沈阳市中考数学模拟试题

合集下载

沈阳市中考模拟考试数学试卷含答案

沈阳市中考模拟考试数学试卷含答案

沈阳市中考模拟考试数学试卷含答案中学数学二模模拟试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的1.(3分)﹣的相反数是()A.﹣B.﹣C.D.2.(3分)春暖花开,走在郑州中原西路上,不禁感慨“郑州的路越来越漂亮了“感慨背后,是对郑州从2012年起建设生态廊道的由衷认可.目前,郑州累计增绿超3亿平方米,相当于140个碧沙岗公园.我们把3亿用科学记数法表示为()A.3×1010 B.3×109 C.3×108 D.3x1073.(3分)如图,若添上一个正方形,使它能折叠成一个正方体,且使相对面上的数字之和相等,则共有几种不同的添法()A.5B.4C.3D.64.(3分)下列计算结果为a6的是()A.a2•a3B.a12÷a2C.(a2)3D.(﹣a2)3 5.(3分)某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分6.(3分)不等式组的解集为()A..2<x<3B..2<x≤3C..x<2或x≥3D.无解7.(3分)如图,在△ABC中,按以下步骤作图:①分别以点B,C为圆心,大于BC的长为半径作弧,两弧相交于点M,N;②作直线MN,交AB于点D,连接CD若AC=AD,∠A=80°,则∠ACB的度数为()A.65°B.70°C.75°D.80°8.(3分)在﹣2,﹣1,0,1,2这五个数中任取两数m,n,则二次函数y=(x﹣m)2+n 的顶点在坐标轴上的概率为()A.B.C.D.9.(3分)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b >0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0中正确的有()A.3 个B.4 个C.5 个D.6 个10.(3分)如图1,在矩形ABCD中,动点E从点A出发,沿AB→BC方向运动,当点E 到达点C时停止运动,过点E作FE⊥AE,交CD于点F,设点E的运动路程为x,FC =y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是,则矩形ABCD的面积是()A.16B.6C.20D.8二、填空题(每小题3分,共15分)11.(3分)﹣(﹣)0=.12.(3分)一元二次方程kx2﹣2x﹣1=0有实数根,则k的取值范围是.13.(3分)如图,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为,则k的值为.14.(3分)如图,在△ABC中,AC=AB,∠CAB=30°,AC=2.以AB的中点O为圆心、AB的长为直径,在AB的上方作半圆,再以点A为圆心、AC的长为半径,作扇形DAC,且∠DAC=30°,则图中阴影部分的面积为.15.(3分)如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8.点D为AB边上的一动点(点D不与点A,点B重合),过点D作DE∥BC,交AC于点E,把△ADE沿直线DE折叠,点A落在点A'处,连接BA′,若△A′DB为直角三角形,则AD的长为三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值(1+)÷,其中x是满足﹣1<x<2的整数.17.(9分)近几年,中学生过生日互送礼物甚至有部分家长为庆贺孩子生日大摆宴席攀比之风已成为社会关注热点.为此某媒体记者就中学生攀比心理的成因对某市城区若干名市民进行了调查,调查结果分为四组:A.社会环境的影响;B.学校正确引导的缺失;C.家长榜样示范的不足;D.其他.并将调查结果绘制成如下条形统计图和扇形统计图(均不完整)请根据图中提供的信息,解答下列问题:(1)扇形统计图中,B组所在扇形的圆心角度数是;(2)将条形统计图补充完整;(3)根据抽样调查结果,请你估计该市城区120000名市民中有多少名市民持C组观点;(4)针对现在部分同学因举行生日宴会而造成极大浪费的现象,请你简单说说中学生大操大办庆祝生日的危害性,并提出合理化的建议.18.(9分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与斜边AB交于点D,点E为边BC的中点,连接DE.(1)求证:DE是⊙O的切线;(2)填空①若∠B=30°,AC=,则DE=;②当∠B=°时,以O,D,E,C为顶点的四边形是正方形.19.(9分)郑州大学(ZhengzhouUniversity),简称“郑大”,是中华人民共和国教育部与河南省人民政府共建的全国重点大学,首批“双一流”世界一流大学、“211工程”.某学校兴趣小组3人来到郑州大学门口进行测量,如图,在大楼AC的正前方有一个舞台,舞台前的斜坡DE=4米,坡角∠DEB=41°,小红在斜坡下的点E处测得楼顶A的仰角为60°,在斜坡上的点D处测得楼顶A的仰角为45°,其中点B,C,E在同一直线上求大楼AC的高度.(结果精确到整数.参考数据:≈1.73,sin41°≈0.6,cos41°≈0.75,tan41°≈0.87)20.(9分)如图,在平面直角坐标系中,点A(﹣,1)在反比例函数y=的图象上,AB⊥x轴于点C,过点O作OB⊥OA,交直线AB于点B.(1)求反比例函数y=的表达式;(2)在x轴上有一点P,使得S△AOP=S△AOB,求点P的坐标21.(10分)党的十九大提出实施乡村振兴战略,将生态宜居作为乡村振兴的总目标之一,《乡村振兴战略规划(2018﹣2022年)中更是把建设生态宜居美丽乡村作为重要内容以具体化.某县富强加工厂响应“产业兴旺、生态宜居、生活富裕”的号召,拟计划投资兴建2条全自动生产线和1条半自动生产线共用资金260万元;而投资兴建1条全自动生产线和3条半自动生产线共用资金280万元.(1)求每条全自动生产线和半自动生产线的成本各为多少万元?(2)据预测,2019年每条全自动生产线的毛利润为260万元,每条半自动生产线的毛利润为160万元这一年,该加工厂共投资兴建10条生产线,若想获得不少于1200万元的纯利润,则2019年该加工厂至少需投资兴建多少条全自动生产线?22.(10分)已知,点C为线段AB外一动点,且AB=4,AC=2.问题发现(1)图1,当点C位于时,线段BC的长取最大值,且最大值为.扩展探究(2)如图2,若以BC为斜边向上构造等腰直角三角形BCD,以点A为圆心,AC为半径,在转过程中,当A,C,D三点共线时,求CD的长度;解决问题(3)在(2)的条件下,以点A为圆心,AC为半径,在旋转过程中,试求AD的最大值和最小值.23.(11分)如图,抛物线y=﹣x2+bx+c经过点A(1,0),点B,交y轴于点C(0,2).连接BC,AC(1)求抛物线的解析式;(2)点D为抛物线第二象限上一点,满足S△BCD=S△ABC,求点D的坐标;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求点E的坐标.参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的1.(3分)﹣的相反数是()A.﹣B.﹣C.D.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣的相反数是.故选:C.【点评】本题考查了相反数,关键是在一个数的前面加上负号就是这个数的相反数.2.(3分)春暖花开,走在郑州中原西路上,不禁感慨“郑州的路越来越漂亮了“感慨背后,是对郑州从2012年起建设生态廊道的由衷认可.目前,郑州累计增绿超3亿平方米,相当于140个碧沙岗公园.我们把3亿用科学记数法表示为()A.3×1010 B.3×109 C.3×108 D.3x107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3亿=3×108,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)如图,若添上一个正方形,使它能折叠成一个正方体,且使相对面上的数字之和相等,则共有几种不同的添法()A.5B.4C.3D.6【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,再根据相对面上的数字之和相等解答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“1”与“5”是相对面,“2”与“4”是相对面,所以,要添加的是“3”的相对面,∴要添加一个正方形,使它能折叠成一个正方体,且使相对面上的数字之和相等,则共有4种不同的添法.故选:B.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(3分)下列计算结果为a6的是()A.a2•a3B.a12÷a2C.(a2)3D.(﹣a2)3【分析】分别根据同底数幂相乘、同底数幂相除、幂的乘方的运算法则逐一计算可得.【解答】解:A、a2•a3=a5,此选项不符合题意;B、a12÷a2=a10,此选项不符合题意;C、(a2)3=a6,此选项符合题意;D、(﹣a2)3=﹣a6,此选项不符合题意;故选:C.【点评】本题主要考查幂的运算,解题的关键是掌握同底数幂相乘、同底数幂相除、幂的乘方的运算法则.5.(3分)某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:将数据重新排列为17、18、18、20、20、20、23,所以这组数据的众数为20分、中位数为20分,故选:D.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两个数的平均数.6.(3分)不等式组的解集为()A..2<x<3B..2<x≤3C..x<2或x≥3D.无解【分析】一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.【解答】解:由不等式①,得x>2,由不等式②,得x≤3,所以原不等式组的解集为2<x≤3.故选:B.【点评】本题考查了解不等式组,熟练掌握一元一次不等式组的解法是解题的关键,7.(3分)如图,在△ABC中,按以下步骤作图:①分别以点B,C为圆心,大于BC的长为半径作弧,两弧相交于点M,N;②作直线MN,交AB于点D,连接CD若AC=AD,∠A=80°,则∠ACB的度数为()A.65°B.70°C.75°D.80°【分析】利用等腰三角形的性质和三角形内角和计算出∴∠ACD=∠ADC=50°,再利用基本作图得到MN垂直平分BC,所以DB=DC,利用三角形外角性质和等腰三角形的性质计算出∠DCB=25°,然后计算∠ACD+∠DCB即可.【解答】解:∵AC=AD,∴∠ACD=∠ADC=(180°﹣∠A)=(180°﹣80°)=50°,由作法得MN垂直平分BC,∴DB=DC,∴∠B=∠DCB,而∠ADC=∠B+∠DCB,∴∠DCB=∠ADC=25°,∴∠ACB=∠ACD+∠DCB=50°+25°=75°.故选:C.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).8.(3分)在﹣2,﹣1,0,1,2这五个数中任取两数m,n,则二次函数y=(x﹣m)2+n 的顶点在坐标轴上的概率为()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及坐标轴上的点的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵﹣2,﹣1,0,1,2这五个数中任取两数m,n,一共有20种可能,其中取到0的有8种可能,∴顶点在坐标轴上的概率为=.故选:A.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比,属于中考常考题型.9.(3分)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b >0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0中正确的有()A.3 个B.4 个C.5 个D.6 个【分析】根据二次函数的性质即可求出答案.【解答】解:①由图象开口可知:a>0,c<0,∵>0,∴b<0,∴abc>0,故①正确;②由图象可知:△>0,∴b2﹣4ac>0,∴b2>4ac,故②正确;③抛物线与x轴交于点A(﹣1,0),B(2,0),∴抛物线的对称轴为:x=,∴<1,∴2a+b>0,故③正确;④由图象可知顶点坐标的纵坐标小于﹣2,故④错误;⑤由③可知抛物线的对称轴为x=,∴由图象可知:x<时,y随着x的增大而减小,故⑤正确;⑥由图象可知:x=1时,y<0,∴a+b+c<0,故⑥错误;故选:B.【点评】本题考查二次函数的性质,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.10.(3分)如图1,在矩形ABCD中,动点E从点A出发,沿AB→BC方向运动,当点E 到达点C时停止运动,过点E作FE⊥AE,交CD于点F,设点E的运动路程为x,FC =y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是,则矩形ABCD的面积是()A.16B.6C.20D.8【分析】易证△CFE∽△BEA,可得,根据二次函数图象对称性可得E在BC中点时,CF有最大值,列出方程式即可解题.【解答】解:若点E在BC上时,如图∵∠EFC+∠AEB=90°,∠FEC+∠EFC=90°,∴∠CFE=∠AEB,∵在△CFE和△BEA中,∠CFE=∠AEB,∠C=∠B=90°,∴△CFE∽△BEA,由二次函数图象对称性可得E在BC中点时,CF有最大值,此时,BE=CE=x﹣5,即,∴y=,当y=时,代入方程式解得:x1=3(不合题意,舍去),x2=7,∴BE=CE=2,∴BC=4,AB=5,∴矩形ABCD的面积为5×4=20.故选:C.【点评】本题考查了二次函数动点问题,考查了相似三角形的判定和性质,考查了矩形面积的计算,本题中由图象得出E为BC中点是解题的关键.二、填空题(每小题3分,共15分)11.(3分)﹣(﹣)0=3.【分析】直接利用二次根式的性质、零指数幂的性质分别化简得出答案.【解答】解:原式=4﹣1=3.故答案为:3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(3分)一元二次方程kx2﹣2x﹣1=0有实数根,则k的取值范围是k≠0且k≥﹣1.【分析】让△=b2﹣4ac≥0,且二次项的系数不为0以保证此方程为一元二次方程.【解答】解:由题意得:4+4k≥0,k≠0,解得:k≠0且k≥﹣1.【点评】一元二次方程有实数根应注意两种情况:△≥0,二次项的系数不为0.13.(3分)如图,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为,则k的值为﹣6.【分析】根据题意可以设出点A的坐标,从而以得到点B和点C的坐标,即可求得k的值.【解答】解:设点A的坐标为(a,0),△AOB的面积为,∴B(0,)∵过点C的直线与x轴,y轴分别交于点A,B,且AB=BC∴点C(﹣a,),∵点C在反比例函数y=(x>0)的图象上,∴k=(﹣a)×=﹣6故答案为:﹣6.【点评】本题考查反比例函数系数k的几何意义、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.14.(3分)如图,在△ABC中,AC=AB,∠CAB=30°,AC=2.以AB的中点O为圆心、AB的长为直径,在AB的上方作半圆,再以点A为圆心、AC的长为半径,作扇形DAC,且∠DAC=30°,则图中阴影部分的面积为.【分析】设半圆O交AD于E交AC于F,连接OE,OF,EF,根据圆周角定理得到∠EOF=60°,推出△EOF是等边三角形,得到∠EFO=60°,推出EF∥AB,求得S△AEF =S△EOF,根据扇形的面积公式即可得到结论.【解答】解:设半圆O交AD于E交AC于F,连接OE,OF,EF,∵∠CAD=30°,∴∠EOF=60°,∴△EOF是等边三角形,∴∠EFO=60°,∵∠BAC=30°,∴∠BOF=60°,∴EF∥AB,∴S△AEF=S△EOF,∴图中阴影部分的面积=S扇形CAD﹣S扇形EOF=﹣=π﹣=,故答案为:.【点评】本题考查了扇形的面积的计算,等腰三角形的性质,圆周角定理,正确的作出辅助线是解题的关键.15.(3分)如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8.点D为AB边上的一动点(点D不与点A,点B重合),过点D作DE∥BC,交AC于点E,把△ADE沿直线DE折叠,点A落在点A'处,连接BA′,若△A′DB为直角三角形,则AD的长为或【分析】分两种情况进行讨论,当∠DA'B为直角时,设AD=A'D=x,通过证△AED∽△ACB,求出A'C,A'B的长度,然后在Rt△A'DB中,利用勾股定理可求出x的值;当∠DBA'为直角时,证△ABC∽△AA'B,求出A'B的值,然后在Rt△A'BD中,利用勾股定理可求出x的值.【解答】解:如图1,当∠DA'B为直角时,在Rt△ABC中,AB===10,由折叠知,△ADE≌△A'DE,∴AD=A'D,AE=A'E,∠AED=∠A'ED=×180°=90°,∴∠AED=∠ACB=90°,又∵∠A=∠A,∴△AED∽△ACB,∴,设AD=A'D=x,∴,∴AE=,∴A'C=AC﹣AA'=8﹣,在Rt△A'CB中,A'B2=A'C2+BC2=(8﹣)2+36,在Rt△A'DB中,BD=AB﹣AD=10﹣x,A'D=x,A'B2+A'D2=BD2,∴x2+(8﹣)2+36=(10﹣x)2,解得,x1=0(舍去),x2=,∴AD=;如图2,当∠DBA'为直角时,∵∠ABA'=∠ACB=90°,∠A=∠A∴△ABC∽△AA'B,∴,∴,∴AA'=,在Rt△AA'B中A'B==,设AD=A'D=x,在Rt△A'BD中,DB2+A'B2=A'D2,∴(10﹣x)2+()2=x2,解得,x=,∴AD=;故答案为:或.【点评】本题考查了勾股定理,轴对称的性质,相似三角形的判定与性质等,解题关键是能够根据题意画出两种情况的草图.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值(1+)÷,其中x是满足﹣1<x<2的整数.【分析】根据分式的加法和除法可以化简题目中的式子,然后﹣1<x<2中选取一个使得原分式有意义的整数代入化简后的式子即可解答本题.【解答】解:(1+)÷==,当x=0时,原式==0.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.17.(9分)近几年,中学生过生日互送礼物甚至有部分家长为庆贺孩子生日大摆宴席攀比之风已成为社会关注热点.为此某媒体记者就中学生攀比心理的成因对某市城区若干名市民进行了调查,调查结果分为四组:A.社会环境的影响;B.学校正确引导的缺失;C.家长榜样示范的不足;D.其他.并将调查结果绘制成如下条形统计图和扇形统计图(均不完整)请根据图中提供的信息,解答下列问题:(1)扇形统计图中,B组所在扇形的圆心角度数是90°;(2)将条形统计图补充完整;(3)根据抽样调查结果,请你估计该市城区120000名市民中有多少名市民持C组观点;(4)针对现在部分同学因举行生日宴会而造成极大浪费的现象,请你简单说说中学生大操大办庆祝生日的危害性,并提出合理化的建议.【分析】(1)根据题目中的数据可以求得本次调查的人数,从而可以求得扇形统计图中,B组所在扇形的圆心角度数;(2)根据(1)中的结果和条形统计图中的数据可以求得C组的人数,从而可以将条形统计图补充完整;(3)根据统计图中的数据可以求得该市城区120000名市民中有多少名市民持C组观点;(4)根据题意写出几条为孩子和合理化建议即可,本题答案不唯一,只要合理即可.【解答】解:(1)本次调查的人数为:40÷20%=200,扇形统计图中,B组所在扇形的圆心角度数是:360°×=90°,故答案为:90°;(2)C组人数为:200﹣40﹣50﹣30=80,补充完整的条形统计图如右图所示;(3)120000×=48000(人),答:计该市城区120000名市民中有48000名市民持C组观点;(4)中学生大操大办庆祝生日的危害性:第一,造成孩子们的互相攀比现象;第二,给很多家庭带来负担;第三,不利于孩子们树立正确的价值观;合理化建议:可以一家人给孩子在家里办一个生日宴,这样可以和孩子拉近感情,又让孩子感受到父母对他们的关注.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.18.(9分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与斜边AB交于点D,点E为边BC的中点,连接DE.(1)求证:DE是⊙O的切线;(2)填空①若∠B=30°,AC=,则DE=;②当∠B=45°时,以O,D,E,C为顶点的四边形是正方形.【分析】(1)AC是直径,则∠ADC=∠CDB=90°,点E为边BC的中点,连接OD,则∠OCD=∠ODC,则∠ODC+∠EDC=∠OCD+∠ECD=∠ACB=90°,即可证明;(2)①CB===3,则DE=BC=,即可求解;②只要DE⊥BC,以O,D,E,C为顶点的四边形就是正方形,即可求解.【解答】解:(1)∵AC是直径,则∠ADC=∠CDB=90°,∵点E为边BC的中点,∴∠ECD=∠EDC,∠B=∠BDE,连接OD,则∠OCD=∠ODC,∴∠ODC+∠EDC=∠OCD+∠ECD=∠ACB=90°,∴DE是⊙O的切线;(2)①CB===3,则DE=BC=,故答案是;②只要DE⊥BC,以O,D,E,C为顶点的四边形就是正方形,则∠B=∠BDE=×90°=45°,故答案为45.【点评】本题为圆的综合题,涉及到直角三角形中线定理、正方形的性质,直角三角形中线定理的应用,是本题解题的关键.19.(9分)郑州大学(ZhengzhouUniversity),简称“郑大”,是中华人民共和国教育部与河南省人民政府共建的全国重点大学,首批“双一流”世界一流大学、“211工程”.某学校兴趣小组3人来到郑州大学门口进行测量,如图,在大楼AC的正前方有一个舞台,舞台前的斜坡DE=4米,坡角∠DEB=41°,小红在斜坡下的点E处测得楼顶A的仰角为60°,在斜坡上的点D处测得楼顶A的仰角为45°,其中点B,C,E在同一直线上求大楼AC的高度.(结果精确到整数.参考数据:≈1.73,sin41°≈0.6,cos41°≈0.75,tan41°≈0.87)【分析】设CE=x,根据正弦的定义求出BD,根据余弦的定义求出BE,根据正切的定义用x表示出AC,根据等腰直角三角形的性质列方程,解方程得到答案.【解答】解:设CE=x,在Rt△DEB中,sin∠DEB=,∴DB=DE•sin∠DEB≈4×0.6=2.4,cos∠DEB=,∴BE=DE•cos∠DEB≈4×0.75=3,在Rt△AEC中,tan∠AEC=,∴AC=CE•tan∠AEC=x,∵∠ADF=45°,∴F A=FD,∴x﹣2.4=x+3,解得,x=,∴AC=x≈13,答:大楼AC的高度约为13米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题、坡度坡角问题,掌握仰角俯角的概念、坡度的概念、熟记锐角三角函数的定义是解题的关键.20.(9分)如图,在平面直角坐标系中,点A(﹣,1)在反比例函数y=的图象上,AB⊥x轴于点C,过点O作OB⊥OA,交直线AB于点B.(1)求反比例函数y=的表达式;(2)在x轴上有一点P,使得S△AOP=S△AOB,求点P的坐标【分析】(1)将点A(﹣,1)代入y=,利用待定系数法即可求出反比例函数的表达式;(2)先由射影定理求出BC=3,那么B(﹣,﹣3),计算求出S△AOB=××4=2.则S△AOP=S△AOB=.设点P的坐标为(m,0),列出方程求解即可.【解答】解:(1)∵点A(﹣,1)在反比例函数y=的图象上,∴k=﹣×1=﹣,∴反比例函数的表达式为y=﹣;(2)∵A(﹣,1),AB⊥x轴于点C,∴OC=,AC=1,由射影定理得OC2=AC•BC,可得BC=3,B(﹣,﹣3),S△AOB=××4=2.∴S△AOP=S△AOB=.设点P的坐标为(m,0),∴×|m|×1=,∴|m|=2,∴m=±2,∴点P的坐标为(﹣2,0)或(2,0).【点评】本题考查了待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征,三角形的面积,正确求出解析式是解题的关键.21.(10分)党的十九大提出实施乡村振兴战略,将生态宜居作为乡村振兴的总目标之一,《乡村振兴战略规划(2018﹣2022年)中更是把建设生态宜居美丽乡村作为重要内容以具体化.某县富强加工厂响应“产业兴旺、生态宜居、生活富裕”的号召,拟计划投资兴建2条全自动生产线和1条半自动生产线共用资金260万元;而投资兴建1条全自动生产线和3条半自动生产线共用资金280万元.(1)求每条全自动生产线和半自动生产线的成本各为多少万元?(2)据预测,2019年每条全自动生产线的毛利润为260万元,每条半自动生产线的毛利润为160万元这一年,该加工厂共投资兴建10条生产线,若想获得不少于1200万元的纯利润,则2019年该加工厂至少需投资兴建多少条全自动生产线?【分析】(1)可设每条全自动生产线的成本为x万元,每条半自动生产线的成本为y万元,根据等量关系:投资兴建2条全自动生产线和1条半自动生产线共需资金260万元;投资兴建1条全自动生产线3条半自动生产线共需资金280万元;列出方程组求解即可;(2)可设2019年该加工厂需兴建全自动生产线a条,根据不等关系:获得不少于1200万元的纯利润,列出不等式求解即可.【解答】解:(1)设每条全自动生产线的成本为x万元,每条半自动生产线的成本为y 万元,根据题意,得,解得.答:每条全自动生产线的成本为100万元,每条半自动生产线的成本为60万元.(2)设2019年该加工厂需兴建全自动生产线a条,根据题意,得(260﹣100)a+(160﹣60)(10﹣a)≥1200,解得a≥3,由于a是正整数,所以a至少取4.即2019年该加工厂至少需投资兴建4条全自动生产线.【点评】本题考查二元一次方程组的应用,一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出等量关系和不等式关系式是解题的关键.22.(10分)已知,点C为线段AB外一动点,且AB=4,AC=2.问题发现(1)图1,当点C位于线段BA的延长线上时,线段BC的长取最大值,且最大值为6.扩展探究(2)如图2,若以BC为斜边向上构造等腰直角三角形BCD,以点A为圆心,AC为半径,在转过程中,当A,C,D三点共线时,求CD的长度;解决问题(3)在(2)的条件下,以点A为圆心,AC为半径,在旋转过程中,试求AD的最大值和最小值.【分析】(1)当点C位于线段BA的延长线上时,线段BC的长度最大,最大值为6;(2)以点A为圆心,AC为半径,在转过程中,当A,C,D三点共线,且点A在线段CD上时或点A在线段DC的延长线上时,设CD=x,在Rt△ADB中,利用勾股定理可分别求出两种情况下CD的长度;(3)当AC⊥AB且点C在AB上方时,AD取最大值,将△DCA以点D为圆心逆时针旋转90°得到△DBE,证明△ADE为等腰直角三角形,通过解直角三角形可求出AD的最大值;当AC⊥AB且点C在AB下方时,AD取最小值,将△DCA以点D为圆心逆时针旋转90°得到△DFB,且A,F,B三点在同一直线上,证明△ADF为等腰直角三角形,可通过解直角三角形可求出AD的最小值.【解答】解:(1)如图1,当点C位于线段BA的延长线上时,线段BC的长度最大,BC=AB+AC=4+2=6,故答案为:线段BA的延长线上,6;(2)①如图2﹣1,以点A为圆心,AC为半径,在转过程中,当A,C,D三点共线,且点A在线段CD上时,设CD=x,则DB=x,AD=CD﹣AC=x﹣2,在Rt△ADB中,AD2+DB2=AB2,即(x﹣2)2+x2=42,解得,x1=1﹣(负值舍去),x2=1+,∴CD=1+;②如图2﹣2,以点A为圆心,AC为半径,在转过程中,当A,C,D三点共线,且点A 在线段DC的延长线上时,设CD=x,则DB=x,AD=CD+AC=x+2,在Rt△ADB中,AD2+DB2=AB2,即(x+2)2+x2=42,解得,x1=﹣1﹣(负值舍去),x2=﹣1,∴CD=﹣1;∴CD的长度为1+或﹣1;(3)①如图3﹣1,当AC⊥AB且点C在AB上方时,AD取最大值,将△DCA以点D为圆心逆时针旋转90°得到△DBE,则∠ADE=90°,△DCA≌△DBE,∴DA=DE,BE=AC=2,∴△ADE为等腰直角三角形,∴AE=AB+BE=4+2=6,∴在等腰直角△ADE中,AD=AE=3,∴AD的最大值是3;。

沈阳市数学中考模拟试卷

沈阳市数学中考模拟试卷

沈阳市数学中考模拟试卷姓名:________ 班级:________ 成绩:________一、选择题(共10小题,每小题4分,共40分) (共10题;共40分)1. (4分)(2019·铁岭模拟) 2019的倒数是()A .B .C .D .2. (4分) (2020八下·新疆月考) 二次根式有意义的条件是()A . x>3B . x>-3C . x≥3D . x≥-33. (4分)(2018·龙湖模拟) 如图是由五个相同的小正方块搭成的几何体,其左视图是()A .B .C .D .4. (4分) (2020八下·萧山期末) 下列四个几何图形中是中心对称图形的是()A .B .C .D .5. (4分)掷一枚质地均匀的正方体骰子,朝上一面的点数大于2且小于5的概率为,抛两枚质地均匀的硬币,正面均朝上的概率为,则下列正确的是()A .B .C .D . 不能确定6. (4分) (2020七下·哈尔滨月考) 某种仪器由1个A部件和1个B部件配套构成.每个工人每天可以加工A部件100个或者加工B部件60个,现有工人16名,应怎样安排人力,才能使每天生产的A部件和B部件配套?设安排x个人生产A部件,安排y个人生产B部件则列出二元一次方程组为()A .B .C .D .7. (4分)(2018·陕西) 如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC 的平分线交AD于点E,则AE的长为()A .B . 2C .D . 38. (4分)(2016·衡阳) 如图,已知A,B是反比例函数y= (k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过P作PM⊥x 轴,垂足为M.设三角形OMP的面积为S,P点运动时间为t,则S关于x的函数图象大致为()A .B .C .D .9. (4分) (2019八下·克东期末) 如图,正方形ABCD的边长为8,点M在DC上,且DM=2,N是AC上一动点,则DN+MN的最小值为()A . 8B .C .D . 1010. (4分)(2019·扬州模拟) 如图,平面内一个⊙O半径为4,圆上有两个动点A,B,以AB为边在圆内作一个正方形ABDC,则OD的最小值是()A . 2B .C . 2 ﹣2D . 4 ﹣4二、填空题(共6小题,每小题5分,共30分) (共6题;共30分)11. (5分)(2020·遵义模拟) 计算的结果是________.12. (5分)(2017·海珠模拟) 某饮料店为了解本店一种罐装饮料上半年的销售情况,随机调查了6天该种饮料的日销售情况,结果如下(单位:罐):33,28,32,25,24,30,这6天销售量的中位数是________.13. (5分)(2020·韶关期末) 已知a是方程2x2=x+4的一个根,则代数式4a2-2a的值是________。

【中考冲刺】2023年辽宁省沈阳市中考模拟数学试卷(附答案)

【中考冲刺】2023年辽宁省沈阳市中考模拟数学试卷(附答案)

2023年辽宁省沈阳市中考模拟数学试题学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.如果一个负数大于它的倒数,那么,这个负数是( ) A .真负分数B .分数C .整数D .假分数2.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .3.下列运算正确的是( ) A .236a a a ⋅=B .1234y y y ÷=C .33(2)8x x -=-D .3362x x x +=4.某旅游景点的游客人数逐年增加,据有关部门统计,2015年约为12万人次,若2017年约为17万人次,设游客人数年平均增长率为x ,则下列方程中正确的是( ) A .12(1+x )=17 B .17(1﹣x )=12 C .12(1+x )2=17D .12+12(1+x )+12(1+x )2=175.如图,将边长相等的正方形、正五边形、正六边形纸板,按如图方式放在桌面上,则a ∠的度数是( )A .42B .40C .36D .326.若关于x 的方程2(1)10a x -+=有两个实数根,则a 的最大整数值为( ) A .-1B .0C .1D .27.如图,由8个边长为1的小正方形组成的图形,被线段AB 平分为面积相等的两部分,已知点A 的坐标是()1,0,则点B 的坐标为( )A .11,33⎛⎫ ⎪⎝⎭B .10,33⎛⎫ ⎪⎝⎭C .15,34⎛⎫ ⎪⎝⎭D .18,35⎛⎫ ⎪⎝⎭8.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地.快车的速度为60千米/小时,特快车的速度为90千米/小时.甲、乙两地之间的距离为300千米,两车同时出发,则图中折线大致表示两车之间的距离y (千米)与快车行驶时间t (小时)之间的函数图象是( )A .B .C .D .9.如图,BD 是O 的直径,弦AC 交BD 于点G .连接OC ,若126COD ∠=︒,AB AD =,则AGB ∠的度数为( )A .98°B .103°C .108°D .113°10.如图,在平面直角坐标系中,平行四边形OABC 的边OA 在y 轴的正半轴上,反比例函数(0)k y x x=>的图像分别交AB 于中点D ,交OC 于点E ,且:1:2CE OE =,连接AE ,若2ADE S =△,则k 的值为( )A .5B .367C .6D .647二、填空题11.新冠肺炎疫情爆发后,学生上学检测体温采用的调查方式是_____________ .(填“普查”或“抽样调查”)12.分别写有数字13、1-、π的四张大小和质地均相同的卡片,从中任意抽取一张后不放回再抽取一张,两次抽到的卡片都是无理数的概率是______.13.某校八年级(3)班团支部为了让同学们进一步了解中国科技的发展,给班上同学布置了一项课外作业,从选出的以下五个内容中任选部分内容进行手抄报的制作.A .“北斗卫星”;B .“5G 时代”;C .“智轨快运系统”;D .“东风快递”;E .“高铁”.统计同学们所选内容的频数,绘制如图所示的折线统计图,则选“5G 时代”的百分率为 ______.14.某同学用描点法y=ax 2+bx+c 的图象时,列出了表: x … ﹣2 ﹣1 0 1 2 … y …﹣11﹣21﹣2﹣5…由于粗心,他算错了其中一个y 值,则这个错误的y 值是_______.15.如图是按以下步骤作图:(1)在ABC 中,分别以点B ,C 为圆心,大于12BC 长为半径作弧,两弧相交于点M ,N ;(2)作直线MN 交AB 于点D ;(3)连接CD ,若90,8BCA AB ∠=︒=,则CD 的长为________.16.某中学为了选拔一名运动员参加区运会100m 短跑比赛,有甲、乙、丙3名运动员备选,他们100m 短跑的平均成绩和方差如下表所示如果要选择一名成绩优秀且稳定的人去参赛,应派_______去.17.如图,在ABC 中,90ACB ∠=︒,AC BC ==ABC 绕点C 按逆时针方向旋转得到DEC ,连接AD ,BE ,直线AD ,BE 相交于点F ,连接CF ,在旋转过程中,线段CF 长度的范围为__________.18.如图,点E 是菱形ABCD 的边AD 的中点,点F 是AB 上的一点,点G 是BC 上的一点,先以CE 为对称轴将CDE △折叠,使点D 落在CF 上的点D 处,再以EF 为对称轴折叠AEF ,使得点A 的对应点A '与点D '重合,以FG 为对称轴折叠BFG ,使FG19.如图,点A 为等边三角形BCD 外一点,连接AB 、AD 且AB =AD ,过点A 作AE CD ∥分别交BC 、BD 于点E 、F ,若34,5BD AE EF ==,则线段AE 的长________.20.如图是抛物线21(0)y ax bx c a =++≠图象的一部分,抛物线的顶点坐标为()1,3A -,与x 轴的一个交点为()4,0B ,点A 和点B 均在直线2(0)y mx n m =+≠上.①20a b +=;①0abc >:①抛物线与x 轴的另一个交点时()4,0-;①方程23ax bx c ++=-有两个不相等的实数根:①4a b c m n -+>+;①不等式2mx n ax bx c +>++的解集为14x <<.上述六个结论中,其中正确的结论是________.(填写序号即可) 三、解答题21.计算:20202||2|(1)-+-.22.如图,一次函数5y x =+的图象与反比例函数ky x=(k 为常数,且0k ≠)的图象相交于()2,A m -和B 两点.(1)求反比例函数的表达式:______________ (2)直接写出不等式5kx x+≤的解集___________ (3)将一次函数5y x =+的图象沿y 轴向下平移b 个单位()0b >.使平移后的图象与反比例函数ky x=的图象有且只有一个交点,b 的值=________ 23.如图,在钝角三角形ABC 中,90ABC ∠>︒,点A ,B ,C 在O 上,过点A 作AD BC ⊥交CB 的延长线于点D ,且DAB C ∠=∠,过点B 作BE AB ⊥交O 于点E ,过点E 作EF AC ,交O 于点M ,交DA 的延长线于点F .(1)求证:DF 是O 的切线.(2)若点C 是BE 的中点,BE =BM 的长_________.24.如图1,在矩形ABCD 中,AB =2,E 是AD 的中点,以点E 为直角顶点的直角三角形EFG 的两边EF ,EG 分别过点B ,C ,30F ∠=︒.将EPG △绕点E 旋转,(1)若EF ,EG 分别与线段AB ,线段BC 相交于点M ,N (如图2).求证:BM CN =;(2)在(1)的条件下,①BMN △面积的最大值___________①当旋转停止时,点B 恰好在FG 上(如图3),sin EBG ∠的值___________ (3)在旋转过程中,射线EF 与直线BC 交于P .射线EG 与直线CD 交于Q ﹐30EPQ S =△,CP =________25.如图,抛物线2(0)y ax bx c a =++≠与x 轴交于A 、B 两点,点A 在点B 的左边,与y 轴交于点C ,点A 的坐标为()2,0-,::1:2:3AO CO BO =.(1)如图1,求抛物线的解析式;(2)如图1,点D 在直线BC 上方的抛物线上运动(不含端点B 、C ),连接DC 、DB ,当四边形ABDC 面积最大时,求出面积最大值和点D 的坐标;(3)如图2,将(1)中的抛物线向右平移,当它恰好经过原点时,设原抛物线与平移后的抛物线交于点E ,连接BE .点M 为原抛物线对称轴上一点,N 为平面内一点,以B 、E 、M 、N 为顶点的四边形是矩形时,若直线OK 平分这个矩形面积,请直接写出直线OK 的解析式. ①________________ ①________________ ①_______________参考答案:1.A 【解析】 【分析】设这个负数为a ,则a <0,且1a a>,可得10a -<<,即可求解. 【详解】解:设这个负数为a ,则a <0,且1a a>, ①21a <, 解得:10a -<<, ①这个负数是真负分数. 故选:A 【点睛】本题主要考查了倒数,解不等式,根据题意得到1a a>是解题的关键. 2.A 【解析】 【分析】利用轴对称图形、中心对称图形的定义进行判断即可. 【详解】A 选项既是轴对称图形,又是中心对称图形,符合题意;B 选项既不是轴对称图形,又不是中心对称图形,不符合题意;C 选项是轴对称图形,不是中心对称图形,不符合题意;D 选项不是轴对称图形,是中心对称图形,不符合题意; 故选:A . 【点睛】本题考查了轴对称图形、中心对称图形的定义,即一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;一个图形绕着中心点旋转180°后能与自身重合,那么这个图形叫做中心对称图形. 3.C 【解析】根据同底数幂的乘法法则可判断A ,根据同底数幂的除法法则可判断B ,根据积的乘法法则可判断C ,根据合并同类项法则可判断D . 【详解】A .23235a a a a +⋅==,A 选项错误;B .1231239y y y y -÷==,B 选项错误;C .3333(2)(2)8x x x -=-=-,C 选项正确;D .3332x x x +=,D 选项错误. 故选:C . 【点睛】本题主要考查了同底数幂的运算法则以及合并同类项的知识,熟记相关运算法则是解答本题关键. 4.C 【解析】 【详解】【分析】设游客人数的年平均增长率为x ,由2015年约为12万人次,到2017年约为17万人次,增长了2次,可列出方程.【详解】设游客人数的年平均增长率为x ,由2015年约为12万人次,到2017年约为17万人次,增长2次,可列出方程12(1+x)2=17. 故选C【点睛】本题考核知识点:列一元二次方程解应用题.解题关键点:找出相等关系,列方程. 5.A 【解析】 【分析】根据正多边形的内角,角的和差,可得答案. 【详解】解:正方形的内角为90°,正五边形的内角为(52)1801085︒︒-⨯=,正六边形的内角为(62)1801206︒︒-⨯=,①1=360°-90°-108°-120°=42°,故选:A .本题考查多边形的内角与外角,解题关键是利用正多边形的内角进行计算. 6.B 【解析】 【分析】分当10a -=,即1a =时,当10a -≠,即1a ≠-时,两种情况讨论求解即可. 【详解】解:当10a -=,即1a =10+=只有一个实数根,不符合题意; 当10a -≠,即1a ≠-时,原方程为一元二次方程,且有两个实数根,①()22=4410b ac a ∆-=--≥,①74a ≤且1a ≠, ①a 的最大整数值为0, 故选B . 【点睛】本题主要考查了一元二次方程根的判别式和一元二次方程的定义,熟知一元二次方程根的判别式是解题的关键. 7.A 【解析】 【分析】如图所示,过点B 作BC ①y 轴于C ,设点B 的坐标为(m ,3),则OC =3,BC =m ,根据题意可知7OABC S =梯形,则72BC OAOC +⋅=,由此求解即可. 【详解】解:如图所示,过点B 作BC ①y 轴于C , 由题意得可知点B 的纵坐标为3, 设点B 的坐标为(m ,3), ①OC =3,BC =m ,①线段AB 平分这8个正方形组成的图形的面积, ①18372OABC S =⨯+=梯形,①72BC OA OC +⋅=, ①1372m +⨯=, ①113m =, ①点B 的坐标为11,33⎛⎫ ⎪⎝⎭, 故选A .【点睛】本题主要考查了坐标与图形,正确作出辅助线构造梯形OABC 是解题的关键.8.D【解析】【分析】分三段讨论,①两车从开始到相遇,这段时间两车距迅速减小,①相遇后向相反方向行驶到特快到达甲地,这段时间两车距迅速增加,①特快车到达甲地至快车到达乙地,这段时间两车距缓慢增大,结合实际选符合的图象即可.【详解】解:①两车从开始到相遇,这段时间两车距迅速减小;①相遇后向相反方向行驶到特快到达甲地这段时间两车距迅速增加;①特快车到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得D 选项符合题意.故选:D .【点睛】本题考查了函数的图象,解答本题关键是分段讨论,要结合实际解答,明白每条直线所代表的实际含义及拐点的含义.9.C【解析】【分析】先求出①COB的度数,由圆周角定理求出①BAC的度数,再根据弧、弦之间的关系求出①ABD=45°,即可得到答案.【详解】解:①①COD=126°,①①COB=54°,①1=272BAC COB=︒∠∠,①BD是圆O的直径,①①BAD=90°,①AB AD=,①AB=AD,①①ABD=①ADB=45°,①①AGB=180°-①BAG-①ABG=108°,故选C.【点睛】本题主要考查了圆周角定理,直径所对的圆周角是直角,等弧所对的弦相等,等腰直角三角形的性质与判定,三角形内角和定理等等,熟知圆周角定理是解题的关键.10.D【解析】【分析】连结BE,延长BC交x轴于H,过E作EG①x轴于G,DF①x轴于F,由点D为AB中点,可得AD=BD=12AB,由S△AED=2,可求S平行四边形AOCB=2 S△AEB=8,设D(,kaa),OF=a,OH=2a,可求OA=842a a=,由:1:2CE OE=,可求23OEOC=,由EG①CH,可证△OGE①①OHC,可求2433OG OH a==,EG=23CH,求出E(43a,41633ka a-),由点E在反比例函数图像上得43a41633kka a⎛⎫⋅-=⎪⎝⎭,解得647k=.【详解】解:连结BE,延长BC交x轴于H,过E作EG①x轴于G,DF①x轴于F,①点D为AB中点,①AD=BD=12AB,OF=FH,①S△AED=2,①S△AEB=2 S△AED=4,①S平行四边形AOCB=2 S△AEB=8,设D(,kaa),OF=a,FH=OF=a,OH=2a,OA=842a a=,①:1:2 CE OE=,,①12 CEOE=,①122CE OEOE++=,①23 OEOC=,①EG①CH,①①OEG=①OCH,①OGE=①OHC=90°,①①OGE①①OHC,①23 OE OG EGOC OH CH===,①2433OG OH a==,EG=23CH,由梯形中位线2FD=OA+HB=2OA+CH,①CH=28 22kFD OAa a-=-,EG=2416 333kCHa a=-,E(43a,41633ka a-),点E在反比例函数图像上,43a41633kka a⎛⎫⋅-=⎪⎝⎭,解得647k=,故选择:D.【点睛】本题考查平行四边形性质,梯形中位线,相似三角形判定与性质,利用点E坐标在反比例函数图像上构造方程是解题关键.11.普查【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行解答即可.【详解】解:因为新冠肺炎疫情事关重大,学生上学必须进行体温检测,所以采用的调查方式是普查,故答案为:普查.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.12.1 6【解析】【分析】根据题意画出树状图得出所有等可能的情况数,找出符合条件的情况数,再根据概率公式即可得出答案.【详解】解:根据题意,画出树状图,如下:共有12种等可能结果,其中两次抽到的卡片都是无理数的有2种,①两次抽到的卡片都是无理数的概率是21 126.故答案为:1 6【点睛】此题考查的是用列表法或树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.13.30%【解析】【分析】根据折线图,先算出总人数,然后用“5G时代”的人数除以总人数即可得到答案.【详解】解:由折线图可知:这个班的总人数=25+30+10+20+15=100人①“5G时代”的人数是30①“5G时代”的百分率=30÷100=30%故答案为:30%【点睛】本题主要考查了折线统计图,解题的关键在于能够准确地从折线图中获取信息求解.14.﹣5.【解析】【详解】根据关于对称轴对称的自变量对应的函数值相等,可得答案.解:由函数图象关于对称轴对称,得(﹣1,﹣2),(0,1),(1,2)在函数图象上,把(﹣1,﹣2),(0,1),(1,﹣2)代入函数解析式,得212a b c c a b c -+=-⎧⎪=⎨⎪++=-⎩, 解得,301a b c =-⎧⎪=⎨⎪=⎩,函数解析式为y=﹣3x 2+1x=2时y=﹣11,故答案为﹣5.“点睛”本题考查了二次函数图象,利用函数图象关于对称轴对称是解题关键.15.4【解析】【分析】根据作图可以判断MN 垂直平分BC ,然后根据线段的垂直平分线的性质得到DB =DC ,再证明DA =DC ,即可得到CD =12AB =4.【详解】解:由作图方法可得MN 垂直平分BC ,∴DB =DC ,∴B BCD ∠=∠,90BCA ∠=︒,∴①B +①A =90°,①BCD +①ACD =90°,①①ACD =①A ,①DA =DC ,①CD =12AB =12×8=4.故答案为:3.【点睛】本题考查了识别线段的垂直平分线的作图,常见的基本作图有作一条线段等于已知线段、作一个角等于已知角、作已知线段的垂直平分线、作已知角的角平分线、过一点作已知直线的垂线.识别出MN 为线段BC 的垂直平分线,然后根据垂直平分线的性质和直角三角形的性质是解题的关键.16.乙【解析】【分析】综合比较平均成绩和方差,甲和乙的平均成绩较好,均为12.85秒,乙和丙方差较小,均为1.1,说明乙的成绩优秀且稳定.【详解】解:①12.85秒<12.87秒,①甲,乙的平均成绩较好,①1.1<2.1,①乙的成绩稳定,①应派乙去参赛.故答案为:乙.【点睛】本题考查了用平均数和方差做决策,解决问题的关键是熟练比较平均数选出平均数最小的,比较方差选出方差最小的.17.0CF≤≤【解析】【分析】取AB的中点H,连接CH、FH,设EC,DF交于点G,在①ABC中,由勾股定理得到AB=①DCE①①ACB,从而①DCA=①BCE,①ADC=①BEC,由①DGC=①EGF,可得①AFB=90º,由直角三角形斜边上的中线等于斜边的一半,可得AB①FCH中,当F、C、H在一条直线上时,CFFH=CH=12再求出CF的最小值即可.【详解】解:取AB的中点H,连接CH、FH,设EC,DF交于点G,在①ABC中,①ACB=90º,AC BC,①AB由旋转可知:①DCE①①ACB,①①DCE=①ACB,DC=AC,CE=CB,①①DCA=①BCE,①①ADC=12(180º-①ACD) ,①BEC=12(180º-①BCE),①①ADC=①BEC,①①DGC=①EGF,①①DCG=①EFG=90º,①①AFB=90º,①H是AB的中点,①FH=12AB,①①ACB=90º,①CH=12AB,①FH=CH=12AB在①FCH中,FH+CH>CF,当F、C、H在一条直线上时,CF=①线段CF.如图所示,当①ABC绕点C逆时针旋转180度时,直线AD与直线BE的交点即为点C,则此时C、F重合,即此时CF=0,①0CF≤≤故答案为:0CF≤≤【点睛】本题考查了旋转的性质、三角形内角和定理、勾股定理,直角三角形斜边上的中线,解决本题的关键是掌握旋转的性质.18.35【解析】【分析】过点C 作CH AB ⊥,交AB 延长线于点H ,设AF A F x '==,分别解得FC ,BF ,BH ,FH 的长,在t R FCH 中利用勾股定理解得45x =,在证明ECA GFB ''∽最后根据相似三角形对应边成比例解答即可.【详解】解:过点C 作CH AB ⊥,交AB 延长线于点H ,设AF A F x '==,①22CF CD AF x BF AB AF x =+=+=-=-,,①四边形ABCD 是菱形,①AD BC ∥, 60CBH A ∴∠=∠=︒,①30BCH ∠=︒112BH BC ∴==,①CH3FH x ∴=-,在t R FCH 中,由勾股定理得222CF CH FH =+,222(2)(3)x x ∴+=+-,2244396x x x x ∴++=+-+,45x ∴=, 65BF ∴=, ①四边形ABCD 是菱形,①D B ∠=∠,AB CD ∥,由折叠的性质可得EA C GB F B D ''∠=∠==∠∠,1122DCE ECF DCF BFG GFC BFC ∠=∠=∠∠=∠=∠,, ①AB CD ∥,DCF CFB ∴∠=∠,1122DCE ECF DCF BFG GFC BFC ∴∠=∠=∠∠=∠=∠,, ECF GFC ∴∠=∠,ECA GFB ''∴∽,FG B F BF CE A C DC'∴==', ①3=5FG BF CE DC =, 故答案为:35. 【点睛】本题考查菱形的性质、相似三角形的判定与性质、折叠的性质、含30°角的直角三角形的性质、勾股定理等知识,是重要考点,作出正确辅助线是解题关键.19.15【解析】【分析】连接AC交BD于点O,可得AC是BD的垂直平分线,设BD=4x,则AE=3x,求出OF=OB-BF=2x-5,AF=AE-EF=3x-5,证明①BOE是等边三角形,得30AFE∠=︒,利用AF=2OF列出方程求出x的值,进而可得AE的长.【详解】解:如图,连接AC交BD于点O,①3BD=4AE,①43 BDAE=,设BD=4x,则AE=3x,①①BCD是等边三角形,①BC=CD=BD=4x,①DCB=①DBC=60°,①AB=AD,BC=CD,①AC是BD的垂直平分线,①OB=OD=2x,OC平分①BCD,①AOF=90°,①①DCO=12①DCB=30°,①OC=,①AE①CD,①①AEB=①BCD=60°,①①AEB =①FBE =①BFE =60°,①①BEF 是等边三角形,①BE =BF =EF =5,①BFE =60°,①OF =OB -BF =2x -5,AF =AE -EF =3x -5,①60AFO BFE =∠=︒∠①30FAC ∠=︒①2AF OF =①()35225x x -=-,解得x =5,①AE =3x =15.故答案为:15.【点睛】本题考查了垂直平分线的判定与性质,勾股定理,等边三角形的判定与性质,直角三角形的性质,解决本题的关键是得到AF =2OF 列出方程求解.20.①①①①【解析】【分析】根据抛物线的顶点坐标即可确定抛物线的对称轴即可得到20a b +=即可判断①;根据抛物线的开口方向以及与y 轴的交点情况即可判断①;根据抛物线的对称轴结合已知的与x 轴的一个交点即可判断①;利用图象法即可判断①;分别求出当x =-1时10y a b c =-+<,当x =4时,240y m n =+=,即可判断①;利用图象法即可判断①.【详解】解:①抛物线的顶点坐标为(1,-3),①抛物线的对称轴为直线12b x a=-=, ①20a b +=,故①正确;①抛物线开口向上,与y 轴的交点在y 轴的负半轴,①00a c ><,,①0b <,①0abc >,故①正确;①抛物线对称轴为直线x =1,与x 轴的一个交点为(4,0),①抛物线与x 轴的另一个交点为(-2,0),故①错误;①抛物线顶点坐标为(1,-4),①由函数图象可知,抛物线与直线y =-3有两个不同的交点,①方程23ax bx c ++=-有两个不相等的实数根,故①正确;①抛物线与x 轴的另一个交点为(-2,0)①当x =-1时,10y a b c =-+<,①点A 和点B 均在直线2(0)y mx n m =+≠上,①当x =4时,240y m n =+=,①4a b c m n -+<+,故①错误;①不等式2mx n ax bx c +>++的解集即为一次函数图象在抛物线图象上方时x 的取值范围, ①不等式2mx n ax bx c +>++的解集为14x <<,故①正确;故答案为:①①①①.【点睛】本题主要考查了二次函数图象的性质,二次函数与一次函数图象综合等等,熟知二次函数图象的性质是解题的关键.21.【解析】【分析】直接利用绝对值的性质以及立方根的性质、有理数的乘方运算法则分别化简,进而得出答案.【详解】解:2020|2||2|(1)-+-【点睛】本题主要考查了实数的运算,理解相关运算法则,正确化简各数是解题关键.22.(1)6y x=- (2)3x ≤-或20x -≤<(3)5或5【解析】【分析】(1)把点()2,A m -代入5y x =+,可得点A (-2,3),再把点A (-2,3)代入k y x=,即可求解;(2)联立得:65y x y x ⎧=-⎪⎨⎪=+⎩,求出点D 的坐标,再观察图象,即可求解; (3)根据题意得到平移后的图象的解析式为5y x b =+-,可得到方程2(5)60x b x +-+=,再利用一元二次方程根的判别式,即可求解.(1)解:把点()2,A m -代入5y x =+,得:253m =-+=,①点A (-2,3),把点A (-2,3)代入k y x=,得:32k =-,解得:k =-6, ①反比例函数的表达式为6y x=-; 故答案为:6y x=- (2) 解:联立得:65y x y x ⎧=-⎪⎨⎪=+⎩,解得:121123,32x x y y =-=-⎧⎧⎨⎨==⎩⎩, ①点B (-3,2),观察图象得:当3x ≤-或20x -≤<时,一次函数图象位于反比例函数图象的下方或两图象相交,①不等式5k x x+≤的解集为3x ≤-或20x -≤<; 故答案为:3x ≤-或20x -≤<(3)解:①一次函数5y x =+的图象沿y 轴向下平移b 个单位()0b >.①平移后的图象的解析式为5y x b =+-, 联立得:65x b x-=+-, 整理得:2(5)60x b x +-+=,①平移后的图象与反比例函数k y x=的图象有且只有一个交点, ①2(5)240b ∆=--=,解得:5b =5故答案为:55【点睛】本题主要考查了反比例函数与一次函数的综合题,一元二次方程根的判别式,熟练掌握反比例函数与一次函数的图象和性质是解题的关键.23.(1)见解析 (2)43π 【解析】【分析】(1)连接AE ,根据圆周角定理得出AE 为O 的直径,根据直角三角形的两锐角互余及等量代换可推出90DAO ∠=︒,即可得解;(2)连接OM ,OB ,先根据切线的性质易得EBC AEB ∠=∠,再根据弧、圆心角的关系得到BAC CAE ∠=∠,进而得到AEB EAC BAC ∠=∠=∠,得到 390EAC ∠=︒,求出30EAC ∠=︒,再根据等腰三角形的性质及三角形外角性质得出120MOB ∠=︒,在Rt ABE △中,解直角三角形得到4AE =,即得圆的半径为2,再根据弧长公式求解即可.(1)解:连接AE ,如下图.①AB BE ⊥,①90ABE ∠=︒,①AE 是O 的直径,90BEA BAE ∠+∠=︒.①C DAB ∠=∠,C BEA ∠=∠,①DAB BEA ∠=∠,①90DAB BAE ∠+∠=︒,即:EA FD ⊥.又①点A 在O 上,OA 为O 的半径,①FD 是O 的切线;(2)解:①FD 是O 的切线,①90EAD ∠=︒.①AD CD ⊥,①90ADC ∠=︒,①180EAD ADC ∠+∠=︒.①AE CD ∥,①EBC AEB ∠=∠.①C 是BE 的中点,①BC CE =,①EAC BAC EBC ∠=∠=∠,①AEB EAC BAC ∠=∠=∠.①在Rt ABE △中,390EAC ∠=︒,①30EAC ∠=︒.①AC EF ,①30FEA EAC ∠=∠=︒,①60FEB =︒∠,连接OB ,OM ,则2120MOB MEB ∠=∠=︒,在Rt ABE △中,30AEB ∠=︒, ①4cos30BEAE ,①2OA =,①120241803BM ππ=⨯=. 【点睛】本题考查了切线的判定与性质、圆周角定理、弧长计算公式,解直角三角形,熟记切线的判定与性质、弧长计算公式并作出合理的辅助线是解题的关键.24.(1)证明见解析(2)①2;(3)2或2【解析】【分析】(1)利用“SAS ”定理证明BAE CDE △≌△得到BE CE =,再等腰直角三角形的性质得到45EBC ECB ∠=∠=︒,进而得到BEM CEN ∠=∠,利用“SAS ”定理证明BEM CEN ≌,根据全等三角形的性质求解;(2)①设AB a ,BM CN x ==,利用全等三角形的性质得到2BN a x =-,根据三角形的面积公式得到()221-22BMN a S x a =-+,根据二次函数的性质解答; ①作EH BG ⊥于H ,设NG m =,根据直角三角形的性质、勾股定理用m 表示出BN 、BG ,根据三角形的面积公式用m 表示出EH ,根据正弦的定义计算,得到答案;(3)根据图1,求得AD 的长为2,继而证△MPE ≌DEQ ,得到三角形EPQ 为等腰直角三角形,勾股定理即可求解.(1)证明:如图1,①四边形ABCD 是矩形,①AB DC =,90A D ∠=∠=︒.①E 是AD 中点,①AE DE =,①BAE CDE SAS ≌(), ①BE CE =.①以点E 为直角顶点的直角三角形EFG 的两边EF ,将EPG △绕点E 旋转, ①EBC 是等腰直角三角形,①==45EBC ECB ∠∠︒.①90ABC BCD ∠=∠=︒,①45EBM ECN ∠=∠=︒.①90MEN BEC ∠=∠=︒,①MEN BEN BEC BEN ∠-∠=∠-∠,即BEM CEN ∠=∠.在BEM △和CEN 中,BEM CEN EB EC EBM ECN ∠∠⎧⎪⎨⎪∠∠⎩===, ①BEM CEN ASA ≌(), ①BM CN =;(2)解:设AB a .①45ABE ∠=︒,90A ∠=︒,①==AE AB a ,①==2BC AD a .①BEM CEN ≌,①BM CN =,设BM CN x ==,则2BN a x =-, ①()()22112-222BMN a S x a x x a =⋅⋅-=-+. ①1-02<, ①x a =时,BMN △的面积最大,此时AB CN =,即2AB a x ===时,BMN △的最大面积是22=22. 故答案为:2;解:如下图,作EH BG ⊥于H ,①EF BN ∥,①==30GBN F ∠∠︒ ,设=NG m ,则=2BG m ,由勾股定理得,BN EN ===,则EB ==,①)1EG EN NG m =+=. ①1122EBG S EG BN EG EH =⋅⋅=⋅⋅,①)111222m m EH ⨯=⨯⨯,解得EH =, 在Rt EBH △中,=EH sin EBG EB ∠=(3)如图1中,①四边形ABCD 是矩形,①AB =DC ,①A =①D =90°,①E 是AD 中点,①AE =DE ,①①BAE ①①CDE ,①BE =CE .90EEG ∠=︒EBC ∴△是等腰直角三角形45ABE AEB DEC DCE ∴∠=∠=∠=∠=︒ ,AE AB DC ED ∴==2AB =4AD ∴=如图,过点P 作PM AD ⊥交直线AD 于M , 则四边形,MPCD MPBA 是矩形, 2PM CD ∴==90,90PEQ M EDQ ∠=︒∠=∠=︒, 90MEP DEQ EQD ∴∠=︒-∠=∠ 在△MPE 与DEQ 中,MP DE M EDQ MEP DQE =⎧⎪∠=∠⎨⎪∠=∠⎩∴△MPE ≌DEQPE PQ ∴=,DQ ME =PEQ ∴是等腰直角三角形1302EPQ S EP EQ =⋅=,①PE EQ ==当P 在CD 的左边时,QD ME ∴===2PC ME ED ∴=+=当P 在CD 的右边时,2PC ME ED =-=故答案为:2或2.【点睛】本题考查的是全等三角形的判定和性质、正方形的性质、锐角三角函数的定义、二次函数的应用,掌握全等三角形的判定定理和性质定理、二次函数的性质是解题的关键.25.(1)214433y x x =-++ (2)ABDC S 四边形最大值为25,点D 的坐标为()3,5 (3)59y x =或1120y x =或1325y x = 【解析】【分析】(1)先根据()2,0A -,::1:2:3AO CO BO =.求出OA =2,OC =4,OB =6,得出()6,0B ,()0,4C 将A 、B 、C 代入()20y ax bx c c =++≠得:42036604a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解方程组即可;(2)作DM x ⊥轴交BC 于点M ,利用待定系数法求出直线BC 的解析式为243y x =-+,令214,433D t t t ⎛⎫-++ ⎪⎝⎭,则2,43M t t ⎛⎫-+ ⎪⎝⎭,求出2123DM t t =-+,将四边形ABCD 分割成两个三角形面积利用公式得出ABC BCD ABDC S S S ∆∆=+四边形2616t t =-++()2325t =--+即可;(3)将抛物线配方为()2214116423333y x x x =-++=--+.向右平移2个单位抛物线过原点,解析式为()2116433y x =--+,求两抛物线交点点E (3,5),分两种情况以BE 为对角线时和以BE 为边时,求出以B 、E 、M 、N 为顶点的矩形的中心点P 坐标,当直线OK 经过点P 时满足题意,据此求解即可.(1)解:①()2,0A -,::1:2:3AO CO BO =.①OA =2,OC =4,OB =6,①()6,0B ,()0,4C ,将A 、B 、C 代入()20y ax bx c c =++≠得:42036604a b c a b c c -+=⎧⎪++=⎨⎪=⎩, 解得13434a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩, ①抛物线的解析式为214433y x x =-++; (2)解:过点D 作DM x ⊥轴交BC 于点M ,设BC 的解析式为1y kx b =+,①()6,0B ,()0,4C ,代入坐标得:11460b k b =⎧⎨+=⎩, 解得:1423b k =⎧⎪⎨=-⎪⎩, ①直线BC 的解析式为243y x =-+, 设214,433D t t t ⎛⎫-++ ⎪⎝⎭,则2,43M t t ⎛⎫-+ ⎪⎝⎭, ①2123DM t t =-+, ①ABC BCD ABDC S S S ∆∆=+四边形,1122AB OC DM OB =⋅+⋅, 21118426223t t ⎛⎫=⨯⨯+-+⨯ ⎪⎝⎭, 2616t t =-++,()2325t =--+,①当3t =时,ABDC S 四边形的值最大,最大值为25.当3t =时,5y =,①点D 的坐标为()3,5;(3) 解:将抛物线配方为()2214116423333y x x x =-++=--+. ①原抛物线对称轴为直线2x =,①原抛物线向右平移2个单位抛物线过原点,①平移后的抛物线解析式为()2116433y x =--+, 联立()()22116233116433y x y x ⎧=--+⎪⎪⎨⎪=--+⎪⎩,两式相减得()()2224x x -=-, 解得x =3, ①()211634533y =--+=, ①点E (3,5),设点M 的坐标为(2,m ),如图1所示,以BE 为对角线,且四边形EMBN 为矩形时,①矩形EMBN 的中心P 的坐标为(92,52), ①直线OK 平分这个矩形EMBN 的面积,①当直线OK 经过点P 时满足题意,设直线OK 的解析式为1y k x =, ①19522k =, ①159k =, ①直线OK 的解析式为59y x =;如图2所示,当BE 为矩形M 1N 1BE 的边时,M 1E ①BE ,过E 作EH ①MG ,EF 垂直于直线x =2于F ,①①HEM 1+①HEB =90°,①FEM 1+①HEM 1=90°,①①FEM 1=①HEB ,①①EFM 3=①EHB =90°,①①EFM 1①①EHB , ①1EF FM EH HB=, ①BH =6-3=3,EF =3-2=1,FM 1=5-m ,EH =5, ①1553m -=, 解得225m =, ①M 1(2,225), ①矩形M 1N 1BE 的中心P 的坐标为(4,115), 同理可求得直线OK 的解析式为1120y x =; 如图2所示,当BE 为矩形N 2M 2BE 的边时,M 2E ①BE ,①①M 2BE =90°,①①M 2BG +①EBH =90°,①EBH +①BEH =90°,①①M 2BG =①BEH ,①①M 2GB =①EHB =90°,①①M 2GB ①①BHE , ①2M G BG BH EH =即435m -=, 解得125m, ①点M (2,125-), ①矩形N 2M 2BE 的中点嗲P 的坐标为(52,1310), 同理求得直线OK 的解析式为1325y x =; 综上所述,当以B 、E 、M 、N 为顶点的四边形是矩形时,若直线OK 平分这个矩形面积,则直线OK 的解析式为59y x =或1120y x =或1325y x =【点睛】本题考查待定系数法求抛物线解析式,一次函数解析式,四边形面积,二次函数的最值,抛物线平移,三角形相似判定与性质,矩形性质,中点坐标公式,掌握待定系数法求抛物线解析式,四边形面积,二次函数的最值,抛物线平移性质,三角形相似判定与性质,矩形性质,中点坐标公式是解题关键.。

辽宁省沈阳市数学中考模拟试卷(三)

辽宁省沈阳市数学中考模拟试卷(三)

辽宁省沈阳市数学中考模拟试卷(三)姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2019七下·天河期末) ()A .B .C .D .2. (2分) (2020七下·渭滨期末) 下列运算正确的是()A . a3+a3=2a6B . (-2ab2)3=-6a3b6C . (28a3-14a2+7a)÷7a=4a2-2aD . a2·a3=a53. (2分) (2019七上·定州期中) 2019年4月10日21时,人类首张黑洞照片面世,该黑洞位于室女座一个巨椭圆星系的中心,距离地球55000000光年,质量约为太阳的65亿倍,则55000000用科学记数法表示为()A .B .C .D .4. (2分)如果一个图形有两条互相垂直的对称轴,那么这个图形()A . 只能是轴对称图形B . 不可能是中心对称图形C . 一定是轴对称图形,也一定是中心对称图形D . 一定是轴对称图形,但无法判别是中心对称图形5. (2分)(2020·乐平模拟) 丽丽用手机软件记录了天中每天所走的步数,并记录结果绘制成了如下统计表.这期间丽丽平均每天走万步,则这组数中,众数和中位数分别是()步数/万步 5天数A . ,B . ,C . ,D . ,6. (2分)(2020·无锡模拟) 已知圆锥的底面半径为,母线长为,则圆锥的侧面积是()A .B .C .D .7. (2分)(2018·安徽模拟) 一个长方体和一个圆柱体按如图所示方式摆放,其主视图是()A .B .C .D .8. (2分) (2019九上·天河期末) 下列说法正确的是()A . 13名同学中,至少有两人的出生月份相同是必然事件B . “抛一枚硬币正面朝上概率是0.5”表示每抛硬币2次有1次出现正面朝上C . 如果一件事发生的机会只有十万分之一,那么它就不可能发生D . 从1、2、3、4、5、6中任取一个数是奇数的可能性要大于偶数的可能性9. (2分) (2019八上·鄂州期末) 若关于x的分式方程无解,则m的值为()A . 一l.5B . 1C . 一l.5或2D . 一0.5或一l.510. (2分) (2020八下·高邮期末) 下列说法正确的是()A . 矩形的对角线相等垂直B . 菱形的对角线相等C . 正方形的对角线相等D . 菱形的四个角都是直角11. (2分) (2019九上·淮阴期末) 如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=,则四边形MABN的面积是()A .B .C .D .12. (2分)一列快车从甲地开往乙地,一列慢车从乙地开往甲地,两车同时出发,两车离乙地的路程S(千米)与行驶时间t(小时)的函数关系如图所示,则下列结论中错误的是()A . 甲、乙两地的路程是400千米B . 慢车行驶速度为60千米/小时C . 相遇时快车行驶了150千米D . 快车出发后4小时到达乙地二、填空题 (共5题;共6分)13. (1分) (2015八上·丰都期末) 分解因式:4x2﹣1=________.14. (1分)同时掷二枚普通的骰子,数字和为1的概率为________ ,数字和为7的概率为________ ,数字和为2的概率为________ .15. (2分) (2019七下·北京期末) 阅读理如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由∠MOx的度数θ与OM的长度m确定,有序数对(θ,m)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”。

模拟测评:2022年辽宁省沈阳市中考数学模拟测评 卷(Ⅰ)(含答案及详解)

模拟测评:2022年辽宁省沈阳市中考数学模拟测评 卷(Ⅰ)(含答案及详解)

2022年辽宁省沈阳市中考数学模拟测评 卷(Ⅰ) 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、下列图形中,既是中心对称图形又是轴对称图形的是( ) A .B .C .D . 2、下列运算中,正确的是( ) A6 B5 C=4 D3、如图是一个正方体的展开图,把它折叠成正方体后,有“学”字一面的相对面上的字是( ) ·线○封○密○外A .雷B .锋C .精D .神4、现有四张卡片依次写有“郑”“外”“加”“油”四个字(四张卡片除字不同外其他均相同),把四张卡片背面向上洗匀后,从中随机抽取两张,则抽到的汉字给好是“郑”和“外”的概率是( )A .13 B .14 C .16 D .565、下列各数中,是无理数的是( )A .0BC .227D .3.14159266、如图,小玲将一个正方形纸片剪去一个宽为2cm 的长条后,再从剩下的长方形纸片上剪去一个宽为3cm 的长条,如果两次剪下的长条面积正好相等,那么原正方形的边长为( )cm .A .4B .6C .12D .187、平面直角坐标系中,O 为坐标原点,点A 的坐标为()2,1-,将OA 绕原点按逆时针方向旋转90°得OB ,则点B 的坐标为( )A .()1,2B .()2,1-C .()2,1--D .()1,2--8、已知2250x x --=的两个根为1x 、2x ,则12x x +的值为( )A .-2B .2C .-5D .59、如图,线段8AB =,延长AB 到点C ,使2BC AB =,若点M 是线段AC 的中点,则线段BM 的长为( ) A .3 B .4 C .5 D .12 10、如图,点 F 是 ABC 的角平分线 AG 的中点, 点 ,D E 分别在 ,AB AC 边上,线段 DE 过点 F , 且 ADE C ∠=∠,下列结论中, 错误的是( )A .12DF GC = B .12DE BC = C .12AE AB = D .12AD BD = 第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分) 1、写出一个比1大且比2小的无理数______.2、某国产品牌的新能源汽车因物美价廉而深受大众喜爱,在某地区的销售量从1月份的10万辆增长到3月份的12.1万辆,则从1月份到3月份的月平均增长率为______.3、已知五边形AAAAA 是⊙A 的内接正五边形,则∠AAA 的度数为______.4、最简二次根式x 的值是 ___. 5、如图,晚上小亮在路灯下散步,在由A 点处走到B 点处这一过程中,他在点A ,B ,C 三处对应的在地上的影子,其中影子最短的是在 _____点处(填A ,B ,C ).·线○封○密○外三、解答题(5小题,每小题10分,共计50分)1、下面是小颖同学解二元一次方程组的过程,请认真阅读并完成相应的任务.解方程组:248320x y x y -=⎧⎨-=⎩①②. 解:①4⨯,得8416x y -=③,⋯⋯⋯⋯⋯⋯第一步, ②-③,得4y -=,⋯⋯⋯⋯⋯⋯⋯第二步, 4y =-.⋯⋯⋯⋯⋯第三步, 将4y =-代入①,得0x =.⋯⋯⋯⋯第四步, 所以,原方程组的解为04x y =⎧⎨=-⎩.⋯⋯⋯⋯⋯第五步. 填空:(1)这种求解二元一次方程组的方法叫做______.A 、代入消元法B 、加减消元法(2)第______步开始出现错误,具体错误是______;(3)直接写出该方程组的正确解:______.2、如图,在ABC 中,AC BC ⊥,D 是BC 延长线上的一点,E 是AC 上的一点.连接ED .如果A D ∠=∠.求证:ABC DEC ∽△△.3、阅读材料: 两点间的距离公式:如果直角坐标系内有两点A (x 1,y 1)、B (x 2,y 2),那么A 、B 两点的距离AB=AB 2=(x 1﹣x 2)2+(y 1﹣y 2)2. 例如:若点A (4,1),B (2,3),则AB=根据上面材料完成下列各题: (1)若点A (﹣2,3),B (1,﹣3),则A 、B 两点间的距离是 .(2)若点A (﹣2,3),点B 在坐标轴上,且A 、B 两点间的距离是5,求B 点坐标. (3)若点A (x ,3),B (3,x +1),且A 、B 两点间的距离是5,求x的值.45、阅读下面材料:小钟遇到这样一个问题:如图1,()090AOB αα∠=︒<<︒,请画一个AOC ∠,使AOC ∠与BOC ∠互补.小钟是这样思考的:首先通过分析明确射线OC 在AOB ∠的外部,画出示意图,如图2所示;然后通过构造平角找到AOC ∠的补角COD ∠,如图3所示;进而分析要使AOC ∠与BOC ∠互补,则需BOC COD ∠=∠; 因此,小钟找到了解决问题的方法:反向延长射线OA 得到射线OD ,利用量角器画出BOD ∠的平分线OC ,这样就得到了BOC ∠与AOC ∠互补. ·线○封○密·○外(1)请参考小钟的画法;在图4中画出一个AOH ∠,使AOH ∠与BOH ∠互余.并简要介绍你的作法;(2)已知()4560EPQ EPQ ∠︒<∠<︒和FPQ ∠互余,射线PA 在FPQ ∠的内部,12APF FPQ ∠=∠且EPA ∠比APQ ∠大β,请用β表示APQ ∠的度数.-参考答案-一、单选题1、A【详解】解:A .既是中心对称图形又是轴对称图形,故此选项符合题意;B .是轴对称图形,不是中心对称图形,故此选项不合题意;C .是轴对称图形,不是中心对称图形,故此选项不合题意;D .不是轴对称图形,是中心对称图形,故此选项不合题意.故选:A .【点睛】本题考查的是中心对称图形与轴对称图形的概念,解题的关键是掌握轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2、C【分析】根据算术平方根的意义逐项化简即可.【详解】解:B.-5,故不正确;4,正确;8,故不正确;故选C . 【点睛】 本题考查了算术平方根,熟练掌握算术平方根的定义是解答本题的关键, 正数有一个正的算术平方根,0的平方根是0,负数没有算术平方根. 3、D 【分析】 根据正方体的表面展开图的特征,判断相对的面即可. 【详解】 解:由正方体的表面展开图的特征可知: “学”的对面是“神”, 故选:D . 【点睛】 本题考查了正方体相对两个面上的文字,掌握正方体表面展开图的特征是正确判断的关键. 4、C 【分析】 列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可. ·线○封○密○外【详解】解:列表如下:由表可知,共有12种等可能结果,其中抽到的汉字恰好是“郑”和“外”的有2种结果,.所以抽到的汉字恰好是“郑”和“外”的概率为21=126故选:C.【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.5、B【分析】无限不循环小数叫做无理数,有限小数或无限循环小数叫做有理数,根据无理数的定义即可作出判断.【详解】A.0是整数,属于有理数,故本选项不合题意;BC.227是分数,属于有理数,故本选项不合题意; D .3.1415926是有限小数,属于有理数,故本选项不合题意; 故选:B . 【点睛】本题考查了无理数,掌握无理数的含义是解题的关键.6、B【分析】设正方形的边长为x cm ,则第一个长条的长为x cm ,宽为2cm ,第二个长条的长为(x -2)cm ,宽为3cm ,根据两次剪下的长条面积正好相等列方程求解.【详解】 解:设正方形的边长为x cm ,则第一个长条的长为x cm ,宽为2cm ,第二个长条的长为(x -2)cm ,宽为3cm , 依题意得:2x =3(x -2), 解得x =6 故选:B . 【点睛】 本题考查了由实际问题抽象出一元一次方程,找准等量关系,正值列出一元一次方程是解题的关键. 7、D【分析】如图过点A 作AC 垂直于y 轴交点为C ,过点B 作BD 垂直于y 轴交点为D ,909090OA OB AOB A AOC AOC BOD =∠=︒∠+∠=︒∠+∠=︒,,,A BOD∠=∠,故有AOC OBD ≌,21OD AC BD OC ====,,进而可得B 点坐标. 【详解】 ·线○封○密·○外解:如图过点A 作AC 垂直于y 轴交点为C ,过点B 作BD 垂直于y 轴交点为D∵909090OA OB AOB A AOC AOC BOD =∠=︒∠+∠=︒∠+∠=︒,,,∴A BOD ∠=∠在AOC △和OBD 中90A BOD ACO ODB OA OB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴()AOC OBD AAS ≌∴21OD AC BD OC ====,∴B 点坐标为(1,2)--故选D .【点睛】本题考查了旋转的性质,三角形全等,直角坐标系中点的表示.解题的关键在于熟练掌握旋转的性质以及直角坐标系中点的表示.8、B【分析】直接运用一元二次方程根与系数的关系求解即可.【详解】 解:∵2250x x --=的两个根为1x 、2x , ∴122=()21x x -+-= 故选:B【点睛】本题主要考查了一元二次方程根与系数的关系,若1x 、2x 为一元二次方程20ax bx c ++=的两个实数根,则有12=b x x a +-,12=c x x a . 9、B 【分析】 先求出24AC =,再根据中点求出12AM =,即可求出BM 的长. 【详解】 解:∵8AB =, ∴216BC AB ==,16824AC BC AB =+=+=, ∵点M 是线段AC 的中点,∴1122AM AC ==, 4BM AM AB =-=,故选:B .【点睛】本题考查了线段中点有关的计算,解题关键是准确识图,理清题目中线段的关系.10、D·线○封○密·○外【分析】根据AG平分∠BAC,可得∠BAG=∠CAG,再由点F是AG的中点,可得12AF FG AG==,然后根据ADE C∠=∠,可得到△DAE∽△CAB,进而得到△EAF∽△BAG,△ADF∽△ACG,即可求解.【详解】解:∵AG平分∠BAC,∴∠BAG=∠CAG,∵点F是AG的中点,∴12AF FG AG==,∵ADE C∠=∠,∠DAE=∠BAC,∴△DAE∽△CAB,∴DE AD AEBC AC AB==,∴∠AED=∠B,∴△EAF∽△BAG,∴12AE AFAB AG==,故C正确,不符合题意;∵ADE C∠=∠,∠BAG=∠CAG,∴△ADF∽△ACG,∴12AD AF DFAC AG GC===,故A正确,不符合题意;D错误,符合题意;∴12DE ADBC AC==,故B正确,不符合题意;故选:D 【点睛】本题主要考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质定理是解题的关键.二、填空题1、故答案为:【点睛】本题以程序为背景考查了求代数式的值,关键是弄清楚图示给出的计算程序.3.答案不唯一,如√2、√3等【分析】根据无理数的大小比较和无理数的定义写出范围内的一个数即可.【详解】 解:一个比1大且比2小的无理数有√2,√3等, 故答案为:答案不唯一,如√2、√3等. 【点睛】 本题考查了对估算无理数和无理数的定义的应用,注意:答案不唯一. 2、10% 【分析】 可先表示出2月份的销量,那么2月份的销量×(1+增长率)=12.1,把相应数值代入即可求解.【详解】解:2月份的销量为10×(1+x ),3月份的销量在2月份销量的基础上增加x , 为10×(1+x )×(1+x ),根据题意得, 10(1+x )2=121. 解得,1 2.1x =-(舍去),A 2=0.1=10% ∴从1月份到3月份的月平均增长率为10% ·线○封○密○外故答案为:10%【点睛】考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.3、72°度【分析】根据正多边形的中心角的计算公式:360n︒计算即可.【详解】解:∵五边形ABCDE是⊙O的内接正五边形,∴五边形ABCDE的中心角∠AOB的度数为360°5=72°,故答案为:72°.【点睛】本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式:360n︒是解题的关键.4、4【分析】由同类二次根式的定义可得2A−5=7−A,再解方程即可. 【详解】解:∵最简二次根式∴2A−5=7−A,解得: 4.x=故答案为:4【点睛】本题考查的是同类二次根式的含义,掌握“利用同类二次根式的定义求解字母参数的值”是解本题的关键. 5、C 【分析】如图所示,AA 、 AA 、AA 分别为点A ,B ,C 三处对应的在地上的影子,通过三角形相似,比较长度的大小,进而求得影子最短的值的点.【详解】 解:如图AA 、AA 、AA 分别为点A ,B ,C 三处对应的在地上的影子由三角形相似可得AA AA =AA AA =AA AA =A ∵AA >AA ,AA >AA ∴AA 值最小 ∴AA 值最小 由题意可知,离路灯越近,影子越短故答案为:C .【点睛】本题考查了相似三角形.解题的关键是建立比较长度的关系式.三、解答题·线○封○密○外1、(1)B(2)二;3(4)y y ---应该等于y(3)44x y =⎧⎨=⎩【分析】(1)②−③消去了x ,得到了关于y 的一元一次方程,所以这是加减消元法;(2)第二步开始出现错误,具体错误是−3y −(−4y )应该等于y ;(3)解方程组即可.(1)解:②-③消去了x ,得到了关于y 的一元一次方程,故答案为:B ;(2)解:第二步开始出现错误,具体错误是()34y y ---应该等于y ,故答案为:二;()34y y ---应该等于y ;(3)解:②-③得4y =,将4y =代入①,得:4x =,∴原方程组的解为44x y =⎧⎨=⎩. 故答案为:44x y =⎧⎨=⎩. ·线【点睛】本题考查了二元一次方程组的解法,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键.2、见解析【分析】由垂直可得90ACB DCE ∠=∠=︒,根据相似三角形的判定定理直接证明即可.【详解】证明:∵AC BC ⊥,∴90ACB DCE ∠=∠=︒,在ACB △和DCE 中,∵ACB DCE A D ∠=∠⎧⎨∠=∠⎩, ∴ABC DEC ∽△△.【点睛】题目主要考查相似三角形的判定定理,熟练掌握相似三角形的判定是解题关键.3、(1)(2)()2,0B 或()6,0B -或0,321B 或0,321.B(3)126, 1.x x【分析】(1)直接利用AB(2)分两种情况讨论:点B 在坐标轴上,设(),0B x 或0,,B y再利用AB =2221212AB x x y y 列方程,再解方程即可; (3)直接利用2221212AB x x y y 列方程,再解方程即可. (1) 解:点A (﹣2,3),B (1,﹣3),则A 、B 两点间的距离是: 22213335,AB 故答案为:(2)解: 点B 在坐标轴上,设(),0B x 或0,,B y当(),0B x 时,点A (﹣2,3),且A 、B 两点间的距离是5,22222305,AB x2216,x24x ∴+=或24,x 122,6,x x()20B ∴,或()6,0B - 当0,B y 时,点A (﹣2,3),且A 、B 两点间的距离是5, 22222035,AB y ·线○2321,y321y 或321,y 解得:12321,321,y y0,321B 或0,321.B(3)解:点A (x ,3),B (3,x +1),且A 、B 两点间的距离是5,22233125,AB x x整理得:2560,x x 610,x x解得:126, 1.x x【点睛】 本题考查的是已知两点坐标求解两点之间的距离,一元二次方程的解法,掌握“两点A (x 1,y 1)、B(x 2,y 2),则A 、B 两点的距离AB .4、【分析】先将二次根式化简,再去括号、合并即可.【详解】===【点睛】本题主要考查了二次根式的加减运算,注意二次根式的加减法实质是合并同类二次根式. 5、(1)图见解析,作法见解析(2)1452β︒-或122.54β︒-【分析】(1)先通过分析明确射线OH 在AOB ∠的外部,作OA (或OB )的垂线OC ,再利用量角器画出BOC ∠(或AOC ∠)的平分线OH 即可得; (2)分①射线PF 在EPQ ∠的外部,②射线PF 在EPQ ∠的内部两种情况,先根据互余的定义可得90EPQ FPQ ∠+∠=︒,再根据角平分线的定义可得12APQ APF FPQ ∠=∠=∠,然后根据角的和差即可得.(1)解:AOH ∠与BOH ∠互余,90BOH AOH ∴+∠=∠︒,()090AOB αα∠=︒<<︒,∴射线OH 在AOB ∠的外部,先作OA (或OB )的垂线OC ,再利用量角器画出BOC ∠(或AOC ∠)的平分线OH ,如图所示:或 (2)解:由题意,分以下两种情况:①如图,当射线PF 在EPQ ∠的外部时, EPQ ∠和FPQ ∠互余, 90EPQ FPQ ∴∠+∠=︒, EPA ∠比APQ ∠大β, AP EPA Q β∴∠-=∠,即EPQ β∠=,9090FPQ EPQ β∴∠=︒-∠=︒-, 射线PA 在FPQ ∠的内部,12APF FPQ ∠=∠, 114522APQ APF FPQ β∴∠=∠=∠=︒-; ②如图,当射线PF 在EPQ ∠的内部时, ·线○封○密○外射线PA 在FPQ ∠的内部,12APF FPQ ∠=∠, 12APQ APF FPQ ∴∠=∠=∠, EPQ ∠和FPQ ∠互余,90EPQ FPQ ∴∠+∠=︒,90902EPQ FPQ APQ ∴∠=︒-∠=︒-∠,EPA ∠比APQ ∠大β,AP EPA Q β∴∠-=∠,APQ PQ P E A Q β∠--∴∠∠=,即2P EPQ A Q β=+∠∠,9022APQ APQ β∴︒-∠=+∠, 解得122.54APQ β∠=︒-,综上,APQ ∠的度数为1452β︒-或122.54β︒-.【点睛】本题考查了作垂线和角平分线、与角平分线有关的计算,较难的是题(2),正确分两种情况讨论是解题关键.。

模拟测评2022年辽宁省沈阳市中考数学模拟真题练习 卷(Ⅱ)(含答案详解)

模拟测评2022年辽宁省沈阳市中考数学模拟真题练习 卷(Ⅱ)(含答案详解)

2022年辽宁省沈阳市中考数学模拟真题练习 卷(Ⅱ)考试时间:90分钟;命题人:数学教研组考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟 2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分) 1、根据表中的信息判断,下列语句中正确的是( )A 1.59=B .235的算术平方根比15.3小 C.只有3个正整数n 满足15.515.6<< D .根据表中数据的变化趋势,可以推断出216.1将比256增大3.192、几个同学打算合买一副球拍,每人出7元,则还少4元;每人出8元,就多出3元.他们一共有( )个人. A .6B .7C .8D .93、若42x y +=,则代数式2244x xy y -+的值为( ) ·线○封○密○外A .6B .8C .12D .164、一把直尺与一块直角三角板按下图方式摆放,若237∠=︒,则1∠=( )A .52°B .53°C .54°D .63°5、如图,在△ABC 和△DEF 中,AC ∥DF ,AC =DF ,点A 、D 、B 、E 在一条直线上,下列条件不能判定△ABC ≌△DEF 的是( ).A .C F ∠=∠B .ABC DEF ∠=∠ C .AB DE =D .BC EF =6、在一次“寻宝”游戏中,寻宝人已经找到两个标志点()2,3A 和()1,1B -,并且知道藏宝地点的坐标是()4,2,则藏宝处应为图中的( )A .点MB .点NC .点PD .点Q7、如图,BOC ∠在AOD ∠的内部,且20BOC ∠=︒,若AOD ∠的度数是一个正整数,则图中所有角...的度数之和可能是( )A .340°B .350°C .360°D .370°8、若方程2210ax x ++=有实数根,则实数a 的取值范围是( ) A .1a < B .1a ≤ C .1a ≤且0a ≠D .1a <且0a ≠9、如图,O 是ABC ∆的外接圆,40OCB ∠=︒,则A ∠的度数是( )A .40︒B .80︒C .50︒D .45︒10、A 、B 两地相距350km ,甲骑摩托车从A 地匀速驶向B 地.当甲行驶1小时途径C 地时,一辆货车刚好从C地出发匀速驶向B地,当货车到达B地后立即掉头以原速匀速驶向A地.如图表示两车与B 地的距离(km)y 和甲出发的时间(h)x 的函数关系.则下列说法错误的是( )·线○封○密○外A.甲行驶的速度为80km/h B.货车返回途中与甲相遇后又经过3h8甲到B地C.甲行驶2.7小时时货车到达B地D.甲行驶到B地需要35h 8第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线AA∥AA∥AA,如果AAAA =13,AA=2,AA=6,那么线段BE的长是_____________.2、函数y=(m﹣2)x|m﹣1|+2是一次函数,那么m的值为___.3、如果点A(﹣1,3)、B(5,n)在同一个正比例函数的图像上,那么n=___.4、如图,一次函数A=AA−3的图像与A轴交于点A,与正比例函数A=AA的图像交于点A,点A的横坐标为1.5,则满足AA−3<AA<AA+6的A的范围是______.5、最简二次根式x 的值是 ___.三、解答题(5小题,每小题10分,共计50分)1、如图,点 A 、B 、C 为平面内不在同一直线上的三点.点D 为平面内一个动点.线段AB ,BC ,CD ,DA 的中点分别为M 、N 、P 、Q .在点D 的运动过程中,有下列结论:①存在无数个中点四边形MNPQ 是平行四边形; ②存在无数个中点四边形MNPQ 是菱形 ③存在无数个中点四边形MNPQ 是矩形 ④存在无数个中点四边形MNPQ 是正方形 所有正确结论的序号是___.2、观察图形,解答问题: ·线○封○密○外(1)按下表已填写的形式填写表中的空格:(2)请用你发现的规律求出图④中的数y和图⑤中的数x.3、如图,边长为1的正方形ABCD中,对角线AC、BD相交于点O,点Q、R分别在边AD、DC上,BR 交线段OC于点P,QP BP⊥,QP交BD于点E.(1)求证:APQ DBR;(2)当∠QED等于60°时,求AQDR的值.4、用若干个相同的小正方体摆成了右面的几何体,请画出这个几何体从正面、左面和上面看到的形状图.5、列方程或方程组解应用题: 某校积极推进垃圾分类工作,拟采购30L 和120L 两种型号垃圾桶用于垃圾投放.已知采购5个30L垃圾桶和9个120L 垃圾桶共需付费1000元;采购10个30L 垃圾桶和5个120L 垃圾桶共需付费700元,求30L 垃圾桶和120L 垃圾桶的单价. -参考答案-一、单选题 1、C 【分析】 根据算术平方根的定义及表格中信息逐项分析即可. 【详解】 A15.9=,1.59,故选项不正确; B15.3=< ∴235的算术平方根比15.3大,故选项不正确; C .根据表格中的信息知:2215.5240.2515.6243.36n =<<=, ∴正整数241n =或242或243, ∴只有3个正整数n满足15.515.6<,故选项正确;D .根据表格中的信息无法得知216.1的值, ·线○封○密·○外∴不能推断出216.1将比256增大3.19,故选项不正确.故选:C . 【点睛】本题是图表信息题,考查了算术平方根,关键是正确利用表中信息. 2、B 【分析】依题意,按照一元一次方程定义和实际应用,列方程计算,即可; 【详解】由题知,设合买球拍同学的人数为x ; ∴ 7483x x +=-,可得:7x = ∴故选B 【点睛】本题主要考查一元一次方程的实际应用,关键在熟练审题和列方程计算; 3、D 【分析】对已知条件变形为:24-=-x y ,然后等式两边再同时平方即可求解. 【详解】解:由已知条件可知:24-=-x y , 上述等式两边平方得到:2(2)16-=x y ,整理得到:224416-+=x xy y , 故选:D .【点睛】本题考查了等式恒等变形,完全平方公式的求值等,属于基础题,计算过程中细心即可. 4、B 【分析】过三角板的直角顶点作直尺两边的平行线,根据平行线的性质(两直线平行,同位角相等)即可求解. 【详解】 解:如图,过三角板的直角顶点作直尺两边的平行线,∵直尺的两边互相平行,∴3237∠=∠=︒,14∠=∠,∴490353∠=︒-∠=︒, ∴1453∠=∠=︒, 故选B . 【点睛】 本题主要考查了平行线的性质,掌握平行线的性质是解题的关键. 5、D 【分析】 根据各个选项中的条件和全等三角形的判定可以解答本题. ·线○封○密○外【详解】 解:∵AC ∥DF , ∴∠A =∠EDF ,∵AC =DF ,∠A =∠EDF ,添加∠C =∠F ,根据ASA 可以证明△ABC ≌△DEF ,故选项A 不符合题意; ∵AC =DF ,∠A =∠EDF ,添加∠ABC =∠DEF ,根据AAS 可以证明△ABC ≌△DEF ,故选项B 不符合题意; ∵AC =DF ,∠A =∠EDF ,添加AB =DE ,根据SAS 可以证明△ABC ≌△DEF ,故选项C 不符合题意; ∵AC =DF ,∠A =∠EDF ,添加BC =EF ,不可以证明△ABC ≌△DEF ,故选项D 符合题意; 故选:D . 【点睛】本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法是解题的关键,即SSS 、SAS 、ASA 、AAS 和HL .6、B 【分析】结合题意,根据点的坐标的性质,推导得出原点的位置,再根据坐标的性质分析,即可得到答案. 【详解】∵点()2,3A 和()1,1B -, ∴坐标原点的位置如下图:∵藏宝地点的坐标是()4,2∴藏宝处应为图中的:点N故选:B .【点睛】 本题考查了坐标与图形,解题的关键是熟练掌握坐标的性质,从而完成求解. 7、B 【分析】 根据角的运算和题意可知,所有角的度数之和是∠AOB +∠BO C +∠COD +∠AOC +∠BOD + ∠AOD ,然后根据20BOC ∠=︒,AOD ∠的度数是一个正整数,可以解答本题. 【详解】 解:由题意可得,图中所有角的度数之和是∠AOB +∠BOC +∠COD +∠AOC +∠BOD +∠AOD=3∠AOD+∠BOC∵20BOC ∠=︒,AOD ∠的度数是一个正整数,∴A、当3∠AOD+∠BOC =340°时,则AOD ∠=3203︒ ,不符合题意; B 、当3∠AOD+∠BOC =3×110°+20°=350°时,则AOD ∠=110°,符合题意; C 、当3∠AOD+∠BOC =360°时,则AOD ∠=3403︒,不符合题意; D 、当3∠AOD+∠BOC =370°时,则AOD ∠=3503︒,不符合题意. 故选:B . 【点睛】 本题考查角度的运算,解题的关键是明确题意,找出所求问题需要的条件. 8、B·线○封○密○外【分析】若方程为一元二次方程,则有0a ≠,24440b ac a =-=-≥,求解;若0a =,方程为一元一次方程,判断210x +=有实数根,进而求解取值范围即可.【详解】解:若方程为一元二次方程,则有0a ≠,24440b ac a =-=-≥解得1a ≤且0a ≠若0a =,方程为一元一次方程,210x +=有实数根故选B .【点睛】本题考查了一元二次方程根的判别,一元一次方程的根.解题的关键在于全面考虑00a a =≠,的情况.9、C【分析】在等腰三角形OCB 中,求得两个底角∠OBC 、∠OCB 的度数,然后根据三角形的内角和求得∠COB =100°;最后由圆周角定理求得∠A 的度数并作出选择.【详解】解:在OCB ∆中,OB OC =,OBC OCB ∴∠=∠;40OCB ∠=︒,180COB OBC OCB ∠=︒-∠-∠,100COB ∴∠=︒; 又12A COB ∠=∠, 50A ∴∠=︒,故选:C .【点睛】本题考查了圆周角定理,等腰三角形的性质,三角形的内角和定理,熟练掌握圆周角定理是解题的关键. 10、C 【分析】根据函数图象结合题意,可知AC 两地的距离为350270-80km =,此时甲行驶了1小时,进而求得甲的速度,即可判断A 、D 选项,根据总路程除以速度即可求得甲行驶到B 地所需要的时间,根据货车行驶的时间和路程结合图像可得第4小时时货车与甲相遇,据此判断B 选项,求得相遇时,甲距离B 地的距离,进而根据货车行驶的路程除以时间即可求得货车的速度,进而求得货车到达B 地所需要的时间. 【详解】 解:AC 两地的距离为350270-80km =, 80180km /h ÷= 故A 选项正确,不符合题意; 35350808÷=h 故D 选项正确,不符合题意; 根据货车行驶的时间和路程结合图像可得第4小时时货车与甲相遇, 则353488-= 即货车返回途中与甲相遇后又经过3h 8甲到B 地 故B 选项正确, 相遇时为第4小时,此时甲行驶了480320km ⨯=, 货车行驶了()270350320300+-=km 则货车的速度为300(41)100km/h ÷-=·线○封○密○外则货车到达B 地所需的时间为270100 2.7h ÷=即第2.71+ 3.7=小时故甲行驶3.7小时时货车到达B 地故C 选项不正确故选C【点睛】本题考查了一次函数的应用,弄清楚函数图象中各拐点的意义是解题的关键.二、填空题1、3【分析】过点D 作DG ∥AC 交CF 于点G ,交BE 于点H ,根据AA ∥AA ∥AA ,可得AA AA =AA AA =13,四边形ABHD 和四边形ACGD 是平行四边形,从而得到BH =AD =CG =2,AA AA =14 ,进而得到FG =4,再由BE ∥CF ,得到△DEH ∽△DFG ,从而得到HE =1,即可求解.【详解】解:如图,过点D 作DG ∥AC 交CF 于点G ,交BE 于点H ,∵AA ∥AA ∥AA ,∴AA AA =AA AA =13,四边形ABHD 和四边形ACGD 是平行四边形,∴BH =AD =CG =2,AA AA =14 ,∵AA =6,∴FG =4,∵BE ∥CF , ∴△DEH ∽△DFG ,∴AA AA =AA AA =14 , ∴HE =1, ∴BE =BH +HE =3. 故答案为:3 【点睛】 本题主要考查了平行线分线段成比例,平行四边形的判定和性质,相似三角形的性质和判定,熟练掌握平行线分线段成比例,平行四边形的判定和性质,相似三角形的性质和判定是解题的关键. 2、0 【分析】 根据一次函数的定义,列出关于m 的方程和不等式进行求解即可. 【详解】 解:由题意得,|m -1|=1且m -2≠0, 解得:m =2或m =0且m ≠2, ∴m =0. 故答案为:0. 【点睛】 本题主要考查了一次函数,一次函数y =kx +b 的条件是:k 、b 为常数,k ≠0,自变量次数为1.·线○封○密○外3、−15【分析】设过A(−1,3)的正比例函数为:A=AA,求解A的值及函数解析式,再把A(5,A)代入函数解析式即可.【详解】解:设过A(−1,3)的正比例函数为:A=AA,∴−A=3,解得:A=−3,所以正比例函数为:A=−3A,当A=5时,A=A=−3×5=−15,故答案为:−15【点睛】本题考查的是利用待定系数法求解正比例函数的解析式,正比例函数的性质,熟练的利用待定系数法列方程是解本题的关键.4、−3<A<1.5x>-3【分析】根据图象得出P点横坐标为1.5,联立y=kx-3和y=mx得m=k-2,再联立y=kx+6和y=(k-2)x解得x=-3,画草图观察函数图象得解集为−3<A<1.5.【详解】∵P是y=mx和y=kx-3的交点,点P的横坐标为1.5,∴{A=1.5AA=1.5A−3解得m=k-2联立y=mx和y=kx+6得{A=(A−2)AA=AA+6解得x =-3 即函数y =mx 和y =kx +6交点P ’的横坐标为-3,观察函数图像得, 满足kx −3<mx <kx +6的x 的范围为: −3<A <1.5故答案为:−3<A <1.5【点睛】本题主要考查对一次函数与一元一次不等式的理解和掌握,解题的关键在于将不等式kx −3<mx <kx +6解集转化为直线y =mx 与直线y =kx -3,直线y =kx +6相交的横坐标x 的范围. 5、4 【分析】 由同类二次根式的定义可得2A −5=7−A ,再解方程即可. 【详解】解:∵最简二次根式∴2A −5=7−A , 解得: 4.x = ·线○封○密○外故答案为:4【点睛】本题考查的是同类二次根式的含义,掌握“利用同类二次根式的定义求解字母参数的值”是解本题的关键.三、解答题1、①②③【分析】根据中点四边形的性质:一般中点四边形是平行四边形,对角线相等的四边形的中点四边形是菱形,对角线垂线的中点四边形是矩形,对角线相等且垂直的四边形的中点四边形是正方形,由此即可判断.【详解】解:∵一般中点四边形是平行四边形,对角线相等的四边形的中点四边形是菱形,对角线垂线的中点四边形是矩形,对角线相等且垂直的四边形的中点四边形是正方形,∴存在无数个中点四边形MNPQ 是平行四边形,存在无数个中点四边形MNPQ 是菱形,存在无数个中点四边形MNPQ 是矩形.故答案为:①②③【点睛】本题考查中点四边形,平行四边形的判定,矩形的判定,菱形的判定,正方形的判定等知识,解题的关键是理解题意,灵活运用所学知识解决问题.2、(1)(-2)×(-5)×(17)=170; (-2)+(-5)+(17)=10;-60÷(-12)=5;170÷10=17(2)y =-30,x =-2 【分析】 (1)根据题意和有理数的运算法则求解即可;·线(2)图④:先计算出三个数的积与和,然后算出积与和的商即可得到y的值;图5:先计算出三个数的积与和,然后算出积与和的商即可得到-3(4+x)=3x,由此求解即可.(1)解:填表如下所示:(2)解:由题意得:图④:5×(-8)×(-9)=360,5+(-8)+(-9)=-12,360÷(-12)=-30,∴y=-30;图⑤:1×x×3=3x,1+x+3=4+x∴-3(4+x)=3x,∴x=-2.【点睛】本题主要考查了有理数乘除法的运算,有理数加法运算,解一元一次方程,正确理解题意是解题的关键.3、(1)见解析(2【分析】(1)根据正方形的性质,可得∠CAD =∠BDC =45°,∠OBP +∠OPB =90°,再由QP BP ⊥,可得∠OBP =∠OPE ,即可求证;(2)设OE =a ,根据∠QED 等于60°,可得∠BEP =60°,然后利用锐角三角函数,可得BD =2OB =6a,(3AP OA OP a =+= ,然后根据相似三角形的对应边成比例,即可求解. (1)证明:在正方形ABCD 中,∠CAD =∠BDC =45°,BD ⊥AC ,∴∠BOC =90°,∴∠OBP +∠OPB =90°,∵QP BP ⊥,∴∠BPQ =90°,∴∠OPE +∠OPB =90°,∴∠OBP =∠OPE ,∴APQ DBR ; (2)解:设OE =a ,在正方形ABCD 中,∠POE =90°,OA =OB =OD ,∵∠QED 等于60°,∴∠BEP =60°,在Rt OEP △ 中, 2cos60OE PE a ==︒,tan 60OP OE =⋅︒=, ∵QP BP ⊥,∠BEP =60°,·线∴∠PBE =30°,∴24BE PE a ==,tan 60BP PE =⋅︒= ,∴OA =OB =BE -OE =3a ,∴BD =2OB =6a ,∴(33AP OA OP a a =+=+= ,∵APQ DBR ,∴(36a AQ AP DR BD a ===. 【点睛】本题主要考查了相似三角形的判定和性质,解直角三角形,熟练掌握相似三角形的判定和性质定理,特殊角锐角三角函数值是解题的关键.4、见解析【分析】观察图形可知,从正面看到的图形是3列,从左往右正方形的个数依次为1,1,2;从左面看到的图形是3列,从左往右正方形的个数依次为2,1,1;从上面看到的图形是3列,从左往右正方形的个数依次为1,1,3;由此分别画出即可.【详解】解:如图所示:【点睛】本题考查了从不同方向看几何体,做此类题时,应认真审题,根据看到的形状即可解答.5、30L垃圾桶的单价是20元,120L垃圾桶的单价是100元【分析】设30L垃圾桶的单价是x元,120L垃圾桶的单价是y元,等量关系为:买5个30L垃圾桶的钱+买9个120L垃圾桶的钱=1000 ;买10个30L垃圾桶的钱+买5个120L垃圾桶的钱=700 ;根据这两个等量关系列出方程组并解方程组即可.【详解】设30L垃圾桶的单价是x元,120L垃圾桶的单价是y元,依题意得:591000 105700x yx y+=⎧⎨+=⎩,解得:20100xy=⎧⎨=⎩.即30L垃圾桶的单价是20元,120L垃圾桶的单价是100元.【点睛】本题考查了二元一次方程组的应用,关键是理解题意,找到等量关系并正确列出方程组.。

初中数学辽宁省沈阳市中考模拟数学考试题及答案(word版.docx

初中数学辽宁省沈阳市中考模拟数学考试题及答案(word版.docx

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:如图1,在平面直角坐标系中,二次函数y=﹣x2+12的图象与y轴交于点A,与x轴交于B,C两点(点B在点C的左侧),连接AB,AC.(1)点B的坐标为,点C的坐标为;(2)过点C作射线CD∥AB,点M是线段AB上的动点,点P是线段AC上的动点,且始终满足BM=AP(点M不与点A,点B 重合),过点M作MN∥BC分别交AC于点Q,交射线CD于点N (点 Q不与点P重合),连接PM,PN,设线段AP的长为n.①如图2,当n<AC时,求证:△PAM≌△NCP;②直接用含n的代数式表示线段PQ的长;③若PM的长为,当二次函数y=﹣x2+12的图象经过平移同时过点P和点N时,请直接写出此时的二次函数表达式.试题2:如图1,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,BD=24,在菱形ABCD的外部以AB为边作等边三角形 ABE.点F是对角线BD上一动点(点F不与点B重合),将线段AF绕点A顺时针方向旋转60°得到线段AM,连接FM.评卷人得分(1)求AO的长;(2)如图2,当点F在线段BO上,且点M,F,C三点在同一条直线上时,求证:AC=AM;(3)连接EM,若△AEM的面积为40,请直接写出△AFM的周长.试题3:如图,在平面直角坐标系中,四边形OABC的顶点O为坐标原点,点C在x轴的正半轴上,且BC⊥OC于点C,点A的坐标为(2,2),AB=4,∠B=60°,点D是线段OC上一点,且OD=4,连接AD.(1)求证:△AOD是等边三角形;(2)求点B的坐标;(3)平行于AD的直线l从原点O出发,沿x轴正方向平移.设直线l被四边形OABC截得的线段长为m,直线l与x轴交点的横坐标为t.①当直线l与x轴的交点在线段CD上(交点不与点C,D重合)时,请直接写出m与t的函数关系式(不必写出自变量t 的取值范围)②若m=2,请直接写出此时直线l与x轴的交点坐标.试题4:如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD,BD,CD.(1)求证:AD=CD;(2)若AB=10,cos∠ABC=,求tan∠DBC的值.试题5:某公司今年销售一种产品,1月份获得利润20万元,由于产品畅销,利润逐月增加,3月份的利润比2月份的利润增加4.8万元,假设该产品利润每月的增长率相同,求这个增长率.试题6:2014年世界杯足球赛于北京时间6月 13日 2时在巴西开幕,某媒体足球栏目从参加世界杯球队中选出五支传统强队:意大利队、德国队、西班牙队、巴西队、阿根廷队,对哪支球队最有可能获得冠军进行了问卷调查.为了使调查结果有效,每位被调查者只能填写一份问卷,在问卷中必须选择这五支球队中的一队作为调查结果,这样的问卷才能成为有效问卷.从收集到的4800份有效问卷中随机抽取部分问卷进行了统计,绘制了统计图表的一部分如下:球队名称百分比意大利17%德国 a西班牙10%巴西38%阿根廷0根据统计图表提供的信息,解答下列问题:(1)a= ,b= ;(2)根据以上信息,请直接在答题卡中补全条形统计图;(3)根据抽样调查结果,请你估计在提供有效问卷的这4800人中有多少人预测德国队最有可能获得冠军.试题7:在一个不透明的盒子里有红球、白球、黑球各一个,它们除了颜色外其余都相同.小明从盒子里随机摸出一球,记录下颜色后放回盒子里,充分摇匀后,再随机摸出一球,并记录下颜色.请用列表法或画树状图(树形图)法求小明两次摸出的球颜色不同的概率.试题8:如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别在边AD,BC上,且DE=CF,连接OE,OF.求证:OE=OF.试题9:先化简,再求值:{(a+b)2﹣(a﹣b)2}•a,其中a=﹣1,b=5.试题10:如图,▱ABCD中,AB>AD,AE,BE,CM,DM分别为∠DAB,∠ABC,∠BCD,∠CDA的平分线,AE与DM相交于点F,BE与CM相交于点H,连接EM.若▱ABCD的周长为42cm,FM=3cm,EF=4cm,则EM= cm,AB= cm.试题11:某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为元.试题12:如图,△ABC三边的中点D,E,F组成△DEF,△DEF三边的中点M,N,P组成△MNP,将△FPM与△ECD涂成阴影.假设可以随意在△ABC中取点,那么这个点取在阴影部分的概率为.试题13:已知一次函数y=x+1的图象与反比例函数y=的图象相交,其中有一个交点的横坐标是2,则k的值为试题14:化简:(1+)= .试题15:如图,直线a∥b,直线l与a相交于点P,与直线b相交于点Q,PM⊥l于点P,若∠1=50°,则∠2= °.试题16:分解因式:2m2+10m=试题17:计算:=试题18:如图,在△ABC中,点D在边AB上,BD=2AD,DE∥BC交AC于点E,若线段DE=5,则线段BC的长为()A. 7.5 B. 10 C. 15 D. 20试题19:下列运算正确的是()A.(﹣x3)2=﹣x6B. x4+x4=x8C. x2•x3=x6D. xy4÷(﹣xy)=﹣y3试题20:正方形是轴对称图形,它的对称轴有()A. 2条B. 4条C. 6条D. 8条试题21:一元一次不等式x﹣1≥0的解集在数轴上表示正确的是()A.B.C.D.试题22:已知一组数据:1,2,6,3,3,下列说法正确的是()A.众数是3 B.中位数是6 C.平均数是4 D.方差是5试题23:某几何体的三视图如图所示,这个几何体是()A.圆柱B.三棱柱C.长方体D.圆锥试题24:2014年端午节小长假期间,沈阳某景区接待游客约为 85000人,将数据85000用科学记数法表示为()A. 85×103B. 8.5×104C. 0.85×105D. 8.5×105试题25:0这个数是()A.正数B.负数C.整数D.无理数试题1答案:解:(1)答:(﹣9,0),(9,0).B、C为抛物线与x轴的交点,故代入y=0,得y=﹣x2+12=0,解得 x=﹣9或x=9,即B(﹣9,0),C(9,0).(2)①证明:∵AB∥CN,∴∠MAP=∠PCN,∵MN∥BC,∴四边形MBCN为平行四边形,∴BM=CN,∵AP=BM,∴AP=CN,∵BO=OC,OA⊥BC,∴OA垂直平分BC,∴AB=AC,∴AM=AB﹣BM=AC﹣AP=CP.在△MAP和△PCN中,,∴△MAP≌△PCN(AAS).②解:1.当n<AC时,如图1,,∵四边形MBCN为平行四边形,∴∠MBC=∠QNC,∵AB=AC,MN∥BC,∴∠MBC=∠QCB=∠NQC,∴∠NQC=∠QNC,∴CN=CQ,∵△MAP≌△PCN,∴AP=CN=CQ,∵AP=n,AC===15,∴PQ=AC﹣AP﹣QC=15﹣2n.2.当n=AC时,显然P、Q重合,PQ=0.3.当n>AC时,如图2,∵四边形MBCN为平行四边形,∴∠MBC=∠QNC,BM=CN∵AB=AC,MN∥BC,∴∠MBC=∠QCB=∠NQC,∴∠NQC=∠QNC,∴BM=CN=CQ,∵AP=BM,∴AP=CQ,∵AP=n,AC=15,∴PQ=AP+QC﹣AC=2n﹣15.综上所述,当n≤AC时,PQ=15﹣2n;当n>AC时,PQ=2n﹣15.③或.分析如下:1.当n≤AC时,如图3,过点P作x轴的垂线,交MN于E,交BC于F.此时△PEQ∽△PFC∽△AOC,PQ=15﹣2n.∵PM=PN,∴ME=EN=MN=BC=9,∴PE===4,∵OC:OA:AC=3:4:5,△PEQ∽△PFC∽△AOC,∴PQ=5,∴15﹣2n=5,∴AP=n=5,∴PC=10,∴FC=6,PF=8,∵OF=OC﹣FC=9﹣6=3,EN=9,EF=PF﹣PE=8﹣4=4,∴P(3,8),N(12,4).设二次函数y=﹣x2+12平移后的解析式为y=﹣(x+k)2+12+h,∴,解得,∴y=﹣(x+6)2+12+8=﹣x2+x+4.2.当n>AC时,如图4,过点P作x轴的垂线,交MN于E,交BC于F.此时△PEQ∽△PFC∽△AOC,PQ=2n﹣15.∵PM=PN,∴ME=EN=MN=BC=9,∴PE===4,∵OC:OA:AC=3:4:5,△PEQ∽△PFC∽△AOC,∴PQ=5,∴2n﹣15=5,∴AP=n=10,∴PC=5,∴FC=3,PF=4,∵OF=OC﹣FC=9﹣3=6,EN=9,EF=PF+PE=4+4=8,∴P(6,4),N(15,8).设二次函数y=﹣x2+12平移后的解析式为y=﹣(x+k)2+12+h,∴,解得,∴y=﹣(x﹣12)2+12﹣=﹣x2+x﹣12.试题2答案:解:(1)∵四边形ABCD是菱形,∴AC⊥BD,OB=OD=BD,∵BD=24,∴OB=12,在RT△OAB中,∵AB=13,∴OA===5,(2)如图2,∵四边形ABCD是菱形,∴BD垂直平分AC,∴FA=FC,∠FAC=∠FCA,由已知AF=AM,∠MAF=60°,∴△AFM为等边三角形,∴∠M=∠AFM=60°,∵点M,F,C三点在同一条直线上,∴∠FAC+∠FCA=∠AFM=60°,∴∠FAC=∠FCA=30°,∴∠MAC=∠MAF+∠FAC=60°+30°=90°,在RT△ACM中∵tan∠M=,∴tan60°=,∴AC=AM.(3)如图,连接EM,∵△ABE是等边三角形,∴AE=AB,∠EAB=60°,由(1)知△AFM为等边三角形,∴AM=AF,∠MAF=60°,∴∠EAM=∠BAF,在△AEM和△ABF中,,∴△AEM≌△ABF(SAS),∵△AEM的面积为40,△ABF的高为AO∴BF•AO=40,BF=16,∴FO=BF﹣BO=16﹣12=4AF===,∴△AFM的周长为3.试题3答案:解:(1)如图2,证明:过点A作AM⊥x轴于点M,∵点A的坐标为(2,2),∴OM=2,AM=2∴在Rt△AOM中,tan∠AOM===∴∠AOM=60°由勾股定理得,OA===4 ∵OD=4,∴OA=OD,∴△AOD是等边三角形.(2)如图2,解:过点A作AN⊥BC于点N,∵BC⊥OC,AM⊥x轴,∴∠BCM=∠CMA=∠ANC=90°∴四边形ANCM为矩形,∴AN=MC,AM=NC,∵∠B=60°,AB=4,∴在Rt△ABN中,AN=AB•SinB=4×=6,BN=AB•CosB=4×=2∴AN=MC=6,CN=AM=2,∴OC=OM+MC=2+6=8,BC=BN+CN=2+2=4,∴点B的坐标为(8,4).(3)①如图3,m=t+2;②如图4,(2,0),(,0).试题4答案:1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∵OD∥BC,∴∠AEO=∠ACB=90°,∴OD⊥AC,∴=,∴AD=CD;(2)解:∵AB=10,∴OA=OD=AB=5,∵OD∥BC,∴∠AOE=∠ABC,在Rt△AEO中,OE=OA•cos∠AOE=OA•cos∠ABC=5×=3,∴DE=OD=OE=5﹣3=2,∴AE===4,在Rt△AED中,tan∠DAE===,∵∠DBC=∠DAE,∴tan∠DBC=.试题5答案:解:设这个增长率为x.依题意得:200(1+x)2﹣20(1+x)=4.8,解得 x1=0.2,x2=﹣1.2(不合题意,舍去).0.2=20%.答:这个增长率是20%.试题6答案:解:(1)总人数是:85÷17%=500(人),则b==5%,a=1﹣17%﹣10%﹣38%﹣5%=30%;(2)(3)4800×30%=1440(人).试题7答案:解:画树状图得:∵共有9种等可能的结果,小明两次摸出的球颜色不同的有6种情况,∴小明两次摸出的球颜色不同的概率为:=.试题8答案:证明:如图,∵四边形ABCD是矩形,∴∠ADC=∠BCD=90°,AC=BD,OD=BD,OC=AC,∴OD=OC,∴∠ODC=∠OCD,∴∠ADC﹣∠ODC=∠BCD﹣∠OCD,即∠EDO=∠FCO,∴在△ODE与△OCF中,,∴△ODE≌△OCF(SAS),∴OE=OF.试题9答案:解:[(a+b)2﹣(a﹣b)2]• a=(a2+2ab+b2﹣a2+2ab﹣b2)• a=4ab• a=4a2b;当a=﹣1,b=5时,原式=4×(﹣1)2×5=20试题10答案:5. 13解:∵AE为∠DAB的平分线,∴∠DAE=∠EAB=∠DAB,同理:∠ABE=∠CBE=∠ABC,∠BCM=∠DCM=∠BCD,∠CDM=∠ADM=∠ADC.∵四边形ABCD是平行四边形,∴∠DAB=∠BCD,∠ABC=∠ADC,AD=BC.∴∠DAF=∠BCN,∠ADF=∠CBN.在△ADF和△CBN中,.∴△ADF≌△CBN(ASA).∴DF=BN.∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAB+∠ABC=180°.∴∠EAB+∠EBA=90°.∴∠AEB=90°.同理可得:∠AFD=∠DMC=90°.∴∠EFM=90°.∵FM=3,EF=4,∴ME==5(cm).∵∠EFM=∠FMN=∠FEN=90°.∴四边形EFMN是矩形.∴EN=FM=3.∵∠DAF=∠EAB,∠AFD=∠AEB,∴△AFD∽△AEB.∴=.∴=.∴4DF=3AF.设DF=3k,则AF=4k.∵∠AFD=90°,∴AD=5k.∵∠AEB=90°,AE=4(k+1),BE=3(k+1),∴AB=5(k+1).∵2(AB+AD)=42,∴AB+AD=21.∴5(k+1)+5k=21.∴k=1.6.∴AB=13(cm).故答案为:5、13.试题11答案:25试题12答案:解:∵D、E分别是BC、AC的中点,∴DE是△ABC的中位线,∴ED∥AB,且DE=AB,∴△CDE∽△CBA,∴==,∴S△CDE=S△CBA.同理,S△FPM=S△FDE=S△CBA.∴S△FPM=+S△CDE=S△CBA.则=.试题13答案:6 .试题14答案:解:原式=•=•=.试题15答案:40试题16答案:2m(m+5).试题17答案:3 .试题18答案:C试题19答案: D试题20答案: B试题21答案: A试题22答案: A试题23答案: C试题24答案: B试题25答案: C。

2024年辽宁省沈阳市铁西区中考数学零模试卷及参考答案

2024年辽宁省沈阳市铁西区中考数学零模试卷及参考答案

2024年辽宁省沈阳市铁西区中考数学零模试卷一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如果气温升高2°C时气温变化记作+2°C,那么气温下降4°C时气温变化记作()A.+4°C B.﹣4°C C.+6°C D.﹣6°C2.(3分)如图所示几何体的左视图是()A.B.C.D.3.(3分)下列图形中,是轴对称图形且对称轴条数最多的是()A.B.C.D.4.(3分)下列运算结果正确的是()A.x4+x4=2x8B.(﹣2x2)3=﹣6x6C.x6÷x3=x3D.x2•x3=x65.(3分)光线在不同介质中的传播速度是不同的,因此光线从水中射向空气时,要发生折射.由于折射率相同,所以在水中平行的光线,在空气中也是平行的.如图,∠1=45°,∠2=120°,则∠3+∠4=()A.165°B.155°C.105°D.90°6.(3分)计算﹣的结果是()A.3B.3a+3b C.1D.7.(3分)若一次函数y=(k+3)x﹣1的函数值y随x的增大而减小,则k值可能是()A.2B.C.D.﹣48.(3分)小区新增了一家快递店,第一天揽件200件,第三天揽件242件,设该快递店揽件日平均增长率为x,根据题意,下面所列方程正确的是()A.200(1+x)2=242B.200(1﹣x)2=242C.200(1+2x)=242D.200(1﹣2x)=2429.(3分)如图,在等腰△ABC中,∠A=40°,分别以点A、点B为圆心,大于AB为半径画弧,两弧分别交于点M和点N,连接MN,直线MN与AC交于点D,连接BD,则∠DBC的度数是()A.20°B.30°C.40°D.50°10.(3分)如图1,在Rt△ABC中,动点P从A点运动到B点再到C点后停止,速度为2单位/s,其中BP长与运动时间t(单位:s)的关系如图2,则AC的长为()A.B.C.17D.5二、填空题(本题共5小题,每小题3分,共15分)11.(3分)若a,b为两个连续整数,且a<<b,则a+b=.12.(3分)如图,点A,B,C为正方形网格中的3个格点,则tan∠ACB=.13.(3分)一个不透明的布袋里只有6个红球和n个白球(仅有颜色不同).若从中任意摸出一个球是红球的概率为,则n=.14.(3分)如图,在平面直角坐标系中,矩形OABC的顶点B和正方形ADEF的顶点E都在反比例函数y=(k≠0,x<0)的图象上,点A,D在x轴上,点C在y轴上,点B 的坐标为(﹣2,4),则点E的坐标为.15.(3分)如图,在矩形ABCD中,AB=4,AD=4,点E是AD边的中点,连接AC,BE交于点F,∠CAD的平分线AG交CD边于点G,点A关于过点E的某条直线的对称点H恰好在AG上,且点H不与点A重合,连接FH,则FH的长为.三、解答题(本题共8小题,共75分.解答题应写出文字说明、演算步骤或推理过程)16.(10分)计算:(1);(2)(a+2)(a﹣2)+a(1﹣a).17.(8分)某工厂计划下个月生产甲,乙两种产品共900件,甲、乙两种产品的相关信息如下表:产品每件利润(元/件)成品率甲10090%乙8095%(成品率=每月生产产品合格可销售的件数÷每月生产产品总的件数×100%)若该工厂下个月生产甲种产品x件,销售甲、乙两种产品的总利润为y元.(1)求y与x之间的函数关系式(不必写自变量的取值范围);(2)若该工厂下个月计划生产的甲、乙两种产品的总成品率不低于92%,且销售利润最大,求此时的最大利润是多少元?18.(9分)小王计划下周日租一辆电动汽车去海边游玩一天,往返行程为210km.他到某租车公司了解到,该公司有若干辆A,B两种型号电动汽车出租,A,B两种型号每辆车每天费用分别为400元,500元.为了选择合适的型号,小王通过调查,了解到该公司这两种型号电动汽车各有20辆,每辆电动汽车充满电后行驶里程的部分数据,如下面的表格和统计图所示.型号平均里程(km)中位数(km)众数(km)A m215nB227.5227.5(1)表格中,m的值为,n的值为;(2)已知B种型号电动汽车充满电后能行驶里程可分成如图2所示的五种情况,请直接补全B种型号电动汽车充满电后能行驶里程条形统计图;(3)如果你是小王,你会选择用哪种型号的电动汽车?请说明理由.19.(8分)甲、乙两地相距200千米,货车从甲地出发,行驶1小时后在途中的丙地出现故障,技术人员乘轿车以100千米/小时的速度从甲地赶来维修(沟通时间忽略不计).到达丙地修好车后以原速原路返回,同时货车改变速度前往乙地.两车距乙地的路程y(千米)与货车驶时间x(小时)之间的函数关系如图所示,请结合图象回答下列问题.(1)求货车出现故障前的速度;(2)求点C的坐标;(3)货车修好后,货车与轿车相距40千米时,求x的值.20.(8分)某零件的剖面示意图如图所示,AB∥CD∥HE,点F,G在线段HE上,且四边形CDGF是正方形,AH⊥HE,垂足为点H,∠BCD=126°,∠E=68°,AB=BC=CD =10cm,求HE的长.(结果精确到1cm,参考数据:sin54°≈0.81,cos54°≈0.59,tan54°≈1.38,sin68°≈0.93,cos68°≈0.37,tan68°≈2.48)21.(8分)如图,点C在⊙O的直径AB的延长线上,CD是⊙O的切线,点D是切点,AE ⊥CD于点E,AE交⊙O于点F,且BC=1,AB=3.(1)求CE的长;(2)求AF的长.22.(12分)【基础应用】(1)如图1,在平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(2,0),点D的坐标为(4,0),点B在第一象限,且AC⊥BC,BD⊥x轴,求点B的坐标;【变式应用一】(2)如图2,在平面直角坐标系中,点A在函数y=(x>0)的图象上,点B在第二象限,连接OA,OB,AB,∠AOB=90°,∠BAO=60°,点B恰好在反比例函数y=(x<0)的图象上,则k的值为;【变式应用二】(3)如图3,在平面直角坐标系中,二次函数y=﹣x2+3x+4的图象与x轴交于点A和点B,点B在点A的右侧,点C在y轴的正半轴上,连接BC,在第一象限作矩形BCDE,点D在二次函数y=﹣x2+3x+4的图象的对称轴上,连接CE,若tan∠CED=,求点D 的坐标.23.(12分)【方法归纳】(1)在△ABC中,点D在AB边上,DE∥BC交AC于点E,将△ADE绕点A逆时针旋转α(0°<α<90°),得到△AFG,其中点D的对应点是点F,点E的对应点是点G,连接BF,CG.①如图1,如果AD:AE=6:5,求BF:CG的值;②如图2,如果∠BAC=30°,AB=AC,BF的延长线与线段CG交于点H,求∠BHC的度数;【方法应用】(2)如图3,在四边形ABCD中,AB=4,BC=6,连接AC,BD,AC=AD,且∠CAD =90°.则四边形ABCD的对角线BD的长度最大值为.2024年辽宁省沈阳市铁西区中考数学零模试卷参考答案一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.B;2.D;3.D;4.C;5.C;6.A;7.D;8.A;9.B;10.C 二、填空题(本题共5小题,每小题3分,共15分)11.3;12.2;13.9;14.(﹣4,2);15.三、解答题(本题共8小题,共75分.解答题应写出文字说明、演算步骤或推理过程)16.(1)3;(2)a﹣4.;17.(1)y=14x+68400;(2)最大利润是75960元.;18.216;220;19.(1)货车出现故障前的速度是50千米/小时;(2)C(2.5,150);(3)货车修好后,货车与轿车相距40千米时,x的值为2.75小时.;20.HE的长约为30cm.;21.(1);(2).;22.﹣6;23.4+6。

沈阳市2023初中数学中考模拟试卷及答案

沈阳市2023初中数学中考模拟试卷及答案

沈阳市2023初中数学中考模拟试卷及答案2023沈阳市初中数学模拟考试一、选择题(每题3分,共30分)1. 在∠ABC中,若cosA=2/3,那么∠A=()A. 30°B. 60°C. 120°D. 150°2. 下列几何体中表面积最小的是()A. 正方体B. 长方体 C . 圆柱体 D. 圆锥体3. 求解不等式x>4等价于()A. x≥4B. x≤4 ≠4 D. x=44. 已知sin60°= ,cos45°= ,那么tan45°=A. 1B. 2C. 3D. 45. 在函数y=ln(x-1)+1的图象上,该函数的定义域为()A. (1,+∞)B. (1,2)C. (0,1)D. (2,+∞)二、填空题(每题4分,共16分)6. 若一个正方形的面积为36平方厘米,则它的周长为____________。

7. 三角形的三个内角 A、B、C 满足A+B=90°,已知A=35°,则 C 的度数是____________。

8. 请你计算:tan(arcsin(2/5))=____________。

9. 设关于x的函数y=2x2-6x+3,则y=2时,x=____________。

三、解答题(共54分)10. (6分)计算:(1)sin60°+cos30°=____________(2)cos20°sin50°-sin20°cos50°=____________11. (6分)计算:(1)sin2π+cos2π=____________(2)sin506°+cos506°=____________12. (6分)求tan75°=____________13. (8分)计算:(1)sin(60°-23°)=____________(2)cos(35°-125°)=____________14. (8分)已知任意的角α,tanα=2和cosα= ,求sinα=____________15. (8分)已知正方形的边长为a,求它的面积和周长:面积=____________;周长=____________。

辽宁省沈阳市苏家屯区2024届中考数学全真模拟试题含解析

辽宁省沈阳市苏家屯区2024届中考数学全真模拟试题含解析

辽宁省沈阳市苏家屯区2024届中考数学全真模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.抛一枚硬币,出现正面的概率C.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率D.任意写一个整数,它能被2整除的概率2.观察下列图案,是轴对称而不是中心对称的是()A.B.C.D.3.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且−2≤x≤1时,y的最大值为9,则a的值为A.1或−2 B.−或C.D.14.已知a,b为两个连续的整数,且11<b,则a+b的值为()A.7 B.8 C.9 D.105.如图,用一个半径为6cm的定滑轮带动重物上升,假设绳索(粗细不计)与滑轮之间没有滑动,绳索端点G向下移动了3πcm,则滑轮上的点F旋转了()A.60°B.90°C.120°D.45°6.七年级1班甲、乙两个小组的14名同学身高(单位:厘米)如下:甲组158 159 160 160 160 161 169乙组158 159 160 161 161 163 165以下叙述错误的是()A.甲组同学身高的众数是160B.乙组同学身高的中位数是161C.甲组同学身高的平均数是161D.两组相比,乙组同学身高的方差大7.如图,已知射线OM,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,那么∠AOB的度数是()A.90°B.60°C.45°D.30°8.在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()A.27 B.51 C.69 D.729.如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣2x(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y=kx(x>0)的图象上,C1O1与此图象交于点P ,则点P 的纵坐标是( )A .53B .34C .43D .2310.若正六边形的半径长为4,则它的边长等于( )A .4B .2C .23D .4311.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )A .B .C .D .12.函数y=12x +中,x 的取值范围是( ) A .x≠0 B .x >﹣2 C .x <﹣2 D .x≠﹣2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.分解因式:4a 3b ﹣ab =_____.14.计算12-3的结果是______.15.计算:(a 2)2=_____.16.若实数a 、b 在数轴上的位置如图所示,则代数式|b ﹣a|+2a 化简为_____.17.不透明袋子中装有7个球,其中有2个红球、2个绿球和3个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是黑球的概率是_____.18.若332y x x =--,则y x = .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知矩形ABCD 中,AB=3,AD=m ,动点P 从点D 出发,在边DA 上以每秒1个单位的速度向点A 运动,连接CP ,作点D 关于直线PC 的对称点E ,设点P 的运动时间为t (s ).(1)若m=5,求当P ,E ,B 三点在同一直线上时对应的t 的值.(2)已知m 满足:在动点P 从点D 到点A 的整个运动过程中,有且只有一个时刻t ,使点E 到直线BC 的距离等于2,求所有这样的m 的取值范围.20.(6分)如图,已知抛物线经过点A (﹣1,0),B (4,0),C (0,2)三点,点D 与点C 关于x 轴对称,点P 是x 轴上的一个动点,设点P 的坐标为(m ,0),过点P 做x 轴的垂线l 交抛物线于点Q ,交直线BD 于点M . (1)求该抛物线所表示的二次函数的表达式;(2)已知点F (0,12),当点P 在x 轴上运动时,试求m 为何值时,四边形DMQF 是平行四边形? (3)点P 在线段AB 运动过程中,是否存在点Q ,使得以点B 、Q 、M 为顶点的三角形与△BOD 相似?若存在,求出点Q 的坐标;若不存在,请说明理由.21.(6分)如图,在四边形ABCD 中,BD 为一条对角线,AD BC ∥,2AD BC =,90ABD ∠=︒.E 为AD 的中点,连结BE .(1)求证:四边形BCDE 为菱形;(2)连结AC ,若AC 平分BAD ∠,1BC =,求AC 的长.22.(8分)计算:8﹣4cos45°+(12)﹣1+|﹣2|.23.(8分)如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.求证:四边形ABCD是菱形;过点D 作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED的周长.24.(10分)解不等式组:21512x xxx+>⎧⎪⎨+-≥⎪⎩,并把解集在数轴上表示出来.25.(10分)先化简,再求值:2231422a a aa a a-÷--+-,其中a与2,3构成ABC∆的三边,且a为整数.26.(12分)某景区在同一线路上顺次有三个景点A,B,C,甲、乙两名游客从景点A出发,甲步行到景点C;乙花20分钟时间排队后乘观光车先到景点B,在B处停留一段时间后,再步行到景点C.甲、乙两人离景点A的路程s(米)关于时间t(分钟)的函数图象如图所示.甲的速度是______米/分钟;当20≤t≤30时,求乙离景点A的路程s与t的函数表达式;乙出发后多长时间与甲在途中相遇?若当甲到达景点C时,乙与景点C的路程为360米,则乙从景点B步行到景点C的速度是多少?27.(12分)如图,四边形ABCD是边长为2的正方形,以点A,B,C为圆心作圆,分别交BA,CB,DC的延长线于点E,F,G.(1)求点D沿三条圆弧运动到点G所经过的路线长;(2)判断线段GB与DF的长度关系,并说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解题分析】解:A.掷一枚正六面体的骰子,出现1点的概率为16,故此选项错误;B.掷一枚硬币,出现正面朝上的概率为12,故此选项错误;C.从一装有2个白球和1个红球的袋子中任取一球,取到红球的概率是:11123=+≈0.33;故此选项正确;D.任意写出一个整数,能被2整除的概率为12,故此选项错误.故选C.2、A【解题分析】试题解析:试题解析:根据轴对称图形和中心对称图形的概念进行判断可得:A、是轴对称图形,不是中心对称图形,故本选项符合题意;B、不是轴对称图形,是中心对称图形,故本选项不符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、是轴对称图形,也是中心对称图形,故本选项不符合题意.故选A.点睛:在同一平面内,如果把一个图形绕某一点旋转180,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做对称中心.【解题分析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由-2≤x≤1时,y的最大值为9,可得x=1时,y=9,即可求出a.【题目详解】∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),∴对称轴是直线x=-=-1,∵当x≥2时,y随x的增大而增大,∴a>0,∵-2≤x≤1时,y的最大值为9,∴x=1时,y=a+2a+3a2+3=9,∴3a2+3a-6=0,∴a=1,或a=-2(不合题意舍去).故选D.【题目点拨】本题考查了二次函数的性质,二次函数y=ax2+bx+c(a≠0)的顶点坐标是(-,),对称轴直线x=-,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<-时,y随x的增大而减小;x>-时,y随x的增大而增大;x=-时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<-时,y随x的增大而增大;x>-时,y随x的增大而减小;x=-时,y 取得最大值,即顶点是抛物线的最高点.4、A【解题分析】∵9<11<16,<<,91116即3114<<,∵a,b为两个连续的整数,且11a b<<,∴a=3,b=4,∴a+b=7,5、B【解题分析】由弧长的计算公式可得答案.【题目详解】 解:由圆弧长计算公式l=180n r π,将l=3π代入, 可得n =90o ,故选B.【题目点拨】 本题主要考查圆弧长计算公式l=180n r π,牢记并运用公式是解题的关键. 6、D【解题分析】根据众数、中位数和平均数及方差的定义逐一判断可得.【题目详解】A .甲组同学身高的众数是160,此选项正确;B .乙组同学身高的中位数是161,此选项正确;C .甲组同学身高的平均数是15815916031611697++⨯++=161,此选项正确; D .甲组的方差为807,乙组的方差为347,甲组的方差大,此选项错误. 故选D .【题目点拨】本题考查了众数、中位数和平均数及方差,掌握众数、中位数和平均数及方差的定义和计算公式是解题的关键. 7、B【解题分析】首先连接AB ,由题意易证得△AOB 是等边三角形,根据等边三角形的性质,可求得∠AOB 的度数.【题目详解】连接AB,根据题意得:OB=OA=AB,∴△AOB是等边三角形,∴∠AOB=60°.故答案选:B.【题目点拨】本题考查了等边三角形的判定与性质,解题的关键是熟练的掌握等边三角形的判定与性质.8、D【解题分析】设第一个数为x,则第二个数为x+7,第三个数为x+1.列出三个数的和的方程,再根据选项解出x,看是否存在.解:设第一个数为x,则第二个数为x+7,第三个数为x+1故三个数的和为x+x+7+x+1=3x+21当x=16时,3x+21=69;当x=10时,3x+21=51;当x=2时,3x+21=2.故任意圈出一竖列上相邻的三个数的和不可能是3.故选D.“点睛“此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.9、C【解题分析】分析:先求出A点坐标,再根据图形平移的性质得出A1点的坐标,故可得出反比例函数的解析式,把O1点的横坐标代入即可得出结论.详解:∵OB=1,AB⊥OB,点A在函数2yx=-(x<0)的图象上,∴当x=−1时,y=2,∴A(−1,2).∵此矩形向右平移3个单位长度到1111A B O C的位置,∴B1(2,0),∴A1(2,2).∵点A1在函数kyx=(x>0)的图象上,∴k=4,∴反比例函数的解析式为4yx=,O1(3,0),∵C1O1⊥x轴,∴当x=3时,43y=,∴P4 (3,).3故选C.点睛:考查反比例函数图象上点的坐标特征, 坐标与图形变化-平移,解题的关键是运用双曲线方程求出点A的坐标,利用平移的性质求出点A1的坐标.10、A【解题分析】试题分析:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的半径等于1,则正六边形的边长是1.故选A.考点:正多边形和圆.11、B【解题分析】由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A、C、D都不是中心对称图形,只有B是中心对称图形.故选B.12、D【解题分析】试题分析:由分式有意义的条件得出x+1≠0,解得x≠﹣1.故选D.点睛:本题考查了函数中自变量的取值范围、分式有意义的条件;由分式有意义得出不等式是解决问题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、ab(2a+1)(2a-1)【解题分析】先提取公因式再用公式法进行因式分解即可.【题目详解】4a 3b- ab= ab(4a 2-1)=ab(2a+1)(2a-1)【题目点拨】此题主要考查因式分解单项式,解题的关键是熟知因式分解的方法.14、【解题分析】二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.【题目详解】1232333==【题目点拨】考点:二次根式的加减法.15、a 1.【解题分析】根据幂的乘方法则进行计算即可.【题目详解】()22224.a a a ⨯==故答案为4.a【题目点拨】考查幂的乘方,掌握运算法则是解题的关键.16、2a ﹣b .【解题分析】直接利用数轴上a ,b 的位置进而得出b ﹣a <0,a >0,再化简得出答案.【题目详解】解:由数轴可得:b ﹣a <0,a >0,则|b ﹣=a ﹣b+a=2a ﹣b .故答案为2a ﹣b .【题目点拨】此题主要考查了二次根式的性质与化简,正确得出各项符号是解题关键.17、37【解题分析】一般方法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n.根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.【题目详解】∵不透明袋子中装有7个球,其中有2个红球、2个绿球和3个黑球,∴从袋子中随机取出1个球,则它是黑球的概率是:37 故答案为:37. 【题目点拨】本题主要考查概率的求法与运用,解决本题的关键是要熟练掌握概率的定义和求概率的公式.18、1.【解题分析】试题分析:2y =有意义,必须30x -≥,30x -≥,解得:x=3,代入得:y=0+0+2=2,∴y x =23=1.故答案为1.考点:二次根式有意义的条件.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、 (1) 1;(1)5≤m <. 【解题分析】(1)在Rt △ABP 中利用勾股定理即可解决问题;(1)分两种情形求出AD 的值即可解决问题:①如图1中,当点P 与A 重合时,点E 在BC 的下方,点E 到BC 的【题目详解】解:(1):(1)如图1中,设PD=t.则PA=5-t.∵P、B、E共线,∴∠BPC=∠DPC,∵AD∥BC,∴∠DPC=∠PCB,∴∠BPC=∠PCB,∴BP=BC=5,在Rt△ABP中,∵AB1+AP1=PB1,∴31+(5-t)1=51,∴t=1或9(舍弃),∴t=1时,B、E、P共线.(1)如图1中,当点P与A重合时,点E在BC的下方,点E到BC的距离为1.作EQ⊥BC于Q,EM⊥DC于M.则EQ=1,CE=DC=3易证四边形EMCQ是矩形,∴CM=EQ=1,∠M=90°,∴2222-=-325EC CM∵∠DAC=∠EDM,∠ADC=∠M,∴△ADC∽△DME,∴AD DG DM EM=∴3 55 AD=∴AD=35,如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为1.作EQ⊥BC于Q,延长QE交AD于M.则EQ=1,CE=DC=3在Rt△ECQ中,22325-=,由△DME∽△CDA,∴DM EM CD AD=51AD=,∴AD=355,综上所述,在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于1,这样的m 35≤m<35.【题目点拨】本题考查四边形综合问题,根据题意作出图形,熟练运用勾股定理和相似三角形的性质是本题的关键.20、(1)y=﹣12x2+32x+2;(2)m=﹣1或m=3时,四边形DMQF是平行四边形;(3)点Q的坐标为(3,2)或(﹣1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.【解题分析】(2)先利用待定系数法求出直线BD 解析式为y=12x-2,则Q (m ,-12m 2+32m+2)、M (m ,12m-2),由QM ∥DF 且四边形DMQF 是平行四边形知QM=DF ,据此列出关于m 的方程,解之可得;(3)易知∠ODB=∠QMB ,故分①∠DOB=∠MBQ=90°,利用△DOB ∽△MBQ 得12DO MB OB BQ ==,再证△MBQ ∽△BPQ 得BM BP BQ PQ =,即214132222m m m -=-++,解之即可得此时m 的值;②∠BQM=90°,此时点Q 与点A 重合,△BOD ∽△BQM′,易得点Q 坐标.详解:(1)由抛物线过点A (-1,0)、B (4,0)可设解析式为y=a (x+1)(x-4),将点C (0,2)代入,得:-4a=2,解得:a=-12, 则抛物线解析式为y=-12(x+1)(x-4)=-12x 2+32x+2; (2)由题意知点D 坐标为(0,-2),设直线BD 解析式为y=kx+b ,将B (4,0)、D (0,-2)代入,得:402k b b +⎧⎨-⎩==,解得:122k b ⎧⎪⎨⎪-⎩==, ∴直线BD 解析式为y=12x-2, ∵QM ⊥x 轴,P (m ,0),∴Q (m ,-12m 2+32m+2)、M (m ,12m-2), 则QM=-12m 2+32m+2-(12m-2)=-12m 2+m+4, ∵F (0,12)、D (0,-2), ∴DF=52, ∵QM ∥DF ,∴当-12m 2+m+4=52时,四边形DMQF 是平行四边形, 解得:m=-1(舍)或m=3,(3)如图所示:∵QM∥DF,∴∠ODB=∠QMB,分以下两种情况:①当∠DOB=∠MBQ=90°时,△DOB∽△MBQ,则21=42 DO MBOB BQ==,∵∠MBQ=90°,∴∠MBP+∠PBQ=90°,∵∠MPB=∠BPQ=90°,∴∠MBP+∠BMP=90°,∴∠BMP=∠PBQ,∴△MBQ∽△BPQ,∴BM BPBQ PQ=,即214132222mm m-=-++,解得:m1=3、m2=4,当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去,∴m=3,点Q的坐标为(3,2);②当∠BQM=90°时,此时点Q与点A重合,△BOD∽△BQM′,此时m=-1,点Q的坐标为(-1,0);综上,点Q的坐标为(3,2)或(-1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.点睛:本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、平行四边形的判定与性质、相似三角形的判定与性质及分类讨论思想的运用.请在此输入详解!21、(1)证明见解析;(2)AC=3;【解题分析】(1)由DE=BC,DE∥BC,推出四边形BCDE是平行四边形,再证明BE=DE即可解决问题;(2)只要证明△ACD是直角三角形,∠ADC=60°,AD=2即可解决问题;【题目详解】(1)证明:∵AD=2BC,E为AD的中点,∴DE=BC,∵AD∥BC,∴四边形BCDE是平行四边形,∵∠ABD=90°,AE=DE,∴BE=DE,∴四边形BCDE是菱形.(2)连接AC,如图所示:∵∠ADB=30°,∠ABD=90°,∴AD=2AB,∵AD=2BC,∴AB=BC,∴∠BAC=∠BCA,∵AD∥BC,∴∠DAC=∠BCA,∴∠CAB=∠CAD=30°∴AB=BC=DC=1,AD=2BC=2,∵∠DAC=30°,∠ADC=60°,在Rt△ACD中,223AD CD.考查菱形的判定和性质、直角三角形斜边中线的性质、锐角三角函数等知识,解题的关键是熟练掌握菱形的判定方法.22、4【解题分析】分析:代入45°角的余弦函数值,结合“负整数指数幂的意义”和“二次根式的相关运算法则”进行计算即可.详解:原式=42242⨯++=.点睛:熟记“特殊角的三角函数值、负整数指数幂的意义:1ppaa-=(0a p≠,为正整数)”是正确解答本题的关键.23、(1)详见解析;(2)1.【解题分析】(1)根据平行线的性质得到∠ADB=∠CBD,根据角平分线定义得到∠ABD=∠CBD,等量代换得到∠ADB=∠ABD,根据等腰三角形的判定定理得到AD=AB,根据菱形的判定即可得到结论;(2)由垂直的定义得到∠BDE=90°,等量代换得到∠CDE=∠E,根据等腰三角形的判定得到CD=CE=BC,根据勾股定理得到DE6,于是得到结论.【题目详解】(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵BA=BC,∴AD=BC,∴四边形ABCD是平行四边形,∵BA=BC,∴四边形ABCD是菱形;(2)解:∵DE⊥BD,∴∠BDE =90°,∴∠DBC+∠E =∠BDC+∠CDE =90°,∵CB =CD ,∴∠DBC =∠BDC ,∴∠CDE =∠E ,∴CD =CE =BC ,∴BE =2BC =10,∵BD =8,∴DE 22BE BD -6,∵四边形ABCD 是菱形,∴AD =AB =BC =5,∴四边形ABED 的周长=AD+AB+BE+DE =1.【题目点拨】本题考查了菱形的判定和性质,角平分线定义,平行线的性质,勾股定理,等腰三角形的性质,正确的识别图形是解题的关键.24、则不等式组的解集是﹣1<x≤3,不等式组的解集在数轴上表示见解析.【解题分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.【题目详解】21x 512x x x +>⎧⎪⎨+-≥⎪⎩①,② 解不等式①得:x >﹣1,解不等式②得:x≤3,则不等式组的解集是:﹣1<x≤3,不等式组的解集在数轴上表示为:.【题目点拨】本题考查了解一元一次不等式组,熟知确定解集的方法“同大取大,同小取小,大小小大中间找,大大小小无处找”是解题的关键.也考查了在数轴上表示不等式组的解集.25、1【解题分析】试题分析:先进行分式的除法运算,再进行分式的加减法运算,根据三角形三边的关系确定出a 的值,然后代入进行计算即可.试题解析:原式=()()()()()()()()()2113212232323233a a a a a a a a a a a a a a a a +--⋅+=+==+--------- , ∵a 与2、3构成△ABC 的三边,∴3−2<a <3+2,即1<a <5,又∵a 为整数,∴a =2或3或4,∵当x =2或3时,原分式无意义,应舍去,∴当a =4时,原式=14-3=1 26、(1)60;(2)s =10t -6000;(3)乙出发5分钟和1分钟时与甲在途中相遇;(4)乙从景点B 步行到景点C 的速度是2米/分钟.【解题分析】(1)观察图像得出路程和时间,即可解决问题.(2)利用待定系数法求一次函数解析式即可;(3)分两种情况讨论即可;(4)设乙从B 步行到C 的速度是x 米/分钟,根据当甲到达景点C 时,乙与景点C 的路程为360米,所用的时间为(90-60)分钟,列方程求解即可.【题目详解】(1)甲的速度为540090=60米/分钟. (2)当20≤t ≤1时,设s =mt +n ,由题意得:200303000m n m n +=⎧⎨+=⎩,解得:3006000m n =⎧⎨=-⎩,所以s =10t -6000; (3)①当20≤t ≤1时,60t =10t -6000,解得:t =25,25-20=5;②当1≤t≤60时,60t=100,解得:t=50,50-20=1.综上所述:乙出发5分钟和1分钟时与甲在途中相遇.(4)设乙从B步行到C的速度是x米/分钟,由题意得:5400-100-(90-60)x=360解得:x=2.答:乙从景点B步行到景点C的速度是2米/分钟.【题目点拨】本题考查了待定系数法求一次函数解析式、行程问题等知识,解题的关键是理解题意,读懂图像信息,学会构建一次函数解决实际问题,属于中考常考题型.27、(1)6π;(2)GB=DF,理由详见解析.【解题分析】(1)根据弧长公式l=计算即可;(2)通过证明给出的条件证明△FDC≌△GBC即可得到线段GB与DF的长度关系.【题目详解】解:(1)∵AD=2,∠DAE=90°,∴弧DE的长l1==π,同理弧EF的长l2==2π,弧FG的长l3==3π,所以,点D运动到点G所经过的路线长l=l1+l2+l3=6π.(2)GB=DF.理由如下:延长GB交DF于H.∵CD=CB,∠DCF=∠BCG,CF=CG,∴△FDC≌△GBC.∴GB=DF.【题目点拨】本题考查弧长公式以及全等三角形的判定和性质,题目比较简单,解题关键掌握是弧长公式.。

沈阳市初三中考数学一模模拟试卷

沈阳市初三中考数学一模模拟试卷

沈阳市初三中考数学一模模拟试卷一、选择题(每小题3分,共30分)1.(3分)下列各数中,比﹣1大的数是()A.B.﹣2 C.﹣3 D.02.(3分)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口44亿,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×10103.(3分)如图所示的几何体的主视图是()A.B.C.D.4.(3分)下列各运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b25.(3分)如图,在菱形ABCD中,AB=4,按以下步骤作图:①分别以点C和点D为圆心,大于CD的长为半径画弧,两弧交于点M,N;②作直线MN,且MN恰好经过点A,与CD 交于点E,连接BE,则BE的值为()A.B.2C.3D.46.(3分)在某中学理科竞赛中,张敏同学的数学、物理、化学得分(单位:分)分别为84,88,92,若依次按照4:3:3的比例确定理科成绩,则张敏的成绩是()A.84分B.87.6分C.88分D.88.5分7.(3分)如图,平行四边形ABCD的对角线AC平分∠BAD,若AC=12,BD=16,则对边之间的距离为()A.B.C.D.8.(3分)如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连接AD、BD、OD、OC,若∠ABD=15°,且AD∥OC,则∠BOC的度数为()A.120°B.105°C.100°D.110°9.(3分)如图,以矩形ABOD的两边OD、OB为坐标轴建立直角坐标系,若E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交OD于F点.若OF=1,FD=2,则G点的坐标为()A.(,)B.(,)C.(,)D.(,)10.(3分)如图①,在矩形ABCD中,AB>AD,对角线AC、BD相交于点O,动点P由点A 出发,沿AB→BC→CD向点D运动,设点P的运动路径为x,△AOP的面积为y,图②是y 关于x的函数关系图象,则AB边的长为()A.3 B.4 C.5 D.6二、填空题(每小题3分,共15分)11.(3分)=.12.(3分)二次函数y=x2﹣4x+a在﹣2≤x≤3的范围内有最小值﹣3,则a=.13.(3分)一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之和为偶数的概率是.14.(3分)如图,在正方形ABCD中,AB=4,分别以B、C为圆心,AB长为半径画弧,则图中阴影部分的面积为.15.(3分)如图,矩形ABCD中,AB=4,AD=6,点E为AD中点,点P为线段AB上一个动点,连接EP,将△APE沿PE折叠得到△FPE,连接CE,CF,当△ECF为直角三角形时,AP的长为.三、解答题(75分)16.(8分)先化简,再求值:,其中x=4|cos30°|+317.(9分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B 级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?18.(9分)如图,在Rt△ABC中,∠BAC=90°,∠C=30°,以边上AC上一点O为圆心,OA为半径作⊙O,⊙O恰好经过边BC的中点D,并与边AC相交于另一点F.(1)求证:BD是⊙O的切线.(2)若AB=,E是半圆上一动点,连接AE,AD,DE.填空:①当的长度是时,四边形ABDE是菱形;②当的长度是时,△ADE是直角三角形.19.(9分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(n≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点B坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=.(1)求该反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)点E是x轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点的坐标.20.(9分)如图①,②分别是某款篮球架的实物图和示意图,已知支架AB的长为2.3m,支架AB与地面的夹角∠BAC=70°,BE的长为1.5m,篮板部支架BD与水平支架BE的夹角为46°,BC、DE垂直于地面,求篮板顶端D到地面的距离.(结果保留一位小数,参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,sin46°≈0.72,cos46°≈0.69,tan46°≈1.04)21.(10分)某公司开发出一款新的节能产品,该产品的成本价为6元件,该产品在正式投放市场前通过代销点进行了为期30天的试销售,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成如图所示的图象,图中的折线ODE表示日销售量y (件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是件,日销售利润是元.(2)求线段DE所对应的函数关系式.(不要求写出自变量的取值范围)(3)通过计算说明试销售期间第几天的日销售量最大?最大日销售量是多少?22.(10分)(1)阅读理解利用旋转变换解决数学问题是一种常用的方法.如图1,点P是等边三角形ABC内一点,PA=1,PB=,PC=2.求∠BPC的度数.为利用已知条件,不妨把△BPC绕点C顺时针旋转60°得△AP′C,连接PP′,则PP′的长为;在△PAP′中,易证∠PAP′=90°,且∠PP′A的度数为,综上可得∠BPC的度数为;(2)类比迁移如图2,点P是等腰Rt△ABC内的一点,∠ACB=90°,PA=2,PB=,PC=1,求∠APC 的度数;(3)拓展应用如图3,在四边形ABCD中,BC=3,CD=5,AB=AC=AD.∠BAC=2∠ADC,请直接写出BD的长.23.(11分)如图,直线y=与x轴,y轴分别交于点A,C,经过点A,C的抛物线y=ax2+bx﹣3与x轴的另一个交点为点B(2,0),点D是抛物线上一点,过点D作DE ⊥x轴于点E,连接AD,DC.设点D的横坐标为m.(1)求抛物线的解析式;(2)当点D在第三象限,设△DAC的面积为S,求S与m的函数关系式,并求出S的最大值及此时点D的坐标;(3)连接BC,若∠EAD=∠OBC,请直接写出此时点D的坐标.参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:A、﹣<﹣1,故本选项不符合题意;B、﹣2<﹣1,故本选项不符合题意;C、﹣3<﹣1,故本选项不符合题意;D、0>﹣1,故本选项,符合题意;故选:D.2.【解答】解:44亿=4.4×109.故选:B.3.【解答】解:该几何体的主视图为:故选:C.4.【解答】解:A、原式=6a2,不符合题意;B、原式=27a6,符合题意;C、原式=a2,不符合题意;D、原式=a2+2ab+b2;不符合题意;故选:B.5.【解答】解:由作法得AE垂直平分CD,∴∠AED=90°,CE=DE,∵四边形ABCD为菱形,∴AD=2DE,∴∠DAE=30°,∠D=60°,∴∠ABC=60°,∵AB=2DE,作EH⊥BC交BC的延长线于H,如图,若AB=4,在Rt△ECH中,∵∠ECH=60°,∴CH=CE=1,EH=CH=,在Rt△BEH中,BE==2,故选:B.6.【解答】解:张敏的成绩是:=87.6(分),故选:B.7.【解答】解:设AC,BD交点为O,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠BCA,又∵AC平分∠DAB,∴∠DAC=∠BAC,∴∠BCA=∠BAC,∴AB=BC,∴平行四边形ABCD是菱形;∵四边形ABCD是菱形,且AC=12、BD=16,∴AO=6、BO=8,且∠AOB=90°,∴AB==10,∴对边之间的距离==,故选:C.8.【解答】解:∵AB是⊙O的直径,∠ABD=15°,∴∠ADB=90°,∴∠A=75°,∵AD∥OC,∴∠AOC=75°,∴∠BOC=180°﹣75°=105°,故选:B.9.【解答】解:连结EF,作GH⊥x轴于H,如图,∵四边形ABOD为矩形,∴AB=OD=OF+FD=1+2=3,∵△ABE沿BE折叠后得到△GBE,∴BA=BG=3,EA=EG,∠BGE=∠A=90°,∵点E为AD的中点,∴AE=DE,∴GE=DE,在Rt△DEF和Rt△GEF中,∴Rt△DEF≌Rt△GEF(HL),∴FD=FG=2,∴BF=BG+GF=3+2=5,在Rt△OBF中,OF=1,BF=5,∴OB==2,∵GH∥OB,∴△FGH∽△FBO,∴==,即==,∴GH=,FH=,∴OH=OF﹣HF=1﹣=,∴G点坐标为(,).故选:B.10.【解答】解:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP 面积最大为3.∴AB•=3,即AB•BC=12.当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,∴AB+BC=7.则BC=7﹣AB,代入AB•BC=12,得AB2﹣7AB+12=0,解得AB=4或3,因为AB>BC,所以AB=4.故选:B.二、填空题(每小题3分,共15分)11.【解答】解:原式=2﹣4+4=2,故答案为:2.12.【解答】解:y=x2﹣4x+a=(x﹣2)2+a﹣4,当x=2时,函数有最小值a﹣4,∵二次函数y=x2﹣4x+a在﹣2≤x≤3的范围内有最小值﹣3,﹣2≤x≤3,y随x的增大而增大,∴a﹣4=﹣3,∴a=1,故答案为1.13.【解答】解:画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之和为偶数的结果数为8,所以两次抽取的卡片上数字之和为偶数的概率为=,故答案为:.14.【解答】解:连接BG,CG∵BG=BC=CG,∴△BCG是等边三角形.∴∠CBG=∠BCG=660°,∵在正方形ABCD中,AB=4,∴BC=4,∠BCD=90°,∴∠DCG=30°,∴图中阴影部分的面积=S扇形CDG﹣S弓形CG=﹣(﹣×4×2)=4﹣,故答案为:4﹣.15.【解答】解:如图所示,当∠CFE=90°时,△ECF是直角三角形,由折叠可得,∠PFE=∠A=90°,AE=FE=DE,∴∠CFP=180°,即点P,F,C在一条直线上,在Rt△CDE和Rt△CFE中,,∴Rt△CDE≌Rt△CFE(HL),∴CF=CD=4,设AP=FP=x,则BP=4﹣x,CP=x+4,在Rt△BCP中,BP2+BC2=PC2,即(4﹣x)2+62=(x+4)2,解得x=,即AP=;如图所示,当∠CEF=90°时,△ECF是直角三角形,过F作FH⊥AB于H,作FQ⊥AD于Q,则∠FQE=∠D=90°,又∵∠FEQ+∠CED=90°=∠ECD+∠CED,∴∠FEQ=∠ECD,∴△FEQ∽△ECD,∴==,即==,解得FQ=,QE=,∴AQ=HF=,AH=,设AP=FP=x,则HP=﹣x,∵Rt△PFH中,HP2+HF2=PF2,即(﹣x)2+()2=x2,解得x=1,即AP=1.综上所述,AP的长为1或.三、解答题(75分)16.【解答】解:原式=÷=•=,当x=4|cos30°|+3=4×+3=2+3时,原式==.17.【解答】解:(1)∵总人数为18÷45%=40人,∴C等级人数为40﹣(4+18+5)=13人,则C对应的扇形的圆心角是360°×=117°,故答案为:117;(2)补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级,所以所抽取学生的足球运球测试成绩的中位数会落在B等级,故答案为:B.(4)估计足球运球测试成绩达到A级的学生有300×=30人.18.【解答】(1)证明:如图1,连接OD,∵在Rt△ABC中,∠BAC=90°,∠C=30°,∴AB=BC,∵D是BC的中点,∴BD=BC,∴AB=BD,∴∠BAD=∠BDA,∵OA=OD,∴∠OAD=∠ODA,∴∠ODB=∠BAO=90°,即OD⊥BC,∴BD是⊙O的切线.(2)①当DE⊥AC时,四边形ABDE是菱形;如图2,设DE交AC于点M,连接OE,则DE=2DM,∵∠C=30°,∴CD=2DM,∴DE=CD=AB=BC,∵∠BAC=90°,∴DE∥AB,∴四边形ABDE是平行四边形,∵AB=BD,∴四边形ABDE是菱形;∵AD=BD=AB=CD=BC=,∴△ABD是等边三角形,OD=CD•tan30°=1,∴∠ADB=60°,∵∠CDE=90°﹣∠C=60°,∴∠ADE=180°﹣∠ADB﹣∠CDE=60°,∴∠AOE=2∠ADE=120°,∴的长度为:=π;故答案为:;②若∠ADE=90°,则点E与点F重合,此时的长度为:=π;若∠DAE=90°,则DE是直径,则∠AOE=2∠ADO=60°,此时的长度为:=π;∵AD不是直径,∴∠AED≠90°;综上可得:当的长度是π或π时,△ADE是直角三角形.故答案为:π或π.19.【解答】解:(1)如图,在Rt△OAD中,∠ADO=90°,∵tan∠AOD=,AD=3,∴OD=2,∴A(﹣2,3),把A(﹣2,3)代入y=,考点:n=3×(﹣2)=﹣6,所以反比例函数解析式为:y=﹣,把B(m,﹣1)代入y=﹣,得:m=6,把A(﹣2,3),B(6,﹣1)分别代入y=kx+b,得:,解得:,所以一次函数解析式为:y=﹣x+2;(2)当y=0时,﹣x+2=0,解得:x=4,则C(4,0),所以;(3)当OE3=OE2=AO=,即E2(﹣,0),E3(,0);当OA=AE1=时,得到OE1=2OD=4,即E1(﹣4,0);当AE4=OE4时,由A(﹣2,3),O(0,0),得到直线AO解析式为y=﹣x,中点坐标为(﹣1,1.5),令y=0,得到y=﹣,即E4(﹣,0),综上,当点E(﹣4,0)或(,0)或(﹣,0)或(﹣,0)时,△AOE是等腰三角形.20.【解答】解:延长AC、DE交于点F,则四边形BCFE为矩形,∴BC=EF,在Rt△ABC中,sin∠BAC=,∴BC=AB•sin∠BAC=2.3×0.94=2.162,∴EF=2.162,在Rt△DBE中,tan∠DBE=,∴DE=BE•tan∠DBE=1.5×1.04=1.56,∴DF=DE+EF=2.162+1.56≈3.7(m)答:篮板顶端D到地面的距离约为3.7m.21.【解答】解:(1)340﹣(24﹣22)×5=330(件),330×(8﹣6)=660(元).故答案为:330;660.(2)线段DE所表示的y与x之间的函数关系式为y=340﹣5(x﹣22)=﹣5x+450;(3)设线段OD所表示的y与x之间的函数关系式为y=kx,将(17,340)代入y=kx中,340=17k,解得:k=20,∴线段OD所表示的y与x之间的函数关系式为y=20x.联立两线段所表示的函数关系式成方程组,得,解得:,∴交点D的坐标为(18,360),∵点D的坐标为(18,360),∴试销售期间第18天的日销售量最大,最大日销售量是360件.22.【解答】解:(1)把△BPC绕点C顺时针旋转60°得△AP'C,连接PP′(如图1).由旋转的性质知△CP′P是等边三角形;∴P′A=PB=、∠CP′P=60°、P′P=PC=2,在△AP′P中,∵AP2+P′A2=12+()2=4=PP′2;∴△AP′P是直角三角形;∴∠P′AP=90°.∵PA=PC,∴∠AP′P=30°;∴∠BPC=∠CP′A=∠CP′P+∠AP′P=60°+30°=90°.故答案为:2;30°;90°;(2)如图2,把△BPC绕点C顺时针旋转90°得△AP'C,连接PP′.由旋转的性质知△CP′P是等腰直角三角形;∴P′C=PC=1,∠CPP′=45°、P′P=,PB=AP'=,在△AP′P中,∵AP'2+P′P2=()2+()2=2=AP2;∴△AP′P是直角三角形;∴∠AP′P=90°.∴∠APP'=45°∴∠APC=∠APP'+∠CPP'=45°+45°=90°(3)如图3,∵AB=AC,将△ABD绕点A逆时针旋转得到△ACG,连接DG.则BD=CG,∵∠BAD=∠CAG,∴∠BAC=∠DAG,∵AB=AC,AD=AG,∴∠ABC=∠ACB=∠ADG=∠AGD,∴△ABC∽△ADG,∵AD=2AB,∴DG=2BC=6,过A作AE⊥BC于E,∵∠BAE+∠ABC=90°,∠BAE=∠ADC,∴∠ADG+∠ADC=90°,∴∠GDC=90°,∴CG===,∴BD=CG=.23.【解答】解:(1)在y=﹣x﹣3中,当y=0时,x=﹣6,即点A的坐标为:(﹣6,0),将A(﹣6,0),B(2,0)代入y=ax2+bx﹣3得:,解得:,∴抛物线的解析式为:y=x2+x﹣3;(2)设点D的坐标为:(m,m2+m﹣3),则点F的坐标为:(m,﹣m﹣3),∴DF=﹣m﹣3﹣(m2+m﹣3)=﹣m2﹣m,∴S△ADC=S△ADF+S△DFC=DF•AE+•DF•OE=DF•OA=×(﹣m2﹣m)×6=﹣m2﹣m=﹣(m+3)2+,∵a=﹣<0,∴抛物线开口向下,∴当m=﹣3时,S△ADC存在最大值,又∵当m=﹣3时,m2+m﹣3=﹣,∴存在点D(﹣3,﹣),使得△ADC的面积最大,最大值为;(3)①当点D与点C关于对称轴对称时,D(﹣4,﹣3),根据对称性此时∠EAD=∠ABC.②作点D(﹣4,﹣3)关于x轴的对称点D′(﹣4,3),直线AD′的解析式为y=x+9,由,解得或,此时直线AD′与抛物线交于D(8,21),满足条件,综上所述,满足条件的点D坐标为(﹣4,﹣3)或(8,21)中学数学一模模拟试卷一、选择题(每小题3分,共30分)1.(3分)下列各数中,比﹣1大的数是()A.B.﹣2 C.﹣3 D.02.(3分)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口44亿,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×10103.(3分)如图所示的几何体的主视图是()A.B.C.D.4.(3分)下列各运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b25.(3分)如图,在菱形ABCD中,AB=4,按以下步骤作图:①分别以点C和点D为圆心,大于CD的长为半径画弧,两弧交于点M,N;②作直线MN,且MN恰好经过点A,与CD 交于点E,连接BE,则BE的值为()A.B.2C.3D.46.(3分)在某中学理科竞赛中,张敏同学的数学、物理、化学得分(单位:分)分别为84,88,92,若依次按照4:3:3的比例确定理科成绩,则张敏的成绩是()A.84分B.87.6分C.88分D.88.5分7.(3分)如图,平行四边形ABCD的对角线AC平分∠BAD,若AC=12,BD=16,则对边之间的距离为()A.B.C.D.8.(3分)如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连接AD、BD、OD、OC,若∠ABD=15°,且AD∥OC,则∠BOC的度数为()A.120°B.105°C.100°D.110°9.(3分)如图,以矩形ABOD的两边OD、OB为坐标轴建立直角坐标系,若E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交OD于F点.若OF=1,FD=2,则G点的坐标为()A.(,)B.(,)C.(,)D.(,)10.(3分)如图①,在矩形ABCD中,AB>AD,对角线AC、BD相交于点O,动点P由点A 出发,沿AB→BC→CD向点D运动,设点P的运动路径为x,△AOP的面积为y,图②是y 关于x的函数关系图象,则AB边的长为()A.3 B.4 C.5 D.6二、填空题(每小题3分,共15分)11.(3分)=.12.(3分)二次函数y=x2﹣4x+a在﹣2≤x≤3的范围内有最小值﹣3,则a=.13.(3分)一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之和为偶数的概率是.14.(3分)如图,在正方形ABCD中,AB=4,分别以B、C为圆心,AB长为半径画弧,则图中阴影部分的面积为.15.(3分)如图,矩形ABCD中,AB=4,AD=6,点E为AD中点,点P为线段AB上一个动点,连接EP,将△APE沿PE折叠得到△FPE,连接CE,CF,当△ECF为直角三角形时,AP的长为.三、解答题(75分)16.(8分)先化简,再求值:,其中x=4|cos30°|+317.(9分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B 级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?18.(9分)如图,在Rt△ABC中,∠BAC=90°,∠C=30°,以边上AC上一点O为圆心,OA为半径作⊙O,⊙O恰好经过边BC的中点D,并与边AC相交于另一点F.(1)求证:BD是⊙O的切线.(2)若AB=,E是半圆上一动点,连接AE,AD,DE.填空:①当的长度是时,四边形ABDE是菱形;②当的长度是时,△ADE是直角三角形.19.(9分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(n≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点B坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=.(1)求该反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)点E是x轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点的坐标.20.(9分)如图①,②分别是某款篮球架的实物图和示意图,已知支架AB的长为2.3m,支架AB与地面的夹角∠BAC=70°,BE的长为1.5m,篮板部支架BD与水平支架BE的夹角为46°,BC、DE垂直于地面,求篮板顶端D到地面的距离.(结果保留一位小数,参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,sin46°≈0.72,cos46°≈0.69,tan46°≈1.04)21.(10分)某公司开发出一款新的节能产品,该产品的成本价为6元件,该产品在正式投放市场前通过代销点进行了为期30天的试销售,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成如图所示的图象,图中的折线ODE表示日销售量y (件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是件,日销售利润是元.(2)求线段DE所对应的函数关系式.(不要求写出自变量的取值范围)(3)通过计算说明试销售期间第几天的日销售量最大?最大日销售量是多少?22.(10分)(1)阅读理解利用旋转变换解决数学问题是一种常用的方法.如图1,点P是等边三角形ABC内一点,PA=1,PB=,PC=2.求∠BPC的度数.为利用已知条件,不妨把△BPC绕点C顺时针旋转60°得△AP′C,连接PP′,则PP′的长为;在△PAP′中,易证∠PAP′=90°,且∠PP′A的度数为,综上可得∠BPC的度数为;(2)类比迁移如图2,点P是等腰Rt△ABC内的一点,∠ACB=90°,PA=2,PB=,PC=1,求∠APC 的度数;(3)拓展应用如图3,在四边形ABCD中,BC=3,CD=5,AB=AC=AD.∠BAC=2∠ADC,请直接写出BD的长.23.(11分)如图,直线y=与x轴,y轴分别交于点A,C,经过点A,C的抛物线y=ax2+bx﹣3与x轴的另一个交点为点B(2,0),点D是抛物线上一点,过点D作DE ⊥x轴于点E,连接AD,DC.设点D的横坐标为m.(1)求抛物线的解析式;(2)当点D在第三象限,设△DAC的面积为S,求S与m的函数关系式,并求出S的最大值及此时点D的坐标;(3)连接BC,若∠EAD=∠OBC,请直接写出此时点D的坐标.参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:A、﹣<﹣1,故本选项不符合题意;B、﹣2<﹣1,故本选项不符合题意;C、﹣3<﹣1,故本选项不符合题意;D、0>﹣1,故本选项,符合题意;故选:D.2.【解答】解:44亿=4.4×109.故选:B.3.【解答】解:该几何体的主视图为:故选:C.4.【解答】解:A、原式=6a2,不符合题意;B、原式=27a6,符合题意;C、原式=a2,不符合题意;D、原式=a2+2ab+b2;不符合题意;故选:B.5.【解答】解:由作法得AE垂直平分CD,∴∠AED=90°,CE=DE,∵四边形ABCD为菱形,∴AD=2DE,∴∠DAE=30°,∠D=60°,∴∠ABC=60°,∵AB=2DE,作EH⊥BC交BC的延长线于H,如图,若AB=4,在Rt△ECH中,∵∠ECH=60°,∴CH=CE=1,EH=CH=,在Rt△BEH中,BE==2,故选:B.6.【解答】解:张敏的成绩是:=87.6(分),故选:B.7.【解答】解:设AC,BD交点为O,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠BCA,又∵AC平分∠DAB,∴∠DAC=∠BAC,∴∠BCA=∠BAC,∴AB=BC,∴平行四边形ABCD是菱形;∵四边形ABCD是菱形,且AC=12、BD=16,∴AO=6、BO=8,且∠AOB=90°,∴AB==10,∴对边之间的距离==,故选:C.8.【解答】解:∵AB是⊙O的直径,∠ABD=15°,∴∠ADB=90°,∴∠A=75°,∵AD∥OC,∴∠AOC=75°,∴∠BOC=180°﹣75°=105°,故选:B.9.【解答】解:连结EF,作GH⊥x轴于H,如图,∵四边形ABOD为矩形,∴AB=OD=OF+FD=1+2=3,∵△ABE沿BE折叠后得到△GBE,∴BA=BG=3,EA=EG,∠BGE=∠A=90°,∵点E为AD的中点,∴AE=DE,∴GE=DE,在Rt△DEF和Rt△GEF中,∴Rt△DEF≌Rt△GEF(HL),∴FD=FG=2,∴BF=BG+GF=3+2=5,在Rt△OBF中,OF=1,BF=5,∴OB==2,∵GH∥OB,∴△FGH∽△FBO,∴==,即==,∴GH=,FH=,∴OH=OF﹣HF=1﹣=,∴G点坐标为(,).故选:B.10.【解答】解:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP 面积最大为3.∴AB•=3,即AB•BC=12.当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,∴AB+BC=7.则BC=7﹣AB,代入AB•BC=12,得AB2﹣7AB+12=0,解得AB=4或3,因为AB>BC,所以AB=4.故选:B.二、填空题(每小题3分,共15分)11.【解答】解:原式=2﹣4+4=2,故答案为:2.12.【解答】解:y=x2﹣4x+a=(x﹣2)2+a﹣4,当x=2时,函数有最小值a﹣4,∵二次函数y=x2﹣4x+a在﹣2≤x≤3的范围内有最小值﹣3,﹣2≤x≤3,y随x的增大而增大,∴a﹣4=﹣3,∴a=1,故答案为1.13.【解答】解:画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之和为偶数的结果数为8,所以两次抽取的卡片上数字之和为偶数的概率为=,故答案为:.14.【解答】解:连接BG,CG∵BG=BC=CG,∴△BCG是等边三角形.∴∠CBG=∠BCG=660°,∵在正方形ABCD中,AB=4,∴BC=4,∠BCD=90°,∴∠DCG=30°,∴图中阴影部分的面积=S扇形CDG﹣S弓形CG=﹣(﹣×4×2)=4﹣,故答案为:4﹣.15.【解答】解:如图所示,当∠CFE=90°时,△ECF是直角三角形,由折叠可得,∠PFE=∠A=90°,AE=FE=DE,∴∠CFP=180°,即点P,F,C在一条直线上,在Rt△CDE和Rt△CFE中,,∴Rt△CDE≌Rt△CFE(HL),∴CF=CD=4,设AP=FP=x,则BP=4﹣x,CP=x+4,在Rt△BCP中,BP2+BC2=PC2,即(4﹣x)2+62=(x+4)2,解得x=,即AP=;如图所示,当∠CEF=90°时,△ECF是直角三角形,过F作FH⊥AB于H,作FQ⊥AD于Q,则∠FQE=∠D=90°,又∵∠FEQ+∠CED=90°=∠ECD+∠CED,∴∠FEQ=∠ECD,∴△FEQ∽△ECD,∴==,即==,解得FQ=,QE=,∴AQ=HF=,AH=,设AP=FP=x,则HP=﹣x,∵Rt△PFH中,HP2+HF2=PF2,即(﹣x)2+()2=x2,解得x=1,即AP=1.综上所述,AP的长为1或.三、解答题(75分)16.【解答】解:原式=÷=•=,当x=4|cos30°|+3=4×+3=2+3时,原式==.17.【解答】解:(1)∵总人数为18÷45%=40人,∴C等级人数为40﹣(4+18+5)=13人,则C对应的扇形的圆心角是360°×=117°,故答案为:117;(2)补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级,所以所抽取学生的足球运球测试成绩的中位数会落在B等级,故答案为:B.(4)估计足球运球测试成绩达到A级的学生有300×=30人.18.【解答】(1)证明:如图1,连接OD,∵在Rt△ABC中,∠BAC=90°,∠C=30°,∴AB=BC,∵D是BC的中点,∴BD=BC,∴AB=BD,∴∠BAD=∠BDA,∵OA=OD,∴∠OAD=∠ODA,∴∠ODB=∠BAO=90°,即OD⊥BC,∴BD是⊙O的切线.(2)①当DE⊥AC时,四边形ABDE是菱形;如图2,设DE交AC于点M,连接OE,则DE=2DM,∵∠C=30°,∴CD=2DM,∴DE=CD=AB=BC,∵∠BAC=90°,∴DE∥AB,∴四边形ABDE是平行四边形,∵AB=BD,∴四边形ABDE是菱形;∵AD=BD=AB=CD=BC=,∴△ABD是等边三角形,OD=CD•tan30°=1,∴∠ADB=60°,∵∠CDE=90°﹣∠C=60°,∴∠ADE=180°﹣∠ADB﹣∠CDE=60°,∴∠AOE=2∠ADE=120°,∴的长度为:=π;故答案为:;②若∠ADE=90°,则点E与点F重合,此时的长度为:=π;若∠DAE=90°,则DE是直径,则∠AOE=2∠ADO=60°,此时的长度为:=π;∵AD不是直径,∴∠AED≠90°;综上可得:当的长度是π或π时,△ADE是直角三角形.故答案为:π或π.19.【解答】解:(1)如图,在Rt△OAD中,∠ADO=90°,∵tan∠AOD=,AD=3,∴OD=2,∴A(﹣2,3),把A(﹣2,3)代入y=,考点:n=3×(﹣2)=﹣6,所以反比例函数解析式为:y=﹣,把B(m,﹣1)代入y=﹣,得:m=6,把A(﹣2,3),B(6,﹣1)分别代入y=kx+b,得:,解得:,所以一次函数解析式为:y=﹣x+2;(2)当y=0时,﹣x+2=0,解得:x=4,则C(4,0),所以;(3)当OE3=OE2=AO=,即E2(﹣,0),E3(,0);当OA=AE1=时,得到OE1=2OD=4,即E1(﹣4,0);当AE4=OE4时,由A(﹣2,3),O(0,0),得到直线AO解析式为y=﹣x,中点坐标为(﹣1,1.5),令y=0,得到y=﹣,即E4(﹣,0),综上,当点E(﹣4,0)或(,0)或(﹣,0)或(﹣,0)时,△AOE是等腰三角形.20.【解答】解:延长AC、DE交于点F,则四边形BCFE为矩形,∴BC=EF,在Rt△ABC中,sin∠BAC=,∴BC=AB•sin∠BAC=2.3×0.94=2.162,∴EF=2.162,在Rt△DBE中,tan∠DBE=,∴DE=BE•tan∠DBE=1.5×1.04=1.56,∴DF=DE+EF=2.162+1.56≈3.7(m)答:篮板顶端D到地面的距离约为3.7m.21.【解答】解:(1)340﹣(24﹣22)×5=330(件),330×(8﹣6)=660(元).故答案为:330;660.(2)线段DE所表示的y与x之间的函数关系式为y=340﹣5(x﹣22)=﹣5x+450;(3)设线段OD所表示的y与x之间的函数关系式为y=kx,将(17,340)代入y=kx中,340=17k,解得:k=20,∴线段OD所表示的y与x之间的函数关系式为y=20x.联立两线段所表示的函数关系式成方程组,得,解得:,∴交点D的坐标为(18,360),∵点D的坐标为(18,360),∴试销售期间第18天的日销售量最大,最大日销售量是360件.22.【解答】解:(1)把△BPC绕点C顺时针旋转60°得△AP'C,连接PP′(如图1).由旋转的性质知△CP′P是等边三角形;∴P′A=PB=、∠CP′P=60°、P′P=PC=2,在△AP′P中,∵AP2+P′A2=12+()2=4=PP′2;∴△AP′P是直角三角形;∴∠P′AP=90°.∵PA=PC,∴∠AP′P=30°;∴∠BPC=∠CP′A=∠CP′P+∠AP′P=60°+30°=90°.故答案为:2;30°;90°;(2)如图2,把△BPC绕点C顺时针旋转90°得△AP'C,连接PP′.由旋转的性质知△CP′P是等腰直角三角形;∴P′C=PC=1,∠CPP′=45°、P′P=,PB=AP'=,在△AP′P中,∵AP'2+P′P2=()2+()2=2=AP2;∴△AP′P是直角三角形;∴∠AP′P=90°.∴∠APP'=45°∴∠APC=∠APP'+∠CPP'=45°+45°=90°(3)如图3,∵AB=AC,将△ABD绕点A逆时针旋转得到△ACG,连接DG.则BD=CG,∵∠BAD=∠CAG,∴∠BAC=∠DAG,∵AB=AC,AD=AG,∴∠ABC=∠ACB=∠ADG=∠AGD,∴△ABC∽△ADG,∵AD=2AB,∴DG=2BC=6,过A作AE⊥BC于E,∵∠BAE+∠ABC=90°,∠BAE=∠ADC,∴∠ADG+∠ADC=90°,∴∠GDC=90°,∴CG===,∴BD=CG=.23.【解答】解:(1)在y=﹣x﹣3中,当y=0时,x=﹣6,即点A的坐标为:(﹣6,0),将A(﹣6,0),B(2,0)代入y=ax2+bx﹣3得:,解得:,∴抛物线的解析式为:y=x2+x﹣3;(2)设点D的坐标为:(m,m2+m﹣3),则点F的坐标为:(m,﹣m﹣3),∴DF=﹣m﹣3﹣(m2+m﹣3)=﹣m2﹣m,∴S△ADC=S△ADF+S△DFC=DF•AE+•DF•OE=DF•OA=×(﹣m2﹣m)×6=﹣m2﹣m=﹣(m+3)2+,∵a=﹣<0,∴抛物线开口向下,∴当m=﹣3时,S△ADC存在最大值,又∵当m=﹣3时,m2+m﹣3=﹣,∴存在点D(﹣3,﹣),使得△ADC的面积最大,最大值为;(3)①当点D与点C关于对称轴对称时,D(﹣4,﹣3),根据对称性此时∠EAD=∠ABC.②作点D(﹣4,﹣3)关于x轴的对称点D′(﹣4,3),直线AD′的解析式为y=x+9,由,解得或,此时直线AD′与抛物线交于D(8,21),满足条件,综上所述,满足条件的点D坐标为(﹣4,﹣3)或(8,21)中学数学一模模拟试卷一、单项选择题(本大题共12个小题,每小题3分,共36分)1.(3分)下列实数为无理数的是()A.B.C.D.02.(3分)2019年“五一”小长假有四天假期,长沙市共接待游客356万人次,称为新晋“网红城市”,356万人用科学记数法表示为()A.3.56×106人B.35.6×105人C.3.6×105人D.0.356×107人3.(3分)下列各式正确的是()A.(a2)3=a5B.2a2+2a3=2a5C.D.(x﹣1)(x+1)=x2﹣14.(3分)下列手机屏幕手势解锁图案中,是轴对称图形的是()A.B.C.D.5.(3分)在下列说法中不正确的是()A.两条对角线互相垂直的矩形是正方形B.两条对角线相等的菱形是正方形C.两条对角线垂直且相等的平行四边形是正方形D.两条对角线垂直且相等的四边形是正方形6.(3分)如图是一个由6个相同正方体组成的立体图形,它的主视图是()A.B.C.D.7.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.8.(3分)已知一次函数y=(3﹣a)x+3,如果y随自变量x的增大而增大,那么a的取值范围为()A.a<3B.a>3C.a<﹣3D.a>﹣3.9.(3分)将抛物线y=5x2先向右平移3个单位,再向上平移2个单位后,所得的抛物线的解析式为()A.y=5(x+3)2+2B.y=5(x+3)2﹣2C.y=5(x﹣3)2+2D.y=5(x﹣3)2﹣210.(3分)如图,已知CA、CB分别与⊙O相切于A、B两点,D是⊙O上的一点,连接AD、BD,若∠C=56°,则∠D等于()A.72°B.68°C.64°D.62°11.(3分)如图,考古队在A处测得古塔BC顶端C的仰角为45°,斜坡AD长10米,坡度i=3:4,BD长12米,请问古塔BC的高度为()米.A.25.5B.26C.28.5D.20.512.(3分)如图,在边长为1的正方形ABCD中,动点F、E分别以相同的速度从D、C两点同时出发向C、B运动(任何一个点到达即停止),BF、AE交于点P,连接CP,则线段CP的最小值为()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分)13.(3分)分解因式:3a2﹣12=.14.(3分)如图,在平面直角坐标系中,正方形OABC与正方形ODEF是位似图形,点O 为位似中心.位似比为2:3,点B、E在第一象限,若点A的坐标为(1,0),则点E 的坐标是.15.(3分)在不透明的盒子中装有6个黑色棋子和若干个白色棋子,每个棋子除颜色外都相同.任意摸出一个棋子,摸到黑色棋子的概率是,则白色棋子的个数是.16.(3分)小红需要用扇形薄纸板制作成底面半径为9厘米,高为12厘米的圆锥形生日帽,如图所示,则该扇形薄纸板的圆心角为.17.(3分)如图抛物线y=ax2+bx+c的对称轴是x=﹣1,与x轴的一个交点为(﹣5,0),则不等式ax2+bx+c>0的解集为.18.(3分)如图,在平行四边形ABCD中,E为边BC上一点,AC与DE相交于点F,若CE=2EB,S△AFD=27,则三角形ACD的面积等于.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第23、24题每小题6分,第25、26题每小题6分,共66分,解答时写出必要的文字说明、证明过程或演算步骤)19.(6分)计算:﹣2sin45°+||﹣()﹣2+()0.20.(6分)先化简,然后从﹣2≤a≤2的范围内选取一个你认为合适的整数作为a的值代入求值.21.(8分)某校为了解全校2400名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调查得到的结果绘制成如图所示的条形统计图和扇形统计图(均不完整)(1)这次调查中,一共抽取了名学生;(2)补全条形统计图;(3)估计全校所有学生中有多少人乘坐公交车上学?(4)小明在上学的路上要经过2个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的,求小明在上学路上到第二个路口时第二次遇到红灯的概率,(请用“画树状图”或“列表”的方法写出分析过程)22.(8分)如图,在△ABC中,CD平分∠ACB,CD的垂直平分线分别交AC、DC、BC于点E、F、G,连接DE、DG.(1)求证:四边形DGCE是菱形;(2)若∠DGB=60°,GC=4,求菱形DGCE的面积.23.(9分)某工厂,甲负责加工A型零件,乙负责加工B型零件.已知甲加工60个A型零件所用时间和乙加工80个B型零件所用时间相同,每天甲、乙两人共加工两种零件35个,设甲每天加工x个A型零件.(1)求甲、乙每天各加工多少个零件;(列分式方程解应用题)。

初中数学辽宁省沈阳市中考模拟数学考试题及答案.docx

初中数学辽宁省沈阳市中考模拟数学考试题及答案.docx

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:下列各数中比0小的数是A.-3B. 1C.3D.试题2:左下图是由四个相同的小立方块搭成的几何体,这个几何体的左视图是试题3:沈阳地铁2号线的开通,方便了市民的出行.从2012年1月9日到2月7日的30天里,累计客运量约达3040000人次,将3040000用科学记数法表示为A.3.04×105 B.3.04×106 C.30.4×105 D.0.304×107试题4:计算(2a)3·a2的结果是A.2a5 B.2a6 C.8a5 D.8a6试题5:在平面直角坐标系中,点P (-1,2 )关于x轴的对称点的坐标为评卷人得分A.(-1,-2 )B.(1,-2 )C.(2,-1 )D.(-2,1 )试题6:气象台预报“本市明天降水概率是30%”,对此消息下列说法正确的是A.本市明天将有30%的地区降水B.本市明天将有30%的时间降水C.本市明天有可能降水D.本市明天肯定不降水试题7:一次函数y=-x+2的图象经过A.一、二、三象限B.一、二、四象限C.一、三、四象限D.二、三、四象限试题8:如图,正方形ABCD中,对角线AC,BD相交于点O,则图中的等腰直角三角形有A.4个 B.6个 C.8个 D.10个试题9:分解因式:m2-6m+9=____________.试题10:一组数据1,3,3,5,7的众数是____________.试题11:五边形的内角和为____________度.试题12:不等式组的解集是____________.试题13:已知△ABC∽△A′B′C′,相似比为3∶4,△ABC的周长为6,则△A′B′C的周长为____________.试题14:已知点A为双曲线y= kx图象上的点,点O为坐标原点过点A作AB⊥x轴于点B,连接OA.若△AOB的面积为5,则k的值为____________.试题15:有一组多项式:a+b2,a2-b4,a3+b6,a4-b8,…,请观察它们的构成规律,用你发现的规律写出第10个多项式为____________.试题16:如图,菱形ABCD的边长为8cm,∠A=60°,DE⊥AB于点E,DF⊥BC于点F,则四边形BEDF的面积为____________cm2.试题17:计算:(-1)2++2sin45°试题18:小丁将中国的清华大学、北京大学及英国的剑桥大学的图片分别贴在3张完全相同的不透明的硬纸板上,制成名校卡片,如图.小丁将这3张卡片背面朝上洗匀后放在桌子上,从中随机抽取一张卡片,放回后洗匀,再随机抽取一张卡片.(1) 小丁第一次抽取的卡片上的图片是剑桥大学的概率是多少?(请直接写出结果)(2) 请你用列表法或画树状图(树形图)法,帮助小丁求出两次抽取的卡片上的图片一个是国内大学、一个是国外大学的概率.(卡片名称可用字母表示)试题19:已知,如图,在荀ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.试题20:为了提高沈城市民的节水意识,有关部门就“你认为最有效的节水措施”随机对部分市民进行了问卷调查.其中调查问卷设置以下选项(被调查者只能选择其中的一项):A.出台相关法律法规;B.控制用水大户数量;C.推广节水技改和节水器具;D.用水量越多,水价越高;E.其他.根据调查结果制作了统计图表的一部分如下:(1)此次抽样调查的人数为①人;(2)结合上述统计图表可得m= ②,n= ③;(3)请根据以上信息直接在答题卡中补全条形统计图.试题21:甲、乙两人加工同一种机器零件,甲比乙每小时多加工10个零件,甲加工150个零件所用时间与乙加工120个零件所用时间相等,求甲、乙两人每小时各加工多少个机器零件?试题22:如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上一点,OD⊥AC,垂足为E,连接BD.(1)求证:BD平分∠ABC;(2) 当∠ODB=30°时,求证:BC=OD.试题23:已知,如图,在平面直角坐标系内,点A的坐标为(0,24 ),经过原点的直线l1与经过点A的直线l2相交于点B,点B 坐标为(18,6).(1)求直线l1,l2的表达式;(2)点C为线段OB上一动点(点C不与点O,B重合),作CD∥y轴交直线l2于点D,过点C,D分别向y轴作垂线,垂足分别为F,E,得到矩形CDEF.①设点C的纵坐标为a,求点D的坐标(用含a的代数式表示);②若矩形CDEF的面积为60,请直接写出此时点C的坐标.试题24:已知,如图①,∠MON=60°,点A,B为射线OM,ON上的动点(点A,B不与点O重合),且AB=,在∠MON的内部、△AOB的外部有一点P,且AP=BP,∠APB=120°.(1)求AP的长;(2)求证:点P在∠MON的平分线上;(3)如图②,点C,D,E,F分别是四边形AOBP的边AO,OB,BP,PA的中点,连接CD,DE,EF,FC,OP.①当A B⊥OP时,请直接写出四边形CDEF的周长的值;②若四边形CDEF的周长用t表示,请直接写出t的取值范围.试题25:已知,如图,在平面直角坐标系中,点A坐标为(-2,0),点B坐标为(0,2 ),点E为线段AB上的动点(点E不与点A,B重合),以E为顶点作∠OET=45°,射线ET交线段OB于点F,C为y轴正半轴上一点,且OC=AB,抛物线y=x2+mx+n 的图象经过A,C两点.(1)求此抛物线的函数表达式;(2)求证:∠BEF=∠AOE;(3)当△EO F为等腰三角形时,求此时点E的坐标;(4)在(3)的条件下,当直线EF交x轴于点D,P为(1)中抛物线上一动点,直线PE交x轴于点G,在直线EF上方的抛物线上是否存在一点P,使得△EPF的面积是△EDG面积的()倍.若存在,请直接写出点P的坐标;若不存在,请说明理由.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.试题1答案:A试题2答案:D试题3答案: B试题4答案: C试题5答案: A试题6答案: C试题7答案: B试题8答案: C试题9答案: (m-3)2试题10答案: 3试题11答案: 540试题12答案: -1<x<试题13答案: 8试题14答案:10 或 -10试题15答案:a10-b20试题16答案:试题17答案:原式=1+ -1+2×=2试题18答案:解:(1)(2)列表得或画树状(形)图得由表格(或树状图/树形图)可知,共有9种可能出现的结果,每种结果出现的可能性相同,其中两次抽取的卡片上的图片一个是国内大学,一个是国外大学的结果有4种:(A, C)(B, C)(C, A)(C, B)∴P(两次抽取的卡片上的图片一个是国内大学一个是国外大学)=.试题19答案:证明:(1)∵四边形ABCD是平行四边形∴∠DAB=∠BCD∴∠EAM=∠FCN又∵AD∥BC∴∠E=∠F∵AE=CF∴△AEM≌△CFN(2)由(1)得AM=CN,又∵四边形ABCD是平行四边形∴AB CD∴BM DN∴四边形BMDN是平行四边形试题20答案:解:(1) 500 (2) 35%, 5%(3)试题21答案:解:设乙每小时加工机器零件x个,则甲每小时加工机器零件(x+10)个,根据题意得:解得x=40 经检验,x=40是原方程的解x+10=40+10=50答:甲每小时加工50个零件,乙每小时加工40个零件.试题22答案:证明:(1)∵OD⊥AC OD为半径∴∴∠CBD=∠ABD∴BD平分∠ABC(2)∵OB=OD∴∠OBD=∠ODB=30°∴∠AOD=∠OBD+∠ODB=30°+30°=60°又∵OD⊥AC于E∴∠OEA=90°∴∠A=180°-∠OEA-∠AOD=180°-90°-60°=30°又∵AB为⊙O的直径∴∠ACB=90°则在Rt△ACB中BC=AB ∵OD=AB∴BC=OD试题23答案:解:(1)设直线l1的表达式为y=k1x,它过B(18, 6)得18k1=6 k1= ∴y=x设直线l2的表达式为y=k2x+b,它过A(0, 24),B(18, 6)得解得y=-x+24 (2)①∵点C在直线l1上,且点C的纵坐标为a,∴a=x x=3a∴点C的坐标为(3a,a)∵CD∥y轴∴点D的横坐标为3a∵点D在直线l2上∴y=-3a+24∴D(3a, -3a+24)②C(3, 1)或C(15, 5)试题24答案:解: (1) 过点P作PQ⊥AB于点Q ∵PA=PB,∠APB=120°AB=4∴AQ=AB=×4=2∠APQ= ∠APB=×120°=60°在Rt△APQ中, sin∠APQ=∴AP==sin60°=4(2)过点P分别作PS⊥OM于点S,PT⊥ON于点T∴∠OSP=∠OTP=90°在四边形OSPT中,∠SPT=360°-∠OSP-∠SOT-∠OTP=360°-90°-60°-90°=120°∴∠APB=∠SPT=120°∴∠APS=∠BPT又∵∠ASP=∠BTP=90°AP=BP∴△APS≌△BPT∴PS=PT∴点P在∠MON的平分线上(3)①8+4②4+4<t≤8+4试题25答案:解:(1)如答图①,∵A(-2, 0)B(0, 2)∴OA=OB=2 ∴AB2=OA2+OB2=22+22=8∴AB=2∵OC=AB∴OC=2,即C(0, 2)又∵抛物线y=-x2+mx+n的图象经过A、C两点则可得解得:∴抛物线的表达式为y=-x2-x+2(2)∵OA=OB∠AOB=90°∴∠BAO=∠ABO=45°又∵∠BEO=∠BAO+∠AOE=45°+∠AOE∠BEO=∠OEF+∠BEF=45°+∠BEF∴∠BEF=∠AOE(3)当△EOF为等腰三角形时,分三种情况讨论①当OE=OF时,∠OFE=∠OEF=45°在△EOF中,∠EOF=180°-∠OEF-∠OFE=180°-45°-45°=90°又∵∠AOB=90°则此时点E与点A重合,不符合题意,此种情况不成立.②如答图②,当FE=FO时,∠EOF=∠OEF=45°在△EOF中,∠EFO=180°-∠OEF-∠EOF=180°-45°-45°=90°∴∠AOF+∠EFO=90°+90°=180°∴EF∥AO∴∠BEF=∠BAO=45°又∵由 (2) 可知,∠ABO=45°∴∠BEF=∠ABO∴BF=EF∴EF=BF=OF=OB=×2=1 ∴E(-1, 1)③如答图③,当EO=EF时,过点E作EH⊥y轴于点H 在△AOE和△BEF中,∠EAO=∠FBE,EO=EF,∠AOE=∠BEF ∴△AOE≌△BEF∴BE=AO=2∵EH⊥OB∴∠EHB=90°∴∠AOB=∠EHB ∴EH∥AO∴∠BEH=∠BAO=45°在Rt△BEH中,∵∠BEH=∠ABO=45°∴EH=BH=BE cos45°=2×=∴OH=OB-BH=2- 2∴E(-, 2-)综上所述,当△EOF为等腰三角形时,所求E点坐标为E(-1, 1)或E(-, 2- 2) (4)P(0, 2)或P (-1, 2 )。

沈阳市中考数学模拟试卷

沈阳市中考数学模拟试卷

沈阳市中考数学模拟试卷姓名:________ 班级:________ 成绩:________一、选择题: (共16题;共32分)1. (2分) (2019七上·阳东期末) 在0,1,﹣1,2中,是负数的是()A . 0B . 1C . ﹣1D . 22. (2分) (2019七下·顺德期末) 整式的乘法计算正确的是()A . (x+3)(x﹣3)=x2+3B . (x+y)2=x2+y2C . 6x2• =3x6D . (2x+y)(x﹣y)=2x2﹣xy﹣y23. (2分)在平面直角坐标系中有三个点A(1,2),B(﹣1,2)和C(1,﹣2),其中关于原点O的对称的点是()A . 点A与点BB . 点A与点CC . 点B与点CD . 不存在4. (2分)分式的最简公分母是()A . x2y2B . 3x2yxy2C . 3x2y2D . 3x2y35. (2分)下列各点中,在正比例函数y=-2x图象上的是()A . (-2,-1)B . (1,2)C . (2,-1)D . (1,-2)6. (2分) (2016九上·蓬江期末) 如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A . 0对B . 1对C . 2对D . 3对7. (2分)(2020·无锡) 函数中自变量的取值范围是()A .B .C .D .8. (2分)(2019·茂南模拟) 如图是一个正方体的平面展开图,正方体中相对的面上的数字或代数式互为相反数,则2x+y的值为()A . 0B . ﹣1C . ﹣2D . 19. (2分) (2016八上·萧山期中) 已知AD是△ABC的中线,BE是△ABD的中线,若△ABC的面积为20,则△ABE的面积为()A . 5B . 10C . 15D . 1810. (2分)(2019·包头) 如图,在中,,以点为圆心,适当长为半径画弧,分别交于点,再分别以点为圆心,大于为半径画弧,两弧交于点,作射线交边于点,则的面积是()A .B .C .D .11. (2分)有理数a、b在数轴上的位置如图,则a+b的值为()A . 大于0B . 小于0C . 等于0D . 无法确定12. (2分)电动车每小时比自行车多行驶了25千米,自行车行驶30千米比电动车行驶40千米多用了1小时,求两车的平均速度各为多少?设自行车的平均速度为x千米/小时,应列方程为()A . ﹣1=B . ﹣1=C . +1=D . +1=13. (2分)(2019·梧州) 如图,在半径为的⊙O中,弦AB与CD交于点E,∠DEB=75°,AB=6,AE =1,则CD的长是()A . 2B . 2C . 2D . 414. (2分)关于x的一元二次方程有两个整数根且乘积为正,关于y的一元二次方程同样也有两个整数根且乘积为正.给出四个结论:①这两个方程的根都是负根;② ;③ .其中正确结论的个数是()A . 0个B . 1个C . 2个D . 3个15. (2分)如图,若A,B,C,P,Q,甲,乙,丙,丁都是方格纸中的格点,为使,则点R应是甲,乙,丙,丁四点中的()A . 丁B . 丙C . 乙D . 甲16. (2分) (2019八上·慈溪期末) 我国国内平信邮资标准是:每封信的质量不超过20g,付邮资元;质量超过20g后,每增加不足20g按照20g计算增加元,如图表示的是质量与邮资元的关系,下列表述正确的是()A . 当时,元B . 当元时,C . q是p的函数D . p是q的函数二、填空题: (共3题;共3分)17. (1分) (2018八上·兰考期中) 若x+17的立方根是3,则3x﹣5的平方根是________.18. (1分) x2=x,则方程的解为________ .19. (1分) (2020八上·徐州期末) 如图,点A在线段BG上,正方形ABCD和正方形DEFG的面积分别为3和7,则△CDE的面积为________.三、计算题: (共2题;共30分)20. (20分) (2019七上·南浔月考) 计算(1)(2)()×(-48)(3)(4)-14-(1-0.5)× ×[2-(-3)2]21. (10分) (2020七上·南浔期末) 计算:(1)()×(-24);(2) -22÷(-4)-6×四、解答题: (共6题;共52分)22. (5分) (2019七下·揭西期末) 如图,已知△ABC中,E、F分别是AB、AC上的两点,且EF∥BC,D为EF上一点,且ED=DF,BD=CD,请说明:BE=CF.23. (7分)如图,AB是半圆O的直径,点P是半圆上不与点A、B重合的一个动点,延长BP到点C,使PC=PB,D是AC的中点,连接PD、PO.(1)求证:△CDP≌△POB;(2)填空:①若AB=4,则四边形AOPD的最大面积为________ ;②连接OD,当∠PBA的度数为________ 时,四边形BPDO是菱形.24. (10分)(2017·温州) 为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).(1)学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数.(2)学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)25. (10分) (2020八上·德江期末) 八(1)班为了配合学校体育文化月活动的开展,同学们从捐助的班费中拿出一部分钱来购买羽毛球拍和跳绳。

辽宁省沈阳市2024届中考数学全真模拟试题含解析

辽宁省沈阳市2024届中考数学全真模拟试题含解析

辽宁省沈阳市2024届中考数学全真模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,数轴上的A、B、C、D四点中,与数﹣3表示的点最接近的是( )A.点A B.点B C.点C D.点D2.如图所示,把直角三角形纸片沿过顶点B的直线(BE交CA于E)折叠,直角顶点C落在斜边AB上,如果折叠后得等腰△EBA,那么结论中:①∠A=30°;②点C与AB的中点重合;③点E到AB的距离等于CE的长,正确的个数是()A.0 B.1 C.2 D.33.现有两根木棒,它们的长分别是20cm和30cm,若不改变木棒的长短,要钉成一个三角形木架,则应在下列四根木棒中选取()A.10cm的木棒B.40cm的木棒C.50cm的木棒D.60cm的木棒4.将函数的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A.向左平移1个单位B.向右平移3个单位C.向上平移3个单位D.向下平移1个单位5.3月22日,美国宣布将对约600亿美元进口自中国的商品加征关税,中国商务部随即公布拟对约30亿美元自美进口商品加征关税,并表示,中国不希望打贸易战,但绝不惧怕贸易战,有信心,有能力应对任何挑战.将数据30亿用科学记数法表示为()A.3×109B.3×108C.30×108D.0.3×10106.甲、乙两人约好步行沿同一路线同一方向在某景点集合,已知甲乙二人相距660米,二人同时出发,走了24分钟时,由于乙距离景点近,先到达等候甲,甲共走了30分钟也到达了景点与乙相遇.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,下列说法错误的是()A.甲的速度是70米/分B.乙的速度是60米/分C.甲距离景点2100米D.乙距离景点420米7.当ab>0时,y=ax2与y=ax+b的图象大致是()A.B.C.D.8.下列各数中,为无理数的是()A.38B.4C.13D.29.某自行车厂准备生产共享单车4000辆,在生产完1600辆后,采用了新技术,使得工作效率比原来提高了20%,结果共用了18天完成任务,若设原来每天生产自行车x辆,则根据题意可列方程为( )A.1600x+4000(120%)x+=18 B.1600x40001600(120%)x-++=18C.1600x+4000160020%x-=18 D.4000x40001600(120%)x-++=1810.如图是某零件的示意图,它的俯视图是()A.B.C.D.11.小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x个/分钟,则列方程正确的是()A.1201806x x=+B.1201806x x=-C.1201806x x=+D.1201806x x=-12.如图,PA 、PB 是O 的切线,点D 在AB 上运动,且不与A ,B 重合,AC 是O 直径.62P ∠=︒,当//BD AC时,C ∠的度数是( )A .30B .31︒C .32︒D .33︒二、填空题:(本大题共6个小题,每小题4分,共24分.)13.化简:4= .14.如图,⊙C 经过原点且与两坐标轴分别交于点 A 与点 B ,点 B 的坐标为(﹣3,0),M 是圆上一点,∠BMO=120°.⊙C 圆心 C 的坐标是_____.15.比较大小: .(填“>”,“<”或“=”)16.一元二次方程x 2+mx+3=0的一个根为- 1,则另一个根为 .17.方程x+1=25x +的解是_____.18.已知a 、b 为两个连续的整数,且28a b <<,则+a b =________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AC 是⊙O 的直径,PA 切⊙O 于点A ,点B 是⊙O 上的一点,且∠BAC =30°,∠APB =60°. (1)求证:PB 是⊙O 的切线;(2)若⊙O 的半径为2,求弦AB 及PA ,PB 的长.20.(6分)张老师在黑板上布置了一道题:计算:2(x+1)2﹣(4x ﹣5),求当x =12和x =﹣12时的值.小亮和小新展开了下面的讨论,你认为他们两人谁说的对?并说明理由.21.(6分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为23.求袋子中白球的个数;(请通过列式或列方程解答)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)22.(8分)如图,在△ABC中,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于12EF长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D.则∠ADC的度数为( )A.40°B.55°C.65°D.75°23.(8分)计算:(﹣4)×(﹣12)+2﹣1﹣(π﹣1)03624.(10分)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托,折回索子却量竿,却比竿子短一托”其大意为:现有一根竿和一根绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.求绳索长和竿长.25.(10分)如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方3C出发,沿斜面坡度3i的斜坡CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,AB⊥BC,AB//DE.求旗杆AB的高度.(参考数据:sin37°≈35,cos37°≈45,tan37°≈34.计算结果保留根号)26.(12分)如图所示,一艘轮船位于灯塔P 的北偏东60︒方向与灯塔Р的距离为80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45︒方向上的B 处.求此时轮船所在的B 处与灯塔Р的距离.(结果保留根号)27.(12分)有这样一个问题:探究函数y =316x ﹣2x 的图象与性质. 小东根据学习函数的经验,对函数y =316x ﹣2x 的图象与性质进行了探究. 下面是小东的探究过程,请补充完整:(1)函数y =316x ﹣2x 的自变量x 的取值范围是_______; (2)如表是y 与x 的几组对应值 x … ﹣4 ﹣3.5 ﹣3 ﹣2 ﹣1 0 1 2 3 3.5 4 …y … ﹣83 ﹣748 32 83 116 0 ﹣116 ﹣83 m 748 83 …则m 的值为_______;(3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象; (4)观察图象,写出该函数的两条性质________.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解题分析】-≈-,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.3 1.732【题目详解】-≈-,3 1.732()---≈,1.7323 1.268()---≈,1.73220.268()1.73210.732---≈,因为0.268<0.732<1.268,所以3表示的点与点B最接近,故选B.2、D【解题分析】根据翻折变换的性质分别得出对应角相等以及利用等腰三角形的性质判断得出即可.【题目详解】∵把直角三角形纸片沿过顶点B的直线(BE交CA于E)折叠,直角顶点C落在斜边AB上,折叠后得等腰△EBA,∴∠A=∠EBA,∠CBE=∠EBA,∴∠A=∠CBE=∠EBA,∵∠C=90°,∴∠A+∠CBE+∠EBA=90°,∴∠A=∠CBE=∠EBA=30°,故①选项正确;∵∠A=∠EBA,∠EDB=90°,∴AD=BD,故②选项正确;∵∠C=∠EDB=90°,∠CBE=∠EBD=30°,∴EC=ED(角平分线上的点到角的两边距离相等),∴点E到AB的距离等于CE的长,故③选项正确,故正确的有3个.故选D.【题目点拨】此题主要考查了翻折变换的性质以及角平分线的性质和等腰三角形的性质等知识,利用折叠前后对应角相等是解题关键.3、B【解题分析】设应选取的木棒长为x,再根据三角形的三边关系求出x的取值范围.进而可得出结论.【题目详解】设应选取的木棒长为x,则30cm-20cm<x<30cm+20cm,即10cm<x<50cm.故选B.【题目点拨】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边差小于第三边是解答此题的关键.4、D【解题分析】A.平移后,得y=(x+1)2,图象经过A点,故A不符合题意;B.平移后,得y=(x−3)2,图象经过A点,故B不符合题意;C.平移后,得y=x2+3,图象经过A点,故C不符合题意;D.平移后,得y=x2−1图象不经过A点,故D符合题意;故选D.5、A【解题分析】科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【题目详解】将数据30亿用科学记数法表示为9310⨯,故选A .【题目点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.6、D【解题分析】根据图中信息以及路程、速度、时间之间的关系一一判断即可.【题目详解】甲的速度=4206=70米/分,故A 正确,不符合题意; 设乙的速度为x 米/分.则有,660+24x-70×24=420, 解得x=60,故B 正确,本选项不符合题意,70×30=2100,故选项C 正确,不符合题意,24×60=1440米,乙距离景点1440米,故D 错误,故选D .【题目点拨】本题考查一次函数的应用,行程问题等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题.7、D【解题分析】∵ab >0,∴a 、b 同号.当a >0,b >0时,抛物线开口向上,顶点在原点,一次函数过一、二、三象限,没有图象符合要求;当a <0,b <0时,抛物线开口向下,顶点在原点,一次函数过二、三、四象限,B 图象符合要求.故选B .8、D【解题分析】A ,是有理数;B =2,是有理数;C .13,是有理数;D ,是无理数, 故选D.9、B【解题分析】根据前后的时间和是18天,可以列出方程.【题目详解】 若设原来每天生产自行车x 辆,根据前后的时间和是18天,可以列出方程()16004000160018120x x-+=+%. 故选B【题目点拨】 本题考核知识点:分式方程的应用. 解题关键点:根据时间关系,列出分式方程.10、C【解题分析】物体的俯视图,即是从上面看物体得到的结果;根据三视图的定义,从上面看物体可以看到是一个正六边形,里面是一个没有圆心的圆,由此可以确定答案.【题目详解】从上面看是一个正六边形,里面是一个没有圆心的圆.故答案选C.【题目点拨】本题考查了几何体的三视图,解题的关键是熟练的掌握几何体三视图的定义.11、C【解题分析】解:因为设小明打字速度为x 个/分钟,所以小张打字速度为(x+6)个/分钟,根据关系:小明打120个字所用的时间和小张打180个字所用的时间相等, 可列方程得1201806x x =+, 故选C .【题目点拨】本题考查列分式方程解应用题,找准题目中的等量关系,难度不大.12、B【解题分析】连接OB ,由切线的性质可得90∠=∠=︒PAO PBO ,由邻补角相等和四边形的内角和可得62∠=∠=︒BOC P ,再由圆周角定理求得D ∠,然后由平行线的性质即可求得C ∠.【题目详解】解,连结OB ,∵PA 、PB 是O 的切线,∴PA OA ⊥,PB OB ⊥,则90∠=∠=︒PAO PBO ,∵四边形APBO 的内角和为360°,即++360∠∠∠+∠=︒PAO PBO P AOB ,∴180∠+∠=︒P AOB ,又∵62P ∠=︒,180∠+∠=︒BOC AOB ,∴62∠=∠=︒BOC P ,∵BC BC =, ∴1312∠=∠=︒D BOC , ∵//BD AC ,∴31∠=∠=︒C D ,故选:B .【题目点拨】本题主要考查了切线的性质、圆周角定理、平行线的性质和四边形的内角和,解题的关键是灵活运用有关定理和性质来分析解答.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、2【解题分析】根据算术平方根的定义,求数a 的算术平方根,也就是求一个正数x ,使得x 2=a ,则x 就是a 的算术平方根, 特别地,规定0的算术平方根是0.【题目详解】∵22=4,∴4=2.【题目点拨】本题考查求算术平方根,熟记定义是关键.14、(32,12)【解题分析】连接AB,OC,由圆周角定理可知AB为⊙C的直径,再根据∠BMO=120°可求出∠BAO以及∠BCO的度数,在Rt△COD中,解直角三角形即可解决问题;【题目详解】连接AB,OC,∵∠AOB=90°,∴AB为⊙C的直径,∵∠BMO=120°,∴∠BAO=60°,∴∠BCO=2∠BAO=120°,过C作CD⊥OB于D,则OD=12OB,∠DCB=∠DCO=60°,∵B(30),∴3在Rt△COD中.CD=OD•tan30°=12,∴C(312),故答案为C(-32,12).【题目点拨】本题考查的是圆心角、弧、弦的关系及圆周角定理、直角三角形的性质、坐标与图形的性质及特殊角的三角函数值,根据题意画出图形,作出辅助线,利用数形结合求解是解答此题的关键.15、>【解题分析】试题分析:根据二次根式的性质可知,被开方数越大,所对应的二次根式就越大,因此可判断与=1的大小为>1.考点:二次根式的大小比较16、-1.【解题分析】因为一元二次方程的常数项是已知的,可直接利用两根之积的等式求解.【题目详解】∵一元二次方程x2+mx+1=0的一个根为-1,设另一根为x1,由根与系数关系:-1•x1=1,解得x1=-1.故答案为-1.17、x=1【解题分析】无理方程两边平方转化为整式方程,求出整式方程的解得到x的值,经检验即可得到无理方程的解.【题目详解】两边平方得:(x+1)1=1x+5,即x1=4,开方得:x=1或x=-1,经检验x=-1是增根,无理方程的解为x=1.故答案为x=118、11【解题分析】根据无理数的性质,得出接近无理数的整数,即可得出a,b的值,即可得出答案.【题目详解】∵a<28<b,a、b为两个连续的整数,∴252836<<,∴a=5,b=6,∴a+b=11.故答案为11.【题目点拨】本题考查的是估算无理数的大小,熟练掌握无理数是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)见解析;(2)2【解题分析】试题分析:(1)连接OB,证PB⊥OB.根据四边形的内角和为360°,结合已知条件可得∠OBP=90°得证;(2)连接OP,根据切线长定理得直角三角形,根据含30度角的直角三角形的性质即可求得结果.(1)连接OB.∵OA=OB,∴∠OBA=∠BAC=30°.∴∠AOB=80°-30°-30°=20°.∵PA切⊙O于点A,∴OA⊥PA,∴∠OAP=90°.∵四边形的内角和为360°,∴∠OBP=360°-90°-60°-20°=90°.∴OB⊥PB.又∵点B是⊙O上的一点,∴PB是⊙O的切线.(2)连接OP,∵PA、PB是⊙O的切线,∴PA=PB,∠OPA=∠OPB=,∠APB=30°.在Rt△OAP中,∠OAP=90°,∠OPA=30°,∴OP=2OA=2×2=1.∴PA=OP2-OA2=2∵PA=PB,∠APB=60°,∴PA=PB=AB=2.考点:此题考查了切线的判定、切线长定理、含30度角的直角三角形的性质点评:要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.20、小亮说的对,理由见解析【解题分析】先根据完全平方公式和去括号法则计算,再合并同类项,最后代入计算即可求解.【题目详解】2(x+1)2﹣(4x﹣5)=2x2+4x+2﹣4x+5,=2x2+7,当x=12时,原式=12+7=712;当x=﹣12时,原式=12+7=712.故小亮说的对.【题目点拨】本题考查完全平方公式和去括号,解题的关键是明确完全平方公式和去括号的计算方法.21、(1)袋子中白球有2个;(2)见解析,59.【解题分析】(1)首先设袋子中白球有x个,利用概率公式求即可得方程:213xx=+,解此方程即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案.【题目详解】解:(1)设袋子中白球有x个,根据题意得:213xx=+,解得:x=2,经检验,x=2是原分式方程的解,∴袋子中白球有2个;(2)画树状图得:∵共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,∴两次都摸到相同颜色的小球的概率为:59.【题目点拨】此题考查了列表法或树状图法求概率.注意掌握方程思想的应用.注意概率=所求情况数与总情况数之比.22、C.【解题分析】试题分析:由作图方法可得AG是∠CAB的角平分线,∵∠CAB=50°,∴∠CAD=∠CAB=25°,∵∠C=90°,∴∠CDA=90°﹣25°=65°,故选C.考点:作图—基本作图.23、1 7. 2【解题分析】分析:按照实数的运算顺序进行运算即可.详解:原式11 416,22=⨯+-+1216,2=+-+17.2=点睛:本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及二次根式,熟练掌握各个知识点是解题的关键.24、绳索长为20尺,竿长为15尺.【解题分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,对折索子来量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【题目详解】设绳索长、竿长分别为x尺,y尺,依题意得:552x y x y =+⎧⎪⎨=-⎪⎩ 解得:20x =,15y =.答:绳索长为20尺,竿长为15尺.【题目点拨】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键. 25、33+3.5【解题分析】延长ED 交BC 延长线于点F ,则∠CFD=90°,Rt △CDF 中求得CF=CDcos ∠DCF=23、DF=CD=2,作EG ⊥AB ,可得GE=BF=4、GB=EF=3.5,再求出AG=GEtan ∠AEG=43•tan37°可得答案.【题目详解】如图,延长ED 交BC 延长线于点F ,则∠CFD=90°,∵tan ∠1333, ∴∠DCF=30°,∵CD=4,∴DF=12CD=2,CF=CDcos ∠DCF=4×323, ∴333过点E 作EG ⊥AB 于点G ,则3,GB=EF=ED+DF=1.5+2=3.5,又∵∠AED=37°,∴AG=GEtan ∠AEG=43•tan37°, 则AB=AG+BG=43•tan37°+3.5=33+3.5,故旗杆AB 的高度为(33+3.5)米.考点:1、解直角三角形的应用﹣仰角俯角问题;2、解直角三角形的应用﹣坡度坡角问题26、406海里【解题分析】过点P 作PC AB ⊥,则在Rt △APC 中易得PC 的长,再在直角△BPC 中求出PB . 【题目详解】解:如图,过点P 作PC AB ⊥,垂足为点C .∴30APC ︒∠=,45BPC ︒∠=,80AP =海里.在Rt APC ∆中,cos PC APC AP∠=, ∴3cos 80403PC AP APC =⋅∠≡=. 在Rt PCB ∆中,cos PC BPC PB∠=, ∴4036cos PC PB BPC ===∠. ∴此时轮船所在的B 处与灯塔P 的距离是6海里.【题目点拨】解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.27、(1)任意实数;(2)32-;(3)见解析;(4)①当x <﹣2时,y 随x 的增大而增大;②当x >2时,y 随x 的增大而增大.【解题分析】(1)没有限定要求,所以x 为任意实数,(2)把x =3代入函数解析式即可,(3)描点,连线即可解题,(4)看图确定极点坐标,即可找到增减区间.【题目详解】解:(1)函数y =316x ﹣2x 的自变量x 的取值范围是任意实数; 故答案为任意实数; (2)把x =3代入y =316x ﹣2x 得,y =﹣32; 故答案为﹣32; (3)如图所示;(4)根据图象得,①当x <﹣2时,y 随x 的增大而增大;②当x >2时,y 随x 的增大而增大.故答案为①当x <﹣2时,y 随x 的增大而增大;②当x >2时,y 随x 的增大而增大.【题目点拨】本题考查了函数的图像和性质,属于简单题,熟悉函数的图像和概念是解题关键.。

初中数学辽宁省沈阳市中考模拟数学考试题(含解析).docx

初中数学辽宁省沈阳市中考模拟数学考试题(含解析).docx

xx学校xx 学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:下列各数中是有理数的是()A.π B.0 C. D.试题2:辽宁男蓝夺冠后,从4月21日至24日各类媒体体关于“辽篮CBA夺冠”的相关文章达到81000篇,将数据81000用科学记数法表示为()A.0.81×104 B.0.81×106 C.8.1×104 D.8.1×106试题3:如图是由五个相同的小立方块搭成的几何体,这个几何体的左视图是()A. B. C. D.试题4:在平面直角坐标系中,点B的坐标是(4,﹣1),点A与点B关于x轴对称,则点A的坐标是()评卷人得分A.(4,1) B.(﹣1,4) C.(﹣4,﹣1) D.(﹣1,﹣4)试题5:下列运算错误的是()A.(m2)3=m6 B.a10÷a9=a C.x3•x5=x8 D.a4+a3=a7试题6:如图,AB∥CD,EF∥GH,∠1=60°,则∠2补角的度数是()A.60° B.100° C.110° D.120°试题7:下列事件中,是必然事件的是()A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨试题8:在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0试题9:点A(﹣3,2)在反比例函数y=(k≠0)的图象上,则k的值是()A.﹣6 B.﹣ C.﹣1 D.6试题10:如图,正方形ABCD内接于⊙O,AB=2,则的长是()A.π B.π C.2π D.π试题11:因式分解:3x3﹣12x=试题12:一组数3,4,7,4,3,4,5,6,5的众数是试题13:化简:﹣=试题14:不等式组的解集是试题15:如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900m(篱笆的厚度忽略不计),当AB= m时,矩形土地ABCD的面积最大.试题16:如图,△ABC是等边三角形,AB=,点D是边BC上一点,点H是线段AD上一点,连接BH、CH.当∠BHD=60°,∠AHC=90°时,DH= .试题17:计算:2tan45°﹣|﹣3|+()﹣2﹣(4﹣π)0.试题18:如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,ABCD的面积是.试题19:经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.试题20:九年三班的小雨同学想了解本校九年级学生对哪门课程感兴趣,随机抽取了部分九年级学生进行调查(每名学生必只能选择一门课程).将获得的数据整理绘制如下两幅不完整的统计图.据统计图提供的信息,解答下列问题:(1)在这次调查中一共抽取了名学生,m的值是.(2)请根据据以上信息直在答题卡上补全条形统计图;(3)扇形统计图中,“数学”所对应的圆心角度数是度;(4)若该校九年级共有1000名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.试题21:某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.试题22:如图,BE是O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点.(1)若∠ADE=25°,求∠C的度数;(2)若AB=AC,CE=2,求⊙O半径的长.试题23:如图,在平面直角坐标系中,点F的坐标为(0,10).点E的坐标为(20,0),直线l1经过点F和点E,直线l1与直线l2 、y=x相交于点P.(1)求直线l1的表达式和点P的坐标;(2)矩形ABCD的边AB在y轴的正半轴上,点A与点F重合,点B在线段OF上,边AD平行于x 轴,且AB=6,AD=9,将矩形ABCD沿射线FE的方向平移,边AD始终与x 轴平行.已知矩形ABCD以每秒个单位的速度匀速移动(点A移动到点E时止移动),设移动时间为t秒(t>0).①矩形ABCD在移动过程中,B、C、D三点中有且只有一个顶点落在直线l1或l2上,请直接写出此时t的值;②若矩形ABCD在移动的过程中,直线CD交直线l1于点N,交直线l2于点M.当△PMN的面积等于18时,请直接写出此时t的值.试题24:已知:△ABC是等腰三角形,CA=CB,0°<∠ACB≤90°.点M在边AC上,点N在边BC上(点M、点N不与所在线段端点重合),BN=AM,连接AN,BM,射线AG∥BC,延长BM交射线AG于点D,点E在直线AN上,且AE=DE.(1)如图,当∠ACB=90°时①求证:△BCM≌△ACN;②求∠BDE的度数;(2)当∠ACB=α,其它多件不变时,∠BDE的度数是α或180°﹣α(用含α的代数式表示)(3)若△ABC是等边三角形,AB=3,点N是BC边上的三等分点,直线ED与直线BC交于点F,请直接写出线段CF的长.试题25:如图,在平面角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.(1)求抛物线C1的表达式;(2)直接用含t的代数式表示线段MN的长;(3)当△AMN是以MN为直角边的等腰直角三角形时,求t的值;(4)在(3)的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y轴于点k,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q的坐标.试题1答案:B【分析】根据有理数是有限小数或无限循环小,可得答案.【解答】解:A、π是无限不循环小数,属于无理数,故本选项错误;B、0是有理数,故本选项正确;C、是无理数,故本选项错误;D、无理数,故本选项错误;故选:B.【点评】本题考查了有理数,有限小数或无限循环小数是有理数.试题2答案:C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将81000用科学记数法表示为:8.1×104.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.试题3答案:D【分析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.【解答】解:从左边看,从左往右小正方形的个数依次为:2,1.左视图如下:故选:D.【点评】本题主要考查了几何体的三种视图和学生的空间想象能力,视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.试题4答案:A【分析】直接利用关于x轴对称点的性质,横坐标不变纵坐标改变符号进而得出答案.【解答】解:∵点B的坐标是(4,﹣1),点A与点B关于x轴对称,∴点A的坐标是:(4,1).故选:A.【点评】此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.试题5答案:D【分析】直接利用合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则化简求出即可.【解答】解:A、(m2)3=m6,正确;B、a10÷a9=a,正确;C、x3•x5=x8,正确;D、a4+a3=a4+a3,错误;故选:D.【点评】此题主要考查了合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则等知识,正确掌握运算法则是解题关键.试题6答案:D【分析】根据平行线的性质比较多定义求解即可;【解答】解:∵AB∥CD,∴∠1=∠EFH,∵EF∥GH,∴∠2=∠EFH,∴∠2=∠1=60°,∴∠2的补角为120°,故选:D.【点评】本题考查平行线的性质、补角和余角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.试题7答案:B【分析】必然事件就是一定发生的事件,依据定义即可判断.【解答】解:A、“任意买一张电影票,座位号是2的倍数”是随机事件,故此选项错误;B、“13个人中至少有两个人生肖相同”是必然事件,故此选项正确;C、“车辆随机到达一个路口,遇到红灯”是随机事件,故此选项错误;D、“明天一定会下雨”是随机事件,故此选项错误;故选:B.【点评】考查了随机事件.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.试题8答案:C【分析】根据一次函数的图象与系数的关系进行解答即可.【解答】解:∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0.故选:C.【点评】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k<0,b>0时图象在一、二、四象限.试题9答案:A【分析】根据点A的坐标,利用反比例函数图象上点的坐标特征求出k值,此题得解.【解答】解:∵A(﹣3,2)在反比例函数y=(k≠0)的图象上,∴k=(﹣3)×2=﹣6.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征,反比例函数图象上所有点的坐标均满足该函数的解析式.试题10答案:A【分析】连接OA、OB,求出∠AOB=90°,根据勾股定理求出AO,根据弧长公式求出即可.【解答】解:连接OA、OB,∵正方形ABCD内接于⊙O,∴AB=BC=DC=AD,∴===,∴∠AOB=×360°=90°,在Rt△AOB中,由勾股定理得:2AO2=(2)2,解得:AO=2,∴的长为=π,故选:A.【点评】本题考查了弧长公式和正方形的性质,能求出∠AOB的度数和OA的长是解此题的关键.试题11答案:3x(x+2)(x﹣2).【分析】首先提公因式3x,然后利用平方差公式即可分解.【解答】解:3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2)故答案是:3x(x+2)(x﹣2).【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.试题12答案:4 .【分析】根据众数的定义求解可得.【解答】解:在这组数据中4出现次数最多,有3次,所以这组数据的众数为4,故答案为:4.【点评】本题主要考查众数,解题的关键是掌握求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.试题13答案:.【分析】原式通分并利用同分母分式的减法法则计算,约分即可得到结果.【解答】解:原式=﹣==,故答案为:【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.试题14答案:﹣2≤x<2 .【分析】先求出两个不等式的解集,再求不等式组的公共解.【解答】解:解不等式x﹣2<0,得:x<2,解不等式3x+6≥0,得:x≥﹣2,则不等式组的解集为﹣2≤x<2,故答案为:﹣2≤x<2.【点评】本题考查了解一元一次不等式组,遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.试题15答案:150【分析】根据题意可以用相应的代数式表示出矩形绿地的面积;即可解答本题.【解答】解:(1)设AB=xm,则BC=(900﹣3x),由题意可得,S=AB×BC=x×(900﹣3x)=﹣(x2﹣300x)=﹣(x﹣150)2+33750∴当x=150时,S取得最大值,此时,S=33750,∴AB=150m,故答案为:150.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,列出相应的函数关系式,利用二次函数的顶点式求函数的最值.1试题16答案:【分析】作AE⊥BH于E,BF⊥AH于F,如图,利用等边三角形的性质得AB=AC,∠BAC=60°,再证明∠ABH=∠CAH,则可根据“AAS”证明△ABE≌△CAH,所以BE=AH,AE=CH,在Rt△AHE中利用含30度的直角三角形三边的关系得到HE=AH,AE=AH,则CH=AH,于是在Rt△AHC中利用勾股定理可计算出AH=2,从而得到BE=2,HE=1,AE=CH=,BH=1,接下来在Rt△BFH中计算出HF=,BF=,然后证明△CHD∽△BFD,利用相似比得到=2,从而利用比例性质可得到DH 的长.【解答】解:作AE⊥BH于E,BF⊥AH于F,如图,∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵∠BHD=∠ABH+∠BAH=60°,∠BAH+∠CAH=60°,∴∠ABH=∠CAH,在△ABE和△CAH中,∴△ABE≌△CAH,∴BE=AH,AE=CH,在Rt△AHE中,∠AHE=∠BHD=60°,∴sin∠AHE=,HE=AH,∴AE=AH•sin60°=AH,∴CH=AH,在Rt△AHC中,AH2+(AH)2=AC2=()2,解得AH=2,∴BE=2,HE=1,AE=CH=,∴BH=BE﹣HE=2﹣1=1,在Rt△BFH中,HF=BH=,BF=,∵BF∥CH,∴△CHD∽△BFD,∴===2,∴DH=HF=×=.故答案为.试题17答案:解:原式=2×1﹣(3﹣)+4﹣1=2﹣3++4﹣1=2+.【点评】此题主要考查了实数运算,正确化简各数是解题关键.试题18答案:【解答】(1)证明:∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四边形OCED是平行四边形,又∠COD=90°,∴平行四边形OCED是矩形;(2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2.∵四边形ABCD是菱形,∴AC=2OC=4,BD=2OD=2,∴菱形ABCD的面积为:AC•BD=×4×2=4.故答案是:4.【点评】考查了矩形的判定与性质,菱形的性质.此题中,矩形的判定,首先要判定四边形是平行四边形,然后证明有一内角为直角.试题19答案:【解答】解:画树状图为:共有9种等可能的结果数,其中两人之中至少有一人直行的结果数为5,所以两人之中至少有一人直行的概率为.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.试题20答案:解:(1)在这次调查中一共抽取了:10÷20%=50(名)学生,m%=9÷50×100%=18%,故答案为:50,18;(2)选择数学的有;50﹣9﹣5﹣8﹣10﹣3=15(名),补全的条形统计图如右图所示;(3)扇形统计图中,“数学”所对应的圆心角度数是:360°×=108°,故答案为:108;(4)1000×=300(名),答:该校九年级学生中有300名学生对数学感兴趣.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.试题21答案:【解答】解:(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%.(2)361×(1﹣5%)=342.95(万元).答:预测4月份该公司的生产成本为342.95万元.试题22答案:【分析】(1)连接OA,利用切线的性质和角之间的关系解答即可;(2)根据直角三角形的性质解答即可.【解答】解:(1)连接OA,∵AC是⊙O的切线,OA是⊙O的半径,∴OA⊥AC,∴∠OAC=90°,∵,∠ADE=25°,∴∠AOE=2∠ADE=50°,∴∠C=90°﹣∠AOE=90°﹣50°=40°;(2)∵AB=AC,∴∠B=∠C,∵,∴∠AOC=2∠B,∴∠AOC=2∠C,∵∠OAC=90°,∴∠AOC+∠C=90°,∴3∠C=90°,∴∠C=30°,∴OA=OC,设⊙O的半径为r,∵CE=2,∴r=,解得:r=2,∴⊙O的半径为2.【点评】此题考查切线的性质,关键是根据切线的性质进行解答.试题23答案:【解答】解:(1)设直线l1的表达式为y=kx+b∵直线l1过点F(0,10),E(20,0)∴解得直线l1的表达式为y=﹣x+10求直线l1与直线l2交点,得x=﹣x+10解得x=8y=×8=6∴点P坐标为(8,6)(2)①如图,当点D在直线上l2时∵AD=9∴点D与点A的横坐标之差为9∴将直线l1与直线l2交解析式变为x=20﹣2y,x=y∴y﹣(20﹣2y)=9解得y=则点A的坐标为:(,)则AF=∵点A速度为每秒个单位∴t=如图,当点B在l2直线上时∵AB=6∴点A的纵坐标比点B的纵坐标高6个单位∴直线l1的解析式减去直线l2 的解析式得﹣x+10﹣x=6解得x=则点A坐标为(,)则AF=∵点A速度为每秒个单位∴t=故t值为或②如图,设直线AB交l2 于点H设点A横坐标为a,则点D横坐标为a+9由①中方法可知:MN=此时点P到MN距离为:a+9﹣8=a+1∵△PMN的面积等于18∴解得a1=,a2=﹣(舍去)∴AF=6﹣则此时t为当t=时,△PMN的面积等于18【点评】本题是代数几何综合题,应用待定系数法和根据函数关系式来表示点坐标,涉及到了分类讨论思想和数形结合思想.试题24答案:②想办法证明∠ADE+∠ADB=90°即可;(2)分两种情形讨论求解即可,①如图2中,当点E在AN的延长线上时,②如图3中,当点E在NA的延长线上时,(3)分两种情形求解即可,①如图4中,当BN=BC=时,作AK⊥BC于K.解直角三角形即可.②如图5中,当CN= BC=时,作AK⊥BC于K,DH⊥BC于H.【解答】(1)①证明:如图1中,∵CA=CB,BN=AM,∴CB﹣BN=CA﹣AM即CN=CM,∵∠ACN=∠BCM∴△BCM≌△ACN.②解:如图1中,∵△BCM≌△ACN,∴∠MBC=∠NAC,∵EA=ED,∴∠EAD=∠EDA,∵AG∥BC,∴∠GAC=∠ACB=90°,∠ADB=∠DBC,∴∠ADB=∠NAC,∴∠ADB+∠EDA=∠NAC+∠EAD,∵∠ADB+∠EDA=180°﹣90°=90°,∴∠BDE=90°.(2)解:如图2中,当点E在AN的延长线上时,易证:∠CBM=∠ADB=∠CAN,∠ACB=∠CAD,∵EA=ED,∴∠EAD=∠EDA,∴∠CAN+∠CAD=∠BDE+∠ADB,∴∠BDE=∠ACB=α.如图3中,当点E在NA的延长线上时,易证:∠1+∠2=∠CAN+∠DAC,∵∠2=∠ADM=∠CBD=∠CAN,∴∠1=∠CAD=∠ACB=α,∴∠BDE=180°﹣α.综上所述,∠BDE=α或180°﹣α.故答案为α或180°﹣α.(3)解:如图4中,当BN=BC=时,作AK⊥BC于K.∵AD∥BC,∴==,∴AD=,AC=3,易证△ADC是直角三角形,则四边形ADCK是矩形,△AKN≌△DCF,∴CF=NK=BK﹣BN=﹣=.如图5中,当CN=BC=时,作AK⊥BC于K,DH⊥BC于H.∵AD∥BC,∴==2,∴AD=6,易证△ACD是直角三角形,由△ACK∽△CDH,可得CH=AK=,由△AKN≌△DHF,可得KN=FH=,∴CF=CH﹣FH=4.综上所述,CF的长为或4.【点评】本题考查三角形综合题、全等三角形的判定和性质、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.试题25答案:【解答】解:(1)∵抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1)∴解得:∴抛物线C1:解析式为y=x2+x﹣1(2)∵动直线x=t与抛物线C1交于点N,与抛物线C2交于点M∴点N的纵坐标为t2+t﹣1,点M的纵坐标为2t2+t+1∴MN=(2t2+t+1)﹣(t2+t﹣1)=t2+2(3)共分两种情况①当∠ANM=90°,AN=MN时,由已知N(t,t2+t﹣1),A(﹣2,1)∴AN=t﹣(﹣2)=t+2∵MN=t2+2∴t2+2=t+2∴t1=0(舍去),t2=1∴t=1②当∠AMN=90°,AN=MN时,由已知M(t,2t2+t+1),A(﹣2,1)∴AM=t﹣(﹣2)=t+2,∵MN=t2+2∴t2+2=t+2∴t1=0,t2=1(舍去)∴t=0故t的值为1或0(4)由(3)可知t=1时M位于y轴右侧,根据题意画出示意图如图:易得K(0,3),B、O、N三点共线∵A(﹣2,1)N(1,1)P(0,﹣1)∴点K、P关于直线AN对称设⊙K与y轴下方交点为Q2,则其坐标为(0,2)∴Q2与点P关于直线AN对称∴Q2是满足条件∠KNQ=∠BNP.则NQ2延长线与⊙K交点Q1,Q1、Q2关于KN的对称点Q3、Q4也满足∠KNQ=∠BNP.由图形易得Q1(﹣3,3)设点Q3坐标为(a,b),由对称性可知Q3N=NQ1=BN=2由∵⊙K半径为1∴解得,1同理,设点Q4坐标为(a,b),由对称性可知Q4N=NQ2=NO=∴解得,∴满足条件的Q点坐标为:(0,2)、(﹣3,3)、(,)、(,)【点评】本题为代数几何综合题,考查了二次函数基本性质.解答过程中应用了分类讨论、数形结合以及构造数学模型等数学思想.。

2024年辽宁省沈阳市中考数学调研二模试卷

2024年辽宁省沈阳市中考数学调研二模试卷

2024年辽宁省沈阳市中考数学调研二模试卷一、单选题(★) 1. 的倒数是()A.B.2024C.D.(★) 2. 下列图形由正多边形和圆弧组成,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.(★★) 3. “白日不到处,青春恰自来.苔花如米小,也学牡丹开.”这是清朝袁枚所写五言绝句《苔》,这首咏物诗启示我们身处逆境也要努力绽放自己,要和苔花一样尽自己所能实现人生价值.苔花也被称为“坚韧之花”.袁枚所写的“苔花”很可能是苔类孢子体的苞荫,某孢子体的苞荫直径约为0.0000084m,将数据0.0000084用科学记数法表示为()A.B.C.D.(★★) 4. 下列运算结果正确的是()A.B.C.D.(★★) 5. 下图是我国南方某市今年春节七天最高气温的统计结果:这七天最高气温的众数和中位数是()A.15,17B.14,17C.17,14D.17,15(★★) 6. 在我国古典数学著作《孙子算经》中有这样一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”翻译成现代汉语就是:用一根绳子去量一根长木,绳子还剩余尺;将绳子对折再量长木,长木还剩余尺,问长木多少尺?如果设长木长尺、绳长尺,则可以列出方程组()A.B.C.D.(★★★) 7. 如图所示,AB为⊙O的直径,点C在⊙O上,且OC⊥AB,过点C的弦CD与线段OB相交于点E,满足∠AEC=65°,连接AD,则∠BAD等于()A.20°B.25°C.30°D.32.5°(★★) 8. 如图,直线与轴、轴分别交于两点,把绕点顺时针旋转后得到,则点的坐标是()A.B.C.D.(★★★) 9. 如图.在平面直角坐标系中,△AOB的面积为,BA垂直x轴于点A,OB与双曲线y=相交于点C,且BC∶OC=1∶2,则k的值为()A.﹣3B.﹣C.3D.(★★) 10. 函数和(a是常数,且)在同一平面直角坐标系中的图象可能是()A.B.C.D.二、填空题(★★) 11. 计算: ______ .(★★★) 12. 如图,在Rt△ABC中,∠B=90°,AD平分∠BAC交BC于点D,点E在AC上,以AE为直径的⨀O经过点D.若∠C=30°,且CD=3 ,则阴影部分的面积是 _________________ .(★★★) 13. 二次函数(为常数),函数图象与x轴有______ 个交点.(★★★★) 14. 如图,在四边形中,,,,,点和点分别是和的中点,连接,,,若,则的面积是 ________ .(★★★) 15. 如图,函数的图象的顶点为,下列判断正确个数为①;②;③;④点和点都在此函数图象上,则;⑤.以上结论正确的是______ .(填序号)(★★★) 16. 一个不透明立方体的6个面上分别写有数字1、2、3、4、5、6,任意两对面上所写的两个数字之和为7,将这样的几个立方体按照相接触两个面上的数字之和为8,摆放成一个几何体,这个几何体的三视图如图所示,图中所标注的是部分面上所见的数字,则★所代表的数是 ______ .三、解答题(★★) 17. 小明家的房前有一块矩形的空地,空地上有三棵树A、B、C,小明想建一个圆形花坛,使三棵树都在花坛的边上.请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹).(★★) 18. (1)解不等式组:;(2)计算:.(★★★) 19. 第33届奥运会将于2024年7月26日至8月11日在法国巴黎举行.某高校为了了解学生对“奥运会”的关注度,设置了A(非常关注)、B(比较关注)、C(很少关注)、D(没有关注)四个选项,随机抽取了部分学生进行了问卷调查,并将调查结果绘制成如图所示的两幅不完整的统计图.根据图中所提供的信息,解答下列问题:(1)本次调查共抽取了名学生,并补全条形统计图;(2)求A所在扇形的圆心角度数;(3)学校将在A选项中的甲、乙、丙、丁四人里随机选取两人参加志愿者服务,用画树状图或列表法,列举出所有可能的结果,并求出甲、乙同时被选中的概率.(★★★) 20. 某临街店铺在窗户上方安装如图1所示的遮阳棚,其侧面如图2所示,遮阳棚展开长度,遮阳棚前端自然下垂边的长度,遮阳棚固定点A距离地面高度,遮阳棚与墙面的夹角.(1)如图2,求遮阳棚前端B到墙面的距离;(2)如图3,某一时刻,太阳光线与地面夹角,求遮阳棚在地面上的遮挡宽度的长(结果精确到).(参考数据:)(★★★) 21. 如图,在中,,以为直径的交于点D,,垂足为E.(1)求证:是的切线;(2)若,,求的长.(★★★) 22. 某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如表:已知用600元购进的餐桌数量与用160元购进的餐椅数量相同.70(1)求表中a的值;(2)若该商场购进餐椅的数量比餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过260张,该商场计划将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售.请问怎样进货,才能获得最大利润?最大利润是多少?(★★★) 23. 如图,的对角线AC、BD交于点O,点E是OC上一点,点F在BE延长线上,且,EF与CD交于点G.(1)求证:;(2)连接DE、CF,如果,且G恰好是CD的中点,求证:四边形CFDE是矩形.(★★★) 24. 如图1,在中,,,,点,分别是边,的中点,连接将绕点逆时针方向旋转,记旋转角为.(1)问题发现:①当时______;②当时,______.(2)拓展探究:试判断当时,的大小有无变化?以下是就图2的情形给出的证明过程,请你补全:∵,③.又∵旋转,∴,.(3)用以上结论解决问题:当绕点逆时针旋转至,,三点在同一条直线上时,请在备用图中画出图形,并写出求线段的长.(★★★) 25. 某工厂生产一种产品,经市场调查发现,该产品每月的销售量y (件)与售价x(万元/件)之间满足一次函数关系,部分数据如表:该产品今年三月份的售价为35万元/件,利润为450万元.(1)求:三月份每件产品的成本是多少万元?(2)四月份工厂为了降低成本,提高产品质量,投资了450万元改进设备和革新技术,使每件产品的成本比三月份下降了14万元.若四月份每件产品的售价至少为25万元,且不高于30万元,求这个月获得的利润w(万元)关于售价x (万元/件)的函数关系式,并求最少利润是多少万元.(★★★) 26. 菱形ABCD中,对角线AC=6 cm,BD=8 cm,动点P、Q分别从点C、O同时出发,运动速度都是1 cm/ s,点P由C向D运动;点Q由O向B 运动,当Q到达B时,P、Q两点运动停止,设时间为t妙(0<t<4).连接AP,AQ,PQ.(1)当t为何值时,PQ⊥AB;(2)设△APQ的面积为y(cm2),请写出y与t的函数关系式;(3)当t为何值时,△APQ的面积是四边形AQPD面积的?(4)是否存在t值,使得线段PQ经过CO的中点M?若存在,求出t值;若不存在,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年沈阳市中考数学模拟试题考时:120分钟 满分:120分一、选择题(下列各题A 、B 、C 、D 四个选项中,有且仅有一个是正确的,每小题3 分,共24 分)1.在下列实数中无理数有( )个. ,,,28432.020020002……,πº,tan30°.A.2B.3C.4D.52.明天数学课要学“勾股定理”,小敏在“百度”搜索引擎中输入“勾股定理”,能搜索到 与之相关的结果个数约为12 500 000,这个数用科学记数法表示为( ).A. 1.25×105B.1.25×106C.1.25×107D.0.125×1083.2012年12月26日京广高铁全线通车.一列往返于北京和广州的火车,沿途要经过石家庄、 郑州、武汉、长沙四站,铁路部门要为这趟列车准备印制( )种车票.A.6B.12C.15D.304.右图是一个由4个相同的正方体组成的立体图形,它的三视图是( ).5.顺次连接矩形四边中点所得的四边形一定是( )A.正方形B.矩形C.菱形D.等腰梯形6.如图,在半径为5的圆O 中,AB ,CD 是互相垂直的两条弦,垂足为P ,且AB =CD =8,则OP 的长为( ).A .3B .4C .32D .247.下列说法中:①若式子x -2有意义,则x ≥2.②已知∠α=27°,则∠α的余角是63°.③已知x=-1 是方程x 2-bx+5=0 的一个实数根,则b 的值为6.④在反比例函数xk y 2-=中,若x >0 时,y 随x 的增大而增大,则k 的取值范围是k <2.其中正确命题有( )A. 1个B. 2个C. 3个D. 4个8.如图,点P 是等边△ABC 的边上的一个作匀速运动的动点,其由点A 开始沿AB 边运动到B ,再 沿BC 边运动到C 为止,设运动时间为t ,△ACP 的面积为S ,则S 与t 的大致图象是( ).二、填空题(共8道题,每小题3 分,共24 分) 9.-20131的倒数的相反数是 . 10.分解因式x 3-6x 2+9x=__________.11.化简(x -x 1-x 2)÷(1-x1)的结果是 . 12.如图,四边形ABCD 中,∠BAD =120°,∠B =∠D =90°,在BC 、CD 上分别找一点M 、N , 使△AMN 周长最小时,则∠AMN +∠ANM 的度数是 .13.若m 为实数,且13m m-=,221m m -则= . 14.已知:在等腰梯形ABCD 中,AD ∥BC ,AC ⊥BD ,AD =3,BC =7,则梯形的面积是 .15.某电视台“中国梦”栏目的一位记者乘汽车赴360km 外的农村采访,全程的前一部分为 高速公路,后一部分为乡村公路.若汽车在高速公路和乡村公路上分别以某一速度匀速行 驶,汽车行驶的路程y (单位:km )与时间x (单位:h )之间的关系如图所示,则下列结 论正确的是 (填序号).(1)汽车在高速公路上的行驶速度为100km /h (2)乡村公路总长为90km(3)汽车在乡村公路上的行驶速度为60km /h (4)该记者在出发后5h 到达采访地16.如图,在平面直角坐标系中,△ABC 经过平移后点A 的对应点为点A ′,则平移后点B 的对应点B ′的坐标为 .三、解答题(共9道题,共72 分)17.(5分)解不等式组⎪⎩⎪⎨⎧≥--+>+,216133332x x xx 并求出它的整数解的和.18.(7分)已知正方形ABCD 的边长为a ,两条对角线AC 、BD 相交于点O ,P 是射线AB 上任意一点,过P 点分别做直线AC 、BD 的垂线PE 、PF ,垂足为E 、F .(1)如图1,当P 点在线段AB 上时,求PE +PF 的值;(2)如图2,当P 点在线段AB 的延长线上时,求P E -PF 的值.19.(6分)黄冈市教育局为提高教师业务素质,深入扎实开展了“课内比教学”活动.在一 次数学讲课比赛中,每个参赛选手都从两个分别标有“A”、“B”内容的签中,随机抽取 一个作为自己的讲课内容,某校有三个选手参加这次讲课比赛,请你求出这三个选手中有 两个抽中内容“A”,一个抽中内容“B”的概率.20.(6分)6月5日是世界环境日,某校组织了一次环保知识竞赛,每班选25名同学参加 比赛,成绩分别为A 、B 、C 、D 四个等级,其中相应等级的得分依次记为100分、90分、 80分、70分,学校将某年级的一班和二班的成绩整理并绘制成统计图:根据以上提供的信息解答下列问题:(1)把一班竞赛成绩统计图补充完整;(2)写出下表中a、b、c的值:平均数(分)中位数(分)众数(分)一班a b90二班87.6 80 c(3)请从以下给出的三个方面中任选一个对这次竞赛成绩的结果进行分析:①从平均数和中位数方面比较一班和二班的成绩;②从平均数和众数方面比较一班和二班的成绩;③从B级以上(包括B级)的人数方面来比较一班和二班的成绩.21.(6分)某市在建设“美丽城市”过程中,进行道路改造,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.甲、乙工程队每天各能铺设多少米?22.(8分)如图,AB是⊙O的直径,AC是弦,AD⊥过C点的直线于点D,且∠AOC=2∠ACD.求证:(1)CD是⊙O的切线;(2)AC2=AB·AD.23.(8分)如图,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°. 使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?(结果精确到0.1cm,参考数据:3≈1.732)24.(14分)如图,抛物线()02≠++=a c bx ax y 的顶点坐标为()1,2-,并且与y 轴交于点C ()3,0,与x 轴交于两点A,B.(1)求抛物线的表达式;(2)设抛物线的对称轴与直线BC 交于点D ,连结AC 、AD, 求△ACD 的面积;(3)点E 位直线BC 上一动点,过点E 作y 轴的平行线EF ,与抛物线交于点F.问是否存 在点E ,使得以D 、E 、F 为顶点的三角形与△BCO 相似.若存在,求出点E 的坐标;若不存 在,请说明理由.25.(12分)企业的污水处理有两种方式,一种是输送到污水厂进行集中处理,另一种是通 过企业的自身设备进行处理.某企业去年每月的污水量均为12000吨,由于污水厂处于调 试阶段,污水处理能力有限,该企业投资自建设备处理污水,两种处理方式同时进行.1 至6月,该企业向污水厂输送的污水量y 1(吨)与月份x (1≤x ≤6,且x 取整数)之间 满足的函数关系如下表:7至12月,该企业自身处理的污水量y 2(吨)与月份x (7≤x ≤12,且x 取整数)之间满足二次函数关系式为y 2=ax 2+c (a ≠0).其图象如图所示.1至6月,污水厂处理每吨污水 E 60°30°A BCD的费用:z 1(元)与月份x 之间满足函数关系式:11z x 2=,该企业自身处理每吨污水的 费用:z 2(元)与月份x 之间满足函数关系式:2231z = x x 412-;7至12月,污水厂处 理每吨污水的费用均为2元,该企业自身处理每吨污水的费用均为1.5元.(1)请观察题中的表格和图象,用所学过的一次函数、反比例函数或二次函数的有关知识, 分别直接写出y 1,y 2与x 之间的函数关系式;(2)请你求出该企业去年哪个月用于污水处理的费用W (元)最多,并求出这个最多费用;(3)今年以来,由于自建污水处理设备的全面运行,该企业决定扩大产能并将所有污水全 部自身处理,估计扩大产能后今年每月的污水量都将在去年每月的基础上增加a %,同时 每吨污水处理的费用将在去年12月份的基础上增加(a ﹣30)%,为鼓励节能降耗,减轻 企业负担,财政对企业处理污水的费用进行50%的补助.若该企业每月的污水处理费用为 18 000元,请计算出a 的整数值.(参考数据:≈15.2,≈20.5,≈28.4)参考答案:1.B2.C3.D4.A5.C6.C7.B8.C9.2013 10.x(x-3)2 11.x-1 12.120°13.±133 14.25 15.(3)(4) 16.(﹣2,1) 17.这个不等式组的解集是﹣4≤x <3,它的整数解为-4,-3,-2,-1,0,1,2.∴这个不等式组的整数解的和是-4-3-2-1+0+1+2=-7. 18.解:(1)∵四边形ABCD 为正方形,∴AC ⊥BD . ∵PF ⊥BD ,∴PF //AC ,同理PE //BD .∴四边形PFOE 为矩形,故PE =OF .又∵∠PBF =45°,∴PF =BF .∴PE +PF =OF +FB =OB =2cos 452a a ︒=.(2)∵四边形ABCD 为正方形,∴AC ⊥BD .∵PF ⊥BD ,∴PF //AC ,同理PE //BD . ∴四边形PFOE 为矩形,故PE =OF .又∵∠PBF =45°,∴PF =BF .∴PE -PF =OF -BF = OB =2cos 452a a ︒=.19.解:设这三个选手分别为“甲”“乙”“丙”,根据题意画出树状图如图:∵从树状图可以看出,所有等可能的结果共有8种,即(A ,A ,A ),(A ,A ,B ),(A ,B ,A ),(A ,B ,B ),(B ,A ,A ),(B ,A ,B ),(B ,B ,A ),(B ,B ,B ),选手中有两个抽中内容“A ”,一个抽中内容“B ”(记着事件M )的结果共有3个,即(A ,A ,B ),(A ,B ,A ),(B ,A ,A ),∴P (M )=83. 20.解:(1)一班中C 级的有25﹣6﹣12﹣5=2人。

故统计图为:(2)a=(6×100+12×90+2×80+70×5)÷25=87.6;b=90;c=80。

(3)①从平均数和中位数的角度来比较一班的成绩更好;②从平均数和众数的角度来比较二班的成绩更好;③从B 级以上(包括B 级)的人数的角度来比较一班的成绩更好。

21.设甲工程队每天能铺设x 米,则乙工程队每天能铺设(20x -)米.根据题意得:35025020x x =-.解得70x =.检验: 70x =是原分式方程的解. 答:甲、乙工程队每天分别能铺设70米和50米. 22.证明:(1)如图,连接BC .∵∠AOC=2∠B,而∠AOC=2∠ACD,∴∠B=∠ACD,又∠B=∠BCO,∴∠BCO=∠ACD.∵∵AB 是直径,∴∠ACB =90°.∴∠ACB=90°,∴∠BCO +∠ACO =90°,∴∠ACD +∠ACO =90°,即∠DCO =90°,∴CD 是⊙O 的切线;(2)∵AB 是直径,∴∠ACB =90°.在Rt △ACD 与△Rt ACD 中,∵∠AOC =2∠B ,∴∠B =∠ACD , ∴△ACD ∽△ABC ,∴ACAD AB AC =,即AC 2=AB ·AD .23.过点B 作BF ⊥CD 于F ,作BG ⊥AD 于G .在Rt △BCF 中,∠CBF =30°,∴CF =BC ·sin 30°= 30×12=15. 在Rt △ABG 中,∠BAG =60°,∴BG =AB ·sin 60°= 40×32= 20 3. ∴CE =CF +FD +DE =15+203+2=17+203≈51.64≈51.6(cm )cm.答:此时灯罩顶端C 到桌面的高度CE 约是51.6cm.24.(1)由题意可设抛物线的表达式为()122--=x a y . ∵点C ()3,0在抛物线上,∴()31202=--a ,解得1=a . ∴抛物线的表达式为()122--=x y ,即342+-=x x y (2)令0=y ,即0342=+-x x ,解得3,121==x x ,∴()()0,3,0,1B A .设BC 的解析式为,b kx y +=将()()3,0,0,3C B 代入得⎩⎨⎧==+303b b k ,解得⎩⎨⎧=-=31b k . ∴直线BC 的解析式为.3+-=x y当2=x 时,132=+-=y ,∴()1,2D .所以=ACD S △ABC S △-ABD S △3221⨯⨯=-21221=⨯⨯ (1) 假设存在点E ,使得以D 、E 、F 为顶点的三角形与△BCO 相似,∵△BCO 是等腰直角三角形,则以D 、E 、F 为顶点的三角形也必须是等腰直角三角形.由EF ∥OC 得∠DEF=45°,故以D 、E 、F 为顶点的等腰直角三角形只能以点D 、F 为直角顶点① 点F 为直角顶点时,DF ⊥EF ,此时△DEF ∽△BCO ,所以DF 所在的直线为1=y由⎩⎨⎧=+-=1342y x x y ,解得.22±=x将22+=x 代入3+-=x y ,得21-=y ,∴()21,22-+E 将22-=x 代入3+-=x y ,得21+=y ,∴()21,22+-E② 当D 为直角顶点时,DF ⊥ED ,此时△EFD ∽△BCO.∵点D 在对称轴上,∴DA=DB ,∵∠CBA=45°,∴∠DAB=45°,∴∠ADB=90°,∴AD ⊥BC,故点F在直线AD 上.设直线AD 的解析式为,b kx y +=将()()1,2,0,1D A 代入得:⎩⎨⎧=+=+120b k b k ,解得⎩⎨⎧-==11b k ,所以直线AD 的解析式为1-=x y , 由⎩⎨⎧-=+-=1342x y x x y ,解得,11=x 42=x 。

相关文档
最新文档