大数据时代的数据挖掘与商务智能(一)
研究生:大数据分析与商业决策——数据挖掘与商务智能教案
研究生:大数据分析与商业决策——数据挖掘与商务智能教案引言当今的商业世界中,大数据分析和商业决策成为了企业发展中的两个关键领域。
企业需要深入了解自己的客户、市场和业务环境,以便做出准确的商业决策。
这就需要大数据分析和商务智能的支持。
因此,在研究生阶段,学生需要全面掌握如何进行数据挖掘和商务智能分析,以应对商业领域的挑战。
在本教案中,我们将介绍大数据分析和商业决策中的关键概念和技术,并提供学生必要的指导和实践活动,以帮助他们在未来的职业生涯中成功应对商业挑战。
大数据分析的基本概念什么是大数据分析?大数据分析是指对大规模、高速度和多样化数据进行收集、存储、管理、处理和分析的过程。
它旨在从数据中提取有用的信息和洞察力,为企业决策提供支持。
大数据分析的重要性随着互联网和移动技术的快速发展,企业面对的数据规模越来越庞大。
这些数据包含着宝贵的信息,可以帮助企业更好地了解市场、客户需求和竞争环境。
通过分析大数据,企业可以发现潜在的商机、优化业务流程、提高效率和增强竞争力。
大数据分析的应用场景大数据分析在各个行业中都有广泛的应用。
例如,零售商可以通过分析销售数据来了解客户需求,并制定更精确的市场策略。
银行可以通过分析客户交易数据来发现欺诈行为。
医疗行业可以通过分析患者数据来改善疾病诊断和治疗方法。
商务智能的基本概念什么是商务智能?商务智能是指使用数据分析和数据可视化技术来提取和展示企业数据中隐藏的洞察力和价值。
它帮助企业管理人员和决策者更好地理解业务运营,并做出明智的商业决策。
商务智能的重要性在竞争激烈的商业环境中,企业需要及时了解自己的业务状况,以便做出快速反应和明智的决策。
商务智能通过数据可视化和报表分析等方式,帮助企业管理层直观地了解关键业务指标和趋势,从而支持决策和执行。
商务智能的应用场景商务智能在企业中的应用非常广泛。
企业可以使用商务智能工具来追踪销售和市场数据,了解产品销售情况和市场趋势。
还可以使用商务智能工具来管理供应链和库存,优化生产计划和物流运营。
数据挖掘与商业智能的核心概念
商业智能的应用
01
02
03
04
销售分析
通过对销售数据的分析,了解 销售趋势,制定销售策略。
市场分析
通过对市场数据的分析,了解 市场趋势,制定市场策略。
供应链管理
通过对供应链数据的分析,优 化供应链管理,降低成本。
财务分析
通过对财务数据的分析,了解 财务状况,制定财务策略。
CHAPTER 03
数据挖掘与商业智能的关系
VS
详细描述
随着数据采集、存储和分析技术的不断发 展,企业可以获取到更多维度的数据,如 社交媒体、用户行为等,这些数据能够揭 示市场趋势和消费者偏好,帮助企业做出 更明智的商业决策。
人工智能与商业智能的结合
总结词
人工智能技术为商业智能提供了更强大的数 据处理和分析能力,提高了决策效率和准确 性。
详细描述
THANKS FOR WATCHING
感谢您的观看
数据挖掘与商业智能 的核心概念
汇报人:可编辑 2024-01-03
contents
目录
• 数据挖掘概述 • 商业智能概述 • 数据挖掘与商业智能的关系 • 数据挖掘在商业智能中的应用 • 商业智能的未来趋势
CHAPTER 01
数据挖掘概述
数据挖掘的定义
01
数据挖掘是从大量数据中提取出有用的信息和知识 的过程。
数据挖掘是商业智能的核心
数据挖掘是从大量数据中提取 有用信息的过程,是商业智能 的重要组成部分。
数据挖掘技术可以帮助企业更 好地理解客户需求、市场趋势 和业务运营情况,从而做出更 明智的决策。
数据挖掘能够发现隐藏在数据 中的模式和关联,为企业提供 新的商业机会和竞争优势。
商业智能为数据挖掘提供支持
大数据时代的数据挖掘与商务智能(ppt 240页)
14
政治算术学派与国势学派
政治算术学派。最早的统计学源于17世纪英国。 其代表人物是威廉.配第(William Patty, 1623—1687年) 。政治算术学派主张用大量观察 和数量分析等方法对社会经济现象进行研究的 主张,为统计学的发展开辟了广阔的前景。
国势学派。最早使用“统计学”这一术语的是
例如,性别(男、女),颜色(红、黄、 蓝)
可以用数字表示(编码),但数字只是 用作标签。编码的数值之间不存在有实 际意义的量的关系。
26
有序测度(Ordinal)
有序测度量化水平高于名义测度 变量编码不仅具有分类的作用,而且也
存在量的关系(等级或次序关系)。 例如,受教育程度(文盲半文盲1、小学
–例如,2008年全国各省市自治区的国内生产总值就 属于横截面数据。而“十一五”期间我国历年的国 内生产总值就属于时间序列数据。
面板数据:横截面数据与时间序列数据交织在 一起。
非结构化数据
33
面板数据
所谓“面板数据”也称为“平行数据”, 是指对不同时刻的截面个体作连续观测 所得到的多维时间序列数据。
大数据时代的 数据挖掘与商务智能
1
第三部分
基于统计的传统数据分析 技术
2
数据分析基本概念
统计学简介 测量与数据 数据来源 数据的类型 数据预处理技术
3
统计数据分析方法
描述统计 推断统计 常用统计分析软件
4
数学家的幽默
统计学家调侃数学家:你们不是说若X= Y且Y=Z,则X=Z吗!那么想必你若 喜欢一个女孩,那么这个女孩喜欢的男生 你也喜欢吧?
中各单位普遍存在的事实进行大量观察 和综合分析。 变异性。总体各单位的特征表现存在着 差异,而且这些差异并不是事先可以预 知的。
数据挖掘与商务智能
数据挖掘与商务智能数据挖掘与商务智能是现代商业领域中不可或缺的重要技术。
随着大数据时代的到来,企业对于数据的挖掘和分析需求日益迫切。
本文将从数据挖掘和商务智能的定义、关键技术和应用场景等方面进行论述,旨在探讨数据挖掘与商务智能在商业领域的重要性和应用潜力。
一、数据挖掘与商务智能的定义数据挖掘是指利用统计学、机器学习等方法,并借助计算机的高性能处理能力,从大规模的数据集中发现潜在的模式、关联、规律和趋势的过程。
商务智能则是指将数据挖掘的结果与企业的商业决策过程相结合,提供有价值的商业见解和决策支持的信息系统。
二、数据挖掘与商务智能的关键技术1. 数据预处理:包括数据清洗、数据集成、数据转换和数据规约等过程,旨在将原始数据整理成适合挖掘的数据集。
2. 数据挖掘算法:包括分类、聚类、关联规则和预测等算法,用于从数据集中发现隐藏在数据中的潜在模式和规律。
3. 可视化技术:通过图表、图像和地图等方式,将数据挖掘的结果以直观、易懂的形式展示给决策者和用户。
4. 数据仓库和OLAP:用于集成、存储和管理海量的数据,并通过在线分析处理技术,提供快速、灵活的数据查询和分析功能。
三、数据挖掘与商务智能的应用场景1. 客户关系管理:通过分析客户的行为和偏好,实现精准营销和个性化服务,提升客户满意度和忠诚度。
2. 营销分析:通过挖掘市场需求和竞争环境,制定有效的市场推广策略。
3. 风险管理:通过挖掘历史数据和模型预测,识别潜在的风险和机会,为企业决策提供支持。
4. 经营决策:通过分析销售数据、库存数据和供应链数据,优化企业的产品定价、供应链管理和库存控制等决策。
5. 在线广告优化:通过分析用户行为、广告点击率和转化率等数据,优化在线广告投放的效果,提高投资回报率。
四、数据挖掘与商务智能的挑战与前景数据挖掘与商务智能在商业领域的应用无疑带来了巨大的商机和价值,但也面临着一些挑战。
首先是数据质量和数据安全的问题,大规模数据的管理和保护成为了业界的难题。
数据挖掘及商务智能总结
数据挖掘及商务智能总结第一章绪论什么是数据挖掘,什么是商业智能从大型数据库中提取有趣的(非平凡的、蕴涵的、先前未知的且是潜在有用的)信息或模式。
商业智能是要在必须的时间段内,把正确有用的信息传递给适当的决策者,以便为有效决策提供信息支持。
分类算法的评价标准召回率recall =系统检索到的相关文件数/相关文件总数准确率precision(查准率)= 系统检索到的相关文件数/系统返回的文件总数第二章数据仓库什么是数据仓库是运用新信息科技所提供的大量数据存储、分析能力,将以往无法深入整理分析的客户数据建立成为一个强大的顾客关系管理系统,以协助企业制定精准的运营决策。
数据仓库的基本特征1面向主题2整合性 3长期性 4稳定性第三章数据挖掘简介数据挖掘的一般功能1分类2估计3 预测4关联分类5聚类数据挖掘的完整步骤1理解数据与数据所代表的含义2获取相关知识与技术3整合与检查数据4取出错误或不一致的数据5建模与假设6数据挖掘运行7测试与验证所挖掘的数据8解释与使用数据数据挖掘建模的标准CRISP-CM跨行业数据挖掘的标准化过程第四章数据挖掘中的主要方法基于SQL Server 2005 SSAS的十种数据挖掘算法是什么1.决策树2.聚类3.Bayes分类4.有序规则5. 关联规则6.神经网络7.线性回归8. Logistic回归9. 时间序列10. 文本挖掘第五章数据挖掘与相关领域的关系数据挖掘与机器学习、统计分析之间的区别与联系(再看看书整理下)32页处理大量实际数据更具优势,并且使用数据挖掘工具无需具备专业的统计学背景。
数据分析的需求和趋势已经被许多大型数据库所实现,并且可以进行企业级别的数据挖掘应用。
相对于重视理论和方法的统计学而言,数据挖掘更强调应用,毕竟数据挖掘目的是方便企业用户的使用。
第六章SQL Server 2005中的商业智能商业智能(BI)的核心技术是什么数据仓库和数据挖掘第七章SQL Server 2005中的数据挖掘Microsoft SQL Server Management Studio提供了两个用于管理数据库项目(如脚本、查询、数据连接和文件)的容器是什么?1项目 2解决方案第八章SQL Server 2005的分析服务什么是UDM?统一维度模型第九章SQL Server 2005的报表服务什么是报表服务,其功能是一个基于服务器的完整平台,可创建、管理和交付传统报表和交互式报表。
第1章 商务智能与数据挖掘
2020/8/19
商务智能的系统架构决定了其具有如下四项功能:
(1) 数据管理功能:从多个数据源中ETL数据以及数据集成的能力;对大量数据 进行高效存储与维护的能力。
(2) 数据分析功能:基于OLAP、DM等工具的多种数据分析能力;终端信息查询和 报表生成能力;数据可视化能力。
(3) 知识发现功能:从大型数据库提取人们感兴趣知识的能力;提取的知识可表 示为概念(concepts)、规则(rules)、规律(regulations)、模型(patterns )等形式。
商务智能与数据挖掘
高等教育出版社
2020/8/19
三、商务智能的特点
1.商务智能是数据加工厂(具体如图1所示) 2.商务智能服务于多层次用户 3.商务智能的管理支持 4.商务智能包含多项技术
商务智能与数据挖掘
高等教育出版社
2020/8/19
图1 商务智能数据加工厂
商务智能与数据挖掘
高等教育出版社
商务智能与数据挖掘
高等教育出版社
2020/8/19
大类 数据集成 信息分析 知识展示
表1 商务智能的关键技术表
细分类别 数据获取
数据仓库
关键技术 数据抽取|转换|转载(ETL) 数据仓库(Data Warehouse)
数据集市(Data Mart)
数据运营店(Operational Data Store)
2020/8/19
四、商务智能的功能
商务智能系统作为一种辅助决策的工具,为决策者提供信息、知识支持,辅助决 策者改善决策水平。商务智能系统的主要功能如下:
1.数据集成 :由于大多数数据往往零散的分布在不同的业务系统中,为了科学 做出经营决策,这就需要将这些零散的数据收集起来,构成一个系统的整体。 2.信息呈现 :信息呈现主要是将收集的数据以报表、图文等形式呈现出来,让 用户以更直观的方式了解企业和市场现状。 3.运营分析 :运营分析包括运营指标分析、运营业绩分析和财务分析等。 4.战略决策支持 :商务智能系统集成了企业内外部的信息和数据,企业各战略 业务单元可以据此制定合理的投资组合战略,为企业管理者的战略决策提供支持。
商务智能与数据挖掘
伴随着以电子商务为特征的新经济逐步走向成熟,企业需要处理的数据量越来越多,数据库应用的规模、范围和深度不断扩大,已经从点(单台机器),线(局域网)发展到面(网络),甚至到因特网全球信息系统。
近年来商业条码的推广,企业和政府交易的管理,以及数据采集工具的发展,都提供了巨大规模的数据,在商业管理,政府部门和工业数据处理等领域中应用了数以百万计的数据库。
对于企业来源,这些数据一方面来自与客户间的交易记录,另外,还可能来自企业内部的管理或生产系统,以及从其他途径搜集到的市场信息、协作伙伴和竞争对手的信息等。
企业急切地希望通过快速处理这些数据获得有利于企业进一步发展的决策依据,而是否能够最大限度地使用信息资源来管理和影响企业决策流程,将决定企业是否能拥有最大程度的竞争优势。
比如:从吸引新客户和保持老的客户角度来说,您将可以针对以下情况作出正确的决策:哪一类顾客给企业带来最大的利润,企业应该怎样加强和这类顾客的联系?怎样才能提高顾客整体满意程度?哪一类产品与服务结合得最成功,而他所面向的客户群又是哪些?事实上,很多企业具备了回答以上问题的数据积累,但是从这些数据中发现规律以回答以上问题却是很困难的事,企业面临的真正挑战是如何从中挖掘出潜在的商机。
目前,大多数企业只利用了很少的数据资源用于统计汇总,而余下的数据资源则不断随时间增长,成为一座含金量很高、但是被忽略了的矿山。
而商务智能(BI)则可以通过对这些数据的分析提出企业战略性决策的依据。
使得您手头掌握的有关商务、顾客、合作伙伴以及运作的有用情报越多,您就越能做出明智的决策,提高竞争能力。
商务智能(BI)是指将存储于各种商业信息系统中的数据转换成有用信息的技术。
它允许用户查询和分析数据库可以得出影响商业活动的关键因素,最终帮助用户做出更好、更合理的决策。
其中的报告、在线分析处理和数据挖掘等工具从不同的层面帮助企业实现这个目标。
从数据分析的角度看,商务智能是为了解决商业活动中遇到的各种问题,利用各种信息系统进行的高质量和有价值的信息收集、分析、处理过程,其基本功能包括个性化的信息分析、预测、辅助决策。
数据挖掘与商务智能商务智能概述
BI市场竞争
Gartner公司的调查表明,2000年到2004年之间,安全是企业IT 投资排在第一位的主题,而商务智能项目的投资在2000年时仅排 在第14位,2007年却突飞猛进,排到了第一位 BI公司的收购:Oracle收购Hyperion,SAP收购Business Objects,IBM收购Cognos 市场规模每年大约增加10%~15%
金融行业应用——美国汇丰银行使用SPSS成功案例
应用结果
揭示特定客户的需求,销售增加50% 营销费用减少30% 提高了建立和开展适时营销战略的能力
Somma说, "OLAP对了解数据特征来说是一个不错的工具, 但我无法从中发现联系的力度,也不能做出预测模型,而 那正是我最需要的。“ Somma说,"OLAP是好的报告工具,但没有统计引擎,它只 能告诉过去我在哪里,而不能说出我需要去哪里。
BI在电子商务行业的应用-6
《服装电子商务个性化推荐系统关键技术研究 》课题
存在海量的商品信息
查找困难,失去购物兴趣
搜索结果界面相同
缺乏个性化(颜色、款式) 服装个性化搭配问题
服装展示:二维图片+文字说明为主
用户购衣后衣服不合体 衣服质感存在较大差异
虚拟与现实存在一定的差距,传统的服装电子商 务网站不适合“一看二摸三试衣”的购物流程
Web文本挖掘应用
搜索引擎优化 垃圾邮件过滤
BI在电子商务行业的应用-4
Web结构挖掘
通过分析页面链接的数量和对象,从而建立Web的链接结构模式
相关算法
PageRank算法:网页的质量和重要性可以通过其他网页对其链 接的数量进行衡量 HITS算法:
• 权威页面:表达某一主题的页面 • Hub页面:把权威页面链接到一起的页面 应用
大数据时代的数据挖掘与商务智能培训课件(PPT80页)
数据挖掘概况
无法准确回答的问题
➢ 信贷中信用评估,信用卡评级,信用卡欺诈 ➢ 销售一个产品 广告 材料 邮寄给谁 ➢ 保留客户, 争取客户 ➢ 交叉销售 ➢ 违规操作,欺诈行为发现,异常发现 ➢ 货架货物的摆放 ➢ 国民经济各指标间的关系 ➢ 疾病, 症状, 药物, 疗效之间的关系 ➢ DNA序列的相似分析 ➢ 导致各种疾病的特定基因序列模式
基本方法如上所述。软件功能和性能有很 大差异。选软件应考虑的因素很多。
9
数据挖掘概况
从问题回答的角度:
1. 有些问题可明确和准确回答(要求这样) 2. 有些问题是给出可能的回答 3. 有些问题可能给出不太明确的回答 4. 有些问题可能给出可能错误的回答。 这些回答从数据的角度: 有些是查询,有些是统计,有些是归纳,有些是推 断,有些预测,有些是分析。 数据挖掘要回答那些不是简单查询和统计回答问 题。
(A) Knowledge
INFORMATION
(A) Knowledge transmitted by character, sign, voice, etc.
(B) Data arranged to be useful for decision making
(Transmit)
KNOWLEDGE
Metaphors, analogies, concepts, hypotheses, or models
2
Group
Group
tacit
explicit
knowledge Externalization knowledge
Shared mental models or tech➢市场分析、预测和管理 • 行销策略, 客户关系管理(CRM), 购货篮分析,
基于机器学习的商务智能与数据挖掘
基于机器学习的商务智能与数据挖掘商务智能是指通过系统化的方法和工具,利用企业内部和外部的数据来解决商务问题、提升经营效率和决策能力的过程。
而数据挖掘是商务智能的重要工具之一,它通过分析大量数据以发现隐藏在其中的模式、关联和趋势,并通过这些发现为企业提供决策支持和业务优化的建议。
随着科技的飞速发展,机器学习技术已经成为商务智能和数据挖掘领域的热门技术之一。
机器学习是一种通过计算机自动学习和改进算法的方法,使计算机能够从大量的数据中提取出有用的信息,并基于这些信息做出预测和决策。
在商务智能和数据挖掘中,机器学习可以应用于诸如预测销售额、优化供应链、推荐系统、风险管理等多个方面。
以下是一些我们可以利用机器学习算法进行商务智能和数据挖掘的实际案例:1. 销售预测和客户细分:利用历史销售数据和客户行为数据,可以建立机器学习模型来预测未来的销售额,并将客户细分为不同的群体,以便制定相应的市场营销策略。
2. 支持供应链管理:通过分析供应链中各个环节的数据,可以利用机器学习模型预测供应链中可能出现的问题,比如异常订单、库存过剩等,并提出相应的解决方案,以提高供应链的效率和准确性。
3. 个性化推荐系统:许多企业拥有大量的用户和产品数据,可以利用机器学习算法从中挖掘用户的兴趣和喜好,并根据这些信息为用户推荐个性化的产品和服务,以提高用户满意度和销售额。
4. 风险管理:金融行业可以利用机器学习算法对大量的金融交易数据进行分析,以发现潜在的风险和异常情况,并及时采取措施进行干预和管理,以减少风险和损失。
5. 营销策略优化:通过对市场营销活动的数据进行分析,可以利用机器学习算法找出最有效的营销策略,并为企业提供明智的决策建议。
虽然机器学习在商务智能和数据挖掘中发挥着重要的作用,但也存在一些挑战和限制。
首先,数据的质量和可用性是机器学习的关键,因为算法的准确性和效果直接取决于数据的质量。
此外,机器学习算法的训练和调整需要大量的计算资源和时间,因此,企业在使用机器学习时需考虑到成本和效益的问题。
数据挖掘与商务智能技术
6.1 商务智能概述(续)
• 6.1.1 商务智能技术的发展(续)
– 商务智能的定义(续)
• 商务智能是通过利用多个数据源的信息以及应 用经验和假设,来促进对企业动态性的准确理 解,以便提高企业决策能力的一组概念、方法 和过程的集合。
• 商务智能是通过获取与各个主题相关的高质量 和有意义的信息来帮助人们分析信息、得出结 论、形成假设的过程。
– 空间数据包括:地图,遥感图片,医学图像等。 – 空间数据的特点
• 包括距离、位置、色块、气温等信息。 • 通常按照复杂、多维的空间索引结构组织数据。
6.4 复杂类型数据挖掘(续)
• 6.4.1 空间数据挖掘(续)
– 空间数据挖掘是指对空间中非显式存在的知识、 空间关系或其他有意义的模式等进行提取,需 要综合数据挖掘与空间数据库技术。
– 训练数据集指一个已有的数据集,其中每条记录都已经属于一 个已知的类别中。
• 其次,使用分类器对新数据集进行分类。
6.3 数据挖掘方法(续)
• 6.3.1 分类(续)
– 分类分析的评估标准
• 速度:即生成和使用分类器的计算花费; • 鲁棒性:即给定噪音数据,分类器能够正确预测的
能力; • 可伸缩性:即在大量数据规模时,有效构造分类器
6.1 商务智能概述
• 6.1.1 商务智能技术的发展
– 商务智能的定义
• 商务智能是指透过资料的萃取、整合及分析, 支持决策过程的技术和商业处理流程,其目的 是为了使使用者能在决策的时候,尽可能得到 更好的协助。
• 商务智能是运用数据仓库、在线分析和数据挖 掘技术来处理和分析数据的技术,它允许用户 查询和分析数据库,进而得出影响商业活动的 关键因素,帮助用户做出更好、更合理的决策。
大数据时代的商务智能分析
大数据时代的商务智能分析一、商务智能的概念和价值商务智能(Business Intelligence,BI)是利用各种数据分析方法和工具,提取企业内外部分散的、异构的、海量的信息数据,并对其进行处理、分析、展示和应用,使企业的经营管理运作更加科学、精细和高效的一种业务应用系统。
商务智能的实现,可以从数据来源、数据处理、信息发布和应用支持四个方面来介绍商务智能的基本架构和功能。
商务智能的价值主要体现在以下几个方面:1.提升决策质量:商务智能可以通过对企业内部和外部数据进行分析和挖掘,为管理决策提供科学、准确、及时和可信的数据支持。
2.降低决策风险:商务智能可以通过对多源异构数据的集成和分析,及时发现和解决问题,从而降低决策风险,提高企业的抗风险能力。
3.优化资源配置:商务智能可以通过对数据的分析、挖掘和展示,帮助企业发现潜在机会和问题,在资源配置上做到合理和精细,提高企业的效率和利润。
4.提高市场竞争力:商务智能可以通过对市场、竞争对手和消费者等信息的分析和挖掘,构建企业的核心竞争力,提高企业的市场占有率和盈利能力。
二、大数据时代商务智能的新趋势随着互联网技术的逐步成熟和应用的普及,大数据对于商务智能的影响也越来越显著。
在大数据时代,对大数据的分析成为商务智能的一个重要发展方向。
主要表现为以下新趋势。
1.数据可视化:传统的商务智能系统一般以数据报表、图表和多维分析等方式展示数据。
而在大数据时代,则更关注数据可视化的呈现形式和逻辑关系。
商务智能系统除了可以实现数据可视化外,还可以通过对数据的声音、视频、图片和动态演示等进行多维度地呈现。
2.移动化:随着移动技术的飞速发展以及智能移动设备的普及,越来越多的企业更关注数据在移动端的展示与分析。
在大数据时代,商务智能通过使用适配移动终端的视觉化界面、数据云计算等方式,将数据分析应用实现移动化,实现管理人员无时无刻对业务数据实时查看与分析。
3.智能化:大数据时代商务智能采用智能算法和机器学习等技术,帮助企业更好地掌握数据,并从中挖掘出有用的信息。
大数据时代的数据挖掘与商务智能(一)
国家(省、市)统计局( ) 8
国家统计局推进“大数据”应用
合作框架 协议,共同推进大数据在政府统计中的应用。
战略合作内容,主要是共同研究探讨建立大数 据应用的统计标准,包括指标定义、口径、范 围、分类等;确定利用企业数据完善、补充政 府统计数据的内容、形式及实施步骤,包括数 据采集、处理、分析、挖掘、发布等。在此基 础上,合作双方将建立战略合作关系。
29
产业界与学术界的关注
20世纪大萧条以来,美国作 为世界强国的开放历史,数 据技术浪潮的兴起过程,气 势磅礴,波澜壮阔。美国政 府为什么能,中国到底缺什 么? “大数据”之“大”,并不 仅仅在于“容量之大”,更 大的意义在于:通过对海量 数据的交换、整合和分析, 发现新的知识,创造新的价 值,带来“大知识”、“大 科技”、“大利润”和“大 发展”。 30
第十、“大数据”推动了对数据处理算法的需求, 提出对数据安全和访问控制的重视,并可有效降低 对现有系统的影响。
14
无所不在的数据(3)
在超市中,数据通过条码扫描机获得。这样的“购 物蓝”数据库由大量的交易记录组成。 15 RFID技术与物联网应用
什么是物联网?
感知
传输
智能
全面感知
利用RFID、传感器、二维码等 能够随时随地采集物体的动态 信息。
27
产业界与学术界的关注
麦肯锡咨询公司“大数据”研究报告 “Big data: The next frontier for innovation, competition, and productivity” —McKinsey Global Institute, May 2011. 高德纳(Gartn大数据与北斗系统
把短信和导航结合,是中国北斗卫星导航系统的 独特发明。 北斗卫星导航系统的应用目前逐渐形成规模化、 标准化的趋势,已向民用用户全面开放,成功应 用于个人位置服务、气象应用、交通管理、运输 管理、应急救援、精密授时、精细农业等多个行 业。 近期,东南亚四国(泰国、老挝、文莱缅甸)都 于中国政府签订协议,采用我国的北斗导航系统 ,同时中国与巴基斯坦有望在近期签订北斗系统 合作协议,成为第五个使用北斗导航的国家。
大数据与商务智能的关系及未来发展趋势
大数据与商务智能的关系及未来发展趋势一、大数据和商务智能的概念大数据是指数据规模超过传统数据处理能力的数据集合。
在互联网时代,大数据已成为社交网络、商业交易、物联网、数字娱乐等方方面面的数据源泉,它们的增长速度和分散程度越来越高,数量巨大、异构性强、存储扩展性差、处理能力弱等问题也逐步浮出水面。
商务智能(BI)是指通过数据仓库、数据挖掘等技术,通过对海量数据的收集、整理、分析和建模,帮助商业机构预测市场需求、调整战略、优化经营,提高商业活动的效率和效益。
二、大数据和商务智能的关系大数据和商务智能之间存在着密不可分的联系。
商务智能需要大数据为支撑,而大数据的应用则离不开商务智能的帮助。
1. 商务智能对于大数据的应用商务智能通过数据分析和可视化技术,帮助企业将已有数据转化为商业智务,做出更为明智的决策。
通过建立数据挖掘模型,商业智能可以提供跨部门的数据分析,将数据转化为实际业务价值和竞争优势。
2. 大数据对于商务智能的提升商务智能需要大量的数据才能进行深度分析和预测,而大数据则可以提供更为丰富和真实的数据源,为商业智能提供更为深入和准确的分析。
同时,大数据还可以通过机器学习等技术实现自动化的数据处理,从而减少人力成本。
三、大数据和商务智能的未来发展趋势1. 大数据和商务智能逐步融合大数据和商务智能之间的界限逐渐模糊,两者正在向着更为深入、广泛、自动化、智能化等方向发展。
在这个过程中,企业需要不断地趋于数据的完整性和一致性,将数据从临时的、不可靠的状态转化为可持续的、可靠的状态。
2. 大数据和商务智能的结合大数据和商务智能的结合将会被推崇为越来越重要的趋势。
商务智能需要大数据的支撑,大数据的跨系统、跨组织、跨行业的积累和共享,必然会促进商业竞争的更多领域的可行性。
3. 商务智能和大数据的岗位化商业智能和大数据的技术人员,需要投资大量的时间和精力来学习不同的技术和工具,同时还需要充分了解企业的领域知识和业务需求,从而提供更为专业化、个性化的解决方案。
大数据时代的商务分析与挖掘
大数据时代的商务分析与挖掘随着互联网技术的快速发展,各种数据不断地涌入我们的生活中。
这些数据是随着我们的生产、消费等各方面的活动而不断积累起来的,难以直接消化和利用。
然而,随着大数据时代的到来,人工智能和机器学习等高级算法的不断发展,商务分析和挖掘已经成为了当前数据领域研究的热点和重点之一。
商务分析是指对企业内部或外部的各种数据进行深入研究和分析,了解数据背后的规律和本质,为企业的发展提供有效的指导和决策支持。
商务挖掘则是在数据分析的基础上,利用技术手段去发掘数据背后的深层次信息,为企业提供更为准确、更高效的决策支持。
在大数据时代,商务分析和挖掘越来越受到了企业的重视和追捧。
商务分析和挖掘的主要工具是数据处理和分析技术。
在商务分析中,主要采用数据仓库、数据挖掘、数据可视化等技术,对企业的各个领域进行深入分析,从而为企业管理者提供有效的决策支持。
而在商务挖掘中,则需要利用更先进的机器学习算法、文本挖掘技术等手段,从数据中发掘出更为深层次的信息和价值。
商务分析和挖掘的目标都是要帮助企业发现商机、提升效率、减轻风险。
商务分析和挖掘在使用上也各有特点。
商务分析更多地依赖于数据的有形性和结构性,是在已知的数据前提下对企业内部、外部数据进行分析,从而揭示数据规律和特性,为企业的发展提供更加有效可靠的指导。
而商务挖掘则更加关注数据的隐含性和非结构性,需要通过机器学习、自然语言处理等技术去挖掘并提取其中的信息和价值。
在挖掘商务领域的价值时,商务分析和挖掘可以应用于各种领域。
例如,在市场营销领域,利用商务分析和挖掘技术可以对目标市场进行精细化分析,了解客户的需求和反应,进而创新性地设计和推出产品。
在生产和供应链领域,商务分析和挖掘可以帮助企业提高生产效率、管理流程、优化供应链操作等。
此外,商务分析和挖掘还可应用于金融、医疗、教育、科学研究等领域。
然而,要实现商务分析和挖掘带来的价值,需要解决一系列技术和人才方面的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大数据现象
An Everest Sized Opportunity!
26
数据存储单位及换算关系
容量单位:从K到Y
K—M—G—T—P—E—Z—Y
K Kilo 1K字节 = 1, 024字节 M Meg 1M字节= 1, 048, 576字节 G Giga 1G字节 = 1, 073, 741, 824字节 T Tera 1T字节 = 1, 099, 511, 627, 776字节 P Peta 1P 字节= 1, 125, 899, 906, 842, 624字节 E Exa 1E字节 = 1, 152, 921, 504, 606, 846, 976字节 Z Zetta 1Z字节 = 1, 180, 591, 620, 717, 411, 303, 424字节 Y Yotta 1Y字节 = 1208, 925, 819, 614, 629, 174, 706, 176字节
28
产业界与学术界的关注
Data are becoming the new raw material of business: an economic input almost on a par with capital and labor. 数据正逐渐变成商业所需的原材料之一:一 项几乎和资本或劳力一样重要的经济原料。 (Feb. 27th, 2010)
11
金融业大数据十大趋势
第一、市场数据集变得越来越庞大,业务对数据的 细分粒度要求越来越高,以满足预测模型、业务预 测和交易影响评估的需求。
第二、新的监管和合规要求更强调治理和风险汇报 ,推动了全球性金融机构对更深入和透明的数据分 析需求。
第三、金融机构不断完善自身的企业风险管理框架 ,该基于主数据管理策略开发的框架可协助企业提 高风险透明度,加强风险的可审性和管理力度。
13
第八、大量历史客户支付行为数据的信用风险预测 模型正在零售与公司贷款催收中得到大量应用,通 过该技术,银行可以通过对不同客户违约和还款资 料进行分析,对催收次序进行优化。 第九、随着以平板电脑和和智能手机为代表的移动 应用和互联网工具的迅速普及,技术基础设施和网 络在对不同来源、不同标准数据进行处理、编索和 整合方面的压力不断增大。
2
在大数据时代,我们共同探讨数据分析与数 据挖掘的思想、方法和应用前景。 尽量向大家介绍数据分析与数据挖掘的全貌, 给一些资料性的信息。 由于数据分析与数据挖掘涉及的方法广泛, 软件、工具、公司太多,应用太广,此次以 介绍方法为主。
3
大
纲
大数据的时代背景
商务智能与数据科学 基于统计的传统数据分析技术
国家(省、市)统计局( ) 8
国家统计局推进“大数据”应用
合作框架 协议,共同推进大数据在政府统计中的应用。
战略合作内容,主要是共同研究探讨建立大数 据应用的统计标准,包括指标定义、口径、范 围、分类等;确定利用企业数据完善、补充政 府统计数据的内容、形式及实施步骤,包括数 据采集、处理、分析、挖掘、发布等。在此基 础上,合作双方将建立战略合作关系。
第十、“大数据”推动了对数据处理算法的需求, 提出对数据安全和访问控制的重视,并可有效降低 对现有系统的影响。
14
无所不在的数据(3)
在超市中,数据通过条码扫描机获得。这样的“购 物蓝”数据库由大量的交易记录组成。 15 RFID技术与物联网应用
什么是物联网?
感知
传输
智能
全面感知
利用RFID、传感器、二维码等 能够随时随地采集物体的动态 信息。
17
无所不在的数据(4)
全球四大卫星导航系统 北斗卫星导航系统 美国的GPS 俄罗斯的格洛纳斯 欧盟的伽利略系统
到2020年,北斗卫星导航系统将拥有35颗卫星(已发射16颗), 形成覆盖全球的卫星网络,九省示范应用,LBS。
18
北斗“三步走”的发展战略
GEO(Geosynchronous Eearth Orbit):地球静止轨道卫星 IGSO(Inclined Geosynchronous Satellite Orbit): 倾斜轨道同步卫星 MEO(Medium Earth Orbit):中高轨卫星
无所不在的数据(6)
23
网络大数据
网络数据即使不是最原始的大数据源, 也是使用最广泛、认可度最高的大数据 源。网络数据是指用户浏览万维网所产 生的日志信息,是等待分析和挖掘的信 息宝库。 横跨于大量不同行业中的企业组织已经 把那些来自于网站的详细而又处于客户 层面的行为数据源整合入它们自身的企 业数据分析环境中。
29
产业界与学术界的关注
20世纪大萧条以来,美国作 为世界强国的开放历史,数 据技术浪潮的兴起过程,气 势磅礴,波澜壮阔。美国政 府为什么能,中国到底缺什 么? “大数据”之“大”,并不 仅仅在于“容量之大”,更 大的意义在于:通过对海量 数据的交换、整合和分析, 发现新的知识,创造新的价 值,带来“大知识”、“大 科技”、“大利润”和“大 发展”。 30
数据管理与数据挖掘概论
数据挖掘与知识发现技术 典型应用及案例分析
4
第一部分
大数据的时代背景
5
大数据的时代背景
从数据谈起
大数据现象与新信息世界观 产业界与学术界的关注 “大数据”对社会发展的影响
6
“大数据”的时代背景
从数据谈起
数据无所不在
7
无所不在的数据(1)
• •
70万家企业联网“直报” 统计数据 从2012年2月18日开始, 全国70万家"三上"企业和 房地产开发经营企业将 在统一的数据采集和处 理平台上,通过互联网 直接向国家数据中心或 国家认定的省级数据中 心报送统计数据。
2012-6
新信息世界观:物理世界、信息世界、 人类社会组成三元世界
大数据
34
共生智能系统中的数据、信息与知识管理
共生智能系统: 综合集成 组织与社群:人类集体智能 ——决策与问题求解
数据、信息、 知识流转 扩展的计算机网络系统: 人工智能——数据加工 平台 共同解决现实的复杂问题 可感知的环境与物品: 周遭智能(AmI)—— 感知与执行终端
“大数据”对社会发展的影响
科学研究
第四种范式
公共管理
智慧城市
工业生产与商业经营
大数据产业链与商务智能
36
第四种范式
可靠传输
通过网络将感知的各种 信息进行实时传送。
智能处理
利用计算机技术,及时地对海量的 数据进行信息控制,真正达到了 人与物的沟通、物与物的沟通。
物联网的大数据挑战
物联网不仅仅是传感器,物联网是提供支 撑智慧地球的一个基础架构,物联网的存 在使这种基于大数据的采集以及分析变成 了一种可能,这面临着三项挑战。 物联网的边缘计算。 物联网的中间件。 物联网的运营管理平台。
31
产业界与学术界的关注
本书主要介绍了如何驾驭大数 据浪潮,并详细地介绍了什么 是大数据,大数据为什么重要 ,以及如何应用大数据。
2013-1
本书还从具体实用的角度,介 绍了用于分析和操作大数据的 工具、技术和方法;以及人才 和企业文化的角度,介绍了如 何使分析专家、分析团队以及 所需的分析原则更加高效,如 何通过分析创新中心使得分析 更加有创造力,以及如何改变 分析文化。 32
2012-7
产业界与学术界的关注
大数据是人们获得新的认知 ,创造新的价值的源泉;大 数据还是改变市场、组织机 构,以及政府与公民关系的 方法。 大数据的核心就是预测。三 个转变。 更多:不是随机样本,:不是因果关系,而 是相关关系 2013-1
9
无所不在的数据(2)
低频数据:日数据 高频数据:金融市场 中的逐笔交易数据和 逐秒交易数据。 超高频数据:实时数 据
金融数据(/)
10
金融大数据的挑战与应对
在以网络化和数字化为基本特征的新经 济时代,金融产业日渐回归本质,表现 为金融数据流的产生、交换、存储、分 析以及使用。 大数据对金融业带来了剧烈的挑战冲击 ,我国金融机构需要明确大数据战略的 顶层设计,加强大数据基础设施建设, 实施稳妥的大数据安全策略,方能从容 迎接大数据时代。
19
大数据与北斗系统
把短信和导航结合,是中国北斗卫星导航系统的 独特发明。 北斗卫星导航系统的应用目前逐渐形成规模化、 标准化的趋势,已向民用用户全面开放,成功应 用于个人位置服务、气象应用、交通管理、运输 管理、应急救援、精密授时、精细农业等多个行 业。 近期,东南亚四国(泰国、老挝、文莱缅甸)都 于中国政府签订协议,采用我国的北斗导航系统 ,同时中国与巴基斯坦有望在近期签订北斗系统 合作协议,成为第五个使用北斗导航的国家。
大数据时代的数据挖掘 与商务智能
1
数据是宝贵的财富,其中蕴含大量有用 的(有助于管理和决策)信息和知识。 计算机和通讯技术的发展,使数据量急 剧增加,人类进入大数据时代。收集、 传输、存储、整合、分析与挖掘数据的 各项技术快速发展。
大数据时代,数据分析与数据挖掘作为 一门信息技术,其兴起主要是受数据积 累的增长和对数据分析的需求的驱动。
12
第四、金融服务公司都希望能充分利用各种服务交 付渠道的海量客户数据,开发新的预测分析模型, 实现对客户消费行为模式进行分析,提高客户转化 率。 第五、在巴西、中国和印度等后发展中市场,经济 和业务增长机会正在超越欧洲和美国,大量投资被 投放到本地和云数据处理基础设施中。 第六、“大数据”在存储和处理框架两方面的优势 将帮助金融服务企业充分掌握业务数据的价值,降 低业务成本并发掘新的套利机会。 第七、面对“大数据”所带来的不断增加的数据量 要求,需要对传统的数据传输工具ETL(提取、转换 和加载)流程进行重新设计。