准加入法计算待测溶液的离子浓度XS E S X SS X V V V V C C ⋅⋅+=⇒∆10)(nFRTS 303.2)1()2(=-式,且令式(7)直接电位法测量误差的计算式 △c/c=nF/RT*△E ≈39n △E第9章 光学分析法概论 主要计算公式(1)光的波动性用波长λ,波数σ和频率υ作为表征 λ是在波的传播路线上具有相同振动相位的相邻两点之间的线性距离,常用nm 作为单位。
分析化学计算公式汇总
分析化学计算公式汇总分析化学是一门关于物质组成、结构和性质的研究科学,它广泛应用于实验室的定量和定性分析。
在分析化学中,有许多计算公式用于计算浓度、平衡常数、反应速率等参数,这些公式能够帮助分析化学家更准确地进行实验和数据处理。
下面将汇总一些常用的分析化学计算公式。
1. 莫尔定律(Beer-Lambert定律):A = εcl其中,A为吸光度,ε为摩尔吸光系数,c为溶液浓度,l为光程。
2. 布劳儿方程(Bouguer方程):I = I₀e^-εcl其中,I为透射光强,I₀为入射光强,ε为摩尔吸光系数,c为溶液浓度,l为光程。
3.洛伦兹-洛伦兹方程:n²-1=2Nα/3其中,n为折射率,N为物质的分子数,α为极化度。
4.亨利定律:p=Kc其中,p为气体的分压,K为亨利定数,c为气体在溶液中的浓度。
5.反应速率计算公式:反应速率=k[A]^m[B]^n其中,k为速率常数,[A]和[B]分别为反应物A和B的浓度,m和n为反应物的反应级数。
6.离子强度计算公式:I = 1/2∑ciZi²其中,I为离子强度,ci为各离子的浓度,Zi为各离子的电荷数。
7.pH计算公式:pH = -log[H⁺]其中,H⁺为溶液中的氢离子浓度。
8. 电动势计算公式(涉及Nernst方程):E = E° - (RT/nF)lnQ其中,E为电动势,E°为标准电动势,R为气体常数,T为温度,n为电子转移数,F为法拉第常数,Q为反应物的活度积。
9.酸碱滴定计算公式:V₁C₁=V₂C₂其中,V₁、C₁为滴定液的体积和浓度,V₂、C₂为被滴定物的体积和浓度。
10.质谱计算公式:m/z=(m+n)/z其中,m为母质离子的质量数,n为质谱仪中的分子离子的相对质量,z为带电离子的电荷数。
以上是一些常用的分析化学计算公式,应用于浓度、反应速率、离子强度等参数的计算。
分析化学计算公式的准确应用可以提高实验和数据处理的精确度,为科学研究和质量控制等领域提供了重要的工具。
分析化学主要计算公式汇总
分析化学主要计算公式汇总分析化学是一门研究物质组成和结构、性质以及变化的化学学科。
在分析化学的实验和研究过程中,有许多计算公式可以应用来解决问题。
本文将汇总一些主要的分析化学计算公式,供参考。
1. 摩尔浓度(molar concentration):C = n/V摩尔浓度是溶液中溶质的摩尔量与溶液体积的比值。
其中,C代表摩尔浓度,单位为mol/L;n代表溶质的摩尔量,单位为mol;V代表溶液的体积,单位为L。
2. 分子质量(molecular weight):M = m/n分子质量是一个分子中所有原子质量之和。
其中,M代表分子质量,单位为g/mol;m代表物质的质量,单位为g;n代表物质的摩尔量,单位为mol。
3. 比重(specific gravity):d = ρ/ρ0比重是相同体积物质的密度之比。
其中,d代表比重;ρ代表物质的密度,单位为g/mL;ρ0代表参比物质的密度。
4. 平均摩尔质量(average molar mass):M(avg) = Σ(n_i x M_i)平均摩尔质量是不同同位素存在时,各同位素所占比例乘以对应的摩尔质量之和。
其中,M(avg)代表平均摩尔质量;n_i和M_i分别代表第i个同位素的摩尔分数和摩尔质量。
百分含量是物质中一些组成部分的质量所占比例。
其中,n_x和M_x分别代表一些组成部分的摩尔分数和摩尔质量;M_total代表物质的摩尔质量。
6. 配位数(coordination number):n = (Q - 1) / λ配位数是配合物中金属离子周围配体原子或阳离子的个数。
其中,n代表配位数;Q代表配合物的电荷(带正号);λ代表配体的配位定数。
7. 摩尔吸光度(molar absorptivity):ε = A / (C x l)摩尔吸光度是指单位浓度、单位路径长的溶液对于光线的吸收程度。
其中,ε代表摩尔吸光度;A代表溶液的吸光度;C代表溶液的摩尔浓度;l代表光束通过溶液时的路径长度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分析化学(第二版)主要计算公式总结第二章误差和分析数据处理(1)误差绝对误差δ=x-μ相对误差=δ/μ*100%(2)绝对平均偏差:△=(│△1│+│△2│+……+│△n│)/n (△为平均绝对误差;△1、△2、……△n 为各次测量的平均绝对误差)。
(3)标准偏差相对标准偏差(RSD)或称变异系数(CV) RSD=S/X*100%(4)平均值的置信区间:*真值落在μ±1σ区间的几率即置信度为68.3%*置信度——可靠程度*一定置信度下的置信区间——μ±1σ对于有限次数测定真值μ与平均值x之间有如下关系:s:为标准偏差n:为测定次数t:为选定的某一置信度下的几率系数(统计因子)(5)单个样本的t检验目的:比较样本均数所代表的未知总体均数μ和已知总体均数μ0。
计算公式:t统计量:自由度:v=n - 1适用条件:(1) 已知一个总体均数;(2) 可得到一个样本均数及该样本标准误;(3) 样本来自正态或近似正态总体。
=3.42, S =0.40,:(备择假设,(6)F检验法是英国统计学家Fisher提出的,主要通过比较两组数据的方差 S^2,以确定他们的精密度是否有显著性差异。
至于两组数据之间是否存在系统误差,则在进行F 检验并确定它们的精密度没有显著性差异之后,再进行t 检验。
样本标准偏差的平方,即(“^2”是表示平方):S^2=∑(X-X平均)^2/(n-1)两组数据就能得到两个S^2值,S大^2和S小^2F=S大^2/S小^2由表中f大和f小(f为自由度n-1),查得F表,然后计算的F值与查表得到的F表值比较,如果F < F表表明两组数据没有显著差异;F ≥ F表表明两组数据存在显著差异(7)可疑问值的取舍: G检验法 G=S xx 第三章滴定分析法概论主要化学公式 (1)物质的量浓度 c B =n B /V B(2)物质的量与质量的关系 n B =m B /M B(3)滴定剂与待测物质相互作用的计算 c A V A =a/tc T V T c T V T =t/a(1000m A /M A )(4)滴定度与滴定剂浓度之间的关系 T T/A =a/tc T M A/1000(5)待测组分质量分数的计算ωA =(T T/A V T )/S*100%=ScTVTMA ta1000/*100%第4章 酸碱滴定法(1)共轭酸碱对Ka 与Kb 间的关系:KaKb=Kw(2)酸碱型体平衡浓度([ ]),分析浓度(c )和分布系数(δa )之间的关系 (3)一元强酸溶液的pH 的计算[H +]=24w2K c c ++ 精确式pH=-lg c 近似式 (4)一元弱酸溶液pH 的计算 [H +]=wa ]HA [K K + 精确式(5-11)(关于[H +]的一元三次方程)其中 [HA]=c [H +]/([H +]+K a )·若[A -]>20[OH -](即cK a >20K w ),可以忽略因水解离产生的H + PBE 简化为 [H +]≈[A -] ∴ [H +]=aa ])H [(]HA [K c K +-= (5-12)·若不但cK a >20K w ,而且c /K a >400(即c >20[A -]或c >20[H +]),也就是弱酸的解离度[A -]/c <0.05,就可以忽略因解离对弱酸浓度的影响,于是[HA]≈c∴ [H +]=a cK 最简式 ·若cK a >20K w ,c /K a <400,由式(5-12)可得[H +]=24a2a a cK K K ++- 近似式(1)·若cK a <20K w ,C/K a >400(适用于酸极弱、且浓度极小的情况,此时[HA]≈c ),由式(5-11)可得[H +]=wa K cK + 近似式(2)(5)多元酸溶液pH 的计算最简式 ][H A][H 1a 2cK c =∴≈+(6)两性物质(NaHA )溶液pH 的计算最简式 ][H 21a a K K =+(7)缓冲溶液pH 值的计算 最简式:[H+]=ca/cb*Ka第五章 络合滴定法 (1)酸效应系数:)(H Y α==][][][][][][][62'Y Y H Y H HY Y Y Y ++++= ==1/Y δ在副反应中分布分数Y δ与)(H Y α互为倒数⑴)(H Y α==621621211456][][][a a a a a a a a a K K K K K K H K K H K H ++++++++==1+4556][][][2aa a a K H K K H K H +++++ +6534][a a a K K K H ++6534][a a a K K K H ++6534][a a a K K K H +(2)共存离子效应系数αY (N ))(N Y α==][][][Y NY Y + 因为[NY]==K NY [N][Y] 故:)(N Y α==1+ K NY [N](3)EDTA 与H+及N 同时发生副反应的总的副反应系数αY ,Y α==)(H Y α+1)(-N Y α(4)被测金属离子M 的副反应系数αM :][][][][][][][2')(M ML ML ML M M M n L M ++++==== α= 1+nnL L L ][][][221βββ+++ 若有P 个络合物与金属发生副反应,则:)(N Y α=)(1N Y α+)(2N Y α+…+)(nN Y α-(n-1)化学计量点pM ’的计算pM ’=1/2[p cM(sp)+lgK ’MY ](7)金属离子指示剂颜色转变点(变色点)pM t 值的计算 pM t =lgK MIn -lg αIn(H)(8)滴定终点误差%1001010',''⨯-==∆-∆MYSP M pM pM t K C E(9)直接准确滴定金属离子的可行性判据:6lg ',≥MYsp M KC第六章 氧化还原滴定法(1)氧化还原电对的电极电位——Nernst 方程式)Red ()Ox (lg0.059)Ox/Red ()Ox/Red (θa a n E E +=(2)以浓度替代活度,且考虑到副反应的影响,则电对在25C 时的条件电位lg059.0/OR RO n E Eαγαγθθ+=(3)氧化还原反应的条件平衡常数K ’(25C 时)059.0)n'E ' (E K' Lg 21︒-︒=(4)氧化还原滴定化学计量点时的电位值φsp212211sp n n 'E n 'E n E +︒+︒=(5)氧化还原滴定突跃范围计算式φ2‘+0.59*3/n2(V)—φ1‘+0.59*3/n1(V) (6)氧化还原指示剂变色的电位范围φ‘±0.059/n(V)第7章沉淀滴定法和重量滴定法主要计算公式(1)沉淀溶解积 pKsp=pAg+pX(2)化学计量点 pAg=pX+1/2pKsp(3)质量分数计算ω=(CV*M/1000)/m s*100%(4)1:1型的MA沉淀溶解度的计算S='Ksp=KspaMaA(4)化学因数(或称换算因数)Fm’=mF (m为称量形式的质量,m’为被测成分的质量) (6)被测成分的质量分数ωω=mF/me*100%第八章电位分析法及永停分析法主要计算公式(1)电池电动势: E电池=φ(+)-φ(-)(2)直接电位法测定溶液pHpH x=PH s+(E x-E s)/0.059(25C)(3)离子选择电极的电位φφ=K ±2.303RT/F*lg ai = K ’±2.303RT/F*lg ci K ’=K ±2.303RT/nF*lg(f i /a i )(4)干扰响应离子存在时离子选择电极的电位值Ex-Es=±2.303RT/nF*(lg cx -lg cs ) (6)标准加入法计算待测溶液的离子浓度XS E S X SS X V V V V C C ⋅⋅+=⇒∆10)(nFRTS 303.2)1()2(=-式,且令式(7)直接电位法测量误差的计算式 △c/c=nF/RT*△E ≈39n △E第9章 光学分析法概论 主要计算公式(1)光的波动性用波长λ,波数σ和频率υ作为表征 λ是在波的传播路线上具有相同振动相位的相邻两点之间的线性距离,常用nm 作为单位。
σ是每厘米长度中波的数目,单位cm -1。
υ是每秒内的波动次数,单位Hz 。
在真空中波长,波数和频率的关系为:v=c/λσ=1/λ=υ/c(2)光的微粒性用每个光子具有的能量E 作为表征 光子的能量与频率成正比,与波长成反比。
它与频率、波长的关系为 E=h υ=hc/λ=hc σ第10章 紫外-可见分光光度法(1)Lamber-Beer 定律 A=-lgT=Ecl (2)摩尔吸光定律ε ε=cm E1%1*10M(3)双波长法计算公式 △A=A 2-A 1=A 2a -A 1a =(E 2a -E 1a )c a l第11章 荧光分析法 (1)荧光效率φt =发射荧光的光子数/吸收激发光的光子数(2)荧光强度F 与荧光物质浓度c 的关系(Ecl<0.05) F=2.3'0I K Ecl(3)比例法:(F s -F 0)/(F x -F 0)=c s /c x Cx=(F x -F 0)/(F s -F 0)*c s第12章 原子吸收分光度法 主要计算公式 (1)波尔兹曼分布律0N Nj =0g gj exp(-KTE Ej 0) (2)吸收线的总半宽度△υT=[△υD+(△υL+△υR+△υN)2]1/2(3)当使用被测原子的共振发射线作为光源,且试样中被测组分的浓度不太高时,吸收度与浓度呈线性关系。
A=K ’c第13章 红外分光光度法主要计算公式(1)照射频率与基团振动频率的关系υL =υ△V 或σL =σ△V(2)振动自由度线性分子:f=3N-5非线性分子:f=3N-6(3)基频峰峰位计算σ=1302'u K (cm -1)(4)不饱和度计算公式U=(2+2n 4-n 3-n 1)/2第14章 核磁共振波谱法主要计算公式(1)化学位移δ(ppm )=(υ样品-υ标准)/υ标准*106=(H 标准-H 样品)/H 标准*106(2)甲基氢、亚甲基氢与次甲基氢化学位移的计算δ=B+ Si式中:B ——基准值,甲基为0.87ppm,亚甲基为1.20ppm,次甲基为1.55ppm(3)S i =取代基对化学位移的计算δC=C-H =5.28+Z 同+Z 顺+Z 反(4)苯环芳香烃化学位移的计算δφ-H=7.27- Si(5)自旋系统(一级与二级图谱)的判别式△υ/J >10(或6) 为一级图谱△υ/J<10(或6) 为二级图谱第15章 质谱法主要计算公式(1)质谱方程式 m/z=V R H 222或R=Zm H V 22 (2)质谱仪的分辨率 R=M/△M(3)亚稳离子峰质量与母离子和子离子的关系:M m*=122m m M M第17章 色谱分析法概率3、主要计算公式(1)分配系数 K=m s c c =sm V V k (2)容量因子k=m m s s V c V c =k m s V V =0't t R(3)分配系数比:α=K2/K1=k2/k1='1'2R R t t ='1'2R R V V (4)调整保留时间 t R ’=t R -t 0(5)调整保留体积 V R ’=V R -V 0=tR ’Fc(6)保留指数 I=100Z+100[logt’R(x)- logt’R(z)]/ [logt’R(z+1)- logt’R(z)] (恒温分析)式中:t’R 为校正保留时间;Z 和Z+1分别为目标化合物(X )流出前后的正构烷烃所含碳原子的数目;(7)理论塔板数和有效理论塔板数 n=(σRt )2=5.54(21σR t )2=16(W t R )2 n 有效==5.54(21'σR t )2=16(W t R ')2 (8)塔板高度 H=L/n(9)分离度 Rs= 121)(2W W t t R R +-(10)分离方程式 Rs=)1)(1(422k k n +-αα(设n1=n2=n,W1≈W2) (12)21s s R R = 21L L 第18章 经典液相色谱法(1)、分配系数(广义):K=ms c c (2)、在吸附色谱法中,K 称为吸附平衡常数,即K s =m s c c ;c a (mol/cm 2)单位吸附剂表面积所吸附溶质的物质的量,在离子交换色谱中,称为选择性系数。