推荐高中物理力学提升专题11牛顿运动定律的应用之传送带模型
牛顿运动定律--传送带
牛顿运动定律的应用和扩展——传送带模型主备人:芙蓉老张 修订人: 使用时间:【教师寄语】努力改正缺点,你就可以做一个堂堂正正的人。
命题趋势和考点分析:传送带问题是以真实物理现象为依据的问题,它既能训练学生的科学思维,又能联系科学、生产和生活实际,因而,这种类型问题具有生命力,当然也就是高考命题专家所关注的问题.知识概要与方法:1.传送带问题分类(1)按放置分: 水平、倾斜 、水平与倾斜交接 (2)按转向分: 顺时针、逆时针。
2.传送带问题解题策略(1)受力分析和运动分析是解题的基础。
首先根据初始条件比较对地的速度 物υ与传υ的大小与方向,明确物体受到的摩擦力的种类及其规律,然后分析出物体受的合外力和加速度大小和方向,再结合物体的初速度确定物体的运动性质。
当物υ=传υ且方向相同时,物体能否与皮带保持相对静止。
采用假设法,假设能否成立关键看静F 是否在0-Fmax 之间 。
对于倾斜传送带一般需要结合mgsin θ、 μmgcos θ的大小关系进行分析。
(比较μ 与tan θ)受力分析的关键是摩擦力的分析:物体和传送带等速时刻是摩擦力的大小、方向、运动性质的突变临界点。
(2)参考系的正确选择是解题的关键。
根据合外力和初速度明确物体的运动性质是以地面为参考系的;根据运动学公式计算时,υ、a 、s 都是以地面为参考系的;而涉及到摩擦力的方向、摩擦生热现象中相对s 都是以传送带为参考系的;物体在传送带上的划痕相对s 就是以传送带为参考系的。
一、水平运行的传送带【例题1】如图所示,水平放置的传送带以速度υ=2 m / s 向右运行,现将一小物体轻轻地放在传送带A 端,物体与传送带间的动摩擦因数μ=0.2,若A 端与B 端相距4 m ,则物体由A 到B 的时间和物体到B 端时的速度(g=10m/s 2)【变式训练1】在民航和火车站可以看到用于对行李进行安全检查的水平传送带。
当旅客把行李放到传送带上时,传送带对行李的滑动摩擦力使行李开始做匀加速运动。
2018高三备考专题:牛顿运动定律的应用之传送带模型
【高三一轮教学案】牛顿运动定律应用--传送带模型2 017.10.1一、模型特征一个物体以速度v0(v0≥0)在另一个匀速运动的物体上开始运动的力学系统可看做“传送带”模型,如图(a)、(b)、(c) 所示。
①②③1.①擦力2.中S3.体速度变化再分析相对运动来判断以后的受力及运动状态的改变。
【名师点睛】1. 在确定研究对象并进行受力分析之后,首先判定摩擦力突变(含大小和方向)点,给运动分段。
传送带传送的物体所受的摩擦力,不论是其大小的突变,还是其方向的突变,都发生在物体的速度与传送带速度相等的时刻。
物体在传送带上运动时的极值问题,不论是极大值,还是极小值,也都发生在物体速度与传送带速度相等的时刻。
v物与v传相同的时刻是运动分段的关键点,也是解题的突破口。
2. 判定运动中的速度变化(即相对运动方向和对地速度变化)的关键是v物与v传的大小与方向,对二者的比较是决定解题方向的关键。
3.在倾斜传送带上需比较mg sin θ与F f的大小与方向,判断F f的突变情况。
4. 考虑传送带长度——判定临界之前是否滑出;物工件与传送带间的动摩擦因数μ=0.6,工件滑上A端时速度v A=10 m/s,设工件到达B端时的速度为v B。
(取g=10 m/s2)(1) 若传送带静止不动,求v B;(2) 若传送带顺时针转动,工件还能到达B端吗?若不能,说明理由;若能,求到达B点的速度v B;来源于网络来源于网络(3) 若传送带以v =13 m/s 逆时针匀速转动,求v B 及工件由A 到B 所用的时间。
【典例2】 如图所示,水平传送带A 、B 两端相距s =3.5 m ,物体与传送带间的动摩擦因数μ=0.1,物体滑上传送带A 端的瞬时速度v A =4 m/s ,到达B 端的瞬时速度设为v B .下列说法中正确的是( )A. 若传送带不动,v B = 3 m/sB. 若传送带逆时针匀速转动,v B 一定等于3 m/sC. 若传送带顺时针匀速转动,v B 一定等于3 m/sD.情况,从而确定其是否受到滑动摩擦力作用。
牛顿运动定律的应用之传送带模型
牛顿运动定律的应用之传送带模型1.水平传送带水平传送带又分为两种情况:物体的初速度与传送带速度同向(含物体初速度为0)或反向.在匀速运动的水平传送带上,只要物体和传送带不共速,物体就会在滑动摩擦力的作用下,朝着和传送带共速的方向变速(若v物<v传,则物体加速;若v物>v传,则物体减速),直到共速,滑动摩擦力消失,与传送带一起匀速运动,或由于传送带不是足够长,在匀加速或匀减速过程中始终没达到共速.计算物体与传送带间的相对路程要分两种情况:①若二者同向,则Δs=|s传-s物|;①若二者反向,则Δs=|s传|+|s物|.2.倾斜传送带物体沿倾角为θ的传送带传送时,可以分为两类:物体由底端向上运动,或者由顶端向下运动.解决倾斜传送带问题时要特别注意mg sin θ与μmg cos θ的大小和方向的关系,进一步判断物体所受合力与速度方向的关系,确定物体运动情况.【题型1】如图所示,水平传送带正在以v=4 m/s的速度匀速顺时针转动,质量为m=1 kg 的某物块(可视为质点)与传送带之间的动摩擦因数μ=0.1,将该物块从传送带左端无初速度地轻放在传送带上(g取10 m/s2).(1)如果传送带长度L=4.5 m,求经过多长时间物块将到达传送带的右端;(2)如果传送带长度L=20 m,求经过多长时间物块将到达传送带的右端.【题型2】如图所示,足够长的水平传送带,以初速度v0=6 m/s顺时针转动.现在传送带左侧轻轻放上m=1 kg的小滑块,与此同时,启动传送带制动装置,使得传送带以恒定加速度a=4 m/s2减速直至停止;已知滑块与传送带的动摩擦因数μ=0.2,设最大静摩擦力等于滑动摩擦力.滑块可以看成质点,且不会影响传送带的运动,g=10 m/s2.试求:(1)滑块与传送带共速时,滑块相对传送带的位移;(2)滑块在传送带上运动的总时间t.【题型3】如图所示,倾角为37°,长为l=16 m的传送带,转动速度为v=10 m/s,动摩擦因数μ=0.5,在传送带顶端A处无初速度地释放一个质量为m=0.5 kg的物体.已知sin 37°=0.6,cos 37°=0.8,g=10 m/s2.求:(1)传送带顺时针转动时,物体从顶端A滑到底端B的时间;(2)传送带逆时针转动时,物体从顶端A滑到底端B的时间.【题型4】如图所示为货场使用的传送带的模型,传送带倾斜放置,与水平面夹角为θ=37°,传送带AB足够长,传送皮带轮以大小为v=2 m/s的恒定速率顺时针转动.一包货物以v0=12 m/s的初速度从A端滑上倾斜传送带,若货物与皮带之间的动摩擦因数μ=0.5,且可将货物视为质点.(g=10 m/s2,已知sin 37°=0.6,cos 37°=0.8)(1)求货物刚滑上传送带时加速度为多大?(2)经过多长时间货物的速度和传送带的速度相同?这时货物相对于地面运动了多远?(3)从货物滑上传送带开始计时,货物再次滑回A端共用了多少时间?【题型5】在民航和火车站可以看到用于对行李进行安全检查的水平传送带。
(完整版)高中物理传送带模型(解析版)
送带模型1.模型特征(1)水平传送带模型项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情景3(1)传送带较短时,滑块一直减速达到左端(2)传送带较长时,滑块还要被传送带传回右端。
其中v0>v返回时速度为v,当v0<v返回时速度为v0(2)倾斜传送带模型项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)可能一直加速(2)可能先加速后匀速(3)可能先以a1加速后以a2加速情景3(1)可能一直加速(2)可能一直匀速(3)可能先加速后匀速(4)可能先减速后匀速(5)可能先以a1加速后以a2加速(6)可能一直减速情景4(1)可能一直加速(2)可能一直匀速(3)可能先减速后反向加速(4)可能一直减速2. 注意事项(1)传送带模型中要注意摩擦力的突变①滑动摩擦力消失②滑动摩擦力突变为静摩擦力③滑动摩擦力改变方向(2)传送带与物体运动的牵制。
牛顿第二定律中a 是物体对地加速度,运动学公式中S 是物体对地的位移,这一点必须明确。
(3) 分析问题的思路:初始条件→相对运动→判断滑动摩擦力的大小和方向→分析出物体受的合外力和加速度大小和方向→由物体速度变化再分析相对运动来判断以后的受力及运动状态的改变。
【典例1】如图所示,传送带的水平部分长为L ,运动速率恒为v ,在其左端无初速放上木块,若木块与传送带间的动摩擦因数为μ,则木块从左到右的运动时间可能是( )A.L v +v 2μgB.L vC.2L μgD.2L v【答案】 ACD【典例2】如图所示,倾角为37°,长为l =16 m 的传送带,转动速度为v =10 m/s ,动摩擦因数μ=0.5,在传送带顶端A 处无初速度地释放一个质量为m =0.5 kg 的物体.已知sin 37°=0.6,cos 37°=0.8,g =10 m/s 2.求:(1)传送带顺时针转动时,物体从顶端A 滑到底端B 的时间; (2)传送带逆时针转动时,物体从顶端A 滑到底端B 的时间. 【答案】 (1)4 s (2)2 s【典例3】如图所示,与水平面成θ=30°的传送带正以v =3 m/s 的速度匀速运行,A 、B 两端相距l =13.5 m 。
2020届高考物理大一轮复习精品课件:牛顿定律的应用之“传送带模型“(共69张PPT)
以后物体是否一定与传送带保持相对静止.
考向一 水平传送带模型
情景 图示 情景1
情景2
情景3
滑块可能的运动情况 (1)可能一直加速 (2)可能先加速后匀速
(1)v0=v时,一直匀速 (2)v0>v时,可能一直减速,也可能先减速再匀速
滑到B端时的速度大小? (2)若传送带顺时针匀速转动的速率恒为12 m/s,则物块到达B端时的速度大小? (3)若传送带逆时针匀速转动的速率恒为4 m/s,且物块初速度变为v0′=6 m/s, 仍从A端滑上传送带,求物块从滑上传送带到离开传送带的总时间?
【变式练习】(多选)(2018·安徽合肥模拟)如图所示,绷紧的长为6 m的水平
传送带,沿顺时针方向以恒定速率v1=2 m/s运行.一小物块从与传送带等高的 光滑水平台面滑上传送带,其速度大小为v2=5 m/s.若小物块与传送带间的动摩 擦因数μ=0.2,重力加速度g=10 m/s2,下列说法中正确的是( )
A.小物块在传送带上先向左做匀减速直线运动,然后向右做匀加速直线运动 B.若传送带的速度为5 m/s,小物块将从传送带左端滑出 C.若小物块的速度为4 m/s,小物块将以2 m/s的速度从传送带右端滑出 D.若小物块的速度为1 m/s,小物块将以2 m/s的速度从传送带右端滑出
【变式练习】如图所示,绷紧的水平传送带始终以恒定速率v1运行。初速度大小 为v2的小物块从与传送带等高的光滑水平地面上滑上传送带,以地面为参考系, v2>v1。从小物块滑上传送带开始计时,其vt图象可能的是
【解析】物体滑上传送带后,受到向右的摩擦力而做匀减速运动,当传送带过短时,物体滑离传 送带到达左端,然后在光滑的平台上匀速运动,故此时的v-t图线是A;若物体恰好滑到传送带的最 左端时,速度恰好减到零,故此时的v-t图线是C;若传送带较长,则物体向左减速,速度减为零后, 反向向右加速,当加速到与传送带共速时随传送带做匀速运动,此时的v-t图线是B;故选ABC。
牛顿运动定律传送带模型专题
传送带模型专题——送你去远方Type 1:水平传送带问题:物体的速度与传送带速度相等的时刻就是物体所受摩擦力发生突变的时刻.1.传送带是一种常用的运输工具,被广泛应用于矿山、码头、货场、车站、机场等.如图所示为火车站使用的传送带示意图.绷紧的传送带水平部分长度L =5 m ,并以v 0=2 m/s 的速度匀速向右运动.现将一个可视为质点的旅行包无初速度地轻放在传送带的左端,已知旅行包与传送带之间的动摩擦因数μ=0.2,g 取10 m/s 2(1)求旅行包经过多长时间到达传送带的右端;(2) 若要旅行包从左端运动到右端所用时间最短,则传送带速度的大小应满足什么条件?最短时间是多少?2.如图所示,倾角为30°的光滑斜面的下端有一水平传送带,传送带正以6m/s 的速度运动,运动方向如图所示.一个质量为2kg 的物体(物体可以视为质点),从h=3.2m 高处由静止沿斜面下滑,物体经过A 点时,不管是从斜面到传送带还是从传送带到斜面,都不计其动能损失.物体与传送带间的动摩擦因数为0.5,g=10m/s 2,则: (1)物体由静止沿斜面下滑到斜面末端的速度大小?(2)为使物体不掉下传送带,传送带左右两端AB 间的距离L 至少为多少?(3)物体在传送带上先向左运动后向右运动,最后沿斜面上滑所能达到的最大高度h ′为多少?Type 2:倾斜传送带问题:求解的关键在于认真分析物体与传送带的相对运动情况,从而确定其是否受到滑动摩擦力作用.当物体速度与传送带速度相等时,物体所受的摩擦力有可能发生突变.Attention 1:判断摩擦力的方向:当物体速度与传送带速度相等之前,物体受到摩擦力的作用,使得其速度趋向于传送带速度。
Attention 2:判断共速后是否还存在加速度:当物体速度与传送带速度相等时,判断重力沿斜面向下的分力(x G )与最大静摩擦力(m ax 静f )之间的关系,若max 静f G x >,则物体仍有沿斜面向下的加速度;若max 静f G x ≤,则物体相对于传送带静止,与传送带一起做匀速直线运动。
「精品」高中物理力学提升专题11牛顿运动定律的应用之传送带模型
专题11 牛顿运动定律的应用之传送带模型【专题概述】1. 一个物体以速度v0(v0≥0)在另一个匀速运动的物体上开始运动的力学系统可看做“传送带”模型,如图(a)、(b)、(c)所示.2.特点物体在传送带上运动时,往往会牵涉到摩擦力的突变和相对运动问题.当物体与传送带相对静止时,物体与传送带间可能存在静摩擦力也可能不存在摩擦力.当物体与传送带相对滑动时,物体与传送带间有滑动摩擦力,这时物体与传送带间会有相对滑动的位移.摩擦生热问题【典例精讲】1滑块在水平传送带上运动常见的三个情景[典例1] (多选)如图所示,水平传送带以速度v1匀速运动,小物体P、Q由通过定滑轮且不可伸长的轻绳相连,t=0时刻P在传送带左端具有速度v2,P与定滑轮间的绳水平,t=t0时刻P离开传送带.不计定滑轮质量和摩擦,绳足够长.正确描述小物体P速度随时间变化的图象可能是( )【答案】BC[典例2] 如图所示,绷紧的水平传送带始终以恒定速率v1运行.初速度大小为v2的小物块从与传送带等高的光滑水平地面上的A处滑上传送带.若从小物块滑上传送带开始计时,小物块在传送带上运动的v-t图象(以地面为参考系)如图乙所示.已知v2>v1,则( )A.t2时刻,小物块离A处的距离达到最大B.t2时刻,小物块相对传送带滑动的距离最大C.0~t2时间内,小物块受到的摩擦力方向先向右后向左D.0~t3时间内,小物块始终受到大小不变的摩擦力作用【答案】B【解析】物块滑上传送带后将做匀减速运动,t1时刻速度为零,此时小物块离A处的距离达到最大,选项A错误;然后在传送带滑动摩擦力的作用下向右做匀加速运动,t2时刻与传送带达到共同速度,此时小物块相对传送带滑动的距离最大,选项B正确;0~t2时间内,小物块受到的摩擦力方向始终向右,选项C错误;t2~t3时间内小物块不受摩擦力,选项D错误.2 滑块在倾斜传送带上运动常见的四个情景[典例3] 如图所示,倾角为37°,长为l =16 m 的传送带,转动速度为v =10 m/s ,在传送带顶端A 处无初速度的释放一个质量为m =0.5 kg 的物体,已知物体与传送带间的动摩擦因数μ=0.5,g 取10 m/s 2.求:(sin 37°=0.6,cos 37°=0.8)(1)传送带顺时针转动时,物体从顶端A 滑到底端B 的时间; (2)传送带逆时针转动时,物体从顶端A 滑到底端B 的时间. 【答案】(1)4s (2) 2s【解析】(1)传送带顺时针转动时,物体相对传送带向下运动,则物体所受滑动摩擦力沿斜面向上,相对传送带向下匀加速运动,根据牛顿第二定律有mg (sin 37°-μcos 37°)=ma则a =g sin 37°-μg cos 37°=2 m/s 2, 根据l =21at 2得t =4 s.(2)传送带逆时针转动,当物体下滑速度小于传送带转动速度时,物体相对传送带向上运动,则物体所[典例4] 如图所示,A、B两个皮带轮被紧绷的传送皮带包裹,传送皮带与水平面的夹角为θ,在电动机的带动下,可利用传送皮带传送货物.已知皮带轮与皮带之间无相对滑动,皮带轮不转动时,某物体从皮带顶端由静止开始下滑到皮带底端所用的时间是t,则( )A.当皮带轮逆时针匀速转动时,该物体从顶端由静止滑到底端所用时间一定大于tB.当皮带轮逆时针匀速转动时,该物体从顶端由静止滑到底端所用时间一定小于tC.当皮带轮顺时针匀速转动时,该物体从顶端由静止滑到底端所用时间可能等于tD.当皮带轮顺时针匀速转动时,该物体从顶端由静止滑到底端所用时间一定小于t【答案】D【总结提升】传送带问题为高中动力学问题中的难点,主要表现在两方面:其一,传送带问题往往存在多种可能结论的判定,即需要分析确定到底哪一种可能情况会发生;其二,决定因素多,包括滑块与传送带间的动摩擦因数大小、斜面倾角、传送带速度、传送方向、滑块初速度的大小及方向等,这就需要考生对传送带问题能做出准确的动力学过程分析。
高中物理传送带模型(最新)
高中物理传送带模型1.设问的角度(1)动力学角度:首先要正确分析物体的运动过程,做好受力分析,然后利用运动学公式结合牛顿第二定律求物体及传送带在相应时间内的位移,找出物体和传送带之间的位移关系.(2)能量角度:求传送带对物体所做的功、物体和传送带由于相对滑动而产生的热量、因放上物体而使电动机多消耗的电能等,常依据功能关系或能量守恒定律求解.2.功能关系分析(1)传送带克服摩擦力做的功:W=F f x传;(2)系统产生的内能:Q=F f x相对.(3)功能关系分析:W=ΔE k+ΔE p+Q.一、水平传送带:情景图示滑块可能的运动情况情景1⑴可能一直加速⑵可能先加速后匀速情景2 ⑴vv=,一直匀速⑵vv>,一直减速或先减速后匀速⑶vv<,一直加速或先加速后匀速情景3 ⑴传送带较短,一直减速到左端⑵传送带足够长,滑块还要被传回右端:①vv>,返回时速度为v②vv<,返回时速度为v二、倾斜传送带:情景图示滑块可能的运动情况情景1 ⑴可能一直加速⑵可能先加速后匀速⑶可能从左端滑落情景2 ⑴可能一直加速⑵可能先加速后匀速⑶可能先以1a加速,后以2a加速情景3 ⑴可能一直加速⑵可能一直匀速⑶可能先加速后匀速⑷可能先减速后匀速⑸可能先以1a加速,后以2a加速情景4 ⑴可能一直加速⑵可能一直减速⑶可能先减速到0,后反向加速例1(多选)如图所示为某建筑工地所用的水平放置的运输带,在电动机的带动下运输带始终以恒定的速度v0=1 m/s顺时针传动.建筑工人将质量m=2 kg的建筑材料静止地放到运输带的最左端,同时建筑工人以v0=1 m/s的速度向右匀速运动.已知建筑材料与运输带之间的动摩擦因数为μ=0.1,运输带的长度为L=2 m,重力加速度大小为g=10 m/s2.以下说法正确的是()A.建筑工人比建筑材料早到右端0.5 sB.建筑材料在运输带上一直做匀加速直线运动C.因运输建筑材料电动机多消耗的能量为1 JD.运输带对建筑材料做的功为1 J答案AD解析 建筑工人匀速运动到右端,所需时间t 1=Lv 0=2 s ,假设建筑材料先加速再匀速运动,加速时的加速度大小为a =μg =1 m/s 2,加速的时间为t 2=v 0a =1 s ,加速运动的位移为x 1=v 02t 2=0.5 m<L ,假设成立,因此建筑材料先加速运动再匀速运动,匀速运动的时间为t 3=L -x 1v 0=1.5 s ,因此建筑工人比建筑材料早到达右端的时间为Δt =t 3+t 2-t 1=0.5 s ,A 正确,B 错误;建筑材料与运输带在加速阶段摩擦生热,该过程中运输带的位移为x 2=v 0t 2=1 m ,则因摩擦而生成的热量为Q =μmg (x 2-x 1)=1 J ,由动能定理可知,运输带对建筑材料做的功为W =12m v 02=1 J ,则因运输建筑材料电动机多消耗的能量为2 J ,C 错误,D 正确.例2 如图所示,绷紧的传送带与水平面的夹角θ=30°,传送带在电动机的带动下,始终保持v 0=2 m/s 的速率运行,现把一质量为m =10 kg 的工件(可视为质点)轻轻放在传送带的底端,经过时间t =1.9 s ,工件被传送到h =1.5 m 的高处,g 取10 m/s 2,求:(1)工件与传送带间的动摩擦因数; (2)电动机由于传送工件多消耗的电能. 答案 (1)32(2)230 J 解析 (1)由题图可知,传送带长x =hsin θ=3 m 工件速度达到v 0前,做匀加速运动,有x 1=v 02t 1工件速度达到v 0后,做匀速运动, 有x -x 1=v 0(t -t 1)联立解得加速运动的时间t 1=0.8 s 加速运动的位移x 1=0.8 m 所以加速度大小a =v 0t 1=2.5 m/s 2由牛顿第二定律有μmg cos θ-mg sin θ=ma 解得μ=32. (2)由能量守恒定律知,电动机多消耗的电能用于增加工件的动能、势能以及克服传送带与工件之间发生相对位移时摩擦力做功产生的热量. 在时间t 1内,传送带运动的位移 x 传=v 0t 1=1.6 m在时间t 1内,工件相对传送带的位移 x 相=x 传-x 1=0.8 m在时间t 1内,摩擦产生的热量 Q =μmg cos θ·x 相=60 J最终工件获得的动能E k =12m v 02=20 J工件增加的势能E p =mgh =150 J 电动机多消耗的电能 E =Q +E k +E p =230 J.例3如图所示,绷紧的传送带,始终以2 m/s 的速度匀速斜向上运行,传送带与水平方向间的夹角︒=30θ. 现把质量为10 kg 的工件轻轻地放在传送带底端P 处,由传送带传送至顶端Q 处.已知P 、Q 之间的距离为4 m ,工件与传送带间的动摩擦因数23=μ,取2/10s m g = (1)通过计算说明工件在传送带上做什么运动;(2)求工件从P 点运动到Q 点所用的时间.答案:⑴工件先以2/5.2s m 的加速度匀加速运动0.8m ,之后匀速;⑵时间s t t t 4.221=+=例4如图甲所示,绷紧的水平传送带始终以恒定速率v 1运行.初速度大小为v 2的小物块从与传送带等高的光滑水平地面上的A 处滑上传送带.若从小物块滑上传送带开始计时,小物块在传送带上运动的v -t 图象(以地面为参考系)如图乙所示.已知v 2>v 1,则( )A .t 2时刻,小物块离A 处的距离达到最大B .t 2时刻,小物块相对传送带滑动的距离最大C .0~t 2时间内,小物块受到的摩擦力方向先向右后向左D .0~t 3时间内,小物块始终受到大小不变的摩擦力作用 答案:B例5如图所示,水平地面上有一长L =2 m 、质量M =1 kg 的长板,其右端上方有一固定挡板.质量m =2 kg 的小滑块从长板的左端以v 0=6 m/s 的初速度向右运动,同时长板在水平拉力F 作用下以v =2 m/s 的速度向右匀速运动,滑块与挡板相碰后速度为0,长板继续匀速运动,直到长板与滑块分离.已知长板与地面间的动摩擦因数μ1=0.4,滑块与长板间的动摩擦因数μ2=0.5,重力加速度g 取10 m/s 2.求:(1)滑块从长板的左端运动至挡板处的过程,长板的位移x ; (2)滑块碰到挡板前,水平拉力大小F ;(3)滑块从长板的左端运动至与长板分离的过程,系统因摩擦产生的热量Q . 答案 (1)0.8 m (2)2 N (3)48 J 解析 (1)滑块在板上做匀减速运动, a =μ2mg m =μ2g解得:a =5 m/s 2根据运动学公式得:L =v 0t -12at 2解得t =0.4 s (t =2.0 s 舍去)碰到挡板前滑块速度v 1=v 0-at =4 m/s>2 m/s ,说明滑块一直匀减速 板移动的位移x =v t =0.8 m (2)对板受力分析如图所示,有:F +F f2=F f1其中F f1=μ1(M +m )g =12 N ,F f2=μ2mg =10 N 解得:F =2 N(3)法一:滑块与挡板碰撞前,滑块与长板因摩擦产生的热量: Q 1=F f2·(L -x ) =μ2mg (L -x )=12 J滑块与挡板碰撞后,滑块与长板因摩擦产生的热量:Q 2=μ2mg (L -x )=12 J 整个过程中,长板与地面因摩擦产生的热量: Q 3=μ1(M +m )g ·L =24 J 所以,系统因摩擦产生的热量: Q =Q 1+Q 2+Q 3=48 J法二:滑块与挡板碰撞前,木板受到的拉力为F 1=2 N (第二问可知) F 1做功为W 1=F 1x =2×0.8=1.6 J 滑块与挡板碰撞后,木板受到的拉力为:F2=F f1+F f2=μ1(M+m)g+μ2mg=22 NF2做功为W2=F2(L-x)=22×1.2 J=26.4 J 碰到挡板前滑块速度v1=v0-at=4 m/s滑块动能变化:ΔE k=20 J所以系统因摩擦产生的热量:Q=W1+W2+ΔE k=48 J.。
高中物理 牛顿运动定律的应用牛顿运动定律的应用之传送带模型
牛顿运动定律的应用-牛顿运动定律的应用之传送带模型一、模型特征一个物体以速度v0(v0≥0)在另一个匀速运动的物体上开始运动的力学系统可看做“传送带”模型,如图 (a)、(b)、(c) 所示。
二、传送带模型的一般解法①确定研究对象;②分析其受力情况和运动情况,(画出受力分析图和运动情景图),注意摩擦力突变对物体运动的影响;③分清楚研究过程,利用牛顿运动定律和运动学规律求解未知量。
三、注意事项1. 传送带模型中要注意摩擦力的突变①滑动摩擦力消失②滑动摩擦力突变为静摩擦力③滑动摩擦力改变方向2.传送带与物体运动的牵制。
牛顿第二定律中a是物体对地加速度,运动学公式中S是物体对地的位移,这一点必须明确。
3. 分析问题的思路:初始条件→相对运动→判断滑动摩擦力的大小和方向→分析出物体受的合外力和加速度大小和方向→由物体速度变化再分析相对运动来判断以后的受力及运动状态的改变。
【名师点睛】1. 在确定研究对象并进行受力分析之后,首先判定摩擦力突变(含大小和方向)点,给运动分段。
传送带传送的物体所受的摩擦力,不论是其大小的突变,还是其方向的突变,都发生在物体的速度与传送带速度相等的时刻。
物体在传送带上运动时的极值问题,不论是极大值,还是极小值,也都发生在物体速度与传送带速度相等的时刻。
v物与v传相同的时刻是运动分段的关键点,也是解题的突破口。
2. 判定运动中的速度变化(即相对运动方向和对地速度变化)的关键是v物与v传的大小与方向,对二者的比较是决定解题方向的关键。
3. 在倾斜传送带上需比较mg sin θ与F f的大小与方向,判断F f的突变情况。
4. 考虑传送带长度——判定临界之前是否滑出;物体与传送带共速以后物体是否一定与传送带保持相对静止。
四、传送带模型问题包括水平传送带问题和倾斜传送带问题1. 水平传送带问题项目 图示滑块可能的运动情况情景1 (1)可能一直加速 (2)可能先加速后匀速情景2 (1)v 0>v 时,可能一直减速,也可能先减速再匀速 (2)v 0<v 时,可能一直加速,也可能先加速再匀速情景3 (1)传送带较短时,滑块一直减速达到左端(2)传送带较长时,滑块还要被传送带传回右端。
高三物理总复习 牛顿运动定律 传送带模型课件
3.5
时速度仍为v0,在和挡板碰撞中无 机械能损失)
0.5 04
ω/rads-1
28
2005年江苏理综35. 35. (9分)如图所示为车站使用的水平传送带装置的
示意图.绷紧的传送带始终保持3.0m/s的恒定速率
运行,传送带的水平部分AB距水平地面的高度为
h=0.45m.现有一行李包(可视为质点)由A端被传送到
系统所产生的热能是多少?
2、 传送带水平匀加速运动 传送带与物体的初速度均为零,传送带的加速度为 a0,则把
物体轻轻的放在传送带上时,物体将在摩擦力的作用下做匀加速 直线运动,而此时物体与传送带之间是静摩擦力还是滑动摩擦力 (即物体与传送带之间是否存在相对滑动)取决于传送带的加速 度与物体在最大静摩擦力作用下产生的加速度为 a 之间的大小关 系,这种情况下则存在着两种情况:
• 如下图所示,传送带的水平部分ab=2 m, 斜面部分bc=4 m,bc与水平面的夹角α= 37°.一个小物体A与传送带的动摩擦因数μ= 0.25,传送带沿图示的方向运动,速率v=2 m/s.若把物体A轻放到a处,它将被传送带送 到c点,且物体A不会脱离传送带.求物体A从 a点被传送到c点所用的时间.(已知:sin 37°=0.6,cos 37°=0.8,g=10 m/s2)
方向的长度可忽略,子弹射穿木块的时间极短,且每次射
入点各不相同,
v0
取g 在被第二颗子弹击中前,木块
向右运动离A点的最大距离是多少?
v1 B L
(2)木块在传送带上最多能被多少颗子弹击中?
(3)木块在传送带上的最终速度多大?
(4)在被第二颗子弹击中前,木块、子弹和传送带这一
L
A
B
度L应满足的条件.
传送带在牛顿运动定律中的应用
解析:该运动员所能承 受的力N m 0 g 1200N 1.当m1 100kg时,N m1g m1a1 a1 2m/s , 竖直向上。
2
m1g N a2 m 2g
2.当a2 2.5m/s 加速下降时,设能举起 m 2的物体
2
m 2g N m 2a 2 m 2 160kg
分析: mg f ma, f kv kv k a g ,v k 故选C m
A B
C
D
2.以不同初速度将两个物体同时竖直向上抛出并开始计时,一个物体所受空气阻 力可忽略,另一个物体所受空气阻力大小与物体速率成正比。下列用虚线和实线 描述两物体运动的υ-t图象可能正确的是( )
N
f f N
mg
mg
解析:1.开始阶段物 体受f沿斜面向下,受 力如图 沿斜面:mgsinθ μmgcosθ ma1 a1 8m/s2 2.当v物 v带时,历时t1,位移x1 1 则v a1t1 t1 0.25s, x1 vt1 0.25m 2 3.二者等速后,f方 向突变为沿斜面向上, 如图 μmgcosθ mgsinθ, 继续加速向下,加速度 为a2 则沿斜面:mgsin θ-μmgcosθ ma2 a 2 2m/s 1 2 x 2 L x1 vt2 a 2 t2 t2 1s 2 总时间t t1 t2 1.25s
xA
超重(视重N mg)和失重(视重N mg)
超重:1.定义:物体 对支持物的压力(或对 悬挂物的拉力) 大于物体所受的重力 2.特点:(1)力学 特点:N mg
N
a
mg
3.具体表现:加速向 上运动或减速向下运动 。
高中物理模型法解题——传送带模型
mA B v 高中物理模型法解题——— 传送带模型【模型概述】:传送带问题往往牵扯到运动学、动力学、功与能等多方面知识,经常伴随相对运动、摩擦力的突变和能量传递与耗散等复杂情境而存在,能够充分考查学生的分析能力和综合运用能力,因此这些知识内容成为多年来教学和考试的经典内容。
也正是因为这一特性,使得传送带问题成为几乎所有学生的一大疑难。
学生通常可能不同程度存在以下问题:1.对于物体与传送带之间是否存在摩擦力、是滑动摩擦力还是静摩擦力、摩擦力的方向如何,等等,这些关于摩擦力的产生条件、方向的判断等基础知识模糊不清;2.对于物体相对地面、相对传送带分别做什么样的运动,判断错误;3.对于物体在传送带上运动过程中的能量转化情况考虑不全面,出现能量转化不守恒的错误过程。
一,物块在水平传送带上运动情况的判断(摩擦力方向) 例|1如图所示,水平传送带以4m/s 的速度顺时针匀速运动,主动轮与从动轮的轴心距为12m 。
现将一物体m 轻轻放在A 轮的正上方,物体与传送带之间的动摩擦因数为0.2,则物体m 经多长时间运动到B 轮的正上方?(物体m 可视为质点,g 取10 m/s 2)【启导】要求得物体在在传送带上运动的时间,关键是确定物体在传送带上的运动过程。
那么,怎样来确定物体的运动情况呢?我们可以假设物体在传送带上一直做匀加速运动,然后将传送带轴距带入速度与位移的关系式()中,求出物体的最大速度,再与传送带速度相比较。
如果比传送带速度大,则说明物体一直匀加速不可能,应该是先匀加速到传送带速度再与传送带保持相对静止,做匀速运动;若其小于等于传送带速度,则说明物体一直做匀加速运动,其中等于说明物体刚好运动到传送带末端时与传送带共速。
物体运动情况一旦确定,就可以运用运动学规律求解要求的物理量了! ax v v 2202=-【解析】假设物体在传送带上一直做匀加速运动,则① ②联立①②式,代入数据,解得 m/s > v因此,物块在传送带上一直加速不可能,应是先匀加速至与传送带共速,然后再匀速运动。
高中物理《第三章 牛顿运动定律动力学中的传送带模型》课件ppt
微专题:动力学中的传送带模型
第三章 牛顿运动定律
理清教材 突破核心 突出特色
解决传送带问题的关键在于对物体所受的 摩擦力进行正确的分析判断.判断摩擦力时要 注意比较物体的运动速度与传送带的速度.物 体的速度与传送带速度相等的时刻就是物体所 受摩擦力发生突变的时刻.
第三章 牛顿运动定律
A.t1时刻,小物块离A处的距离达到最大 B.0~t2时间内,小物块受到的摩擦力方向先向右后向左 C.t2~t3时间内,小物块与传送带相对静止不受摩擦力作用 D. 0~t2时间内,小物块运动方向发生了改变,加速度方向也发生了改变
第三章 牛顿运动定律
理清教材 突破核心 突出特色
练习:水平传送带被广泛地应用于机场和火车站,如图所示为 一水平传送带装置示意图.紧绷的传送带AB始终保持恒定的速率v= 1 m/s运行,一质量为m=4 kg的行李无初速度地放在A处,设行李与 传送带之间的动摩擦因数μ=0.1,A、B间的距离L=2 m,取g=10 m/s2.
第三章 牛顿运动定律
理清教材 突破核心 突出特色
【解析】 (1)物体在传送带上受力如图所示,物体沿传送带向下匀加速运 动,设加速度为 a.
由题意得 L=12at2 解得 a=2.5 m/s2; 由牛顿第二定律得 mgsin α-f=ma,又 f=μmgcos α 解得 μ= 63=0.29.
第三章 牛顿运动定律
理清教材 突破核心 突出特色
传送带模型可分为水平传送带和倾斜传送带,物体在传送带上 运动的各种情况如下表:
1.水平传送带模型
项目 情景 1 情景 2
情景 3
图示
滑块可能的运动情况 (1)可能一直加速 (2)可能先加速后匀速 (1)v0>v 时,可能一直减速,也可能先减速再 匀速 (2)v0<v 时,可能一直加速,也可能先加速再 匀速 (1)传送带较短时,滑块一直减速达到左端 (2)传送带较长时,滑块还要被传送带传回右 端.其中 v0>v 返回时速度为 v,当 v0<v 返回 时速度为 v0
【提分必做】高中物理 专题11 牛顿运动定律的应用之传送带模型学案 新人教版必修1
专题11 牛顿运动定律的应用之传送带模型水平传送带问题求解的关键在于对物体所受的摩擦力进行正确的分析判断。
物体的速度与传送带速度相等的时刻就是物体所受摩擦力发生突变的时刻。
【例1】如图所示,水平长传送带始终以v匀速运动,现将一质量为m的物体轻放于A端,物体与传送带之间的动摩擦因数为μ,AB长为L,L足够长。
问:(1)物体从A到B做什么运动?(2)当物体的速度达到传送带速度v时,物体的位移多大?传送带的位移多大?(3)物体从A到B运动的时间为多少?(4)什么条件下物体从A到B所用时间最短?【答案】(1)先匀加速,后匀速(2)v22μgv2μg(3)Lv+v2μg(4)v≥2μgL【解析】(1)物体先做匀加速直线运动,当速度与传送带速度相同时,做匀速直线运动。
(2)由v=at和a=μg,解得t=vμg(4)当物体从A到B一直做匀加速直线运动时,所用时间最短,所以要求传送带的速度满足v≥2μgL。
倾斜传送带问题求解的关键在于分析清楚物体与传送带的相对运动情况,从而确定其是否受到滑动摩擦力作用。
当物体速度与传送带速度相等时,物体所受的摩擦力有可能发生突变。
【例2】如图所示,传送带与地面夹角θ=37°,AB长度为16 m,传送带以10 m/s的速率逆时针转动。
在传送带上端A无初速度地放一个质量为0.5 kg的物体,它与传送带之间的动摩擦因数为0.5。
求物体从A运动到B所需时间是多少?(sin 37°=0.6,cos 37°=0.8,g取10 m/s2)【答案】 2 s【解析】 物体放在传送带上后,开始阶段,由于传送带的速度大于物体的速度,传送带给物体一沿传送带向下的滑动摩擦力F f ,物体受力情况如图甲所示。
物体由静止加速,由牛顿第二定律有mg sin θ+μmg cos θ=ma 1,得a 1=10×(0.6+0.5×0.8) m/s 2=10 m/s 2。
牛顿运动定律的应用——传送带模型+导学案 高一上学期物理人教版(2019)必修第一册
4.5牛顿运动定律的应用——传送带模型一、解题关键(1)理清物体与传送带间的相对运动方向及摩擦力方向是解决传送带问题的关键。
(2)传送带问题还常常涉及临界问题,即物体与传送带达到相同速度,这时会出现摩擦力改变的临界状态,对这一临界状态进行分析往往是解题的突破口。
二、模型分类及典型例题 1)、水平传送带模型情境 1(1)可能一直加速 (2)可能先加速后匀速情境2(1)v 0>v 时,可能一直减速,也可能先减速再匀速 (2)v 0<v 时,可能一直加速,也可能先加速再匀速 情境3(1)传送带较短时,滑块一直减速到达左端(2)传送带较长时,滑块还要被传送带传回右端。
其中v 0>v 返回时速度为v ,当v 0<v 返回时速度为v 0例1、如图,水平传送带长为L=10m ,以v 传=4m/s 的速度顺时针匀速转动,将一质量为m=1kg 的小物体无初速释放在传送带的左端,小物体与传送带间动摩擦因数µ=0.1.求物体运动到传送带右端所用时间.例2、如图所示,水平传送带长为L=14m ,以4/v m s =传的速度顺时针匀速转动,一质量为m=1kg 的小物体以初速度08/v m s =滑上传送带的左端,小物体与传送带间动摩擦因数µ=0.1.求物体运动到传送带右端所用时间.例3、如图所示,水平传送带长为L =10m ,以4/v m s =传的速度逆时针匀速转动,质量为m =1kg 的小物体以初速度03/v m s =滑上传送带的左端,小物体与传送带间动摩擦因数µ=0.1.求物体离开传送带时的速度大小.2)倾斜传送带模型情境1(1)可能一直加速(2)可能先加速后匀速 情境2(1)可能一直加速 (2)可能先加速后匀速(3)可能先以a 1加速后再以a 2加速 情境3(1)可能一直加速 (2)可能一直匀速(3)可能先加速后匀速(4)可能先减速后匀速(5)可能先以a 1加速后再以a 2加速 (6)可能一直减速 情境4 (1)可能一直加速 (2)可能一直匀速(3)可能先减速后反向加速(4)可能先减速,再反向加速,最后匀速 (5)可能一直减速例4、如图所示,传送带与地面成夹角37θ=︒,以10m/s 的速度顺时针转动,在传送带下端轻轻地放一个质量m=0.5kg 的物体,它与传送带间的动摩擦因数0.9μ=,已知传送带从A B →的长度L=50m ,则物体从A 到B 需要的时间为多少?θ=︒,以10m/s的速度顺时针转动,在传送带上端例5、如图所示,传送带与地面成夹角37μ=,已知传送带从轻轻地放一个质量m=0.5kg的物体,它与传送带间的动摩擦因数0.5→的长度L=50m,则物体从A到B需要的时间为多少?B A例6、如图所示,传送带与地面倾角37θ=︒,AB的长度为16m,传送带以10m/s的速率逆时针转动.在传送带上端A无初速度地放一个质量为0.5kg的物体,它与传送带之间的滑动摩擦因数为µ=0.5.求物体从A运动到B所需要的时间.(g取10m/s2)巩固练习一、选择题1、(多选)如图所示,表面粗糙的水平传送带匀速向右传动。
高中物理《牛顿运动定律的应用─传送带问题》生活中的传送带 ppt课件
1:v1=0时
➢相对运动方向:物体相对传送带向左运动 相对 地 向右运动
➢受力情况: F合 f滑 N mg ;方向水平向右
➢运动情况: a g ;向右做匀加速直线运动
一直做匀加速直线运动吗?
➢由速度变化进一步分析相对运动:
物体的速度V1增大,可能就会和传送带的速度 V0相等,这时两者相对静止
解:(1)滑动摩擦力f=μmg =4N 由牛顿第二定律, f=ma
代入数值,得 a=1m/s2
(2)设行李做匀加速运动的时间为t1,行李加速 运动的末速度为v=1m/s。 则 t1=v/a=1s
匀速运动的时间为t2 t2=(L - 1/2 at12)/v=1.5s
运动的总时间为 T=t1+t2=2.5s
重力,弹力(支持 力)
水平方向 ① 摩擦力的有无 ② 摩擦力的性质 (动/静摩擦、大小、方 向)
分析物体在水平传送带上如何运动的方法
(3)弄清速度方向 和物体所受合力方向 之间的关系
方向相同----加速 运动
方向相反----减速 运动
(4)由速度的变化进一 步分析物体的受力和运 动情况
摩擦力的变化,发生 两者速度相等时。
(2)分析物体的受力情 况 竖直方向
重力,弹力(支持 力)
水平方向 ① 摩擦力的有无 ② 摩擦力的性质 (动/静摩擦、大小、方 向)
分析物体在水平传送带上如何运动的方法
(3)弄清速度方向 和物体所受合力方向 之间的关系
方向相同----加速 运动
方向相反----减速 运动
(2)分析物体的受力情 况,并求合力 竖直方向
注意此时是
➢进一步分析否受已B经力点到和达运动状态: 当V1=V0时,这时两者相对静止,无摩擦力,以 V0做匀速直线运动。
牛顿运动定律的综合应用传送带模型问题
模型之一:如图所示,水平放置的长为L的传 送带以速度v顺时针匀速转动。现在一个初速 度为v0的木块从传送带的左端滑上传送带,木 块与传送带之间的滑动摩擦系数为μ,则木块 在传送带上可能出现什么样的运动情景?
v0 A
v
B
思考并回答:在上题中,若增大传送带的速 度,则木块从左端运动到右端所用的时间如 何变化?最短时间是多少?此时传送带的速 度应满足什么条件?
例题1.如图所示,水平传送带A. B两端相距s=4m,以 v0=4m/s的速度(始终保持不变)顺时针运转,今将一小 煤块(可视为质点)无初速度地轻放至A端,由于煤块与 传送带之间有相对滑动,会在传送带上留下划痕。已 知煤块与传送带间的动摩擦因数μ=0.4,取重力加速 度大小g=10m/s2,则煤块从A运动到B的过程中( ) A. 煤块从A运动到B的时间是2.25 s B. 煤块从A运动到B的时间是1.5 s C. 划痕长度是0.5 m D. 划痕长度是2 m
模型之二:如图所示,水平放置的长为L的传送
带以速度v逆时针匀速转动。现在一个初速度为
v0的木块从传送带的左端滑上传送带,木块与 传送带之间的滑动摩擦系数为μ,则木块在传
送带上可能出现什么样的运动情景? v0
A
v
例题2.如图(甲)所示,水平传送带以恒定速率运行,
某时刻(t=0)小物块从与传送带等高的光滑平台A处滑 上传送带,小物块在传送带上运动的v-t图象(以地面为 参考系)如图(乙),则( ) A.传送带的速率为v2 B.2.0s时物块所受摩擦力为0 C.物块在1.0s、2.5s时所受的摩擦力相同 D.t=2.0s时物块相对传送带静止
小结: 1、关键:对木块所受摩擦力的分析和判断
(传送带对木块运动的影响就是通过对木块的摩 擦力实现的)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题11 牛顿运动定律的应用之传送带模型【专题概述】1. 一个物体以速度v0(v0≥0)在另一个匀速运动的物体上开始运动的力学系统可看做“传送带”模型,如图(a)、(b)、(c)所示.2.特点物体在传送带上运动时,往往会牵涉到摩擦力的突变和相对运动问题.当物体与传送带相对静止时,物体与传送带间可能存在静摩擦力也可能不存在摩擦力.当物体与传送带相对滑动时,物体与传送带间有滑动摩擦力,这时物体与传送带间会有相对滑动的位移.摩擦生热问题【典例精讲】1滑块在水平传送带上运动常见的三个情景[典例1](多选)如图所示,水平传送带以速度v1匀速运动,小物体P、Q由通过定滑轮且不可伸长的轻绳相连,t=0时刻P在传送带左端具有速度v2,P与定滑轮间的绳水平,t =t0时刻P离开传送带.不计定滑轮质量和摩擦,绳足够长.正确描述小物体P速度随时间变化的图象可能是()【答案】BC[典例2] 如图所示,绷紧的水平传送带始终以恒定速率v1运行.初速度大小为v2的小物块从与传送带等高的光滑水平地面上的A处滑上传送带.若从小物块滑上传送带开始计时,小物块在传送带上运动的v-t图象(以地面为参考系)如图乙所示.已知v2>v1,则()A.t2时刻,小物块离A处的距离达到最大B.t2时刻,小物块相对传送带滑动的距离最大C.0~t2时间内,小物块受到的摩擦力方向先向右后向左D.0~t3时间内,小物块始终受到大小不变的摩擦力作用【答案】B【解析】物块滑上传送带后将做匀减速运动,t1时刻速度为零,此时小物块离A处的距离达到最大,选项A错误;然后在传送带滑动摩擦力的作用下向右做匀加速运动,t2时刻与传送带达到共同速度,此时小物块相对传送带滑动的距离最大,选项B正确;0~t2时间内,小物块受到的摩擦力方向始终向右,选项C错误;t2~t3时间内小物块不受摩擦力,选项D错误.2 滑块在倾斜传送带上运动常见的四个情景[典例3] 如图所示,倾角为37°,长为l=16 m的传送带,转动速度为v=10 m/s,在传送带顶端A处无初速度的释放一个质量为m=0.5 kg的物体,已知物体与传送带间的动摩擦因数μ=0.5,g取10 m/s2.求:(sin 37°=0.6,cos 37°=0.8)(1)传送带顺时针转动时,物体从顶端A滑到底端B的时间;(2)传送带逆时针转动时,物体从顶端A滑到底端B的时间.【答案】(1)4s (2) 2s【解析】(1)传送带顺时针转动时,物体相对传送带向下运动,则物体所受滑动摩擦力沿斜面向上,相对传送带向下匀加速运动,根据牛顿第二定律有mg(sin 37°-μcos 37°)=ma则a=g sin 37°-μg cos 37°=2 m/s2,根据l=at2得t=4 s.(2)传送带逆时针转动,当物体下滑速度小于传送带转动速度时,物体相对传送带向上运动,则物体所[典例4] 如图所示,A、B两个皮带轮被紧绷的传送皮带包裹,传送皮带与水平面的夹角为θ,在电动机的带动下,可利用传送皮带传送货物.已知皮带轮与皮带之间无相对滑动,皮带轮不转动时,某物体从皮带顶端由静止开始下滑到皮带底端所用的时间是t,则()A.当皮带轮逆时针匀速转动时,该物体从顶端由静止滑到底端所用时间一定大于t B.当皮带轮逆时针匀速转动时,该物体从顶端由静止滑到底端所用时间一定小于t C.当皮带轮顺时针匀速转动时,该物体从顶端由静止滑到底端所用时间可能等于tD.当皮带轮顺时针匀速转动时,该物体从顶端由静止滑到底端所用时间一定小于t 【答案】D【总结提升】传送带问题为高中动力学问题中的难点,主要表现在两方面:其一,传送带问题往往存在多种可能结论的判定,即需要分析确定到底哪一种可能情况会发生;其二,决定因素多,包括滑块与传送带间的动摩擦因数大小、斜面倾角、传送带速度、传送方向、滑块初速度的大小及方向等,这就需要考生对传送带问题能做出准确的动力学过程分析。
在处理传送带问题中应该掌握的方法:在确定研究对象并进行受力分析之后,首先判定摩擦力突变(含大小和方向)点,给运动分段。
传送带传送的物体所受的摩擦力,不论是其大小的突变,还是其方向的突变,都发生在物体的速度与传送带速度相等的时刻,物体在传送带上运动时的极值问题,不论是极大值,还是极小值,也都发生在物体速度与传送带速度相等的时刻,所以两者速度相等的时刻是运动分段的关键点,也是解题的突破口。
对于传送带问题,一定要全面掌握上面提到的几类传送带模型,要注意根据具体情况适时进行讨论,看一看有没有转折点、突变点,做好运动阶段的划分及相应动力学分析.尤其要特别注意四点:对物体在初态时所受滑动摩擦力的方向分析;对物体在达到与传送带具有相同的速度时其所受摩擦力的情况分析;(3)对物体和传送带各自对地位移及相对位移情况分析;(4)要提高可能性分析的意识.【专练提升】1.(多选)如图所示是某工厂所采用的小型生产流水线示意图,机器生产出的物体源源不断地从出口处以水平速度v0滑向一粗糙的水平传送带,最后从传送带上落下装箱打包.假设传送带静止不动时,物体滑到传送带右端的速度为v,最后物体落在P处的箱包中.下列说法正确的是()A.若传送带随皮带轮顺时针方向转动起来,且传送带速度小于v,物体仍落在P点B.若传送带随皮带轮顺时针方向转动起来,且传送带速度大于v0,物体仍落在P点C.若传送带随皮带轮顺时针方向转动起来,且传送带速度大于v,物体仍落在P点D.若由于操作不慎,传送带随皮带轮逆时针方向转动起来,物体仍落在P点【答案】AD2.如图甲所示,足够长的水平传送带以v0=2 m/s的速度匀速运行.t=0时,在最左端轻放一个小滑块,t=2 s时传送带突然制动停下. 已知滑块与传送带之间的动摩擦因数为μ=0.2, g=10 m/s2.在图乙中,关于滑块相对地面运动的v-t图象正确的是()【答案】D【解析】滑块放在传送带上受到滑动摩擦力作用做匀加速运动,a=μg=2 m/s2,滑块运动到与传送带速度相同时需要的时间t1==1 s,然后随传送带一起匀速运动的时间t2=t -t1=1 s,当传送带突然制动停下时,滑块在传送带摩擦力作用下做匀减速运动直到静止,a′=-a=-2 m/s2,运动的时间t3=1 s,所以速度—时间图象对应D选项.3.(多选) 如图所示为粮袋的传送装置,已知AB间长度为L,传送带与水平方向的夹角为θ,工作时其运行速度为v,粮袋与传送带间的动摩擦因数为μ,正常工作时工人在A 点将粮袋放到运行中的传送带上,关于粮袋从A到B的运动,以下说法正确的是(最大静摩擦力等于滑动摩擦力)()A.粮袋到达B点的速度与v比较,可能大,也可能相等或小B.粮袋开始运动的加速度为g(sin θ-μcos θ),若L足够大,则以后将一定以速度v做匀速运动C.若μ<tan θ,则粮袋从A到B一定一直是做加速运动D.不论μ大小如何,粮袋从A到B一直做匀加速运动,且a>g sin θ【答案】AC4. (多选) 如图所示,质量为m的物体用细绳拴住放在粗糙的水平传送带上,物体距传送带左端的距离为L.当传送带分别以v1、v2的速度逆时针转动(v1<v2),稳定时绳与水平方向的夹角为θ,绳中的拉力分别为F1,F2;若剪断细绳时,物体到达左端的时间分别为t1、t2,则下列说法正确的是()A.F1<F2 B.F1=F2C.t1一定大于t2 D.t1可能等于t2【答案】BD【解析】绳剪断前物体的受力情况如图所示,由平衡条件得F N+F sin θ=mg,F f=μF N=F cos θ,解得F=,F的大小与传送带的速度无关,选项A错误,B正确;绳剪断后m在两速度的传送带上的加速度相同,若L≤1,则两次都是匀加速到达左端,t1=t2,若L>1,则物体在传送带上先加速再匀速到达左端,在速度小的传送带上需要的时间更长,t1>t2,选项C错误,D正确.5.一小物块随足够长的水平传送带一起运动,被一水平向左飞行的子弹击中并从物块中穿过,如图甲所示.固定在传送带右端的位移传感器记录了小物块被击中后的位移x随时间的变化关系如图乙所示(图象前3 s内为二次函数,3 s~4.5 s内为一次函数,取向左运动的方向为正方向).已知传送带的速度v1保持不变,g取10 m/s2.(1)求传送带速度v1的大小;(2)求零时刻物块速度v0的大小;(3)在图丙中画出物块对应的v-t图象.【答案】(1)2 m/s(2)4 m/s(3)见解析图6 如图所示,皮带传动装置的两轮间距,轮半径,皮带呈水平方向,离地面高度,一物体以初速度从平台上冲上皮带,物体与皮带间动摩擦因数,求:(1)皮带静止时,物体平抛的水平位移多大?(2)若皮带逆时针转动,轮子角速度为,物体平抛的水平位移多大?(3)若皮带顺时针转动,轮子角速度为,物体平抛的水平位移多大?【答案】(1).(2) (3) .水平位移:7. 如图所示为某种弹射装置的示意图,光滑的水平导轨MN右端N处与水平传送带理想连接,传送带长度,皮带轮沿顺时针方向转动,带动皮带以恒定速率时滑块B、C之间用细绳相连,中间有一压缩的轻弹簧,处于静止状态,滑块A以初速度沿B、C连线方向向B运动,A与B碰撞后粘合在一起,碰撞时间极短,可认为A与B碰撞过程中滑块C的速度仍为零.因碰撞使连接B、C的细绳受扰动而突然断开,弹簧伸展,从而使C与A、B分离.滑块C脱离弹簧后以速度滑上传送带,并从右端滑出落至地面上的P点,已知滑块C与传送带之间的动摩擦因数,重力加速度g取.求:(1)滑块C从传送带右端滑出时的速度大小;(2)滑块B、C用细绳相连时弹簧的弹性势能;(3)若每次实验开始时弹簧的压缩情况相同,要使滑块C总能落至P点,则滑块A与滑块B撞前速度的最大值是多少?【答案】(1);(2)1.0J (3) .8 如图所示为上、下两端相距L=5 m、倾角α=30°、始终以v=3 m/s的速率顺时针转动的传送带(传送带始终绷紧).将一物体放在传送带的上端由静止释放滑下,经过t=2 s到达下端,重力加速度g取10 m/s2,求:(1)传送带与物体间的动摩擦因数多大?(2)如果将传送带逆时针转动,速率至少多大时,物体从传送带上端由静止释放能最快地到达下端?【答案】(1)0.29 (2)8.66m/s【解析】(1)物体在传送带上受力如图所示,物体沿传送带向下匀加速运动,设加速度为a.送带向下的最大加速度即所受摩擦力沿传送带向下,设此时传送带速度为v m,物体加速度为a′.由牛顿第二定律得mg sin α+F f=ma′又v=2La′故v m==8.66 m/s.9 . 如图甲所示,水平传送带长L=6 m,两个传送皮带轮的半径都是R=0.25 m.现有一可视为质点的小物体以水平速度v0滑上传送带.设皮带轮沿顺时针方向匀速转动,当转动的角速度为ω时,物体离开传送带B端后在空中运动的水平距离为s.若皮带轮以不同角速度重复上述转动,而小物体滑上传送带的初速度v0始终保持不变,则可得到一些对应的ω值和s值.把这些对应的值在平面直角坐标系中标出并连接起来,就得到了图乙中实线所示的s-ω图象.(g取10 m/s2)(1)小明同学在研究了图甲的装置和图乙的图象后作出了以下判断:当ω<4 rad/s时,小物体从皮带轮的A端运动到B端过程中一直在做匀减速运动.他的判断正确吗?请你再指出当ω>28 rad/s时,小物体从皮带轮的A端运动到B端的过程中做什么运动.(只写结论,不需要分析原因)(2)求小物体的初速度v0及它与传送带间的动摩擦因数μ.(3)求B端距地面的高度h.【答案】:(1)正确匀加速运动 (2)5 m/s0.2(3)1.25 m【解析】(1)小明的判断正确当ω>28 rad/s时,小物体从A端运动到B端的过程中一直在做匀加速运动。