专题67 费马点中三线段模型与最值问题(解析版)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题67 费马点中三线段模型与最值问题
【专题说明】
费马点”是指位于三角形内且到三角形三个顶点距高之和最短的点。
主要分为两种情况:
(1)当三角形三个内角都小于120°的三角形,通常将某三角形绕点旋转60度,从而将“不等三爪图”中三条线段转化在同一条直线上,利用两点之间线段最短解决问题。
(2)当三角形有一个内角大于120°时,费马点就是此内角的顶点.
费马点问题解题的核心技巧:
旋转60° 构造等边三角形将“不等三爪图”中三条线段转化至同一直线上利用两点之间线段最短求解问题
【模型展示】
问题:在△ABC内找一点P,使得P A+PB+PC最小.
A
P
B C
【分析】在之前的最值问题中,我们解决的依据有:两点之间线段最短、点到直线的连线中垂线
段最短、作对称化折线段为直线段、确定动点轨迹求最值等.
(1)如图,分别以△ABC中的AB、AC为边,作等边△ABD、等边△ACE.
(2)连接CD、BE,即有一组手拉手全等:△ADC≌△ABE.
(3)记CD、BE交点为P,点P即为费马点.(到这一步其实就可以了)。