云南省中考数学试卷及答案解析(word版)

合集下载

2024年云南省中考数学参考试卷+答案解析

2024年云南省中考数学参考试卷+答案解析

2024年云南省中考数学参考试卷一、选择题:本题共15小题,每小题2分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零下记作,则零上可记作()A. B. C. D.2.能源产业已成为云南省第一大支柱产业,目前正在推进的3000000千瓦光伏项目,将带动光伏、储能绿色能源装备的发展用科学记数法可以表示为()A. B. C. D.3.如图,直线c与直线a,b都相交.若,,则()A. B. C. D.4.反比例函数的图象位于()A.第一、三象限B.第二、四象限C.第一、四象限D.第二、三象限5.下列计算正确的是()A. B. C. D.6.如图,在中,D,E分别为AB,AC上的点.若,,则()A.B.C.D.7.下列图形是某几何体的三视图其中主视图也称正视图,左视图也称侧视图,则这个几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥8.以下是一组按规律排列的多项式:,,,,,…,其中第n个多项式是()A. B. C. D.9.某中学为丰富学生的校园体育锻炼,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用.因此学校数学兴趣小组随机抽取了该校100名同学就体育兴趣爱好情况进行调查,将收集的数据整理并绘制成下列统计图:若该校共有学生1200人,则该校喜欢跳绳的学生大约有()A.280人B.240人C.170人D.120人10.如图,BC是的直径,A是上的点.若,则()A.B.C.D.11.某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,则下面所列方程正确的是()A. B. C. D.12.中华文明,源远流长;中华汉字,寓意深广.下列四个选项中,是轴对称图形的为()A. B. C. D.13.如图,计划在一块等边三角形的空地上种植花卉,以美化环境.若米,则这个等边三角形的面积为()A.平方米B.平方米C.平方米D.平方米14.函数中,自变量x的取值范围是()A. B. C. D.15.估计的运算结果应在()A.6到7之间B.7到8之间C.8到9之间D.9到10之间二、填空题:本题共4小题,每小题2分,共8分。

云南省中考数学试卷含答案解析版

云南省中考数学试卷含答案解析版

2017年云南省中考数学试卷一、填空题(本大题共6个小题,每题3分,共18分)1.(3分)2的相反数是 .2.(3分)已知关于x 的方程2x+a+5=0的解是x=1,则a 的值为 .3.(3分)如图,在△ABC 中,D 、E 分别为AB 、AC 上的点,若DE ∥BC ,AA AA =13,则AA +AA +AAAA +AA +AA = .4.(3分)使√9−A 有意义的x 的取值范围为 .5.(3分)如图,边长为4的正方形ABCD 外切于⊙O ,切点分别为E 、F 、G 、H .则图中阴影部分的面积为 .6.(3分)已知点A (a ,b )在双曲线y=5A 上,若a 、b 都是正整数,则图象经过B(a,0)、C(0,b)两点的一次函数的解析式(也称关系式)为.二、选择题(本大题共8个小题,每小题只有一个正确答案,每小题4分,共32分)7.(4分)作为世界文化遗产的长城,其总长大约为6700000m.将6700000用科学记数法表示为()A.×105B.×106C.×107D.67×1088.(4分)下面长方体的主视图(主视图也称正视图)是()A.B.C.D.9.(4分)下列计算正确的是()A.2a×3a=5a B.(﹣2a)3=﹣6a3C.6a÷2a=3a D.(﹣a3)2=a610.(4分)已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形11.(4分)sin60°的值为()A.√3B.√32C.√22D.1212.(4分)下列说法正确的是()A.要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样调查的方法B.4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为100C.甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为和D.某次抽奖活动中,中奖的概率为150表示每抽奖50次就有一次中奖13.(4分)正如我们小学学过的圆锥体积公式V=13πr2h(π表示圆周率,r表示圆锥的地面半径,h表示圆锥的高)一样,许多几何量的计算都要用到π.祖冲之是世界上第一个把π计算到小数点后7位的中国古代科学家,创造了当时世界上的最高水平,差不多过了1000年,才有人把π计算得更精确.在辉煌成就的背后,我们来看看祖冲之付出了多少.现在的研究表明,仅仅就计算来讲,他至少要对9位数字反复进行130次以上的各种运算,包括开方在内.即使今天我们用纸笔来算,也绝不是一件轻松的事情,何况那时候没有现在的纸笔,数学计算不是用现在的阿拉伯数字,而是用算筹(小竹棍或小竹片)进行的,这需要怎样的细心和毅力啊!他这种严谨治学的态度,不怕复杂计算的毅力,值得我们学习.下面我们就来通过计算解决问题:已知圆锥的侧面展开图是个半圆,若该圆锥的体积等于9√3π,则这个圆锥的高等于()A.5√3A B.5√3C.3√3A D.3√314.(4分)如图,B、C是⊙A上的两点,AB的垂直平分线与⊙A交于E、F两点,与线段AC交于D点.若∠BFC=20°,则∠DBC=()A.30°B.29°C.28°D.20°三、解答题(共9个小题,满分70分)15.(6分)如图,点E、C在线段BF上,BE=CF,AB=DE,AC=DF.求证:∠ABC=∠DEF.16.(6分)观察下列各个等式的规律:第一个等式:22−12−12=1,第二个等式:32−22−12=2,第三个等式:42−32−12=3…请用上述等式反映出的规律解决下列问题:(1)直接写出第四个等式;(2)猜想第n 个等式(用n 的代数式表示),并证明你猜想的等式是正确的.17.(8分)某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?18.(6分)某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.19.(7分)在一个不透明的盒子中,装有3个分别写有数字6,﹣2,7的小球,他们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出所有可能出现的结果;(2)求两次取出的小球上的数字相同的概率P.20.(8分)如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF 的面积S.21.(8分)已知二次函数y=﹣2x2+bx+c图象的顶点坐标为(3,8),该二次函数图象的对称轴与x轴的交点为A,M是这个二次函数图象上的点,O 是原点.(1)不等式b+2c+8≥0是否成立?请说明理由;(2)设S是△AMO的面积,求满足S=9的所有点M的坐标.22.(9分)在学习贯彻习近平总书记关于生态文明建设系列重要讲话精神,牢固树立“绿水青山就是金山银山”理念,把生态文明建设融入经济建设、政治建设、文化建设、社会建设各个方面和全过程,建设美丽中国的活动中,某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A、B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A30人/辆380元/辆B20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数.(1)设租用A型号客车x辆,租车总费用为y元,求y与x的函数解析式(也称关系式),请直接写出x的取值范围;(2)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案最省钱?23.(12分)已知AB是⊙O的直径,PB是⊙O的切线,C是⊙O上的点,AC∥OP,M是直径AB上的动点,A与直线CM上的点连线距离的最小值为d,B与直线CM上的点连线距离的最小值为f.(1)求证:PC是⊙O的切线;(2)设OP=32AC,求∠CPO的正弦值;(3)设AC=9,AB=15,求d+f的取值范围.2017年云南省中考数学试卷参考答案与试题解析一、填空题(本大题共6个小题,每题3分,共18分)1.(3分)(2017?云南)2的相反数是﹣2 .【考点】14:相反数.【分析】根据相反数的定义可知.【解答】解:﹣2的相反数是2.【点评】主要考查相反数的定义:只有符号相反的两个数互为相反数.0的相反数是其本身.2.(3分)(2017?云南)已知关于x的方程2x+a+5=0的解是x=1,则a的值为﹣7 .【考点】85:一元一次方程的解.【分析】把x=1代入方程计算即可求出a的值.【解答】解:把x=1代入方程得:2+a+5=0,解得:a=﹣7,故答案为:﹣7.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.(3分)(2017?云南)如图,在△ABC 中,D 、E 分别为AB 、AC 上的点,若DE ∥BC ,AA AA =13,则AA +AA +AA AA +AA +AA = 13 .【考点】S9:相似三角形的判定与性质.【分析】直接利用相似三角形的判定方法得出△ADE ∽△ABC ,再利用相似三角形的周长比等于相似比进而得出答案.【解答】解:∵DE ∥BC ,∴△ADE ∽△ABC ,∴AA AA =AA +AA +AA AA +AA +AA =13. 故答案为:13.【点评】此题主要考查了相似三角形的判定与性质,正确得出相似三角形是解题关键.4.(3分)(2017?云南)使√9−A有意义的x的取值范围为x≤9 .【考点】72:二次根式有意义的条件.【分析】二次根式的被开方数是非负数,即9﹣x≥0.【解答】解:依题意得:9﹣x≥0.解得x≤9.故答案是:x≤9.【点评】考查了二次根式的意义和性质.概念:式子√A(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.5.(3分)(2017?云南)如图,边长为4的正方形ABCD外切于⊙O,切点分别为E、F、G、H.则图中阴影部分的面积为2π+4 .【考点】MC:切线的性质;LE:正方形的性质;MO:扇形面积的计算.【分析】连接HO,延长HO交CD于点P,证四边形AHPD为矩形知HF为⊙O的直径,同理得EG为⊙O的直径,再证四边形BGOH、四边形OGCF、四边形OFDE、四边形OEAH均为正方形得出圆的半径及△HGF为等腰直角三角形,根据阴影部分面积=12S⊙O+S△HGF可得答案.【解答】解:如图,连接HO,延长HO交CD于点P,∵正方形ABCD外切于⊙O,∴∠A=∠D=∠AHP=90°,∴四边形AHPD为矩形,∴∠OPD=90°,又∠OFD=90°,∴点P于点F重合,则HF为⊙O的直径,同理EG为⊙O的直径,由∠B=∠OGB=∠OHB=90°且OH=OG知,四边形BGOH为正方形,同理四边形OGCF、四边形OFDE、四边形OEAH均为正方形,∴BH=BG=GC=CF=2,∠HGO=∠FGO=45°,∴∠HGF=90°,GH=GF=√AA2+AA2=2√2则阴影部分面积=12S⊙O+S△HGF=12?π?22+12×2√2×2√2=2π+4,故答案为:2π+4.【点评】本题主要考查切线的性质及扇形面积的计算,熟练掌握切线的性质、矩形的判定得出圆的半径是解题的关键.6.(3分)(2017?云南)已知点A(a,b)在双曲线y=5A上,若a、b都是正整数,则图象经过B(a,0)、C(0,b)两点的一次函数的解析式(也称关系式)为y=﹣5x+5或y=﹣15x+1 .【考点】G6:反比例函数图象上点的坐标特征.【分析】先根据反比例函数图象上点的坐标特征得出ab=5,由a、b都是正整数,得到a=1,b=5或a=5,b=1.再分两种情况进行讨论:当a=1,b=5;②a=5,b=1,利用待定系数法即可求解.【解答】解:∵点A (a ,b )在双曲线y=5A 上, ∴ab=5,∵a 、b 都是正整数,∴a=1,b=5或a=5,b=1.设经过B (a ,0)、C (0,b )两点的一次函数的解析式为y=mx+n . ①当a=1,b=5时,由题意,得{A +A =0A =5,解得{A =−5A =5, ∴y=﹣5x+5;②当a=5,b=1时,由题意,得{5A +A =0A =1,解得{A =−15A =1, ∴y=﹣15x+1.则所求解析式为y=﹣5x+5或y=﹣15x+1. 故答案为y=﹣5x+5或y=﹣15x+1. 【点评】本题考查了反比例函数图象上点的坐标特征,待定系数法求一次函数的解析式.正确求出a、b的值是解题的关键.二、选择题(本大题共8个小题,每小题只有一个正确答案,每小题4分,共32分)7.(4分)(2017?云南)作为世界文化遗产的长城,其总长大约为6700000m.将6700000用科学记数法表示为()A.×105B.×106C.×107D.67×108【考点】1I:科学记数法—表示较大的数.【专题】17 :推理填空题.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:6700000=×106.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.8.(4分)(2017?云南)下面长方体的主视图(主视图也称正视图)是()A.B.C.D.【考点】U1:简单几何体的三视图.【分析】根据正视图是从物体正面看到的平面图形,据此选择正确答案.【解答】解:长方体的主视图(主视图也称正视图)是故选C.【点评】本题主要考查了长方体的三视图,解题的关键是掌握正视图的含义,此题基础题.9.(4分)(2017?云南)下列计算正确的是()A.2a×3a=5a B.(﹣2a)3=﹣6a3C.6a÷2a=3a D.(﹣a3)2=a6【考点】4I:整式的混合运算.【分析】根据整式的混合运算即可求出答案.【解答】解:(A)原式=6a2,故A错误;(B)原式=﹣8a3,故B错误;(C)原式=3,故C错误;故选(D)【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.10.(4分)(2017?云南)已知一个多边形的内角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【考点】L3:多边形内角与外角.【专题】11 :计算题.【分析】设这个多边形是n边形,内角和是(n﹣2)?180°,这样就得到一个关于n的方程组,从而求出边数n的值.【解答】解:设这个多边形是n边形,则(n﹣2)?180°=900°,解得:n=7,即这个多边形为七边形.故本题选C.【点评】根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.11.(4分)(2017?云南)sin60°的值为()A.√3B.√32C.√22D.12【考点】T5:特殊角的三角函数值.【分析】直接根据特殊角的三角函数值进行计算即可.【解答】解:sin60°=√3 2.故选B.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.12.(4分)(2017?云南)下列说法正确的是()A.要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样调查的方法B.4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为100C.甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为和D.某次抽奖活动中,中奖的概率为150表示每抽奖50次就有一次中奖【考点】X3:概率的意义;V2:全面调查与抽样调查;W1:算术平均数;W4:中位数;W7:方差.【分析】分别根据全面调查与抽样调查的意义、中位数的定义、方差的定义及概率的意义对各选项进行逐一判断即可.【解答】解:A、∵要了解灯泡的使用寿命破坏性极大,∴只能采用抽样调查的方法,故本选项正确;B、∵4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为,故本选项错误;C、甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差不能确定,故本选项错误;D、某次抽奖活动中,中奖的概率为150表示每抽奖50次可能有一次中奖,故本选项错误.故选A.【点评】本题考查的是概率的意义,熟知全面调查与抽样调查的意义、中位数的定义、方差的定义及概率的意义是解答此题的关键.13.(4分)(2017?云南)正如我们小学学过的圆锥体积公式V=13πr2h(π表示圆周率,r表示圆锥的地面半径,h表示圆锥的高)一样,许多几何量的计算都要用到π.祖冲之是世界上第一个把π计算到小数点后7位的中国古代科学家,创造了当时世界上的最高水平,差不多过了1000年,才有人把π计算得更精确.在辉煌成就的背后,我们来看看祖冲之付出了多少.现在的研究表明,仅仅就计算来讲,他至少要对9位数字反复进行130次以上的各种运算,包括开方在内.即使今天我们用纸笔来算,也绝不是一件轻松的事情,何况那时候没有现在的纸笔,数学计算不是用现在的阿拉伯数字,而是用算筹(小竹棍或小竹片)进行的,这需要怎样的细心和毅力啊!他这种严谨治学的态度,不怕复杂计算的毅力,值得我们学习.下面我们就来通过计算解决问题:已知圆锥的侧面展开图是个半圆,若该圆锥的体积等于9√3)A.5√3A B.5√3C.3√3A D.3√3【考点】MP:圆锥的计算.【分析】设母线长为R,底面圆半径为r,根据弧长公式、扇形面积公式以及圆锥体积公式即可求出圆锥的高【解答】解:设母线长为R,底面圆半径为r,圆锥的高为h,由于圆锥的侧面展开图是个半圆∴侧面展开图的弧长为:180AA180=πR,∵底面圆的周长为:2πr,∴πR=2πr,∴R=2r,∴由勾股定理可知:h=√3r,∵圆锥的体积等于9√3π∴9√3π=13πr2h,∴r=3,∴h=3√3故选(D)【点评】本题考查圆锥的计算,解题的关键是熟练运用圆锥的计算公式,本题属于基础中等题型.14.(4分)(2017?云南)如图,B、C是⊙A上的两点,AB的垂直平分线与⊙A交于E、F两点,与线段AC交于D点.若∠BFC=20°,则∠DBC=()A.30°B.29°C.28°D.20°【考点】M5:圆周角定理;KG:线段垂直平分线的性质.【分析】利用圆周角定理得到∠BAC=40°,根据线段垂直平分线的性质推知AD=BD,然后结合等腰三角形的性质来求∠ABD、∠ABC的度数,从而得到∠DBC.【解答】解:∵∠BFC=20°,∴∠BAC=2∠BFC=40°,∵AB=AC,∴∠ABC=∠ACB=180°−40°2=70°.又EF是线段AB的垂直平分线,∴AD=BD,∴∠A=∠ABD=40°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.故选:A.【点评】本题考查了圆周角定理,线段垂直平分线的性质.注意掌握数形结合思想的应用.三、解答题(共9个小题,满分70分)15.(6分)(2017?云南)如图,点E、C在线段BF上,BE=CF,AB=DE,AC=DF.求证:∠ABC=∠DEF.【考点】KD:全等三角形的判定与性质.【分析】先证明△ABC≌△DEF,然后利用全等三角形的性质即可求出∠ABC=∠DEF .【解答】解:∵BE=CF ,∴BE+EC=CF+EC ,∴BC=EF ,在△ABC 与△DEF 中,{AA =AA AA =AA AA =AA∴△ABC ≌△DEF (SSS )∴∠ABC=∠DEF【点评】本题考查全等三角形的判定与性质,解题的关键是熟练运用全等三角形的判定,本题属于基础题型.16.(6分)(2017?云南)观察下列各个等式的规律:第一个等式:22−12−12=1,第二个等式:32−22−12=2,第三个等式:42−32−12=3…请用上述等式反映出的规律解决下列问题:(1)直接写出第四个等式;(2)猜想第n 个等式(用n 的代数式表示),并证明你猜想的等式是正确的.【考点】37:规律型:数字的变化类.【分析】(1)根据题目中的式子的变化规律可以写出第四个等式;(2)根据题目中的式子的变化规律可以猜想出第n等式并加以证明.【解答】解:(1)由题目中式子的变化规律可得,第四个等式是:52−42−12=4;(2)第n个等式是:(A+1)2−A2−12=A,证明:∵(A+1)2−A2−12=[(A+1)+A][(A+1)−A]−12=2A+1−12=2A 2=n,∴第n个等式是:(A+1)2−A2−12=A.【点评】本题考查规律型:数字的变化类,解答本题的关键是明确题目中式子的变化规律,求出相应的式子.17.(8分)(2017?云南)某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据百分比=所占人数总人数计算即可解决问题,求出八年级、九年级、被抽到的志愿者人数画出条形图即可;(2)用样本估计总体的思想,即可解决问题;【解答】解:(1)由题意总人数=20÷40%=50人,八年级被抽到的志愿者:50×30%=15人九年级被抽到的志愿者:50×20%=10人,条形图如图所示:(2)该校共有志愿者600人,则该校九年级大约有600×20%=120人,答:该校九年级大约有120名志愿者【点评】本题考查条形图、扇形统计图、样本估计总体等知识,解题的关键是掌握基本概念,熟练应用所学知识解决问题.18.(6分)(2017?云南)某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【专题】12 :应用题.【分析】(1)首先根据题意,设该商店第一次购进水果x 千克,则第二次购进水果2x 千克,然后根据:(1000第一次购进水果的重量+2)×第二次购进的水果的重量=2400,列出方程,求出该商店第一次购进水果多少千克即可.(2)首先根据题意,设每千克水果的标价是x 元,然后根据:(两次购进的水果的重量﹣20)×x+20×≥两次购进水果需要的钱数+950,列出不等式,求出每千克水果的标价是多少即可.【解答】解:(1)设该商店第一次购进水果x 千克,则第二次购进水果2x 千克,(1000A +2)×2x=2400整理,可得:2000+4x=2400解得x=100经检验,x=100是原方程的解答:该商店第一次购进水果100千克.(2)设每千克水果的标价是x元,则(100+100×2﹣20)×x+20×≥1000+2400+950整理,可得:290x≥4350解得x≥15∴每千克水果的标价至少是15元.答:每千克水果的标价至少是15元.【点评】此题主要考查了分式方程的应用,以及一元一次不等式的应用,要熟练掌握,注意建立不等式要善于从“关键词”中挖掘其内涵.19.(7分)(2017?云南)在一个不透明的盒子中,装有3个分别写有数字6,﹣2,7的小球,他们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出所有可能出现的结果;(2)求两次取出的小球上的数字相同的概率P.【考点】X6:列表法与树状图法.【分析】(1)根据题意先画出树状图,得出所有可能出现的结果数;(2)根据(1)可得共有9种情况,两次取出小球上的数字相同有3种:(6,6)、(﹣2,﹣2)、(7,7),再根据概率公式即可得出答案.【解答】解:(1)根据题意画图如下:所有可能出现的结果共有9种;(2)∵共有9种情况,两次取出小球上的数字相同的有3种情况,∴两次取出小球上的数字相同的概率为39=13.【点评】此题可以采用列表法或者采用树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树状图法适用于两步或两步以上完成的事件.解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.20.(8分)(2017?云南)如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF 的面积S.【考点】LA:菱形的判定与性质;KH:等腰三角形的性质.【分析】(1)先根据直角三角形斜边上中线的性质,得出DE=12AB=AE,DF=12AC=AF,再根据AB=AC,点E、F分别是AB、AC的中点,即可得到AE=AF=DE=DF,进而判定四边形AEDF是菱形;(2)设EF=x,AD=y,则x+y=7,进而得到x2+2xy+y2=49,再根据Rt△AOE中,AO2+EO2=AE2,得到x2+y2=36,据此可得xy=132,进而得到菱形AEDF的面积S.【解答】解:(1)∵AD⊥BC,点E、F分别是AB、AC的中点,∴Rt△ABD中,DE=12AB=AE,Rt△ACD中,DF=12AC=AF,又∵AB=AC,点E、F分别是AB、AC的中点,∴AE=AF,∴AE=AF=DE=DF,∴四边形AEDF是菱形;(2)如图,∵菱形AEDF的周长为12,∴AE=3,设EF=x,AD=y,则x+y=7,∴x2+2xy+y2=49,①∵AD⊥EF于O,∴Rt△AOE中,AO2+EO2=AE2,∴(12y)2+(12x)2=32,即x2+y2=36,②把②代入①,可得2xy=13,∴xy=132,∴菱形AEDF的面积S=12xy=134.【点评】本题主要考查了菱形的判定与性质的运用,解题时注意:四条边相等的四边形是菱形;菱形的面积等于对角线长乘积的一半.21.(8分)(2017?云南)已知二次函数y=﹣2x2+bx+c图象的顶点坐标为(3,8),该二次函数图象的对称轴与x轴的交点为A,M是这个二次函数图象上的点,O是原点.(1)不等式b+2c+8≥0是否成立?请说明理由;(2)设S是△AMO的面积,求满足S=9的所有点M的坐标.【考点】HA:抛物线与x轴的交点;H4:二次函数图象与系数的关系.【分析】(1)由题意可知抛物线的解析式为y=﹣2(x﹣3)2+8,由此求出b、c即可解决问题.(2)设M(m,n),由题意12?3?|n|=9,可得n=±6,分两种情形列出方程求出m的值即可;【解答】解:(1)由题意抛物线的顶点坐标(3,8),∴抛物线的解析式为y=﹣2(x﹣3)2+8=﹣2x2+12x﹣10,∴b=12,c=﹣10,∴b+2c+8=12﹣20+8=0,∴不等式b+2c+8≥0成立.(2)设M(m,n),由题意12?3?|n|=9,∴n=±6,①当n=6时,6=﹣2m2+12m﹣10,解得m=2或4,②当n=﹣6时,﹣6=﹣2m2+12m﹣10,解得m=3±√7,∴满足条件的点M的坐标为(2,6)或(4,6)或(3+√7,﹣6)或(3﹣√7,﹣6).【点评】本题考查抛物线与x轴的交点、二次函数图象与系数的关系等知识,解题的关键是熟练掌握二次函数的三种形式,学会利用参数构建方程解决问题.22.(9分)(2017?云南)在学习贯彻习近平总书记关于生态文明建设系列重要讲话精神,牢固树立“绿水青山就是金山银山”理念,把生态文明建设融入经济建设、政治建设、文化建设、社会建设各个方面和全过程,建设美丽中国的活动中,某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A、B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A30人/辆380元/辆B20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数.(1)设租用A型号客车x辆,租车总费用为y元,求y与x的函数解析式(也称关系式),请直接写出x的取值范围;(2)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案最省钱?【考点】FH:一次函数的应用;C9:一元一次不等式的应用.【分析】(1)根据租车总费用=A、B两种车的费用之和,列出函数关系式即可;(2)列出不等式,求出自变量x的取值范围,利用函数的性质即可解决问题;【解答】解:(1)由题意:y=380x+280(62﹣x)=100x+17360.∵30x+20(62﹣x)≥1441,∴x≥,∴21≤x≤62.(2)由题意100x+17360≤21940,∴x≤,∴21≤x≤45,∴共有25种租车方案,x=21时,y有最小值=175700元.【点评】本题考查一次函数的应用、一元一次不等式的应用等知识,解题的关键是理解题意,学会利用函数的性质解决最值问题.23.(12分)(2017?云南)已知AB是⊙O的直径,PB是⊙O的切线,C是⊙O上的点,AC∥OP,M是直径AB上的动点,A与直线CM上的点连线距离的最小值为d,B与直线CM上的点连线距离的最小值为f.(1)求证:PC是⊙O的切线;(2)设OP=32AC,求∠CPO的正弦值;(3)设AC=9,AB=15,求d+f的取值范围.【考点】MR:圆的综合题.【分析】(1)连接OC,根据等腰三角形的性质得到∠A=∠OCA,由平行线的性质得到∠A=∠BOP,∠ACO=∠COP,等量代换得到∠COP=∠BOP,由切线的性质得到∠OBP=90°,根据全等三角形的性质即可得到结论;(2)过O作OD⊥AC于D,根据相似三角形的性质得到CD?OP=OC2,根据已。

2024年云南省中考数学试卷正式版含答案解析

2024年云南省中考数学试卷正式版含答案解析

绝密★启用前2024年云南省中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I卷(选择题)一、选择题:本题共15小题,每小题2分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.中国是最早使用正负数表示具有相反意义的量的国家.若向北运动100米记作+100米,则向南运动100米可记作( )A. 100米B. −100米C. 200米D. −200米2.某市今年参加初中学业水平考试的学生大约有57800人,57800用科学记数法可以表示为( )A. 5.78×104B. 57.8×103C. 578×102D. 5780×103.下列计算正确的是( )A. x3+5x3=6x4B. x6÷x3=x5C. (a2)3=a7D. (ab)3=a3b34.若√ x在实数范围内有意义,则实数x的取值值围为( )A. x≥0B. x≤0C. x>0D. x<05.某图书馆的一个装饰品是由几个几何体组合成的.其中一个几何体的三视图(主视图也称正视图,左视图也称侧视图)如图所示,这个几何体是( )A. 正方体B. 圆柱C. 圆锥D. 长方体6.一个七边形的内角和等于( )A. 540°B. 900°C. 980°D. 1080°7.甲、乙、丙、丁四名运动员参加射击项目选拔赛,每人10次射击成绩的平均数x −(单位:环)和方差s 2如下表所示:根据表中数据,从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( )A. 甲B. 乙C. 丙D. 丁8.已知AF 是等腰△ABC 底边BC 上的高,若点F 到直线AB 的距离为3,则点F 到直线AC 的距离为( )A. 32B. 2C. 3D. 72 9.两年前生产1千克甲种药品的成本为80元,随着生产技术的进步,现在生产1千克甲种药品的成本为60元.设甲种药品成本的年平均下降率为x ,根据题意,下列方程正确的是( )A. 80(1−x 2)=60B. 80(1−x)2=60C. 80(1−x)=60D. 80(1−2x)=6010.按一定规律排列的代数式:2x ,3x 2,4x 3,5x 4,6x 5,⋯,第n 个代数式是( )A. 2x nB. (n −1)x nC. nx n+1D. (n +1)x n11.中华文明,源远流长;中华汉字,寓意深广.下列四个选项中,是轴对称图形的为( )A. B. C. D.12.如图,在△ABC 中,若∠B =90°,AB =3,BC =4,则tanA =( )A. 45B. 35C. 43D. 3413.如图,CD 是⊙O 的直径,点A ,B 在⊙O 上.若AC⏜=BC ⏜,∠AOC =36°,则∠D =( ) A. 9°B. 18°C. 36°D. 45°14.分解因式:a 3−9a =( )A. a(a −3)(a +3)B. a(a 2+9)C. (a −3)(a +3)D. a 2(a −9)15.某校九年级学生参加社会实践,学习编织圆锥型工艺品.若这种圆锥的母线长为40厘米,底面圆的半径为30厘米,则该圆锥的侧面积为( )A. 700π平方厘米B. 900π平方厘米C. 1200π平方厘米D. 1600π平方厘米第II 卷(非选择题)二、填空题:本题共4小题,每小题2分,共8分。

2021年云南省昆明市中考数学试卷及答案解析(word版)

2021年云南省昆明市中考数学试卷及答案解析(word版)

2021年云南省昆明市中考数学试卷一、填空题:每题3分,共18分1.﹣4的相反数为.2.昆明市2021年参加初中学业水平考试的人数约有67300人,将数据67300用科学记数法表示为.3.计算:﹣=.4.如图,AB∥CE,BF交CE于点D,DE=DF,∠F=20°,那么∠B的度数为.5.如图,E,F,G,H分别是矩形ABCD各边的中点,AB=6,BC=8,那么四边形EFGH 的面积是.6.如图,反比例函数y=〔k≠0〕的图象经过A,B两点,过点A作AC⊥x轴,垂足为C,过点B作BD⊥x轴,垂足为D,连接AO,连接BO交AC于点E,假设OC=CD,四边形BDCE的面积为2,那么k的值为.二、选择题〔共8小题,每题4分,总分值32分〕7.下面所给几何体的俯视图是〔〕A.B.C.D.8.某学习小组9名学生参加“数学竞赛〞,他们的得分情况如表:人数〔人〕 1 3 4 1分数〔分〕80 85 90 95那么这9名学生所得分数的众数和中位数分别是〔〕A.90,90 B.90,85 C.90,87.5 D.85,859.一元二次方程x2﹣4x+4=0的根的情况是〔〕A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定10.不等式组的解集为〔〕A.x≤2 B.x<4 C.2≤x<4 D.x≥211.以下运算正确的选项是〔〕A.〔a﹣3〕2=a2﹣9 B.a2•a4=a8C.=±3 D.=﹣212.如图,AB为⊙O的直径,AB=6,AB⊥弦CD,垂足为G,EF切⊙O于点B,∠A=30°,连接AD、OC、BC,以下结论不正确的选项是〔〕A.EF∥CD B.△COB是等边三角形C.CG=DG D.的长为π13.八年级学生去距学校10千米的博物馆参观,一局部学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,那么所列方程正确的选项是〔〕A.﹣=20 B.﹣=20 C.﹣=D.﹣=14.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.以下结论:①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④假设=,那么3S△EDH=13S△DHC,其中结论正确的有〔〕A.1个B.2个C.3个D.4个三、综合题:共9题,总分值70分15.计算:20210﹣|﹣|++2sin45°.16.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB求证:AE=CE.17.如图,△ABC三个顶点的坐标分别为A〔1,1〕,B〔4,2〕,C〔3,4〕〔1〕请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;〔2〕请画出△ABC关于原点O成中心对称的图形△A2B2C2;〔3〕在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.18.某中学为了了解九年级学生体能状况,从九年级学生中随机抽取局部学生进行体能测试,测试结果分为A,B,C,D四个等级,并依据测试成绩绘制了如下两幅尚不完整的统计图;〔1〕这次抽样调查的样本容量是,并补全条形图;〔2〕D等级学生人数占被调查人数的百分比为,在扇形统计图中C等级所对应的圆心角为°;〔3〕该校九年级学生有1500人,请你估计其中A等级的学生人数.19.甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.〔1〕请用列表或树状图的方法〔只选其中一种〕,表示出两次所得数字可能出现的所有结果;〔2〕求出两个数字之和能被3整除的概率.20.如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°〔点B,C,E在同一水平直线上〕,AB=80m,DE=10m,求障碍物B,C两点间的距离〔结果精确到0.1m〕〔参考数据:≈1.414,≈1.732〕21.〔列方程〔组〕及不等式解应用题〕春节期间,某商场方案购进甲、乙两种商品,购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.〔1〕求甲、乙两种商品每件的进价分别是多少元?〔2〕商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.22.如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.〔1〕求证:CF是⊙O的切线;〔2〕假设∠F=30°,EB=4,求图中阴影局部的面积〔结果保存根号和π〕23.如图1,对称轴为直线x=的抛物线经过B〔2,0〕、C〔0,4〕两点,抛物线与x轴的另一交点为A〔1〕求抛物线的解析式;〔2〕假设点P为第一象限内抛物线上的一点,设四边形COBP的面积为S,求S的最大值;〔3〕如图2,假设M是线段BC上一动点,在x轴是否存在这样的点Q,使△MQC为等腰三角形且△MQB为直角三角形?假设存在,求出点Q的坐标;假设不存在,请说明理由.2021年云南省昆明市中考数学试卷参考答案与试题解析一、填空题:每题3分,共18分1.﹣4的相反数为4.【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,0的相反数是0即可求解.【解答】解:﹣4的相反数是4.故答案为:4.2.昆明市2021年参加初中学业水平考试的人数约有67300人,将数据67300用科学记数法表示为 6.73×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于67300有5位,所以可以确定n=5﹣1=4.【解答】解:67300=6.73×104,故答案为:6.73×104.3.计算:﹣=.【考点】分式的加减法.【分析】同分母分式加减法法那么:同分母的分式相加减,分母不变,把分子相加减;再分解因式约分计算即可求解.【解答】解:﹣===.故答案为:.4.如图,AB∥CE,BF交CE于点D,DE=DF,∠F=20°,那么∠B的度数为40°.【考点】等腰三角形的性质;平行线的性质.【分析】由等腰三角形的性质证得E=∠F=20°,由三角形的外角定理证得∠CDF=∠E+∠F=40°,再由平行线的性质即可求得结论.【解答】解:∵DE=DF ,∠F=20°,∴∠E=∠F=20°,∴∠CDF=∠E+∠F=40°,∵AB ∥CE ,∴∠B=∠CDF=40°,故答案为:40°.5.如图,E ,F ,G ,H 分别是矩形ABCD 各边的中点,AB=6,BC=8,那么四边形EFGH 的面积是 24 .【考点】中点四边形;矩形的性质.【分析】先根据E ,F ,G ,H 分别是矩形ABCD 各边的中点得出AH=DH=BF=CF ,AE=BE=DG=CG ,故可得出△AEH ≌△DGH ≌△CGF ≌△BEF ,根据S 四边形EFGH =S 正方形﹣4S △AEH 即可得出结论.【解答】解:∵E ,F ,G ,H 分别是矩形ABCD 各边的中点,AB=6,BC=8,∴AH=DH=BF=CF=8,AE=BE=DG=CG=3.在△AEH 与△DGH 中,∵,∴△AEH ≌△DGH 〔SAS 〕.同理可得△AEH ≌△DGH ≌△CGF ≌△BEF ,∴S 四边形EFGH =S 正方形﹣4S △AEH =6×8﹣4××3×4=48﹣24=24.故答案为:24.6.如图,反比例函数y=〔k ≠0〕的图象经过A ,B 两点,过点A 作AC ⊥x 轴,垂足为C ,过点B 作BD ⊥x 轴,垂足为D ,连接AO ,连接BO 交AC 于点E ,假设OC=CD ,四边形BDCE 的面积为2,那么k 的值为 ﹣ .【考点】反比例函数系数k的几何意义;平行线分线段成比例.【分析】先设点B坐标为〔a,b〕,根据平行线分线段成比例定理,求得梯形BDCE的上下底边长与高,再根据四边形BDCE的面积求得ab的值,最后计算k的值.【解答】解:设点B坐标为〔a,b〕,那么DO=﹣a,BD=b∵AC⊥x轴,BD⊥x轴∴BD∥AC∵OC=CD∴CE=BD=b,CD=DO= a∵四边形BDCE的面积为2∴〔BD+CE〕×CD=2,即〔b+b〕×〔﹣a〕=2∴ab=﹣将B〔a,b〕代入反比例函数y=〔k≠0〕,得k=ab=﹣故答案为:﹣二、选择题〔共8小题,每题4分,总分值32分〕7.下面所给几何体的俯视图是〔〕A.B.C.D.【考点】简单几何体的三视图.【分析】直接利用俯视图的观察角度从上往下观察得出答案.【解答】解:由几何体可得:圆锥的俯视图是圆,且有圆心.应选:B.8.某学习小组9名学生参加“数学竞赛〞,他们的得分情况如表:人数〔人〕 1 3 4 1分数〔分〕80 85 90 95那么这9名学生所得分数的众数和中位数分别是〔〕A.90,90 B.90,85 C.90,87.5 D.85,85【考点】众数;中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数〔或两个数的平均数〕为中位数;众数是一组数据中出现次数最多的数据,可得答案.【解答】解:在这一组数据中90是出现次数最多的,故众数是90;排序后处于中间位置的那个数是90,那么由中位数的定义可知,这组数据的中位数是90;应选:A.9.一元二次方程x2﹣4x+4=0的根的情况是〔〕A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定【考点】根的判别式.【分析】将方程的系数代入根的判别式中,得出△=0,由此即可得知该方程有两个相等的实数根.【解答】解:在方程x2﹣4x+4=0中,△=〔﹣4〕2﹣4×1×4=0,∴该方程有两个相等的实数根.应选B.10.不等式组的解集为〔〕A.x≤2 B.x<4 C.2≤x<4 D.x≥2【考点】解一元一次不等式组.【分析】先求出每个不等式的解集,再根据口诀:大小小大中间找确定不等式组的解集即可.【解答】解:解不等式x﹣3<1,得:x<4,解不等式3x+2≤4x,得:x≥2,∴不等式组的解集为:2≤x<4,应选:C.11.以下运算正确的选项是〔〕A.〔a﹣3〕2=a2﹣9 B.a2•a4=a8C.=±3 D.=﹣2【考点】同底数幂的乘法;算术平方根;立方根;完全平方公式.【分析】利用同底数幂的乘法、算术平方根的求法、立方根的求法及完全平方公式分别计算后即可确定正确的选项.【解答】解:A、〔a﹣3〕2=a2﹣6a+9,故错误;B、a2•a4=a6,故错误;C、=3,故错误;D、=﹣2,故正确,应选D.12.如图,AB为⊙O的直径,AB=6,AB⊥弦CD,垂足为G,EF切⊙O于点B,∠A=30°,连接AD、OC、BC,以下结论不正确的选项是〔〕A.EF∥CD B.△COB是等边三角形C.CG=DG D.的长为π【考点】弧长的计算;切线的性质.【分析】根据切线的性质定理和垂径定理判断A;根据等边三角形的判定定理判断B;根据垂径定理判断C;利用弧长公式计算出的长判断D.【解答】解:∵AB为⊙O的直径,EF切⊙O于点B,∴AB⊥EF,又AB⊥CD,∴EF∥CD,A正确;∵AB⊥弦CD,∴=,∴∠COB=2∠A=60°,又OC=OD,∴△COB是等边三角形,B正确;∵AB⊥弦CD,∴CG=DG,C正确;的长为:=π,D错误,应选:D.13.八年级学生去距学校10千米的博物馆参观,一局部学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,那么所列方程正确的选项是〔〕A.﹣=20 B.﹣=20 C.﹣=D.﹣=【考点】由实际问题抽象出分式方程.【分析】根据八年级学生去距学校10千米的博物馆参观,一局部学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.【解答】解:由题意可得,﹣=,应选C.14.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.以下结论:①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④假设=,那么3S△EDH=13S△DHC,其中结论正确的有〔〕A.1个B.2个C.3个D.4个【考点】正方形的性质;全等三角形的判定与性质.【分析】①根据题意可知∠ACD=45°,那么GF=FC,那么EG=EF﹣GF=CD﹣FC=DF;②由SAS证明△EHF≌△DHC,得到∠HEF=∠HDC,从而∠AEH+∠ADH=∠AEF+∠HEF+∠ADF﹣∠HDC=180°;③同②证明△EHF≌△DHC即可;④假设=,那么AE=2BE,可以证明△EGH≌△DFH,那么∠EHG=∠DHF且EH=DH,那么∠DHE=90°,△EHD为等腰直角三角形,过H点作HM垂直于CD于M点,设HM=x,那么DM=5x,DH=x,CD=6x,那么S△DHC=×HM×CD=3x2,S△EDH=×DH2=13x2.【解答】解:①∵四边形ABCD为正方形,EF∥AD,∴EF=AD=CD,∠ACD=45°,∠GFC=90°,∴△CFG为等腰直角三角形,∴GF=FC,∵EG=EF﹣GF,DF=CD﹣FC,∴EG=DF,故①正确;②∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH=∠GFC=45°=∠HCD,在△EHF和△DHC中,,∴△EHF≌△DHC〔SAS〕,∴∠HEF=∠HDC,∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF﹣∠HDC=∠AEF+∠ADF=180°,故②正确;③∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH=∠GFC=45°=∠HCD,在△EHF和△DHC中,,∴△EHF≌△DHC〔SAS〕,故③正确;④∵=,∴AE=2BE,∵△CFG为等腰直角三角形,H为CG的中点,∴FH=GH,∠FHG=90°,∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,在△EGH和△DFH中,,∴△EGH≌△DFH〔SAS〕,∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,∴△EHD为等腰直角三角形,过H点作HM垂直于CD于M点,如下图:设HM=x,那么DM=5x,DH=x,CD=6x,那么S△DHC=×HM×CD=3x2,S△EDH=×DH2=13x2,∴3S△EDH=13S△DHC,故④正确;应选:D.三、综合题:共9题,总分值70分15.计算:20210﹣|﹣|++2sin45°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】分别根据零次幂、实数的绝对值、负指数幂及特殊角的三角函数值进行计算即可.【解答】解:20210﹣|﹣|++2sin45°=1﹣+〔3﹣1〕﹣1+2×=1﹣+3+=4.16.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB求证:AE=CE.【考点】全等三角形的判定与性质.【分析】根据平行线的性质得出∠A=∠ECF,∠ADE=∠CFE,再根据全等三角形的判定定理AAS得出△ADE≌△CFE,即可得出答案.【解答】证明:∵FC∥AB,∴∠A=∠ECF,∠ADE=∠CFE,在△ADE和△CFE中,,∴△ADE≌△CFE〔AAS〕,∴AE=CE.17.如图,△ABC三个顶点的坐标分别为A〔1,1〕,B〔4,2〕,C〔3,4〕〔1〕请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;〔2〕请画出△ABC关于原点O成中心对称的图形△A2B2C2;〔3〕在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.【考点】作图-旋转变换;轴对称-最短路线问题;作图-平移变换.【分析】〔1〕根据网格结构找出点A、B、C平移后的对应点的位置,然后顺次连接即可;〔2〕〕找出点A、B、C关于原点O的对称点的位置,然后顺次连接即可;〔3〕找出A的对称点A′,连接BA′,与x轴交点即为P.【解答】解:〔1〕如图1所示:〔2〕如图2所示:〔3〕找出A的对称点A′〔﹣3,﹣4〕,连接BA′,与x轴交点即为P;如图3所示:点P坐标为〔2,0〕.18.某中学为了了解九年级学生体能状况,从九年级学生中随机抽取局部学生进行体能测试,测试结果分为A,B,C,D四个等级,并依据测试成绩绘制了如下两幅尚不完整的统计图;〔1〕这次抽样调查的样本容量是50,并补全条形图;〔2〕D等级学生人数占被调查人数的百分比为8%,在扇形统计图中C等级所对应的圆心角为28.8°;〔3〕该校九年级学生有1500人,请你估计其中A等级的学生人数.【考点】条形统计图;总体、个体、样本、样本容量;用样本估计总体;扇形统计图.【分析】〔1〕由A等级的人数和其所占的百分比即可求出抽样调查的样本容量;求出B等级的人数即可全条形图;〔2〕用B等级的人数除以总人数即可得到其占被调查人数的百分比;求出C等级所占的百分比,即可求出C等级所对应的圆心角;〔3〕由扇形统计图可知A等级所占的百分比,进而可求出九年级学生其中A等级的学生人数.【解答】解:〔1〕由条形统计图和扇形统计图可知总人数=16÷32%=50人,所以B等级的人数=50﹣16﹣10﹣4=20人,故答案为:50;补全条形图如下图:〔2〕D等级学生人数占被调查人数的百分比=×100%=8%;在扇形统计图中C等级所对应的圆心角=8%×360°=28.8°,故答案为:8%,28.8;〔3〕该校九年级学生有1500人,估计其中A等级的学生人数=1500×32%=480人.19.甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.〔1〕请用列表或树状图的方法〔只选其中一种〕,表示出两次所得数字可能出现的所有结果;〔2〕求出两个数字之和能被3整除的概率.【考点】列表法与树状图法;概率公式.【分析】先根据题意画树状图,再根据所得结果计算两个数字之和能被3整除的概率.【解答】解:〔1〕树状图如下:〔2〕∵共6种情况,两个数字之和能被3整除的情况数有2种,∴两个数字之和能被3整除的概率为,即P〔两个数字之和能被3整除〕=.20.如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°〔点B,C,E在同一水平直线上〕,AB=80m,DE=10m,求障碍物B,C两点间的距离〔结果精确到0.1m〕〔参考数据:≈1.414,≈1.732〕【考点】解直角三角形的应用-仰角俯角问题.【分析】如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.通过解直角△AFD 得到DF的长度;通过解直角△DCE得到CE的长度,那么BC=BE﹣CE.【解答】解:如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.那么DE=BF=CH=10m,在直角△ADF中,∵AF=80m﹣10m=70m,∠ADF=45°,∴DF=AF=70m.在直角△CDE中,∵DE=10m,∠DCE=30°,∴CE===10〔m〕,∴BC=BE﹣CE=70﹣10≈70﹣17.32≈52.7〔m〕.答:障碍物B,C两点间的距离约为52.7m.21.〔列方程〔组〕及不等式解应用题〕春节期间,某商场方案购进甲、乙两种商品,购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.〔1〕求甲、乙两种商品每件的进价分别是多少元?〔2〕商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.【考点】一次函数的应用;二元一次方程组的应用.【分析】〔1〕设甲种商品每件的进价为x元,乙种商品每件的进价为y元,根据“购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元〞可列出关于x、y的二元一次方程组,解方程组即可得出两种商品的单价;〔2〕设该商场购进甲种商品m件,那么购进乙种商品件,根据“甲种商品的数量不少于乙种商品数量的4倍〞可列出关于m的一元一次不等式,解不等式可得出m的取值范围,再设卖完A、B两种商品商场的利润为w,根据“总利润=甲商品单个利润×数量+乙商品单个利润×数量〞即可得出w关于m的一次函数关系上,根据一次函数的性质结合m的取值范围即可解决最值问题.【解答】解:〔1〕设甲种商品每件的进价为x元,乙种商品每件的进价为y元,依题意得:,解得:,答:甲种商品每件的进价为30元,乙种商品每件的进价为70元.〔2〕设该商场购进甲种商品m件,那么购进乙种商品件,由得:m≥4,解得:m≥80.设卖完A、B两种商品商场的利润为w,那么w=〔40﹣30〕m+〔90﹣70〕=﹣10m+2000,∴当m=80时,w取最大值,最大利润为1200元.故该商场获利最大的进货方案为甲商品购进80件、乙商品购进20件,最大利润为1200元.22.如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.〔1〕求证:CF是⊙O的切线;〔2〕假设∠F=30°,EB=4,求图中阴影局部的面积〔结果保存根号和π〕【考点】切线的判定;平行四边形的性质;扇形面积的计算.【分析】〔1〕欲证明CF是⊙O的切线,只要证明∠CDO=90°,只要证明△COD≌△COA即可.〔2〕根据条件首先证明△OBD是等边三角形,∠FDB=∠EDC=∠ECD=30°,推出DE=EC=BO=BD=OA由此根据S阴=2•S△AOC﹣S扇形OAD即可解决问题.【解答】〔1〕证明:如图连接OD.∵四边形OBEC是平行四边形,∴OC∥BE,∴∠AOC=∠OBE,∠COD=∠ODB,∵OB=OD,∴∠OBD=∠ODB,∴∠DOC=∠AOC,在△COD 和△COA 中,,∴△COD ≌△COA ,∴∠CAO=∠CDO=90°,∴CF ⊥OD ,∴CF 是⊙O 的切线.〔2〕解:∵∠F=30°,∠ODF=90°,∴∠DOF=∠AOC=∠COD=60°,∵OD=OB ,∴△OBD 是等边三角形,∴∠DBO=60°,∵∠DBO=∠F+∠FDB ,∴∠FDB=∠EDC=30°,∵EC ∥OB ,∴∠E=180°﹣∠OBD=120°,∴∠ECD=180°﹣∠E ﹣∠EDC=30°,∴EC=ED=BO=DB ,∵EB=4,∴OB=OD ═OA=2,在RT △AOC 中,∵∠OAC=90°,OA=2,∠AOC=60°,∴AC=OA •tan60°=2,∴S 阴=2•S △AOC ﹣S 扇形OAD =2××2×2﹣=2﹣.23.如图1,对称轴为直线x=的抛物线经过B 〔2,0〕、C 〔0,4〕两点,抛物线与x 轴的另一交点为A〔1〕求抛物线的解析式;〔2〕假设点P 为第一象限内抛物线上的一点,设四边形COBP 的面积为S ,求S 的最大值;〔3〕如图2,假设M 是线段BC 上一动点,在x 轴是否存在这样的点Q ,使△MQC 为等腰三角形且△MQB 为直角三角形?假设存在,求出点Q 的坐标;假设不存在,请说明理由.【考点】二次函数综合题.【分析】〔1〕由对称轴的对称性得出点A的坐标,由待定系数法求出抛物线的解析式;〔2〕作辅助线把四边形COBP分成梯形和直角三角形,表示出面积S,化简后是一个关于S的二次函数,求最值即可;〔3〕画出符合条件的Q点,只有一种,①利用平行相似得对应高的比和对应边的比相等列比例式;②在直角△OCQ和直角△CQM利用勾股定理列方程;两方程式组成方程组求解并取舍.【解答】解:〔1〕由对称性得:A〔﹣1,0〕,设抛物线的解析式为:y=a〔x+1〕〔x﹣2〕,把C〔0,4〕代入:4=﹣2a,a=﹣2,∴y=﹣2〔x+1〕〔x﹣2〕,∴抛物线的解析式为:y=﹣2x2+2x+4;〔2〕如图1,设点P〔m,﹣2m2+2m+4〕,过P作PD⊥x轴,垂足为D,∴S=S+S△PDB=m〔﹣2m2+2m+4+4〕+〔﹣2m2+2m+4〕〔2﹣m〕,梯形S=﹣2m2+4m+4=﹣2〔m﹣1〕2+6,∵﹣2<0,∴S有最大值,那么S=6;大〔3〕如图2,存在这样的点Q,使△MQC为等腰三角形且△MQB为直角三角形,理由是:设直线BC的解析式为:y=kx+b,把B〔2,0〕、C〔0,4〕代入得:,解得:,∴直线BC的解析式为:y=﹣2x+4,设M〔a,﹣2a+4〕,过A作AE⊥BC,垂足为E,那么AE的解析式为:y=x+,那么直线BC与直线AE的交点E〔1.4,1.2〕,设Q〔﹣x,0〕〔x>0〕,∵AE∥QM,∴△ABE∽△QBM,∴①,由勾股定理得:x2+42=2×[a2+〔﹣2a+4﹣4〕2]②,由①②得:a1=4〔舍〕,a2=,当a=时,x=,∴Q 〔﹣,0〕.第21页〔共22页〕2021年7月12日第22页〔共22页〕。

云南省2021年中考数学试卷 (Word版,含答案与解析)

云南省2021年中考数学试卷 (Word版,含答案与解析)

云南省2021年中考数学试卷一、单选题1.(2021·云南)某地区2021年元旦的最高气温为9℃,最低气温为−2℃,那么该地区这天的最低气温比最高气温低()A. 7℃B. −7℃C. 11℃D. −11℃【答案】C【考点】有理数的减法【解析】【解答】解:9-(-2)=9+2=11,故答案为:C.【分析】利用最高气温减去最低气温,列出算式,再计算即可.2.(2021·云南)如图,直线c与直线a、b都相交.若a//b,∠1=55°,则∠2=()A. 60°B. 55°C. 50°D. 45°【答案】B【考点】平行线的性质【解析】【解答】解:如图,∵∠1=55°,∴∠3=55°,∵a∥b,∠3=55°,∴∠2=∠3=55°.故答案为:B.【分析】由对顶角相等得出∠3=∠1=55°,根据平行线的性质得出∠2=∠3=55°.3.(2021·云南)一个十边形的内角和等于()A. 1800°B. 1660°C. 1440°D. 1200°【答案】C【考点】多边形内角与外角【解析】【解答】解:十边形的内角和等于:(10-2)×180°=1440°.故答案为:C.【分析】根据多边形的内角和公式(n-2)×180°进行计算即可.4.(2021·云南)在△ABC中,∠ABC=90°,若AC=100,sinA=35,则AB的长是()A. 5003B. 5035C. 60D. 80【答案】 D【考点】解直角三角形【解析】【解答】解:∵∠ABC=90°,sin∠A= BCAC = 35,AC=100,∴BC=100×3÷5=60,∴AB= √AC2−BC2=80,故答案为:D.【分析】由sinA= BCAC = 35可求出BC,再利用勾股定理求出AB即可.5.(2021·云南)若一元二次方程ax2+2x+1=0有两个不相等的实数根,则实数a的取值范围是()A. a<1B. a≤1C. a≤1且a≠0D. a<1且a≠0【答案】 D【考点】一元二次方程根的判别式及应用【解析】【解答】解:根据题意得a≠0且△=22-4a>0,解得a<1且a≠0.故答案为:D.【分析】根据一元二次方程ax2+2x+1=0有两个不相等的实数根,可得△>0且a≠0,据此解答即可.6.(2021·云南)按一定规律排列的单项式:a2,4a3,9a4,16a5,25a6,……,第n个单项式是()A. n2a n+1B. n2a n−1C. n n a n+1D. (n+1)2a n【答案】A【考点】探索数与式的规律【解析】【解答】解:∵一列单项式:a2,4a3,9a4,16a5,25a6,...,∴第n个单项式为n2a n+1,故答案为:A.【分析】根据已知可得:单项式的系数为序号的平方,a的指数对应序号加1,据此可得第n个单项式为n2a n+1 .7.(2021·云南)如图,等边△ABC的三个顶点都在⊙O上,AD是⊙O的直径.若OA=3,则劣弧BD的长是()A. π2 B. π C. 3π2D. 2π【答案】B【考点】弧长的计算【解析】【解答】解:连接OB,OC,∵△ABC是等边三角形,∴∠BOC=2∠BAC=120°,又∵AB=AC,OB=OC,OA=OA,∴△AOB≌△AOC(SSS),∴∠BAO=∠CAO=30°,∴∠BOD=60°,∴劣弧BD的长为60×π×3180=π,故答案为:B.【分析】连接OB,OC,证明△AOB≌△AOC(SSS),可得∠BAO=∠CAO=30°,利用圆周角定理可得∠BOD=60°,利用弧长公式即可求出结论.8.(2021·云南)2020年以来,我国部分地区出现了新冠疫情.一时间,疫情就是命令,防控就是责任,一方有难八方支援,某公司在疫情期间为疫区生产A、B、C、D四种型号的帐篷共20000顶,有关信息见如下统计图:下列判断正确的是()A. 单独生产B型帐篷的天数是单独生产C型帐篷天数的3倍B. 单独生产B型帐篷的天数是单独生产A型帐篷天数的1.5倍C. 单独生产A型帐篷与单独生产D型帐篷的天数相等D. 每天单独生产C型帐篷的数量最多【答案】C【考点】扇形统计图,条形统计图=4天,【解析】【解答】解:A、单独生产B型帐篷的天数是20000×30%1500=1天,单独生产C型帐篷的天数是20000×15%30004÷1=4,故不符合题意;B、单独生产A型帐篷天数为20000×45%=2天,45004÷2=2≠1.5,故不符合题意;C、单独生产D型帐篷的天数为20000×10%=2天,10002=2,故符合题意;D、4500>3000>1500>1000,∴每天单独生产A型帐篷的数量最多,故不符合题意;故答案为:C.【分析】由条形统计图可知生产四种型号帐篷的数量,再结合扇形统计图分别计算出单独生产各型号帐篷的天数,然后逐一判断即可.二、填空题9.(2021·云南)已知a,b都是实数,若√a+1+(b−2)2=0则a−b=________.【答案】-3【考点】非负数之和为0【解析】【解答】解:根据题意得,a+1=0,b-2=0,解得a=-1,b=2,所以,a-b=-1-2=-3.故答案为:-3.【分析】根据二次根式及偶次幂的非负性,可得a+1=0,b-2=0,据此求出a、b的值,继而得出结论.10.(2021·云南)若反比例函数的图象经过点(1,−2),则该反比例函数的解析式(解析式也称表达式)为________.【答案】y=−2x【考点】待定系数法求反比例函数解析式(k≠0),【解析】【解答】解:设反比例函数的解析式为y=kx∵函数经过点(1,-2),∴−2=k,得k=-2,1∴反比例函数解析式为y=−2,x.故答案为:y=−2x【分析】利用待定系数法求解析式求解即可.11.(2021·云南)如图是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图).已知主视图和左视图是两个全等的矩形.若主视图的相邻两边长分别为2和3,俯视图是直径等于2的圆,则这个几何体的体积为________.【答案】3π【考点】由三视图判断几何体,圆柱的体积【解析】【解答】解:由三视图可知:该几何体是圆柱,该圆柱的底面直径为2,高为3,∴这个几何体的体积为π×(2)2×3= 3π,2故答案为:3π.【分析】由三视图可知:该几何体是圆柱,利用圆柱的体积公式计算即可.12.(2021·云南)如图,在△ABC中,点D,E分别是BC,AC的中点,AD与BE相交于点F,若BF=6,则BE的长是________.【答案】9【考点】相似三角形的判定与性质【解析】【解答】解:∵点D,E分别为BC和AC中点,∴DE= 12AB,DE∥AB,∴△DEF∽△ABF,∴DEAB =EFBF=12,∵BF=6,∴EF=3,∴BE=6+3=9,故答案为:9.【分析】根据三角形中位线定理可得DE= 12AB,DE∥AB,可证△DEF∽△ABF,可得DEAB=EFBF=12,据此求出EF,利用BE=EF+BF计算即得.13.(2019八上·龙山期末)分解因式:x3−4x=________【答案】x(x+2)(x-2)【考点】因式分解﹣运用公式法【解析】【解答】解:原式=x(x2-4)=x(x+2)(x-2)。

云南省2020年中考数学试卷(word版,含解析)

云南省2020年中考数学试卷(word版,含解析)

2020年云南省中考数学试卷一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)中国是最早采用正负数表示相反意义的量的国家•某仓库运进面粉7吨,记为+7吨,那么运出面粉8吨应记为 ________ 吨.2.(3分)如图,直线C与直线a、b都相交.若a // b,∠ 1 = 54° ,则∠ 2 = ________ 度.3.____________________________________________ (3分)要使,匚有意义,则X的取值范围是.4.(3分)已知一个反比例函数的图象经过点(3, 1),若该反比例函数的图象也经过点(- 1, m),贝U m5.(3分)若关于X的一元二次方程X2+2X+C= 0有两个相等的实数根,则实数C的值为________ .6.(3分)已知四边形ABCD是矩形,点E是矩形ABCD的边上的点,且EA= EC .若AB = 6, AC = 2 111 ,则DE的长是 _________ .二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)7.(4分)千百年来的绝对贫困即将消除,云南省95%的贫困人口脱贫,95%的贫困村出列,90%的贫困县摘帽,1500000人通过异地扶贫搬迁实现“挪穷窝”,“斩穷根”(摘自2020年5月11日云南日报).1500000这个数用科学记数法表示为()6 5 6 7A . 15× 10B . 1.5× 10 C. 1.5 × 10 D . 1.5 × 10 69.(4分)下列运算正确的是(6 (4分)下列几何体中,主视图是长方形的是()A . - 61 或-58B . - 61 或-5910. (4分)下列说法正确的是(A •为了解三名学生的视力情况,采用抽样调查B .任意画一个三角形,其内角和是360 °是必然事件C .甲、乙两名射击运动员 10次射击成绩(单位:环)的平均数分别为11.(4分)如图,平行四边形 ABCD 的对角线AC , BD 相交于点O , E 是CD 的中点.则△ DEO 与厶BCDA . √<!=± 2 C . (— 3a ) 3=~ 9a 3B .(-)「I =- 2D . a 6÷ a 3= a 3(a ≠0)乙2,若冥甲—x S ,S 甲2= 0.4, S 乙2= 2,则甲的成绩比乙的稳定D •—个抽奖活动中,中奖概率为 一\,表示抽奖20次就有1次中奖2,方差分别为S 甲、SC .12 . (4分)按一定规律排列的单项式: a ,- 2a , 4a ,- 8a , 16a , - 32a ,…,第n 个单项式是(A . (- 2) n -1aB . (- 2) naC . 2n -1a D . 2na13. (4分)如图,正方形 ABCD 的边长为4,以点A 为圆心,AD 为半径,画圆弧 DE 得到扇形DAE (阴影部分,点E 在对角线AC 上).若扇形 DAE 正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是14. (4分)若整数 B . 1C √2C.—K-I ^ll+κ使关于X 的不等式组L4χ-a>ι÷l,有且只有 45个整数解,且使关于y 的方程2y+a ÷S 60E +∣A.a 1的解为非正数,则 a 的值为(C60 或-59D . - 61 或-60 或-59三、解答题(本大题共 9小题,共70分)2215.(6分)先化简,再求值: "T'~ ÷-—— ,其中X =—./-4ι÷2216. (6 分)如图,已知 AD = BC , BD = AC .求证:∠ ADB = ∠ BCA .17. ( 8分)某公司员工的月工资如下:经理、职员C 、职员D 从不同的角度描述了该公司员工的收入情况. 设该公司员工的月工资数据(见上述表格)的平均数、中位数、众数分别为 完成下列问题:(1) k = ______ , m = _________ , n = ________ ;(2) 上月一个员工辞职了, 从本月开始,停发该员工工资,若本月该公司剩下的 8名员工的月工资不变,员工经理 副经理职员A 职员B 职员C 职员D 职员E月工资/700044002400200019001800 1800元职员F 杂工G1800 1200k 、m 、n ,请根据上述信息经理职员E职员D我们妹几个人工资⅛PΛ ιe∞ 元百这个虫罚员工收入 到底怎拝呢?戟公司员工收 入很高,月平曲我的工资为ι≡元, 在企司收入中等。

云南省昆明市2020年中考数学试题(Word版,含答案与解析)

云南省昆明市2020年中考数学试题(Word版,含答案与解析)

云南省昆明市2020年中考数学试卷一、填空题(共6题;共6分)1.|﹣10|=________.【答案】10【考点】绝对值及有理数的绝对值【解析】【解答】根据负数的绝对值等于它的相反数,得|﹣10|=10.故答案为:10.【分析】根据绝对值的性质进行计算即可.2.分解因式:m2n−4n =________.【答案】n(m+2)(m﹣2)【考点】提公因式法与公式法的综合运用【解析】【解答】解:m2n−4n=n(m2−4)= n(m+2)(m﹣2)。

故答案为:n(m+2)(m﹣2)。

【分析】先利用提公因式法分解因式,再利用平方差公式法分解到每一个因式都不能再分解为止。

3.如图,点C位于点A正北方向,点B位于点A北偏东50°方向,点C位于点B北偏西35°方向,则∠ABC 的度数为________°.【答案】95【考点】平行线的性质【解析】【解答】解:如下图所示:过点B作一条平行于AC的线,由题意可得,∠1=∠A=50°(两直线平行,内错角相等),则∠ABC=180°-35°-50°=95°,故答案为:95.【分析】按照题意,将点A、B、C的位置关系表示在图中,过点B作一条平行于AC的线,并标注出已知角的度数,两平行线间内错角相等,可得∠1=∠BAC,则∠ABC的度数就可求得.4.要使5有意义,则x的取值范围是________.x+1【答案】x≠﹣1【考点】分式有意义的条件有意义,【解析】【解答】解:要使分式5x+1需满足x+1≠0.即x≠﹣1.故答案为:x≠﹣1.【分析】根据分式的分母不能为0,建立不等式即可求解.5.如图,边长为2 √3cm的正六边形螺帽,中心为点O,OA垂直平分边CD,垂足为B,AB=17cm,用扳手拧动螺帽旋转90°,则点A在该过程中所经过的路径长为________cm.【答案】10π【考点】圆内接正多边形,弧长的计算【解析】【解答】解:连接OD,OC.∵∠DOC=60°,OD=OC,∴△ODC是等边三角形,∴OD=OC=DC=2√3(cm),∵OB⊥CD,∴BC=BD=√3(cm),∴OB=√3BC=3(cm),∵AB=17cm,∴OA=OB+AB=20(cm),∴点A在该过程中所经过的路径长=90⋅π⋅20=10π(cm),180故答案为:10π.【分析】利用正六边形的性质求出OB的长度,进而得到OA的长度,根据弧长公式进行计算即可.6.观察下列一组数:﹣23,69,﹣1227,2081,﹣30243,…,它们是按一定规律排列的,那么这一组数的第n个数是________.【答案】(−1)n n×(n+1)3n【考点】探索数与式的规律【解析】【解答】解:观察下列一组数:﹣23=﹣1×231,6 9=2×332,﹣1227=﹣3×43320 81=4×534,﹣30243=﹣5×635,…,它们是按一定规律排列的,那么这一组数的第n个数是:(﹣1)n n×(n+1)3n,故答案为:(−1)n n×(n+1)3n.【分析】观察已知一组数,发现规律(符号、分子、分母)进而可得这一组数的第n个数.二、选择题(共8题;共16分)7.由5个完全相同的正方体组成的几何体的主视图是()A. B. C. D.【答案】A【考点】简单组合体的三视图【解析】【解答】解:由5个完全相同的正方体组成的几何体的主视图是,故答案为:A.【分析】根据主视图是从正面看到的图形判定则可.8.下列判断正确的是()A. 北斗系统第五十五颗导航卫星发射前的零件检查,应选择抽样调查B. 一组数据6,5,8,7,9的中位数是8C. 甲、乙两组学生身高的方差分别为S甲2=2.3,S乙2=1.8.则甲组学生的身高较整齐D. 命题“既是矩形又是菱形的四边形是正方形”是真命题【答案】 D【考点】正方形的判定,全面调查与抽样调查,中位数,方差,真命题与假命题【解析】【解答】解:A.北斗系统第五十五颗导航卫星发射前的零件检查,应选择全面调查,所以A选项错误;B.一组数据6,5,8,7,9的中位数是7,所以B选项错误;C.甲、乙两组学生身高的方差分别为S甲2=2.3,S乙2=1.8.则乙组学生的身高较整齐,所以C选项错误;D.命题“既是矩形又是菱形的四边形是正方形”是真命题,所以D选项正确.故答案为:D.【分析】抽样调查适合对调查的过程具有破坏性及危害性,调查的过程工作量不太大,对调查的结果要求不那么精准的调查,反之适合全面调查;将一组数据按从小到大排列后,排最中间位置的一个数或两个数的平均数就是这组数据的中位数;方差越大数据的波动越大,成绩越不稳定;根据正方形的判断方法可知:既是矩形又是菱形的四边形是正方形,从而即可一一判断得出答案.9.某款国产手机上有科学计算器,依次按键:,显示的结果在哪两个相邻整数之间()A. 2~3B. 3~4C. 4~5D. 5~6【答案】B【考点】估算无理数的大小,特殊角的三角函数值【解析】【解答】解:使用计算器计算得,4sin60°≈3.464101615,故答案为:B.【分析】用计算器计算得3.464101615……得出答案.10.下列运算中,正确的是()A. √5﹣2 √5=﹣2B. 6a4b÷2a3b=3abC. (﹣2a2b)3=﹣8a6b3D. aa−1⋅a2−2a+11−a=a【答案】C【考点】分式的乘除法,二次根式的加减法,单项式除以单项式,积的乘方【解析】【解答】解:A、√5﹣2 √5=﹣√5,此选项错误,不合题意;B、6a4b÷2a3b=3a,此选项错误,不合题意;C、(﹣2a2b)3=﹣8a6b3,此选项正确,符合题意;D、aa−1×a2−2a+11−a=aa−1×(1−a)21−a=-a,故此选项错误,不合题意.故答案为:C.【分析】二次根式的加减运算就是合并同类二次根式,合并的时候只需要将系数相减,二次根式部分不变;单项式除以单项式,把系数与相同的字母分别相除;积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘;分式的乘法,将能分解因式的分子、分母分别分解因式,然后约分即可,从而即可一一判断得出答案.11.不等式组{x+1>03x+12⩾2x−1,的解集在以下数轴表示中正确的是()A. B.C. D.【答案】B【考点】解一元一次不等式组【解析】【解答】解:{x+1>0(1)3x+12⩾2x−1(2),∵解不等式①得:x>﹣1,解不等式②得:x≤3,∴不等式组的解集是﹣1<x≤3,在数轴上表示为:,故答案为:B.【分析】先求出每个不等式的解集,再根据“大小小大取中间”求出不等式组的解集,最后根据数轴上表示解集的方法“大向右,小向左,实心等于,空心不等”在数轴上表示出来即可.12.某校举行“停课不停学,名师陪你在家学”活动,计划投资8000元建设几间直播教室,为了保证教学质量,实际每间建设费用增加了20%,并比原计划多建设了一间直播教室,总投资追加了4000元.根据题意,求出原计划每间直播教室的建设费用是()A. 1600元B. 1800元C. 2000元D. 2400元【答案】C【考点】分式方程的实际应用【解析】【解答】解:设原计划每间直播教室的建设费用是x元,则实际每间建设费用为1.2x,根据题意得:8000+40001.2x −8000x=1,解得:x=2000,经检验:x=2000是原方程的解,答:每间直播教室的建设费用是2000元,故答案为:C.【分析】设原计划每间直播教室的建设费用是x元,则实际每间建设费用为1.2x,根据“实际每间建设费用增加了20%,并比原计划多建设了一间直播教室,总投资追加了4000元”列出方程求解即可.13.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与y轴交于点B(0,﹣2),点A(﹣1,m)在抛物线上,则下列结论中错误的是()A. ab<0B. 一元二次方程ax2+bx+c=0的正实数根在2和3之间C. a=m+23D. 点P1(t,y1),P2(t+1,y2)在抛物线上,当实数t>1时,y1<y23【答案】 D【考点】二次函数图象与系数的关系,二次函数y=ax^2+bx+c的性质,二次函数图象与一元二次方程的综合应用【解析】【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣b=1,2a∴b=﹣2a<0,∴ab<0,所以A选项的结论正确;∵抛物线的对称轴为直线x=1,抛物线与x轴的一个交点坐标在(0,0)与(﹣1,0)之间,∴抛物线与x轴的另一个交点坐标在(2,0)与(3,0)之间,∴一元二次方程ax2+bx+c=0的正实数根在2和3之间,所以B选项的结论正确;把B(0,﹣2),A(﹣1,m)代入抛物线得c=﹣2,a﹣b+c=m,而b=﹣2a,∴a+2a﹣2=m,∴a=m+2,所以C选项的结论正确;3∵点P1(t,y1),P2(t+1,y2)在抛物线上,∴当点P 1、P 2都在直线x =1的右侧时,y 1<y 2 , 此时t≥1;当点P 1在直线x =1的左侧,点P 2在直线x =1的右侧时,y 1<y 2 , 此时0<t <1且t+1﹣1>1﹣t ,即 12 <t <1,∴当 12 <t <1或t≥1时,y 1<y 2 , 所以D 选项的结论错误;故答案为:D.【分析】由抛物线开口方向得到a >0,利用抛物线的对称轴方程得到b =−2a <0,则可对A 选项进行判断;利用抛物线的对称性得到抛物线与x 轴的另一个交点坐标在(2,0)与(3,0)之间,则根据抛物线与x 轴的交点问题可对B 选项进行判断;把B (0,−2),A (−1,m )和b =−2a 代入抛物解析式可对C 选项进行判断;利用二次函数的增减性对D 进行判断.14.在正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形.如图,△ABC 是格点三角形,在图中的6×6正方形网格中作出格点三角形△ADE (不含△ABC ),使得△ADE ∽△ABC (同一位置的格点三角形△ADE 只算一个),这样的格点三角形一共有( )A. 4个B. 5个C. 6个D. 7个【答案】 C【考点】相似三角形的判定【解析】【解答】解: △ ABC 的三边之比为 AB:AC :BC=√5:√5:√2 ,如图所示,可能出现的相似三角形共有以下六种情况:所以使得△ADE ∽△ABC 的格点三角形一共有6个,故答案为:C.【分析】根据题意,得出 △ ABC 的三边之比,并在直角坐标系中找出与 △ ABC 各边长成比例的相似三角形,并在直角坐标系中无一遗漏地表示出来.三、解答题(共9题;共82分)15.计算:12021﹣ √83 +(π﹣3.14)0﹣(﹣ 15 )-1.【答案】 解:原式=1﹣2+1+5=5.【考点】实数的运算【解析】【分析】先根据立方根的定义、零指数幂和负指数幂的性质化简,再根据有理数的加减法法则即可得到结果.16.如图,AC是∠BAE的平分线,点D是线段AC上的一点,∠C=∠E,AB=AD.求证:BC=DE.【答案】证明:∵AC是∠BAE的平分线,∴∠BAC=∠DAE,∵∠C=∠E,AB=AD.∴△BAC≌△DAE(AAS),∴BC=DE.【考点】三角形全等及其性质,三角形全等的判定(AAS)【解析】【分析】根据角平分线的性质得出∠BAC=∠DAE,从而利用AAS证明△BAC≌△DAE,进而根据全等三角形的对应边相等即可得到结果.17.某鞋店在一周内销售某款女鞋,尺码(单位:cm)数据收集如下:24 23.5 21.5 23.5 24.5 23 22 23.5 23.5 23 22.5 23.5 23.5 22.5 24 24 22.5 25 23 23 23.5 23 22.5 23 23.5 23.5 23 24 22 22.5绘制如图不完整的频数分布表及频数分布直方图:22.5 324.5 1325.5 2(1)请补全频数分布表和频数分布直方图;(2)若店主要进货,她最应该关注的是尺码的众数,上面数据的众数为________(3)若店主下周对该款女鞋进货120双,尺码在23.5≤x<25.5范围的鞋应购进约多少双?【答案】(1)解:根据题中所给的尺寸,根据划记可得鞋码在22.5≤x<23范围的数量共有12,故表中尺码为22.5≤x<23的鞋的频数为:12.补全频数分布表如表所示:补全的频数分布直方图如图所示:(2)23.50.5,(3)解:鞋码在23.5≤x<25.5范围内的频率为:13+230=60(双).共进120双鞋,鞋码在23.5≤x<25.5范围内的鞋子数量为:120×13+230=答:该款女鞋进货120双,尺码在23.5≤x<25.5范围的鞋应购进约60双.【考点】用样本估计总体,频数(率)分布表,频数(率)分布直方图,众数【解析】【解答】解:(2)样本中,尺码为23.5cm的出现次数最多,共出现9次,因此众数是23.5,故答案为:23.5.【分析】(1)根据本次收集的数据,通过划记的方式找出鞋码在22.5≤x<23范围内的数量,并补全分布表和直方图;(2)根据本次收集的数据,找出出现次数最多的数字,该数字即为众数;(3)根据本次收集的数据,算出鞋码在23.5≤x<25.5范围内的频率,当进货120双鞋的时候,鞋码在23.5≤x<25.5范围内的鞋子数量=进货量×该鞋码的频率.18.有一个可自由转动的转盘,被分成了三个大小相同的扇形,分别标有数字2,4,6;另有一个不透明的瓶子,装有分别标有数字1,3,5的三个完全相同的小球.小杰先转动一次转盘,停止后记下指针指向的数字(若指针指在分界线上则重转),小玉再从瓶子中随机取出一个小球,记下小球上的数字.(1)请用列表或画树状图的方法(选其中一种)表示出所有可能出现的结果;(2)若得到的两数字之和是3的倍数,则小杰贏;若得到的两数字之和是7的倍数,则小玉赢,此游戏公平吗?为什么?【答案】(1)解:用列表法表示所有可能出现的结果情况如下:用树状图表示所有可能出现的结果如下:(2)解:由(1)的表格可知,共有9种可能出现的结果,其中“和为3的倍数”的有3种,“和为7的倍数”的有3种,∴P(小杰胜)=39=13,P(小玉胜)=39=13,∴游戏是公平的.【考点】列表法与树状图法【解析】【分析】(1)分别使用树状图法或列表法将所有可能出现的结果表示出来,转盘共有3种不同的抽取情况,摸球同样也有3种不同的抽取情况,所有等可能出现的结果有9种;(2)通过(1)所列出的表格或是树状图表示的结果,统计“和为3的倍数”、“和为7的倍数”出现的次数,并算出概率,通过概率的比较得出结论.19.为了做好校园疫情防控工作,校医每天早上对全校办公室和教室进行药物喷洒消毒,她完成3间办公室和2间教室的药物喷洒要19min;完成2间办公室和1间教室的药物喷洒要11min.(1)校医完成一间办公室和一间教室的药物喷洒各要多少时间?(2)消毒药物在一间教室内空气中的浓度y (单位:mg/m 3)与时间x (单位:min )的函数关系如图所示:校医进行药物喷洒时y 与x 的函数关系式为y =2x ,药物喷洒完成后y 与x 成反比例函数关系,两个函数图象的交点为A (m ,n ).当教室空气中的药物浓度不高于1mg/m 3时,对人体健康无危害,校医依次对一班至十一班教室(共11间)进行药物喷洒消毒,当她把最后一间教室药物喷洒完成后,一班学生能否进入教室?请通过计算说明.【答案】 (1)解:设校医完成一间办公室和一间教室的药物喷洒各要 xmin 和 ymin则 {3x +2y =192x +y =11解得 {x =3y =5答:校医完成一间办公室和一间教室的药物喷洒各要 3min 和 5min ;(2)解:一间教室的药物喷洒时间为 5min ,则11个房间需要 55min当 x =5 时, y =2×5=10则点A 的坐标为 A(5,10)设反比例函数表达式为 y =k x将点 A(5,10) 代入得: k 5=10 ,解得 k =50则反比例函数表达式为 y =50x当 x =55 时, y =5055<1故一班学生能安全进入教室.【考点】反比例函数的实际应用【解析】【分析】(1)设校医完成一间办公室和一间教室的药物喷洒各要 xmin 和 ymin ,再根据题干信息建立二元一次方程组,然后解方程组即可得;(2)先求出完成11间教室的药物喷洒所需时间,再根据一次函数的解析式求出点A 的坐标,然后利用待定系数法求出反比例函数的解析式,最后根据反比例函数的解析式求出 x =55 时,y 的值,与1进行比较即可得.20.如图,点P 是⊙O 的直径AB 延长线上的一点(PB <OB ),点E 是线段OP 的中点.(1)尺规作图:在直径AB上方的圆上作一点C,使得EC=EP,连接EC,PC(保留清晰作图痕迹,不要求写作法);并证明PC是⊙O的切线;(2)在(1)的条件下,若BP=4,EB=1,求PC的长.【答案】(1)解:如图,点C即为所求;证明:∵点E是线段OP的中点,∴OE=EP,∵EC=EP,∴OE=EC=EP,∴∠COE=∠ECO,∠ECP=∠P,∵∠COE+∠ECO+∠ECP+∠P=180°,∴∠ECO+∠ECP=90°,∴OC⊥PC,且OC是⊙O的半径,∴PC是⊙O的切线;(2)解:∵BP=4,EB=l,∴OE=EP=BP+EB=5,∴OP=2OE=10,∴OC=OB=OE+EB=6,在Rt△OCP中,根据勾股定理,得PC=√OP2−OC2=8.则PC的长为8.【考点】勾股定理,切线的判定【解析】【分析】(1)利用尺规作图:以点E为圆心,EP长为半径画弧,在直径AB上方的圆上交一点C,再根据已知条件可得OE=EC=EP,根据三角形内角和可得∠ECO+∠ECP=90°,进而证明PC是⊙O的切线;(2)在(1)的条件下,根据BP=4,EB=1,可得EP的长,进而可得半径,再根据勾股定理即可求PC的长.21.(材料阅读)2020年5月27日,2020珠峰高程测量登山队成功登顶珠穆朗玛峰,将用中国科技“定义”世界新高度.其基本原理之一是三角高程测量法,在山顶上立一个规标,找到2个以上测量点,分段测量山的高度,再进行累加.因为地球面并不是水平的,光线在空气中会发生折射,所以当两个测量点的水平(其中d为两点间的水平距离,R为距离大于300m时,还要考虑球气差,球气差计算公式为f=0.43d2R地球的半径,R取6400000m),即:山的海拔高度=测量点测得山的高度+测量点的海拔高度+球气差. (问题解决)某校科技小组的同学参加了一项野外测量某座山的海拔高度活动.如图,点A,B的水平距离d=800m,测量仪AC=1.5m,觇标DE=2m,点E,D,B在垂直于地面的一条直线上,在测量点A处用测量仪测得山项觇标顶端E的仰角为37°,测量点A处的海拔高度为1800m.(1)数据6400000用科学记数法表示为________;(2)请你计算该山的海拔高度.(要计算球气差,结果精确到0.01m)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【答案】(1)6.4×106(2)解:如图,过点C作CH⊥BE于H.由题意AB=CH=800m,AC=BH=1.5m,在Rt△ECH中,EH=CH•tan37°≈600(m),∴DB=600﹣DE+BH=599.5(m),≈0.043(m),由题意f=0.43×80026400000∴山的海拔高度=599.5+0.043+1800≈2399.54(m).【考点】解直角三角形的应用﹣仰角俯角问题【解析】【解答】解:(1)6400000=6.4×106,故答案为:6.4×106.【分析】(1)科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数;(2)如图,过点C作CH⊥BE于H.解直角三角形求出DB,加上海拔高度,加上球气差即可.22.如图,两条抛物线y1=−x2+4,y2=−15x2+bx+c相交于A,B两点,点A在x轴负半轴上,且为抛物线y2的最高点.(1)求抛物线y2的解析式和点B的坐标;(2)点C是抛物线y1上A,B之间的一点,过点C作x轴的垂线交y2于点D,当线段CD取最大值时,求S△BCD.【答案】(1)解:对于抛物线y1=−x2+4当y=0时,−x2+4=0,解得x=2或x=−2∵点A在x轴的负半轴上,∴点A(−2,0)∵点A(−2,0)是抛物线y2的最高点∴抛物线y2的对称轴为x=−2,即−b2×(−15)=−2解得b=−45把A(−2,0)代入y2=−15x2−45x+c得:−15×(−2)2−45×(−2)+c=0解得c=−45则抛物线y2的解析式为y2=−15x2−45x−45设点B的坐标为B(m,n)则{−m2+4=n−15m2−45m−45=n,解得{m=−2n=0或{m=3n=−5∵A(−2,0)∴B(3,−5)答:抛物线y2的解析式为y2=−15x2−45x−45,点B的坐标为B(3,−5);(2)解:设点C的坐标为C(a,−a2+4),则点D的坐标为D(a,−15a2−45a−45)由题意得:−2<a<3CD=−a2+4−(−15a2−45a−45)整理得:CD=−45a2+45a+245=−45(a−12)2+5由二次函数的性质可知,当−2<a≤12时,CD随a的增大而增大;当12<a<3时,CD随a的增大而减小则当a=12时,CD取得最大值,最大值为5 ∵B(3,−5),CD⊥x轴∴△BCD边CD上的高为3−a=3−12=52则S△BCD=12×5×52=254.【考点】待定系数法求二次函数解析式,二次函数图象上点的坐标特征,二次函数y=ax^2+bx+c的性质【解析】【分析】(1)先求出点A的坐标,再根据“点A为抛物线y2的最高点”可求出b的值,然后将点A代入y2可求出c的值,从而可得抛物线y2的解析式,最后设点B的坐标为B(m,n),代入y1,y2可得一个关于m、n的方程组,求解即可得;(2)设点C的坐标为C(a,−a2+4),从而可得点D的坐标和a的取值范围,再利用二次函数的性质求出CD的最大值,然后根据三角形的面积公式即可得.23.如图1,在矩形ABCD中,AB=5,BC=8,点E,F分别为AB,CD的中点.(1)求证:四边形AEFD是矩形;(2)如图2,点P是边AD上一点,BP交EF于点O,点A关于BP的对称点为点M,当点M落在线段EF 上时,则有OB=OM.请说明理由;(3)如图3,若点P是射线AD上一个动点,点A关于BP的对称点为点M,连接AM,DM,当△AMD是等腰三角形时,求AP的长.【答案】(1)证明:∵四边形ABCD是矩形,∴AB=CD,AB∥CD,∠A=90°,∵AE=EB,DF=FC,∴AE=DF,AE∥DF,∴四边形AEFD是平行四边形,∵∠A=90°,∴四边形AEFD是矩形.(2)解:如图2中,连接PM.BM.∵四边形AEFD是矩形,∴EF∥AD,∵BE=AE,∴BO=OP,由翻折可知,∠PMB=∠A=90°,∴OM=OB=OP.(3)解:如图3﹣1中,当MA=MD时,连接BM,过点M作MH⊥AD于H交BC于F.∵MA=MD,MH⊥AD,∴AH=HD=4,∵∠BAH=∠ABF=∠AHF=90°,∴四边形ABFH是矩形,∴BF=AH=4,AB=FH=5,∴∠BFM=90°,∵BM=BA=5,∴FM=√BM2−BF2=√52−42=3,∴HM=HF=FM=5﹣3=2,∵∠ABP+∠APB=90°,∠MAH+∠APB=90°,∴∠ABP=∠MAH,∵∠BAP=∠AHM=90°,∴△ABP∽△HAM,∴APHM =ABAH,∴AP2=54,∴AP=52.如图3﹣2中,当AM=AD时,连接BM,设BP交AM于F.∵AD=AM=8,BA=BM=5,BF⊥AM,∴AF=FM=4,∴BF=√AB2−AF2=√52−42=3,∵tan∠ABF=APAB =AFBF,∴AP5=43,∴AP=203,如图3﹣3中,当DA=DM时,此时点P与D重合,AP=8.如图3﹣4中,当MA=MD时,连接BM,过点M作MH⊥AD于H交BC于F.∵BM=5,BF=4,∴FM=3,MH=3+5=8,由△ABP∽△HAM,可得APHM =ABAH,∴AP8=54,∴AP=10,综上所述,满足条件的PA的值为52或203或8或10.【考点】矩形的性质,矩形的判定,轴对称的性质,相似三角形的判定与性质,四边形-动点问题【解析】【分析】(1)根据四边形ABCD是矩形,先证明四边形AEFD是平行四边形,根据∠A=90°,即可得到结果;(2)连接PM.BM,证明EF∥AD,推出BO=OP,根据翻折可得到结果;(3)分类讨论:当MA=MD时,连接BM,过点M作MH⊥AD于H交BC于F;当AM=AD时,连接BM,设BP交AM于F;当DA=DM时,此时点P与D重合,AP=8;当MA=MD时,连接BM,过点M 作MH⊥AD于H交BC于F;。

2024云南中考数学试卷真题及答案

2024云南中考数学试卷真题及答案

2024云南中考数学试卷真题及答案第一部分:选择题一、单选题1.某数的三位数字是432,它是16的倍数,那么这个数的十位数是多少?• A. 1• B. 2• C. 3• D. 4答案:B解析:根据题干可得,这个数是16的倍数,而16=2*8,因此这个数同时也是2的倍数。

个位数是2,故十位数只有选择2。

2.若正整数a、b满足a*b = 600,且a与b的最小公倍数等于600,那么a与b的最大公因数是多少?• A. 1• B. 10• C. 20• D. 30答案:C解析:根据题干可得,a*b = 600,所以a、b不能同时是素数,也就是其中一个必定有10这个因数。

而最小公倍数等于600,说明a和b之间没有其他公共因数,因此最大公因数为20。

二、多选题3.下列各个数都是8的倍数的是:• A. 96• B. 63• C. 40• D. 72答案:A、C、D解析:选择A、C、D,是因为这三个数都能被8整除。

4.某数的尾数是2,那么这个数除以下列各个数都有余数的是:• A. 5• B. 6• C. 7• D. 10答案:A、B、C解析:选择A、B、C,是因为这三个数不能整除2,所以除以它们时都会有余数。

第二部分:填空题5.一次函数y = kx的图象经过点(2,4),则k的值为 \\\\\_。

答案:2解析:根据题干可得,当x=2时,y=4,代入一次函数的表达式可得2k=4,解得k=2。

6.在平行四边形ABCD中,对角线AC的长为6厘米,过点C作边AB的垂线,交垂线于点E,CE的长为4厘米,则平行四边形ABCD的面积为\\\\\_ 平方厘米。

答案:12解析:平行四边形的面积可以通过底边和高来计算。

由题干可得,底边AC长度为6cm,高CE长度为4cm,所以面积为6 * 4 = 24 平方厘米。

但是平行四边形的面积是不依赖于顺序的,所以实际的面积为12平方厘米。

第三部分:解答题7.已知集合A = {整数x | $2 \\le x \\le 10$},集合B = {整数y | $3 \\ley \\le 8$},则集合A与集合B的交集和并集分别是什么?答案:交集:{3, 4, 5, 6, 7, 8};并集:{2, 3, 4, 5, 6, 7, 8, 9, 10}解析:集合A是2到10之间的整数构成的集合,集合B是3到8之间的整数构成的集合。

云南省中考数学试卷及答案解析()

云南省中考数学试卷及答案解析()

云南省中考数学试卷一、填空题(本大题共6个小题,每小题3分,满分18分)1.|﹣3|=.2.如图,直线a∥b,直线c与直线a、b分别相交于A、B两点,若∠1=60°,则∠2=.3.因式分解:x2﹣1=.4.若一个多边形的边数为6,则这个多边形的内角和为 720度.5.如果关于x的一元二次方程x2+2ax+a+2=0有两个相等的实数根,那么实数a的值为.6.如果圆柱的侧面展开图是相邻两边长分别为6,16π的长方形,那么这个圆柱的体积等于.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,满分32分)7.据《云南省生物物种名录()的》介绍,在素有“动植物王国”之美称的云南,已经发现的动植物有25434种,25434用科学记数法表示为()A.2.5434×103B.2.5434×104C.2.5434×10﹣3D.2.5434×10﹣48.函数y=的自变量x的取值范围为()A.x>2 B.x<2 C.x≤2 D.x≠29.若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个几何体是()A.圆柱 B.圆锥 C.球 D.正方体10.下列计算,正确的是()A.(﹣2)﹣2=4 B. C.46÷(﹣2)6=64 D.11.位于第一象限的点E在反比例函数y=的图象上,点F在x轴的正半轴上,O是坐标原点.若EO=EF,△EOF的面积等于2,则k=()A.4 B.2 C.1 D.﹣212.某校随机抽查了10名参加云南省初中学业水平考试学生的体育成绩,得到的结果如表:成绩(分)46 47 48 49 50人数(人) 1 2 1 2 4下列说法正确的是()A.这10名同学的体育成绩的众数为50B.这10名同学的体育成绩的中位数为48C.这10名同学的体育成绩的方差为50D.这10名同学的体育成绩的平均数为4813.下列交通标志中,是轴对称图形但不是中心对称图形的是()A. B. C. D.14.如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B.如果△ABD的面积为15,那么△ACD的面积为()A.15 B.10 C. D.5三.解答题(共9个小题,共70分)15.解不等式组.16.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.17.食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产A、B两种饮料共100瓶,需加入同种添加剂270克,其中A饮料每瓶需加添加剂2克,B饮料每瓶需加添加剂3克,饮料加工厂生产了A、B两种饮料各多少克?18.如图,菱形ABCD的对角线AC与BD交于点O,∠ABC:∠BAD=1:2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.19.某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,因此学校随机抽取了部分同学就兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)设学校这次调查共抽取了n名学生,直接写出n的值;(2)请你补全条形统计图;(3)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?20.如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.21.某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1、2、3、4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为8,则可获得50元代金券一张;若所得的数字之和为6,则可获得30元代金券一张;若所得的数字之和为5,则可获得15元代金券一张;其他情况都不中奖.(1)请用列表或树状图(树状图也称树形图)的方法(选其中一种即可),把抽奖一次可能出现的结果表示出来;(2)假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率P.22.草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x的函数关系图象.(1)求y与x的函数解析式(也称关系式)(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.23.(12分)(•云南)有一列按一定顺序和规律排列的数:第一个数是;第二个数是;第三个数是;对任何正整数n,第n个数与第(n+1)个数的和等于.(1)经过探究,我们发现:设这列数的第5个数为a,那么,,,哪个正确?请你直接写出正确的结论;(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n个数(即用正整数n表示第n数),并且证明你的猜想满足“第n个数与第(n+1)个数的和等于”;(3)设M表示,,,…,,这个数的和,即,求证:.云南省中考数学试卷参考答案与试题解析一、填空题(本大题共6个小题,每小题3分,满分18分)1.|﹣3|=3.【考点】绝对值.【分析】根据负数的绝对值等于这个数的相反数,即可得出答案.【解答】解:|﹣3|=3.故答案为:3.【点评】此题主要考查了绝对值的性质,正确记忆绝对值的性质是解决问题的关键.2.如图,直线a∥b,直线c与直线a、b分别相交于A、B两点,若∠1=60°,则∠2=60°.【考点】平行线的性质.【分析】先根据平行线的性质求出∠3的度数,再由对顶角的定义即可得出结论.【解答】解:∵直线a∥b,∠1=60°,∴∠1=∠3=60°.∵∠2与∠3是对顶角,∴∠2=∠3=60°.故答案为:60°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.3.因式分解:x2﹣1=(x+1)(x﹣1).【考点】因式分解-运用公式法.【专题】因式分解.【分析】方程利用平方差公式分解即可.【解答】解:原式=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.4.若一个多边形的边数为6,则这个多边形的内角和为 720度.【考点】多边形内角与外角.【分析】根据多边形的内角和公式求解即可.【解答】解:根据题意得,180°(6﹣2)=720°故答案为720【点评】此题是多边形的内角和外角,主要考差了多边形的内角和公式,解本题的关键是熟记多边形的内角和公式.5.如果关于x的一元二次方程x2+2ax+a+2=0有两个相等的实数根,那么实数a的值为﹣1或2.【考点】根的判别式.【分析】根据方程有两个相等的实数根列出关于a的方程,求出a的值即可.【解答】解:∵关于x的一元二次方程x2+2ax+a+2=0有两个相等的实数根,∴△=0,即4a2﹣4(a+2)=0,解得a=﹣1或2.故答案为:﹣1或2.【点评】本题考查的是根的判别式,熟知一元二次方程的解与判别式之间的关系是解答此题的关键.6.如果圆柱的侧面展开图是相邻两边长分别为6,16π的长方形,那么这个圆柱的体积等于144或384π.【考点】几何体的展开图.【分析】分两种情况:①底面周长为6高为16π;②底面周长为16π高为6;先根据底面周长得到底面半径,再根据圆柱的体积公式计算即可求解.【解答】解:①底面周长为6高为16π,π×()2×16π=π××16π=144;②底面周长为16π高为6,π×()2×6=π×64×6=384π.答:这个圆柱的体积可以是144或384π.故答案为:144或384π.【点评】本题考查了展开图折叠成几何体,本题关键是熟练掌握圆柱的体积公式,注意分类思想的运用.二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,满分32分)7.据《云南省生物物种名录()的》介绍,在素有“动植物王国”之美称的云南,已经发现的动植物有25434种,25434用科学记数法表示为()A.2.5434×103B.2.5434×104C.2.5434×10﹣3D.2.5434×10﹣4【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:在素有“动植物王国”之美称的云南,已经发现的动植物有25434种,25434用科学记数法表示为2.5434×104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.函数y=的自变量x的取值范围为()A.x>2 B.x<2 C.x≤2 D.x≠2【考点】函数自变量的取值范围.【分析】根据当函数表达式的分母中含有自变量时,自变量取值要使分母不为零,判断求解即可.【解答】解:∵函数表达式y=的分母中含有自变量x,∴自变量x的取值范围为:x﹣2≠0,即x≠2.故选D.【点评】本题考查了函数自变量取值范围的知识,求自变量的取值范围的关键在于必须使含有自变量的表达式都有意义.9.若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个几何体是()A.圆柱 B.圆锥 C.球 D.正方体【考点】由三视图判断几何体.【分析】利用三视图都是圆,则可得出几何体的形状.【解答】解:主视图、俯视图和左视图都是圆的几何体是球.故选C.【点评】本题考查了由三视图确定几何体的形状,学生的思考能力和对几何体三种视图的空间想象能力.10.下列计算,正确的是()A.(﹣2)﹣2=4 B. C.46÷(﹣2)6=64 D.【考点】二次根式的加减法;有理数的乘方;负整数指数幂;二次根式的性质与化简.【分析】依次根据负整指数的运算,算术平方根的计算,整式的除法,二次根式的化简和合并进行判断即可.【解答】解:A、(﹣2)﹣2=,所以A错误,B、=2,所以B错误,C、46÷(﹣2)6=212÷26=26=64,所以C正确;D、﹣=2﹣=,所以D错误,故选C【点评】此题是二次根式的加减法,主要考查了负整指数的运算,算术平方根的计算,整式的除法,二次根式的化简和合并同类二次根式,熟练掌握这些知识点是解本题的关键.11.位于第一象限的点E在反比例函数y=的图象上,点F在x轴的正半轴上,O是坐标原点.若EO=EF,△EOF的面积等于2,则k=()A.4 B.2 C.1 D.﹣2【考点】反比例函数系数k的几何意义.【分析】此题应先由三角形的面积公式,再求解k即可.【解答】解:因为位于第一象限的点E在反比例函数y=的图象上,点F在x轴的正半轴上,O是坐标原点.若EO=EF,△EOF的面积等于2,所以,解得:xy=2,所以:k=2,故选:B【点评】主要考查了反比例函数系数k的几何意义问题,关键是由三角形的面积公式,再求解k.12.某校随机抽查了10名参加云南省初中学业水平考试学生的体育成绩,得到的结果如表:成绩(分)46 47 48 49 50人数(人) 1 2 1 2 4下列说法正确的是()A.这10名同学的体育成绩的众数为50B.这10名同学的体育成绩的中位数为48C.这10名同学的体育成绩的方差为50D.这10名同学的体育成绩的平均数为48【考点】方差;加权平均数;中位数;众数.【分析】结合表格根据众数、平均数、中位数的概念求解即可.【解答】解:10名学生的体育成绩中50分出现的次数最多,众数为50;第5和第6名同学的成绩的平均值为中位数,中位数为: =49;平均数==48.6,方差= [(46﹣48.6)2+2×(47﹣48.6)2+(48﹣48.6)2+2×(49﹣48.6)2+4×(50﹣48.6)2]≠50;∴选项A正确,B、C、D错误;故选:A.【点评】本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.13.下列交通标志中,是轴对称图形但不是中心对称图形的是()A. B. C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,也不是中心对称图形,不符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,不符合题意.故选A.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.14.如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B.如果△ABD的面积为15,那么△ACD的面积为()A.15 B.10 C. D.5【考点】相似三角形的判定与性质.【分析】首先证明△ACD∽△BCA,由相似三角形的性质可得:△ACD的面积:△ABC的面积为1:4,因为△ABD的面积为9,进而求出△ACD的面积.【解答】解:∵∠DAC=∠B,∠C=∠C,∴△ACD∽△BCA,∵AB=4,AD=2,∴△ACD的面积:△ABC的面积为1:4,∴△ACD的面积:△ABD的面积=1:3,∵△ABD的面积为15,∴△ACD的面积∴△ACD的面积=5.故选D.【点评】本题考查了相似三角形的判定和性质:相似三角形的面积比等于相似比的平方,是中考常见题型.三.解答题(共9个小题,共70分)15.解不等式组.【考点】解一元一次不等式组.【分析】分别解得不等式2(x+3)>10和2x+1>x,然后取得这两个不等式解的公共部分即可得出答案.【解答】解:∵,∴解不等式①得:x>2,解不等式②得:x>﹣1,∴不等式组的解集为:x>2.【点评】本题主要考查了解一元一次不等式组的知识,要掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.16.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据全等三角形的判定方法SAS,即可证明△ABC≌△CDE,根据全等三角形的性质:得出结论.【解答】证明:∵点C是AE的中点,∴AC=CE,在△ABC和△CDE中,,∴△ABC≌△CDE,∴∠B=∠D.【点评】本题考查了全等三角形的判定和性质,全等三角形的判定方法:SSS,SAS,ASA,AAS,直角三角形还有HL.17.食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产A、B两种饮料共100瓶,需加入同种添加剂270克,其中A饮料每瓶需加添加剂2克,B饮料每瓶需加添加剂3克,饮料加工厂生产了A、B两种饮料各多少克?【考点】二元一次方程组的应用.【分析】设A种饮料生产了x瓶,B种饮料生产了y瓶,根据:①A种饮料瓶数+B种饮料瓶数=100,②A种饮料添加剂的总质量+B种饮料的总质量=270,列出方程组求解可得.【解答】解:设A种饮料生产了x瓶,B种饮料生产了y瓶,根据题意,得:,解得:,答:A种饮料生产了30瓶,B种饮料生产了70瓶.【点评】本题主要考查二元一次方程组的应用能力,在解题时要能根据题意得出等量关系,列出方程组是本题的关键.18.如图,菱形ABCD的对角线AC与BD交于点O,∠ABC:∠BAD=1:2,BE∥AC,CE∥BD.(1)求tan∠DBC的值;(2)求证:四边形OBEC是矩形.【考点】矩形的判定;菱形的性质;解直角三角形.【专题】计算题;矩形菱形正方形.【分析】(1)由四边形ABCD是菱形,得到对边平行,且BD为角平分线,利用两直线平行得到一对同旁内角互补,根据已知角之比求出相应度数,进而求出∠BDC度数,即可求出tan∠DBC的值;(2)由四边形ABCD是菱形,得到对角线互相垂直,利用两组对边平行的四边形是平行四边形,再利用有一个角为直角的平行四边形是矩形即可得证.【解答】(1)解:∵四边形ABCD是菱形,∴AD∥BC,∠DBC=∠ABC,∴∠ABC+∠BAD=180°,∵∠ABC:∠BAD=1:2,∴∠ABC=60°,∴∠BDC=∠ABC=30°,则tan∠DBC=tan30°=;(2)证明:∵四边形ABCD是菱形,∴AC⊥BD,即∠BOC=90°,∵BE∥AC,CE∥BD,∴BE∥OC,CE∥OB,∴四边形OBEC是平行四边形,则四边形OBEC是矩形.【点评】此题考查了矩形的判定,菱形的性质,以及解直角三角形,熟练掌握判定与性质是解本题的关键.19.某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,因此学校随机抽取了部分同学就兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)设学校这次调查共抽取了n名学生,直接写出n的值;(2)请你补全条形统计图;(3)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据喜欢篮球的人数有25人,占总人数的25%即可得出总人数;(2)根据总人数求出喜欢羽毛球的人数,补全条形统计图即可;(3)求出喜欢跳绳的人数占总人数的20%即可得出结论.【解答】解:(1)∵喜欢篮球的人数有25人,占总人数的25%,∴=100(人);(2)∵喜欢羽毛球的人数=100×20%=20人,∴条形统计图如图;(3)由已知得,1200×20%=240(人).答;该校约有240人喜欢跳绳.【点评】本题考查的是条形统计图,熟知从条形图可以很容易看出数据的大小,便于比较是解答此题的关键.20.如图,AB 为⊙O 的直径,C 是⊙O 上一点,过点C 的直线交AB 的延长线于点D ,AE ⊥DC ,垂足为E ,F 是AE 与⊙O 的交点,AC 平分∠BAE . (1)求证:DE 是⊙O 的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.【考点】切线的判定;扇形面积的计算.【分析】(1)连接OC ,先证明∠OAC=∠OCA ,进而得到OC ∥AE ,于是得到OC ⊥CD ,进而证明DE 是⊙O 的切线;(2)分别求出△OCD 的面积和扇形OBC 的面积,利用S 阴影=S △COD ﹣S 扇形OBC 即可得到答案. 【解答】解:(1)连接OC , ∵OA=OC , ∴∠OAC=∠OCA , ∵AC 平分∠BAE , ∴∠OAC=∠CAE , ∴∠OCA=∠CAE , ∴OC ∥AE , ∴∠OCD=∠E , ∵AE ⊥DE , ∴∠E=90°, ∴∠OCD=90°, ∴OC ⊥CD ,∵点C 在圆O 上,OC 为圆O 的半径, ∴CD 是圆O 的切线;(2)在Rt △AED 中,∵∠D=30°,AE=6, ∴AD=2AE=12,在Rt △OCD 中,∵∠D=30°, ∴DO=2OC=DB+OB=DB+OC , ∴DB=OB=OC=AD=4,DO=8, ∴CD===4,∴S △OCD ===8,∵∠D=30°,∠OCD=90°, ∴∠DOC=60°, ∴S 扇形OBC =×π×OC 2=,∵S 阴影=S △COD ﹣S 扇形OBC ∴S 阴影=8﹣,∴阴影部分的面积为8﹣.【点评】本题主要考查了切线的判定以及扇形的面积计算,解(1)的关键是证明OC ⊥DE ,解(2)的关键是求出扇形OBC 的面积,此题难度一般.21.某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1、2、3、4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为8,则可获得50元代金券一张;若所得的数字之和为6,则可获得30元代金券一张;若所得的数字之和为5,则可获得15元代金券一张;其他情况都不中奖.(1)请用列表或树状图(树状图也称树形图)的方法(选其中一种即可),把抽奖一次可能出现的结果表示出来;(2)假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率P.【考点】列表法与树状图法.【分析】(1)首先根据题意画出表格,然后由表格求得所有等可能的结果;(2)根据概率公式进行解答即可.【解答】解:(1)列表得:1 2 3 41 2 3 4 52 3 4 5 63 4 5 6 74 5 6 7 8(2)由列表可知,所有可能出现的结果一共有16种,这些结果出现的可能性相同,其中两次所得数字之和为8、6、5的结果有8种,所以抽奖一次中奖的概率为:P==.答:抽奖一次能中奖的概率为.【点评】此题考查的是用列表法或树状图法求概率与不等式的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.22.草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x的函数关系图象.(1)求y与x的函数解析式(也称关系式)(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.【考点】二次函数的应用.【分析】(1)待定系数法求解可得;(2)根据:总利润=每千克利润×销售量,列出函数关系式,配方后根据x的取值范围可得W的最大值.【解答】解:(1)设y与x的函数关系式为y=kx+b,根据题意,得:,解得:,∴y与x的函数解析式为y=﹣2x+340,(20≤x≤40).(2)由已知得:W=(x﹣20)(﹣2x+340)=﹣2x2+380x﹣6800=﹣2(x﹣95)2+11250,∵﹣2<0,∴当x≤95时,W随x的增大而增大,∵20≤x≤40,∴当x=40时,W最大,最大值为﹣2(40﹣95)2+11250=5200元.【点评】本题主要考查待定系数法求一次函数解析式与二次函数的应用,根据相等关系列出函数解析式,并由二次函数的性质确定其最值是解题的关键.23.(12分)(•云南)有一列按一定顺序和规律排列的数:第一个数是;第二个数是;第三个数是;…对任何正整数n,第n个数与第(n+1)个数的和等于.(1)经过探究,我们发现:设这列数的第5个数为a,那么,,,哪个正确?请你直接写出正确的结论;(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n个数(即用正整数n表示第n数),并且证明你的猜想满足“第n个数与第(n+1)个数的和等于”;(3)设M表示,,,…,,这个数的和,即,求证:.【考点】分式的混合运算;规律型:数字的变化类.【分析】(1)由已知规律可得;(2)先根据已知规律写出第n、n+1个数,再根据分式的运算化简可得;(3)将每个分式根据﹣=<<=﹣,展开后再全部相加可得结论.【解答】解:(1)由题意知第5个数a==﹣;(2)∵第n个数为,第(n+1)个数为,∴+=(+)=×=×=,即第n个数与第(n+1)个数的和等于;(3)∵1﹣=<=1,=<<=1﹣,﹣=<<=﹣,…﹣=<<=﹣,﹣=<<=﹣,∴1﹣<+++…++<2﹣,即<+++…++<,∴.【点评】本题主要考查分式的混合运算及数字的变化规律,根据已知规律=﹣得到﹣=<<=﹣是解题的关键.21 / 21。

【真题】云南省中考数学试卷含答案解析(word版)

【真题】云南省中考数学试卷含答案解析(word版)

云南省中考数学试卷(解析版)(全卷三个大题,共23个小题;满分120分)一、填空题(本大题共6个小题,每小题3分,共18分) 1.2的相反数是______________. 【考点】相反数 【答案】-2;2.已知关于x 的方程2501,x x a x a ++==已知关于的方程的解是则的值为__________ 【考点】方程的解 【答案】-73.如图,在△ABC 中,D 、E 分别为AB ,AC 上的点,若DE ∥BC ,AD 13AB =, 则AD+DE+AE=AB+BC+AC______________.【考点】相似三角形,等比性质 【解析】等比性质a c e a c e k k b d f b d f ++====++若,则 等比性质的原理是,a bk,c dk,e fk a c ek b d f======设则 a c e bk dk fkk b d f b d f++++==++++,故本题答案为134.9______________.x x -使有意义的的取值范围为 【考点】二次根式 【答案】9x ≤5.如图,边长为4的正方形ABCD 外切于圆O ,切点分别为E 、F 、G 、H ,则图中阴影部分的面积为____________________.【考点】多边形内切圆,切线长定理。

阴影部分面积【解析】方法很多,又是选择题,要求没有那么严谨,只要看出分割,就可以完成 【答案】42π+6.5(,)y A a b x=已知点在双曲线上,若a 、b 都是正整数,则图像经过 B(a,0)C(0,b)、两点的一次函数的解析式(也称关系式)为_______________.【考点】反比例函数,一次函数,待定系数法【解析】因为5(,)y A a b x=点在双曲线上,所以ab=5 又因为a 、b 都是正整数,所以1551a ab b ==⎧⎧⎨⎨==⎩⎩或 所以分两种情况:①B (1,0),C (0,5),由此可得一次函数解析式为55y x =-+ ②B (5,0),C (0,1),由此可得一次函数解析式为155y x =-+二、选则题(本大题共8个小题,每小题只要一个正确选项,每小题4分,共32分) 7.作为世界文化遗产的长城,其总长大约为6700000m ,将6700000用科学计数法表示为( )A .56.710⨯ B. 66.710⨯ C. 70.6710⨯ D. 86710⨯【考点】科学计算法 【答案】选B8.下面长方体的主视图(主视图也称正视图)是( )【考点】三视图 【答案】选C9.下列计算正确的是( )A .236a a a ⨯= B.()3326a a -=- C.623a a a ÷= D.326()a a-=【考点】整式乘除、幂的性质 【答案】选D10. 若一个多边形的内角和为900°,则这个多边形是( ) A.五边形 B.六边形 C.七边形 D.八边形 【考点】多边形内角和 【答案】选C11. sin60°的值为( )A .3 B.32 C.22 D.12【考点】特殊角三角函数【答案】选B12. 下列说法正确的是( )A .要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样调查的方法B .4为同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为100C .甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62,则乙的表现较甲更稳定D.某次抽奖活动中,中奖的概率为150表示每抽奖50次就有一次中奖 【考点】统计概率小综合【解析】B 选项中位数应为102.5;C 选项根据方差甲更稳定;D 这种事情是常识大家都懂, 故选A13.正如我们小学学过的圆锥体积公式213V r h π=(π表示圆周率,r 表示圆锥的底面半径,h 表示圆锥的高)一样,许多几何量的计算都要用到π.祖冲之是世界上第一个把π计算到小数点后第7位的中国古代科学家,创造了当时世界上的最高水平,差不多过了1000年,才有人把π计算得更精确。

2023年云南中考数学试卷

2023年云南中考数学试卷

2023年云南中考数学试卷一、选择题(每题3分,共30分)下列哪个数不是偶数?A. 2B. 4C. 7D. 8下列哪个方程有实数解?A. x2+1=0B. x2−4x+5=0C. x2−4=0D. x2+2x+3=0下列哪个图形是轴对称的?A. 等腰三角形B. 平行四边形C. 梯形D. 菱形(但题目未明确是哪种菱形,一般菱形是轴对称的,但此处为严谨性,可视为非特定选项)注:由于D选项表述不够明确,实际情况下可能选择A作为更确定的答案,但此处保留原题形式。

下列哪个数不是质数?A. 3B. 5C. 9D. 11下列哪个函数在x=0处连续?A. f(x)=x1B. f(x)=xx2C. f(x)={x,1,x=0x=0D. f(x)=sinx1下列哪个不等式表示的是x的取值范围在−1和1之间(不包括−1和1)?A. −1<x<1B. −1≤x≤1C. x<−1或 x>1D. x≤−1或x≥1下列哪个选项描述的是等差数列的性质?A. 任意两项之和为常数B. 任意两项之积为常数C. 任意相邻两项之差为常数D. 任意相邻两项之和为常数下列哪个数不是有理数的平方?A. 2B. 41C. 169D. 32下列哪个选项描述的是正比例函数的图像特征?A. 一条经过原点的直线B. 一个圆C. 一个抛物线D. 一条水平的直线下列哪个表达式可以化简为x−1?A. x2−1B. xx2−1C. x−x1D. x−1x2−1(注意:此选项在x=1时可化简为x+1,但题目要求化简为x−1,故不正确;然而,若考虑x=1时的情况,原式无意义,但此逻辑不应用于选择题判断,因此仍判断为不正确)二、填空题(每题3分,共15分)若3x+5=14,则x= _______。

圆的面积公式为S= _______。

若一个长方形的长为l,宽为w,则其面积为_______。

若一次函数y=kx+b(k=0)的图像经过点(2,3)和(−1,−1),则k= _______,b= _______。

云南省部编人教版中考数学试题及精析(word版).doc

云南省部编人教版中考数学试题及精析(word版).doc

2020 年云南省中考数学试卷一、填空题(本大题共 6 个小题,每题 3 分,满分 18 分)1. |﹣ 3|=.2.如图,直线 a ∥ b ,直线 c 与直线 a 、 b 分别订交于 A 、B 两点,若 ∠ 1=60°,则 ∠ 2= .3.因式分解: x 2﹣ 1=.4.若一个多边形的边数为6,则这个多边形的内角和为720 度.5.若是关于 x 的一元二次方程 x 2+2ax+a+2=0 有两个相等的实数根,那么实数a 的值为 .6.若是圆柱的侧面张开图是相邻两边长分别为6,16π的长方形, 那么这个圆柱的体积等于.二、选择题(本大题共 8 小题,每题只有一个正确选项,每题4 分,满分 32 分)7.据《云南省生物物种名录( 2020 版)的》介绍,在素有“动植物王国 ”之美称的云南,已经发现的动植物有 25434 种, 25434 用科学记数法表示为()34﹣ 3×10﹣ 4A .×10B .×10C .×10D .8.函数 y=的自变量 x 的取值范围为( ) A . x >2 B .x < 2 C . x ≤2 D . x ≠29.若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个几何体是()A .圆柱B .圆锥C .球D .正方体10.以下计算,正确的选项是()A .(﹣ 2)﹣2=4 B . C . 46÷(﹣ 2) 6=64 D .11.位于第一象限的点 E 在反比率函数 y= 的图象上,点 F 在 x 轴的正半轴上, O 是坐标原点.若EO=EF ,△ EOF 的面积等于 2,则 k= ( )A . 4B .2C .1D .﹣ 212.某校随机抽查了 10 名参加 2020 年云南省初中学业水平考试学生的体育成绩,获取的结果如表: 成绩(分)46 47 48 49 50 人数(人)12124以下说法正确的选项是()A .这 10 名同学的体育成绩的众数为 50B .这 10 名同学的体育成绩的中位数为48C.这 10 名同学的体育成绩的方差为50D.这 10 名同学的体育成绩的平均数为4813.以下交通标志中,是轴对称图形但不是中心对称图形的是()A. B. C. D.14.如图,D 是△ ABC 的边 BC 上一点, AB=4 ,AD=2 ,∠ DAC= ∠ B .若是△ABD 的面积为15,那么△ACD 的面积为()A. 15 B.10 C. D.5三.解答题(共9 个小题,共70 分)15.解不等式组.16.如图:点 C 是 AE 的中点,∠ A= ∠ ECD ,AB=CD ,求证:∠ B=∠ D.17.食品安全部是关乎民生的重要问题,在食品中增加过分的增加剂对人体健康有害,但适合的增加剂对人体健康无害而且有利于食品的储蓄和运输.为提高质量,做进一步研究,某饮料加工厂需生产A、B 两种饮料共 100 瓶,需加入同种增加剂270 克,其中 A 饮料每瓶需加增加剂 2 克,B 饮料每瓶需加增加剂 3 克,饮料加工厂生产了 A 、 B 两种饮料各多少克?18.如图,菱形ABCD 的对角线AC 与 BD 交于点 O,∠ ABC :∠ BAD=1 : 2, BE∥ AC , CE∥ BD.(1)求 tan∠ DBC 的值;(2)求证:四边形 OBEC 是矩形.19.某中学为了丰富学生的校园体育锻炼生活,决定依照学生的兴趣爱好采买一批体育用品供学生课后锻炼使用,因此学校随机抽取了部分同学就兴趣爱好进行检查,将收集的数据整理并绘制成以下两幅统计图,请依照图中的信息,完成以下问题:( 1)学校次共抽取了n 名学生,直接写出n 的;(2)你全条形;(3)校共有学生 1200 名,你估校有多少名学生喜跳?20.如, AB⊙ O的直径, C 是⊙O上一点,点 C 的直交AB的延于点D, AE ⊥DC ,垂足E,F是AE与⊙O 的交点,AC均分∠BAE .( 1)求:DE是⊙O 的切;( 2)若AE=6 ,∠ D=30 °,求中阴影部分的面.21.某商场祝开大酬抽活,凡在开当天店物的客,都能得一次抽的机遇,抽以下:在一个不透明的盒子里装有分有数字1、 2、 3、4 的 4 个小球,它的形状、大小、地完好相同,客先从盒子里随机取出一个小球,下小球上有的数字,尔后把小球放回盒子并拌平均,再从盒子中随机取出一个小球,下小球上有的数字,并算两次下的数字之和,若两次所得的数字之和8,可得50 元代金券一;若所得的数字之和6,可得30 元代金券一;若所得的数字之和5,可得15 元代金券一;其他情况都不中.(1)用列表或状(状也称形)的方法(其中一种即可),把抽一次可能出的果表示出来;(2)若是你参加了商场开当天的一次抽活,求能中的概率P.22.草莓是云南多地盛的一种水果,今年某水果售店在草莓售旺季,售成本每千克20 元的草莓,定期售价不低于成本价,也不高于每千克40 元,,售量y(千克)与售价x(元)吻合一次函数关系,如是y 与 x 的函数关系象.( 1)求 y 与 x 的函数解析式(也称关系式)( 2)水果售店草莓得的利W 元,求 W 的最大.23.( 12 分)( 2020?云南)有一列按必然序和律排列的数:第一个数是;第二个数是;第三个数是;⋯任何正整数n,第 n 个数与第( n+1)个数的和等于.( 1)研究,我:列数的第 5 个数 a,那么,,,哪个正确?你直接写出正确的;( 2)你察第 1 个数、第 2 个数、第 3 个数,猜想列数的第n 个数(即用正整数n 表示第n 数),而且明你的猜想足“第 n 个数与第(n+1)个数的和等于”;(3) M 表示,,,⋯,, 2020 个数的和,即,求:.2020 年云南省中考数学试卷参照答案与试题解析一、填空题(本大题共 6 个小题,每题 3 分,满分 18 分)1.|﹣3|=3 .【考点】绝对值.【解析】依照负数的绝对值等于这个数的相反数,即可得出答案.【解答】解: |﹣ 3|=3.故答案为: 3.【议论】此题主要观察了绝对值的性质,正确记忆绝对值的性质是解决问题的要点.2.如图,直线 a ∥ b ,直线 c 与直线 a 、 b 分别订交于 A 、B 两点,若 ∠ 1=60°,则 ∠ 2= 60° .【考点】平行线的性质.【解析】先依照平行线的性质求出【解答】解: ∵ 直线 a ∥ b , ∠ 1=60°, ∴ ∠ 1=∠ 3=60°.∵∠2 与∠3 是对顶角,∴ ∠ 2=∠ 3=60°.故答案为: 60°.【议论】此题观察的是平行线的性质,用到的知识点为:两直线平行,同位角相等.3.因式分解: x 2﹣ 1= ( x+1 )( x ﹣ 1) .【考点】因式分解 -运用公式法. 【专题】因式分解.【解析】方程利用平方差公式分解即可.【解答】解:原式 =( x+1)( x ﹣ 1).故答案为:( x+1)( x ﹣ 1).【议论】此题观察了因式分解﹣运用公式法,熟练掌握平方差公式是解此题的要点.∠ 3 的度数,再由对顶角的定义即可得出结论.4.若一个多边形的边数为 6,则这个多边形的内角和为720 度.【考点】多边形内角与外角.【解析】依照多边形的内角和公式求解即可.【解答】解:依照题意得,180°( 6﹣ 2) =720°故答案为 720【议论】此题是多边形的内角和外角,主要考差了多边形的内角和公式,解此题的要点是熟记多边形的内角和公式.5.若是关于 x 的一元二次方程 x 2+2ax+a+2=0 有两个相等的实数根,那么实数a 的值为﹣ 1 或 2 .【考点】根的鉴识式.【解析】依照方程有两个相等的实数根列出关于 a 的方程,求出 a 的值即可.【解答】解: ∵ 关于 x 的一元二次方程x 2+2ax+a+2=0 有两个相等的实数根,∴ △ =0,即 2 4( a+2 =0 ,解得 a= ﹣ 1 24a ﹣ ) 或 . 故答案为:﹣ 1 或 2.【议论】此题观察的是根的鉴识式,熟知一元二次方程的解与鉴识式之间的关系是解答此题的要点.6.若是圆柱的侧面张开图是相邻两边长分别为6,16π的长方形,那么这个圆柱的体积等于144 或 384π .【考点】几何体的张开图.【解析】分两种情况: ① 底面周长为 6 高为 16π;② 底面周长为 16π高为 6;先依照底面周长获取底面半径,再依照圆柱的体积公式计算即可求解.【解答】解: ① 底面周长为 6 高为 16π,π×() 2×16π=π××16π=144;② 底面周长为 16π高为 6,π×() 2×6=π×64×6=384π.答:这个圆柱的体积可以是144 或 384π.故答案为: 144 或 384π.【议论】此题观察了张开图折叠成几何体,此题要点是熟练掌握圆柱的体积公式,注意分类思想的运用.二、选择题(本大题共8 小题,每题只有一个正确选项,每题4 分,满分32 分)7.据《云南省生物物种名录(2020版)的》介绍,在素有“动植物王国 ”之美称的云南,已经发现的动植物有25434 种, 25434 用科学记数法表示为()A .×103B .×104C .×10﹣ 3D .×10﹣ 4【考点】科学记数法—表示较大的数.【解析】科学记数法的表示形式为a ×10n的形式,其中 1≤|a|< 10, n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点搬动了多少位, n 的绝对值与小数点搬动的位数相同.当原数绝对值>1 时, n 是正数;当原数的绝对值<1 时, n 是负数.【解答】解:在素有“动植物王国 ”之美称的云南,已经发现的动植物有25434 种, 25434 用科学记数法表示为×104,应选: B .【议论】此题观察科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|< 10, n 为整数,表示时要点要正确确定a 的值以及 n 的值.8.函数 y=的自变量 x 的取值范围为( )A . x >2B .x < 2C . x ≤2D . x ≠2【考点】函数自变量的取值范围.【解析】依照当函数表达式的分母中含有自变量时,自变量取值要使分母不为零,判断求解即可.【解答】解: ∵ 函数表达式 y=的分母中含有自变量x ,∴ 自变量 x 的取值范围为: x ﹣2≠0,即 x ≠2.应选 D .【议论】此题观察了函数自变量取值范围的知识,求自变量的取值范围的要点在于必定使含有自变量的表达式都有意义.9.若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个几何体是( A .圆柱 B .圆锥 C .球 D .正方体)【考点】由三视图判断几何体.【解析】利用三视图都是圆,则可得出几何体的形状.【解答】解:主视图、俯视图和左视图都是圆的几何体是球.应选 C.【议论】此题观察了由三视图确定几何体的形状,学生的思虑能力和对几何体三种视图的空间想象能力.10.以下计算,正确的选项是()A .(﹣ 2)﹣2=4 B. C. 46÷(﹣ 2)6=64 D .【考点】二次根式的加减法;有理数的乘方;负整数指数幂;二次根式的性质与化简.【解析】依次依照负整指数的运算,算术平方根的计算,整式的除法,二次根式的化简和合并进行判断即可.【解答】解: A 、(﹣ 2)﹣2=,因此 A 错误,B、 =2,因此 B 错误,C、 46÷(﹣ 2)6=212÷26=26=64 ,因此 C 正确;D、﹣ =2﹣ =,因此 D 错误,应选 C【议论】此题是二次根式的加减法,主要观察了负整指数的运算,算术平方根的计算,整式的除法,二次根式的化简和合并同类二次根式,熟练掌握这些知识点是解此题的要点.11.位于第一象限的点 E 在反比率函数y= 的图象上,点 F 在 x 轴的正半轴上, O 是坐标原点.若EO=EF ,△ EOF 的面积等于2,则 k= ()A. 4 B.2 C.1 D.﹣ 2【考点】反比率函数系数k 的几何意义.【解析】此题应先由三角形的面积公式,再求解k 即可.【解答】解:因为位于第一象限的点 E 在反比率函数y= 的图象上,点 F 在 x 轴的正半轴上,O 是坐标原点.若 EO=EF ,△ EOF 的面积等于2,因此,解得: xy=2 ,因此: k=2,应选: B【议论】主要观察了反比率函数系数k 的几何意义问题,要点是由三角形的面积公式,再求解k.12.某校随机抽查了10 名参加 2020 年云南省初中学业水平考试学生的体育成绩,获取的结果如表:成绩(分)4647484950人数(人)12124以下说法正确的选项是()A .这 10 名同学的体育成绩的众数为50B.这 10 名同学的体育成绩的中位数为48C.这 10 名同学的体育成绩的方差为50D.这 10 名同学的体育成绩的平均数为48【考点】方差;加权平均数;中位数;众数.【解析】结合表格依照众数、平均数、中位数的看法求解即可.【解答】解: 10 名学生的体育成绩中50 分出现的次数最多,众数为50;第 5 和第 6 名同学的成绩的平均值为中位数,中位数为:=49;平均数,方差 = [ ( 46﹣)2+2 ×( 47﹣)2+( 48﹣)2+2×( 49﹣)2+4×( 50﹣)2] ≠50;∴选项 A 正确, B、C、D 错误;应选: A.【议论】此题观察了众数、平均数、中位数的知识,掌握各知识点的看法是解答此题的要点.13.以下交通标志中,是轴对称图形但不是中心对称图形的是(A. B. C. D.)【考点】中心对称图形;轴对称图形.【解析】依照轴对称图形与中心对称图形的看法求解.【解答】解: A 、是轴对称图形,不是中心对称图形,吻合题意;B、不是轴对称图形,也不是中心对称图形,不吻合题意;C、不是轴对称图形,也不是中心对称图形,不吻合题意;D、是轴对称图形,也是中心对称图形,不吻合题意.应选 A .【议论】此题主要观察了中心对称图形与轴对称的定义,依照定义得出图形形状是解决问题的要点.14.如图,D 是△ ABC 的边 BC 上一点, AB=4 ,AD=2 ,∠ DAC= ∠ B .若是△ABD 的面积为15,那么△ACD 的面积为()A. 15 B.10 C. D.5【考点】相似三角形的判断与性质.【解析】第一证明△ACD ∽ △ BCA ,由相似三角形的性质可得:△ ACD的面积:△ ABC的面积为1: 4,因为△ ABD 的面积为9,进而求出△ACD 的面积.【解答】解:∵ ∠DAC=∠B,∠ C=∠ C,∴△ACD ∽ △BCA ,∵ AB=4 , AD=2 ,∴△ACD的面积:△ ABC的面积为1: 4,∴ △ ACD 的面积:△ ABD 的面积 =1: 3,∵ △ ABD 的面积为15,∴ △ ACD 的面积∴△ ACD 的面积 =5.应选 D.【议论】此题观察了相似三角形的判断和性质:相似三角形的面积比等于相似比的平方,是中考常有题型.三.解答题(共9 个小题,共70 分)15.解不等式组.【考点】解一元一次不等式组.【解析】分别解得不等式 2(x+3 )> 10 和 2x+1 > x,尔后获取这两个不等式解的公共部分即可得出答案.【解答】解:∵ ,∴解不等式①得: x>2,解不等式②得: x>﹣ 1,∴不等式组的解集为:x> 2.【议论】此题主要观察认识一元一次不等式组的知识,要掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.16.如图:点 C 是 AE 的中点,∠ A= ∠ ECD ,AB=CD ,求证:∠ B=∠ D.【考点】全等三角形的判断与性质.【专题】证明题.【解析】依照全等三角形的判断方法SAS,即可证明△ ABC ≌ △ CDE,依照全等三角形的性质:得出结论.【解答】证明:∵点C是AE的中点,∴AC=CE ,在△ABC 和△CDE 中,,∴△ABC ≌△ CDE,∴∠B=∠D.【议论】此题观察了全等三角形的判断和性质,全等三角形的判断方法:SSS, SAS , ASA , AAS ,直角三角形还有HL .17.食品安全部是关乎民生的重要问题,在食品中增加过分的增加剂对人体健康有害,但适合的增加剂对人体健康无害而且有利于食品的储蓄和运输.为提高质量,做进一步研究,某饮料加工厂需生产A、B 两种饮料共 100 瓶,需加入同种增加剂270 克,其中 A 饮料每瓶需加增加剂 2 克,B 饮料每瓶需加增加剂 3 克,饮料加工厂生产了 A 、 B 两种饮料各多少克?【考点】二元一次方程组的应用.【解析】设 A 种饮料生产了x 瓶,B 种饮料生产了y 瓶,依照:① A 种饮料瓶数 +B 种饮料瓶数 =100,② A种饮料增加剂的总质量+B 种饮料的总质量=270,列出方程组求解可得.y 瓶,【解答】解:设 A 种饮料生产了x 瓶, B 种饮料生产了依照题意,得:,解得:,答: A 种饮料生产了30 瓶, B 种饮料生产了70 瓶.【议论】此题主要观察二元一次方程组的应用能力,在解题时要能依照题意得出等量关系,列出方程组是此题的要点.18.如图,菱形ABCD 的对角线AC 与 BD 交于点 O,∠ ABC :∠ BAD=1 : 2, BE∥ AC , CE∥ BD.(1)求 tan∠ DBC 的值;(2)求证:四边形 OBEC 是矩形.【考点】矩形的判断;菱形的性质;解直角三角形.【专题】计算题;矩形菱形正方形.【解析】( 1)由四边形ABCD 是菱形,获取对边平行,且BD 为角均分线,利用两直线平行获取一对同旁内角互补,依照已知角之比求出相应度数,进而求出∠ BDC 度数,即可求出tan∠ DBC 的值;(2)由四边形 ABCD 是菱形,获取对角线互相垂直,利用两组对边平行的四边形是平行四边形,再利用有一个角为直角的平行四边形是矩形即可得证.【解答】( 1)解:∵四边形 ABCD 是菱形,∴AD ∥ BC,∠DBC= ∠ ABC ,∴∠ ABC+ ∠ BAD=180 °,∵∠ABC :∠ BAD=1 :2,∴ ∠ ABC=60 °,∴ ∠ BDC= ∠ ABC=30 °,则 tan∠DBC=tan30 °=;( 2)证明:∵四边形 ABCD 是菱形,∴AC ⊥ BD ,即∠BOC=90 °,∵BE∥AC ,CE∥BD,∴BE∥ OC, CE∥ OB,∴四边形 OBEC 是平行四边形,则四边形 OBEC 是矩形.【议论】此题观察了矩形的判断,菱形的性质,以及解直角三角形,熟练掌握判断与性质是解此题的要点.19.某中学为了丰富学生的校园体育锻炼生活,决定依照学生的兴趣爱好采买一批体育用品供学生课后锻炼使用,因此学校随机抽取了部分同学就兴趣爱好进行检查,将收集的数据整理并绘制成以下两幅统计图,请依照图中的信息,完成以下问题:( 1)设学校此次检查共抽取了n 名学生,直接写出n 的值;(2)请你补全条形统计图;(3)设该校共有学生 1200 名,请你估计该校有多少名学生喜欢跳绳?【考点】条形统计图;用样本估计整体;扇形统计图.【解析】( 1)依照喜欢篮球的人数有25 人,占总人数的25%即可得出总人数;( 2)依照总人数求出喜欢羽毛球的人数,补全条形统计图即可;( 3)求出喜欢跳绳的人数占总人数的20%即可得出结论.【解答】解:(1)∵ 喜欢篮球的人数有25 人,占总人数的25%,∴=100(人);(2)∵喜欢羽毛球的人数 =100×20%=20 人,∴ 条形统计图如图;(3)由已知得, 1200×20%=240(人).答;该校约有 240 人喜欢跳绳.【议论】此题观察的是条形统计图,熟知从条形图可以很简单看出数据的大小,便于比较是解答此题的要点.20.如图, AB为⊙ O的直径, C 是⊙O上一点,过点 C 的直线交AB的延长线于点D, AE ⊥DC ,垂足为E,F是AE与⊙O 的交点,AC均分∠BAE .( 1)求证:DE是⊙O 的切线;( 2)若AE=6 ,∠ D=30 °,求图中阴影部分的面积.【考点】切线的判断;扇形面积的计算.【解析】( 1)连接 OC,先证明∠ OAC= ∠ OCA ,进而获取 OC∥ AE ,于是获取 OC⊥ CD,进而证明 DE 是⊙O 的切线;(2)分别求出△ OCD 的面积和扇形 OBC 的面积,利用 S 阴影 =S△COD﹣ S 扇形OBC即可获取答案.【解答】解:( 1)连接 OC,∵ OA=OC ,∴∠OAC= ∠OCA ,∵ AC 均分∠BAE ,∴∠OAC= ∠CAE,∴∠OCA= ∠CAE,∴OC∥ AE,∴∠OCD= ∠E,∵AE⊥DE,∴ ∠ E=90°,∴ ∠ OCD=90 °,∴ OC ⊥ CD ,∵点 C 在圆 O 上,OC 为圆 O 的半径,∴ CD 是圆 O 的切线;( 2)在 Rt △ AED 中, ∵ ∠ D=30 °, AE=6 ,∴ AD=2AE=12 ,在 Rt △OCD 中, ∵ ∠D=30 °, ∴ DO=2OC=DB+OB=DB+OC , ∴ DB=OB=OC=AD=4 , DO=8, ∴ CD===4 ,∴ S △OCD ===8 ,∵ ∠ D=30 °, ∠ OCD=90 °,∴ ∠ DOC=60 °,∴ S 扇形 OBC =×π×OC 2=,∵ S 阴影=S △COD ﹣ S 扇形 OBC∴ S 阴影=8﹣,∴ 阴影部分的面积为 8﹣.【议论】此题主要观察了切线的判断以及扇形的面积计算,解(1)的要点是证明 OC ⊥ DE ,解( 2)的关键是求出扇形 OBC 的面积,此题难度一般.21.某商场为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获取一次抽奖的机遇,抽奖规则以下:在一个不透明的盒子里装有分别标有数字1、 2、 3、4 的 4 个小球,它们的形状、大小、质地完好相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,尔后把小球放回盒子并搅拌平均,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为 8,则可获取 50 元代金券一张;若所得的数字之和为6,则可获取 30 元代金券一张;若所得的数字之和为 5,则可获取 15 元代金券一张;其他情况都不中奖.(1)请用列表或树状图(树状图也称树形图)的方法(选其中一种即可),把抽奖一次可能出现的结果表示出来;( 2)若是你参加了该商场开业当天的一次抽奖活动,求能中奖的概率P.【考点】列表法与树状图法.【解析】( 1)第一依照题意画出表格,尔后由表格求得全部等可能的结果;(2)依照概率公式进行解答即可.【解答】解:( 1)列表得:123412345234563456745678( 2)由列表可知,全部可能出现的结果一共有16 种,这些结果出现的可能性相同,其中两次所得数字之和为 8、 6、 5 的结果有 8 种,因此抽奖一次中奖的概率为:P==.答:抽奖一次能中奖的概率为.【议论】此题观察的是用列表法或树状图法求概率与不等式的性质.注意树状图法与列表法可以不重复不遗漏的列出全部可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率 =所讨情况数与总情况数之比.22.草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40 元,经试销发现,销售量20 元的y (千克)与销售单价x(元)吻合一次函数关系,如图是y 与x 的函数关系图象.( 1)求y 与x 的函数解析式(也称关系式)( 2)设该水果销售店试销草莓获取的利润为W 元,求 W 的最大值.【考点】二次函数的应用.【解析】(1)待定系数法求解可得;( 2)依照:总利润=每千克利润×销售量,列出函数关系式,配方后依照x 的取值范围可得W 的最大值.【解答】解:(1)设y 与x 的函数关系式为y=kx+b ,依照题意,得:,解得:,∴ y 与 x 的函数解析式 y= 2x+340 ,( 20≤x ≤40).( 2)由已知得: W= (x 20)( 2x+340 )= 2x 2+380x 6800= 2( x95) 2+11250,∵ 2<0,∴ 当 x ≤95 , W 随 x 的增大而增大,∵ 20≤x ≤40,∴ 当 x=40 , W 最大,最大2( 4095)2+11250=5200 元.【点 】本 主要考 待定系数法求一次函数解析式与二次函数的 用,依照相等关系列出函数解析式, 并由二次函数的性 确定其最 是解 的关 .23.( 12 分)( 2020?云南)有一列按必然 序和 律排列的数: 第一个数是; 第二个数是; 第三个数是; ⋯任何正整数n ,第 n 个数与第( n+1)个数的和等于.( 1) 研究,我 :列数的第5 个数 a ,那么,,,哪个正确?你直接写出正确的 ;( 2) 你 察第1 个数、第2 个数、第3 个数,猜想 列数的第n 个数(即用正整数n 表示第 n 数),而且 明你的猜想 足“第 n 个数与第(n+1)个数的和等于”;( 3) M 表示,,, ⋯,, 2020 个数的和,即,求 :.【考点】分式的混杂运算; 律型:数字的 化 .【解析】( 1)由已知 律可得; ( 2)先依照已知 律写出第 n 、 n+1 个数,再依照分式的运算化 可得;( 3)将每个分式依照 =<< = ,张开后再全部相加可得 .【解答】解:( 1)由 意知第 5 个数 a== ;( 2)∵第 n 个数,第(n+1)个数,∴+=(+)=×=×=,即第 n 个数与第( n+1)个数的和等于;(3)∵1 =<=1,=<< =1,=<< =,⋯=<<=,=<< =,∴1< +++ ⋯++ < 2,即< +++ ⋯++<,∴.【点】本主要考分式的混杂运算及数字的化律,依照已知律=获取 =<< =是解的关.。

2023年云南省中考数学试卷(附答案详解)

2023年云南省中考数学试卷(附答案详解)

2023年云南省中考数学试卷(附答案详解)一、选择题1.三个数的平均值是25,其中第一个数是10,第二个数是15,第三个数是多少?A. 20B. 25C. 30D. 35答案及详解:我们知道三个数的平均值等于这三个数的和除以3。

设第三个数为x,则根据题意可以得到方程(10 + 15 + x) / 3 = 25。

将方程进行化简和解读,可以得到25 + x = 75,即x = 75 - 25,进而x = 50。

因此,第三个数是50,答案选项为C. 30。

2.已知 a:b = 2:3,b:c = 5:4,求 a:b:c 的值。

A. 2:3:4B. 2:5:4C. 3:2:4D. 3:4:2答案及详解:根据题意,我们可以得到等式组:a/b = 2/3 (1)b/c = 5/4 (2)为了便于求解,我们可以将(1)式中的b和(2)式中的b对应起来,得到a:b = 2:3:4c。

然后,将(2)式中的b替换为3c,得到a:3c = 2:3。

进一步,将(1)式中的a替换为2c,得到2c:3c = 2:3。

从中可以得到c = 3。

因此,a:b:c = 2c:3c:c = 2:3:1,答案选项为A. 2:3:4。

二、填空题1.在数轴上,点 A 的坐标是 -3,点 B 的坐标是 7,那么 AB 的长度是 \\\_。

答案及详解:要计算长度AB,我们可以使用点的坐标之差,并取绝对值。

AB = |7 - (-3)| = |7 + 3| = 10.因此,AB 的长度是10。

2.设一批货物原价是800元,商家打折后以每件240元的价格出售,那么打折后这批货物共有 \\\_ 件。

答案及详解:设打折后这批货物共有 x 件。

根据题意可得等式 240 * x = 800。

解这个方程,可以得到 x = 800 / 240 = 10/3 = 3 余 1。

因此,打折后这批货物共有3件。

三、解答题1.现有一批书籍,原价为200元,商家决定以每本减价8元的价格出售,问商家最多可以减少多少元?答案及详解:设最多可减少的金额为 x 元。

2023云南省中考数学真题试卷和答案

2023云南省中考数学真题试卷和答案

2023年云南省初中学业水平考试数学(全卷三个大题,共24个小题,共8页;满分100分,考试用时120分钟)注意事项:1.本卷为试题卷.考生必须在答题卡上解题作答.答案应书写在答题卡的相应位置上,在试题卷、草稿纸上作答无效.2.考试结束后,请将试题卷和答题卡一并交回.一、选择题(本大题共12小题,每小题只有一个正确选项,每小题3分,共36分)1. 中国是最早使用正负数表示具有相反意义的量的国家.若向东走60米记作60+米,则向西走80米可记作( )A. 80-米B. 0米C. 80米D. 140米2. 云南省矿产资源极为丰富,被誉为“有色金属王国”.锂资源方面,滇中地区被中国科学院地球化学研究所探明拥有氧化锂资源达340000吨.340000用科学记数法可以表示为( )A. 434010⨯B. 53410⨯C. 53.410⨯D. 60.3410⨯3. 如图,直线c 与直线a b 、都相交.若,135a b ∠=︒∥,则2∠=( )A 145︒ B. 65︒ C. 55︒ D. 35︒4. 某班同学用几个几何体组合成一个装饰品美化校园.其中一个几何体的三视图(其中主视图也称正视图,左视图也称侧视图)如图所示,这个几何体是( )A. 球B. 圆柱C. 长方体D. 圆锥5. 下列计算正确的是( )A 236a a a ⋅= B. 22(3)6a a = C. 632a a a ÷= D. 22232a a a -=..6. 为了解某班学生2023年5月27日参加体育锻炼的情况,从该班学生中随机抽取5名同学迸行调查.经统计,他们这天的体育锻炼时间(单位:分钟)分别为65,60,75,60,80.这组数据的众数为( )A. 65B. 60C. 75D. 807. 中华文明,源远流长:中华汉字,寓意深广.下列四个选项中,是轴对称图形的为( )A. B. C. D.8. 若点()1,3A 是反比例函数(0)k y k x =≠图象上一点,则常数k 的值为( )A. 3 B. 3- C. 32 D. 32-9. 按一定规律排列的单项式:2345,a ,第n 个单项式是( )A. B. 1n - C. n D. 1n -10. 如图,A B 、两点被池塘隔开,、、A B C 三点不共线.设AC BC 、的中点分别为M N 、.若3MN =米,则AB =( )A. 4米B. 6米C. 8米D. 10米11. 阅读,正如一束阳光.孩子们无论在哪儿,都可以感受到阳光的照耀,都可以通过阅读触及更广阔的世界.某区教育体育局向全区中小学生推出“童心读书会”的分享活动.甲、乙两同学分别从距离活动地点800米和400米的两地同时出发,参加分享活动.甲同学的速度是乙同学的速度的1.2倍,乙同学比甲同学提前4分钟到达活动地点.若设乙同学的速度是x 米/分,则下列方程正确的是( )A. 1.24800400x x -= B. 1.24800400x x -= C. 40080041.2x x -= D. 80040041.2x x-=12. 如图,AB 是O 的直径,C 是O 上一点.若66BOC ∠=︒,则A ∠=( )A. 66︒B. 33︒C. 24︒D. 30︒二、填空题(本大题共4小题,每小题2分,共8分)13. 函数110y x =-的自变量x 的取值范围是________.14. 五边形的内角和是________度.15. 分解因式:24m -=_____.16. 数学活动课上,某同学制作了一顶圆锥形纸帽.若圆锥的底面圆的半径为1分米,母线长为4分米,则该圆锥的高为________分米.三、解答题(本大题共8小题,共56分)17. 计算:1201|1|(2)(1)tan 453π-⎛⎫-+---+- ⎪⎝⎭︒.18. 如图,C 是BD 的中点,,AB ED AC EC ==.求证:ABC EDC △≌△.19. 调查主题某公司员工旅游需求调查人员某中学数学兴趣小组调查方法抽样调查背景介绍某公司计划组织员工前往5个国家全域旅游示范区(以下简称示范区)中的1个自费旅游,这5个示范区为:A .保山市腾冲市;B .昆明市石林彝族自治县;C .红河哈尼族彝族自治州弥物市;D .大理白族自治州大理市;E .丽江市古城区.某中学数学兴趣小组针对该公司员工意向目的地开展抽样调查,并为该公司出具了调查报告(注:每位被抽样调查的员工选择且只选择1个意向前往的示范区).报告内容的的请阅读以上材料,解决下列问题(说明:以上仅展示部分报告内容).(1)求本次被抽样调查的员工人数;(2)该公司总的员工数量为900人,请你估计该公司意向前往保山市腾冲市的员工人数.20. 甲、乙两名同学准备参加种植蔬菜的劳动实践活动,各自随机选择种植辣椒、种植茄子、种植西红柿三种中的一种.记种植辣椒为A ,种植茄子为B ,种植西红柿为C ,假设这两名同学选择种植哪种蔬菜不受任何因素影响,且每一种被选到的可能性相等.记甲同学的选择为x ,乙同学的选择为y .(1)请用列表法或画树状图法中的一种方法,求(),x y 所有可能出现的结果总数;(2)求甲、乙两名同学选择种植同一种蔬菜的概率P .21. 蓝天白云下,青山绿水问,支一顶帐篷,邀亲朋好友,听蝉鸣,闻清风,话家常,好不惬意.某景区为响应文化和旅游部《关于推动露营旅游休闲健康有序发展的指导意见》精神,需要购买A B 、两种型号的帐篷.若购买A 种型号帐篷2顶和B 种型号帐篷4顶,则需5200元;若购买A 种型号帐篷3顶和B 种型号帐篷1顶,则需2800元.(1)求每顶A 种型号帐篷和每顶B 种型号帐篷的价格;(2)若该景区需要购买A B 、两种型号的帐篷共20顶(两种型号的帐篷均需购买),购买A 种型号帐篷数量不超过购买B 种型号帐篷数量的13,为使购买帐篷的总费用最低,应购买A 种型号帐篷和B 种型号帐篷各多少顶?购买帐篷的总费用最低为多少元?22. 如图,平行四边形ABCD 中,AE CF 、分别是BAD BCD ∠∠、的平分线,且E F 、分别在边BC AD 、上,AE AF =.(1)求证:四边形AECF 是菱形;(2)若60ABC ∠=︒,ABE的面积等于AB 与DC 间的距离.23. 如图,BC 是O 的直径,A 是O 上异于B C 、的点.O 外的点E 在射线CB 上,直线EA 与CD 垂直,垂足为D ,且DA AC DC AB ⋅=⋅.设ABE 的面积为1,S ACD 的面积为2S .(1)判断直线EA 与O 的位置关系,并证明你的结论;(2)若21,BC BE S mS ==,求常数m 值.24. 数和形是数学研究客观物体的两个方面,数(代数)侧重研究物体数量方面,具有精确性、形(几何)侧重研究物体形的方面,具有直观性.数和形相互联系,可用数来反映空间形式,也可用形来说明数量关系.数形结合就是把两者结合起来考虑问题,充分利用代数、几何各自的优势,数形互化,共同解决问题.同学们,请你结合所学的数学解决下列问题.在平面直角坐标系中,若点的横坐标、纵坐标都为整数,则称这样的点为整点.设函数2(42)(96)44y a x a x a =++--+(实数a 为常数)的图象为图象T .(1)求证:无论a 取什么实数,图象T 与x 轴总有公共点;(2)是否存在整数a ,使图象T 与x 轴的公共点中有整点?若存在,求所有整数a 的值;若不存在,请说明理由.的2023年云南省初中学业水平考试数学(全卷三个大题,共24个小题,共8页;满分100分,考试用时120分钟)注意事项:1.本卷为试题卷.考生必须在答题卡上解题作答.答案应书写在答题卡的相应位置上,在试题卷、草稿纸上作答无效.2.考试结束后,请将试题卷和答题卡一并交回.一、选择题(本大题共12小题,每小题只有一个正确选项,每小题3分,共36分)1. 中国是最早使用正负数表示具有相反意义的量的国家.若向东走60米记作60+米,则向西走80米可记作( )A. 80-米B. 0米C. 80米D. 140米【答案】A【解析】【分析】此题主要用正负数来表示具有意义相反的两种量,根据向东走记为正,则向西走就记为负,直接得出结论即可.【详解】解∶∵向东走60米记作60+米,∴向西走80米可记作80-米,故选A .【点睛】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负是解题的关键.2. 云南省矿产资源极为丰富,被誉为“有色金属王国”.锂资源方面,滇中地区被中国科学院地球化学研究所探明拥有氧化锂资源达340000吨.340000用科学记数法可以表示为( )A. 434010⨯ B. 53410⨯ C. 53.410⨯ D. 60.3410⨯【答案】C【解析】【分析】根据科学记数法的记数方法,340000写成10n a ⨯其中01a <≤,故得到答案.【详解】解:533.04040001=⨯.故答案:C .【点睛】本题考查了科学记数法的定义,准确确定a 和n 的值是本题的解题关键.3. 如图,直线c 与直线a b 、都相交.若,135a b ∠=︒∥,则2∠=( )为A. 145︒B. 65︒C. 55︒D. 35︒【答案】D【解析】【分析】根据平行线的性质,对顶角相等,即可求解.【详解】解:如图所示,∵a b ∥,1335==︒∠∠∴2335∠=∠=︒,故选:D .【点睛】本题考查了对顶角相等,平行线的性质,熟练掌握平行线的性质是解题的关键.4. 某班同学用几个几何体组合成一个装饰品美化校园.其中一个几何体的三视图(其中主视图也称正视图,左视图也称侧视图)如图所示,这个几何体是( )A. 球B. 圆柱C. 长方体D. 圆锥【答案】A【解析】【分析】根据球体三视图的特点确定结果.【详解】解:根据球体三视图的特点:球体的三视图都是大小相等的圆,确定该几何体为球.故选:A .【点睛】本题考查了几何体的三视图,熟悉各类几何体的三视图是解决本题的关键.5. 下列计算正确的是( )A. 236a a a ⋅= B. 22(3)6a a = C. 632a a a ÷= D. 22232a a a -=【答案】D【解析】【分析】利用同底数幂的乘法和除法、幂的乘方、合并同类项法则解出答案.【详解】解:52233a a a a ⨯⋅==,故A 错误;2222(3)39a a a ==,故B 错误;63633a a a a -÷==,故C 错误;()22223312a a a a -=-=,故D 正确.故本题选:D .【点睛】本题考查了同底数幂的乘法和除法、幂的乘方、合并同类项法则,对运算法则的熟练掌握并运用是解题的关键.6. 为了解某班学生2023年5月27日参加体育锻炼的情况,从该班学生中随机抽取5名同学迸行调查.经统计,他们这天的体育锻炼时间(单位:分钟)分别为65,60,75,60,80.这组数据的众数为( )A. 65B. 60C. 75D. 80【答案】B【解析】【分析】根据众数的定义求解即可.【详解】解:在65,60,75,60,80中,出现次数最多的是60,∴这组数据的众数是60,故选;B【点睛】本题考查了众数,众数是指一组数据中出现次数最多的数据,掌握众数的定义是解题的关键.7. 中华文明,源远流长:中华汉字,寓意深广.下列四个选项中,是轴对称图形的为( )A.B. C. D. 【答案】C【解析】【分析】根据轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此可求解问题.【详解】解:由题意得:A 、B 、D 选项都不是轴对称图形,符合轴对称图形的只有C 选项;故选C .【点睛】本题主要考查轴对称图形,熟练掌握轴对称图形的定义是解题的关键.8. 若点()1,3A 是反比例函数(0)ky k x =≠图象上一点,则常数k 的值为( )A. 3B. 3-C. 32D. 32-【答案】A【解析】【分析】将点()1,3A 代入反比例函数(0)ky k x =≠,即可求解.【详解】解:∵点()1,3A 是反比例函数(0)ky k x =≠图象上一点,∴133k =⨯=,故选:A .【点睛】本题考查了反比例函数的性质,熟练掌握反比例函数的性质是解题的关键.9. 按一定规律排列的单项式:2345,a ,第n 个单项式是( )A. B. 1n - C. n D. 1n -【答案】C【解析】,字母为a ,指数为1开始的自然数,据此即可求解.【详解】解:按一定规律排列的单项式:2345,a ,第n n ,故选:C .【点睛】本题考查了单项式规律题,找到单项式的变化规律是解题的关键.10. 如图,A B 、两点被池塘隔开,、、A B C 三点不共线.设AC BC 、的中点分别为M N 、.若3MN =米,则AB =( )A. 4米B. 6米C. 8米D. 10米【答案】B【解析】【分析】根据三角形中位线定理计算即可.【详解】解∶∵AC BC 、的中点分别为M N 、,∴MN 是ABC 的中位线,∴26(AB MN ==米),故选∶B .【点睛】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.11. 阅读,正如一束阳光.孩子们无论在哪儿,都可以感受到阳光的照耀,都可以通过阅读触及更广阔的世界.某区教育体育局向全区中小学生推出“童心读书会”的分享活动.甲、乙两同学分别从距离活动地点800米和400米的两地同时出发,参加分享活动.甲同学的速度是乙同学的速度的1.2倍,乙同学比甲同学提前4分钟到达活动地点.若设乙同学的速度是x 米/分,则下列方程正确的是( )A. 1.24800400x x -= B. 1.24800400x x -= C. 40080041.2x x -= D. 80040041.2x x-=【答案】D【解析】【分析】设乙同学的速度是x 米/分,根据乙同学比甲同学提前4分钟到达活动地点,列出方程即可.【详解】解∶设设乙同学的速度是x 米/分,可得:80040041.2x x-=故选∶ D .【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.12. 如图,AB 是O 的直径,C 是O 上一点.若66BOC ∠=︒,则A ∠=( )A. 66︒B. 33︒C. 24︒D. 30︒【答案】B【解析】【分析】根据圆周角定理即可求解.【详解】解:∵ BC BC =,66BOC ∠=︒,∴1332A BOC ∠=∠=︒,故选:B .【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.二、填空题(本大题共4小题,每小题2分,共8分)13. 函数110y x =-的自变量x 的取值范围是________.【答案】10x ≠【解析】【分析】要使110-x 有意义,则分母不为0,得出结果.【详解】解:要使110-x 有意义得到100x -≠,得10x ≠.故答案为:10x ≠.【点睛】本题考查了函数自变量取值范围,分式有意义的条件,理解分母不为零是解决问题的关键.14. 五边形的内角和是________度.【答案】540【解析】【分析】根据n 边形内角和为()2180n -⨯︒求解即可.【详解】五边形的内角和是()52180540-⨯︒=︒.故答案为:540.【点睛】本题考查求多边形的内角和.掌握n 边形内角和为()2180n -⨯︒是解题关键.15. 分解因式:24m -=_____.【答案】(2)(2)m m +-【解析】【分析】直接根据平方差公式进行因式分解即可.【详解】24(2)(2)m m m -=+-,故填(2)(2)m m +-【点睛】本题考查利用平方差公式进行因式分解,解题关键在于熟练掌握平方差公式.16. 数学活动课上,某同学制作了一顶圆锥形纸帽.若圆锥的底面圆的半径为1分米,母线长为4分米,则该圆锥的高为________分米.【解析】【分析】根据勾股定理得,圆锥的高2=母线长2-底面圆的半径2得到结果.【详解】解:由圆锥的轴截面可知:圆锥的高2=母线长2-底面圆的半径2圆锥的高==【点睛】本题考查了圆锥,勾股定理,其中对圆锥的高,母线长,底面圆的半径之间的关系的理解是解决本题的关键.三、解答题(本大题共8小题,共56分)17. 计算:1201|1|(2)(1)tan 453π-⎛⎫-+---+- ⎪⎝⎭︒.【答案】6【解析】【分析】根据绝对值的性质、零指数幂的性质、负指数幂的性质和特殊角的三角函数值分别化简计算即可得出答案.【详解】解:1201|1|(2)(1)tan 453π-⎛⎫-+---+- ⎪⎝⎭︒14131=+-+-6=.【点睛】本题考查了实数的运算,熟练掌握绝对值的性质、零指数幂的性质、负指数幂的性质和特殊角的三角函数值是解题的关键.18. 如图,C 是BD 的中点,,AB ED AC EC ==.求证:ABC EDC △≌△.【答案】见解析【解析】【分析】根据C 是BD 的中点,得到BC CD =,再利用SSS 证明两个三角形全等.【详解】证明: C 是BD 的中点,BC CD ∴=,在ABC 和EDC △中,BC CD AB ED AC EC =⎧⎪=⎨⎪=⎩,()ABC EDC SSS ∴ ≌【点睛】本题考查了线段中点,三角形全等的判定,其中对三角形判定条件的确定是解决本题的关键.19.调查主题某公司员工的旅游需求调查人员某中学数学兴趣小组调查方法抽样调查背景介绍某公司计划组织员工前往5个国家全域旅游示范区(以下简称示范区)中的1个自费旅游,这5个示范区为:A .保山市腾冲市;B .昆明市石林彝族自治县;C .红河哈尼族彝族自治州弥物市;D .大理白族自治州大理市;E .丽江市古城区.某中学数学兴趣小组针对该公司员工的意向目的地开展抽样调查,并为该公司出具了调查报告(注:每位被抽样调查的员工选择且只选择1个意向前往的示范区).报告内容请阅读以上材料,解决下列问题(说明:以上仅展示部分报告内容).(1)求本次被抽样调查的员工人数;(2)该公司总的员工数量为900人,请你估计该公司意向前往保山市腾冲市的员工人数.【答案】(1)100人(2)270人【解析】【分析】(1)根据保山市腾冲市的员工人数除以所占百分比即可求出本次被抽样调查的员工人数;(2)用该公司总的员工数乘以样本中保山市腾冲市的员工人数除以所占百分比即可估计出该公司意向前往保山市腾冲市的员工人数.【小问1详解】本次被抽样调查的员工人数为:3030.00%=100÷(人),所以,本次被抽样调查的员工人数为100人;【小问2详解】90030.00%=270⨯(人),答:估计该公司意向前往保山市腾冲市的员工人数为270人.【点睛】本题考查扇形统计图及相关计算.熟练掌握用样本估计总体是解答本题的关键.20. 甲、乙两名同学准备参加种植蔬菜的劳动实践活动,各自随机选择种植辣椒、种植茄子、种植西红柿三种中的一种.记种植辣椒为A,种植茄子为B,种植西红柿为C,假设这两名同学选择种植哪种蔬菜不受任何因素影响,且每一种被选到的可能性相等.记甲同学的选择为x,乙同学的选择为y.(1)请用列表法或画树状图法中的一种方法,求(),x y所有可能出现的结果总数;(2)求甲、乙两名同学选择种植同一种蔬菜的概率P.【答案】(1)9 (2)1 3【分析】(1)根据题意列出树状图,即可得到答案;(2)根据(1)列出的情况,找到甲、乙两名同学选择种植同一种蔬菜的情况,得出概率.【小问1详解】解:由题意得:共有9种情况,分别是:()()()()()()()()(),,,,,,,,,A A A B A C B A B B B C C A C B C C 、、、、、、、、.【小问2详解】解:由(1)得其中甲、乙两名同学选择种植同一种蔬菜的情况有()()(),,,A A B B C C 、、,共3种,31==93P ,∴甲、乙两名同学选择种植同一种蔬菜的概率为13【点睛】本题考查了树状图法求概率的问题,解题的关键是画出树状图.21. 蓝天白云下,青山绿水问,支一顶帐篷,邀亲朋好友,听蝉鸣,闻清风,话家常,好不惬意.某景区为响应文化和旅游部《关于推动露营旅游休闲健康有序发展的指导意见》精神,需要购买A B 、两种型号的帐篷.若购买A 种型号帐篷2顶和B 种型号帐篷4顶,则需5200元;若购买A 种型号帐篷3顶和B 种型号帐篷1顶,则需2800元.(1)求每顶A 种型号帐篷和每顶B 种型号帐篷的价格;(2)若该景区需要购买A B 、两种型号的帐篷共20顶(两种型号的帐篷均需购买),购买A 种型号帐篷数量不超过购买B 种型号帐篷数量的13,为使购买帐篷的总费用最低,应购买A 种型号帐篷和B 种型号帐篷各多少顶?购买帐篷的总费用最低为多少元?【答案】(1)每顶A 种型号帐篷的价格为600元,每顶B 种型号帐篷的价格为1000元(2)当A 种型号帐篷为5顶时,B 种型号帐篷为15顶时,总费用最低,为18000元.【分析】(1)根据题意中的等量关系列出二元一次方程组,解出方程组后得到答案;(2)根据购买A 种型号帐篷数量不超过购买B 种型号帐篷数量13,列出一元一次不等式,得出A 种型号帐篷数量范围,再根据一次函数的性质,取A 种型号帐篷数量的最大值时总费用最少,从而得出答案.【小问1详解】解:设每顶A 种型号帐篷的价格为x 元,每顶B 种型号帐篷的价格为y 元.根据题意列方程组为:24520032800x y x y +=⎧⎨+=⎩,解得6001000x y =⎧⎨=⎩,答:每顶A 种型号帐篷价格为600元,每顶B 种型号帐篷的价格为1000元.【小问2详解】解:设A 种型号帐篷购买m 顶,总费用为w 元,则B 种型号帐篷为(20)m -顶,由题意得6001000(20)40020000w m m m =+-=-+,其中()1203m m ≤-,得5m ≤,故当A 种型号帐篷为5顶时,总费用最低,总费用为()6005100020518000w =⨯+⨯-=,答:当A 种型号帐篷为5顶时,B 种型号帐篷为15顶时,总费用最低,为18000元.【点睛】本题考查了二元一次方程组应用,一元一次不等式应用及一次函数的应用,找出准确的等量关系及不等关系是解题的关键.22. 如图,平行四边形ABCD 中,AE CF 、分别是BAD BCD ∠∠、的平分线,且E F 、分别在边BC AD 、上,AE AF =.(1)求证:四边形AECF 是菱形;(2)若60ABC ∠=︒,ABE的面积等于AB 与DC 间的距离.【答案】(1)证明见解析(2)的的【分析】(1)先证AD BC ∥,再证AE FC ,从而四边形AECF 是平行四边形,又AE AF =,于是四边形AECF 是菱形;(2)连接AC ,先求得60BAE DAE ABC ∠∠∠===︒,再证AC AB ⊥,9030ACB ABC EAC ∠∠∠=︒-=︒=AB AC =,得AB AC =,再证AE BE CE ==,从而根据面积公式即可求得AC=【小问1详解】证明:∵四边形ABCD 是平行四边形,∴AD BC ∥,BAD BCD ∠∠=,∴BEA DAE ∠∠=,∵AE CF 、分别是BAD BCD ∠∠、的平分线,∴BAE DAE ∠∠==12BAD ∠,BCF ∠=12BCD ∠,∴DAE BCF BEA ∠∠∠==,∴AE FC ,∴四边形AECF 是平行四边形,∵AE AF =,∴四边形AECF 是菱形;小问2详解】解:连接AC ,∵AD BC ∥,60ABC ∠=︒,∴180120BAD ABC ∠∠=︒-=︒,∴60BAE DAE ABC ∠∠∠===︒,∵四边形AECF 是菱形,【∴EAC ∠=1230DAE ∠=︒,∴90BAC BAE EAC ∠∠∠=+=︒,∴AC AB ⊥,9030ACB ABC EAC ∠∠∠=︒-=︒=,∴AE CE =,tan 30tan AB ACB AC ︒=∠=AB AC=,∴AB AC =,∵BAE ABC ∠∠=,∴AE BE CE ==,∵ABE 的面积等于,∴21122ABC S AC AB AC AC AC =⋅===∴平行线AB 与DC 间的距离AC =【点睛】本题考查了平行四边形的判定及性质,菱形的判定,角平分线的定义,等腰三角形的判定,三角函数的应用以及平行线间的距离,熟练掌握平行四边形的判定及性质,菱形的判定,角平分线的定义,等腰三角形的判定,三角函数的应用以及平行线间的距离等知识是解题的关键.23. 如图,BC 是O 的直径,A 是O 上异于B C 、的点.O 外的点E 在射线CB 上,直线EA 与CD 垂直,垂足为D ,且DA AC DC AB ⋅=⋅.设ABE 的面积为1,S ACD 的面积为2S .(1)判断直线EA 与O 的位置关系,并证明你的结论;(2)若21,BC BE S mS ==,求常数m 的值.【答案】(1)EA 与O 相切,理由见解析(2)23【解析】【分析】(1)EA 与O 相切,理由如下:连接OA ,先证BAC ADC ∽得ABO DAC ∠∠=,又证ABO BAO DAC ∠∠∠==,进而有90OAD OAC DAC ∠∠∠=+=︒,于是即可得EA 与O 相切;(2)先求得2EAC ABE S S = ,再证EAB ECA ∽,得222EAC ABE S AC S AB == ,从而有2232BC AC =,又BAC ADC ∽,即可得解.【小问1详解】解:EA 与O 相切,理由如下:连接OA ,∵BC 是O 的直径,直线EA 与CD 垂直,∴90BAC ADC ∠∠==︒,∵DA AC DC AB ⋅=⋅,∴DADCAB AC =,∴BAC ADC∽∴ABO DAC ∠∠=,∵OA OB =,∴ABO BAO DAC ∠∠∠==,∵90BAC BAO OAC ∠∠∠=+=︒,∴90OAD OAC DAC ∠∠∠=+=︒,∴OA DE ⊥,∴EA 与O 相切;【小问2详解】解:∵BC BE =,∴122EAC ABE S S S == ,1EAC ABC S S S == ,∴2EAC ABES S = ,∵OA DE ⊥,∴90OAB BAE OAE ∠∠∠+==︒,∵90BAC ∠=︒,OBA OBA ∠∠=,∴90OBA ECA ∠∠+=︒,∴EAB ECA ∠∠=,∵E E ∠∠=,∴EAB ECA ∽,∴222EAC ABE S AC S AB == ,∴2212AB AC =又∵90BAC ∠=︒,∴2222221322BC AC AB AC AC ++===,∴2223AC BC =∵BAC ADC ∽,∴222123ADC BAC S S AC m S S BC ==== .【点睛】本题考查了直径所对的圆周角是直角,垂线的性质,相似三角形的判定及性质,切线的判定,勾股定理,熟练掌握直径所对的圆周角是直角,垂线的性质,相似三角形的判定及性质,切线的判定以及勾股定理等知识是解题的关键.24. 数和形是数学研究客观物体的两个方面,数(代数)侧重研究物体数量方面,具有精确性、形(几何)侧重研究物体形的方面,具有直观性.数和形相互联系,可用数来反映空间形式,也可用形来说明数量关系.数形结合就是把两者结合起来考虑问题,充分利用代数、几何各自的优势,数形互化,共同解决问题.同学们,请你结合所学的数学解决下列问题.在平面直角坐标系中,若点的横坐标、纵坐标都为整数,则称这样的点为整点.设函数2(42)(96)44y a x a x a =++--+(实数a 为常数)的图象为图象T .(1)求证:无论a 取什么实数,图象T 与x 轴总有公共点;(2)是否存在整数a ,使图象T 与x 轴的公共点中有整点?若存在,求所有整数a 的值;若不存在,请说明理由.【答案】(1)见解析 (2)0a =或1a =-或1a =或2a =-【解析】【分析】(1)分12a =-与12a ≠-两种情况讨论论证即可;(2)当12a =-时,不符合题意,当12a ≠-时,对于函数2(42)(96)44y a x a x a =++--+,令0y =,得2(42)(96)440a x a x a ++--+=,从而有4421a x a -=+或12x =-,根据整数a ,使图象T 与x 轴公共点中有整点,即x 为整数,从而有211a +=或211a +=-或212a +=或212a +=-或213a +=或213a +=-或216a +=或216a +=-,解之即可.【小问1详解】解:当12a =-时,420a +=,函数2(42)(96)44y a x a x a =++--+为一次函数126y x =+,此时,令0y =,则1260x +=,解得12x =-,∴一次函数126y x =+与x 轴的交点为102⎛⎫- ⎪⎝⎭,;当12a ≠-时,420a +≠,函数2(42)(96)44y a x a x a =++--+为二次函数,∵2(42)(96)44y a x a x a =++--+,∴()2(96)(42)444a a a ∆=+---+228110836643232a a a a =-++--214049100a a -+=()20107a =≥-,∴当12a ≠-时,2(42)(96)44y a x a x a =++--+与x 轴总有交点,∴无论a 取什么实数,图象T 与x 轴总有公共点;【小问2详解】解:当12a =-时,不符合题意,当12a ≠-时,对于函数2(42)(96)44y a x a x a =++--+,令0y =,则2(42)(96)440a x a x a ++--+=,∴()()()2144210a x a x +--+=⎡⎤⎣⎦,∴()()21440a x a +--=或210x +=的∴4421a x a -=+或12x =-,∵6221x a =-+,整数a ,使图象T 与x 轴的公共点中有整点,即x 为整数,∴211a +=或211a +=-或212a +=或212a +=-或213a +=或213a +=-或216a +=或216a +=-,解得0a =或1a =-或12a =(舍去)或32a =-(舍去)或1a =或2a =-或52a =(舍去)或72a =-(舍去),∴0a =或1a =-或1a =或2a =-.【点睛】本题主要考查了一次函数的性质,二次函数与一元二次方程之间的关系以及二次函数的性质,熟练掌握一次函数的性质,二次函数与一元二次方程之间的关系,二次函数的性质以及数形相结合的思想是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年云南省中考数学试卷一、填空题(共6小题,每小题3分,满分18分)1.(3.00分)﹣1的绝对值是.2.(3.00分)已知点P(a,b)在反比例函数y=的图象上,则ab=.3.(3.00分)某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员3451人,将3451用科学记数法表示为.4.(3.00分)分解因式:x2﹣4=.5.(3.00分)如图,已知AB∥CD,若=,则=.6.(3.00分)在△ABC中,AB=,AC=5,若BC边上的高等于3,则BC边的长为.二、选择题(共8小题,每小题4分,满分32分.每小题只有一个正确选项)7.(4.00分)函数y=的自变量x的取值范围为()A.x≤0 B.x≤1 C.x≥0 D.x≥18.(4.00分)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥9.(4.00分)一个五边形的内角和为()A.540°B.450°C.360° D.180°10.(4.00分)按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n个单项式是()A.a n B.﹣a n C.(﹣1)n+1a n D.(﹣1)n a n11.(4.00分)下列图形既是轴对称图形,又是中心对称图形的是()A.三角形B.菱形C.角D.平行四边形12.(4.00分)在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠A的正切值为()A.3 B.C.D.13.(4.00分)2017年12月8日,以“[数字工匠]玉汝于成,[数字工坊]溪达四海”为主题的2017一带一路数学科技文化节•玉溪暨第10届全国三维数字化创新设计大赛(简称“全国3D大赛”)总决赛在玉溪圆满闭幕.某学校为了解学生对这次大赛的了解程度,在全校1300名学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅统计图.下列四个选项错误的是()A.抽取的学生人数为50人B.“非常了解”的人数占抽取的学生人数的12%C.a=72°D.全校“不了解”的人数估计有428人14.(4.00分)已知x+=6,则x2+=()A.38 B.36 C.34 D.32三、解答题(共9小题,满分70分)15.(6.00分)计算:﹣2cos45°﹣()﹣1﹣(π﹣1)016.(6.00分)如图,已知AC平分∠BAD,AB=AD.求证:△ABC≌△ADC.17.(8.00分)某同学参加了学校举行的“五好小公民•红旗飘飘”演讲比赛,7名评委给该同学的打分(单位:分)情况如下表:评委评委1评委2评委3评委4评委5评委6评委7打分6878578(1)直接写出该同学所得分数的众数与中位数;(2)计算该同学所得分数的平均数18.(6.00分)某社区积极响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的2倍,并且甲工程队完成300平方米的绿化面积比乙工程队完成300平方米的绿化面积少用3小时,乙工程队每小时能完成多少平方米的绿化面积?19.(7.00分)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)所有可能出现的结果.(2)求取出的两张卡片上的数字之和为偶数的概率P.20.(8.00分)已知二次函数y=﹣x2+bx+c的图象经过A(0,3),B(﹣4,﹣)两点.(1)求b,c的值.(2)二次函数y=﹣x2+bx+c的图象与x轴是否有公共点,求公共点的坐标;若没有,请说明情况.21.(8.00分)某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发A,B两种商品,为科学决策,他们试生产A、B两种商品100千克进行深入研究,已知现有甲种原料293千克,乙种原料314千克,生产1千克A商品,1千克B商品所需要的甲、乙两种原料及生产成本如下表所示.甲种原料(单位:千克)乙种原料(单位:生产成本(单位:元)千克)A商品32120B商品 2.5 3.5200设生产A种商品x千克,生产A、B两种商品共100千克的总成本为y元,根据上述信息,解答下列问题:(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;(2)x取何值时,总成本y最小?22.(9.00分)如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.(1)求证:CD是⊙O的切线;(2)若∠D=30°,BD=2,求图中阴影部分的面积.23.(12.00分)如图,在平行四边形ABCD中,点E是CD的中点,点F是BC边上的点,AF=AD+FC,平行四边形ABCD的面积为S,由A、E、F三点确定的圆的周长为t.(1)若△ABE的面积为30,直接写出S的值;(2)求证:AE平分∠DAF;(3)若AE=BE,AB=4,AD=5,求t的值.2018年云南省中考数学试卷参考答案与试题解析一、填空题(共6小题,每小题3分,满分18分)1.(3.00分)﹣1的绝对值是1.【分析】第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵|﹣1|=1,∴﹣1的绝对值是1.【点评】此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3.00分)已知点P(a,b)在反比例函数y=的图象上,则ab=2.【分析】接把点P(a,b)代入反比例函数y=即可得出结论.【解答】解:∵点P(a,b)在反比例函数y=的图象上,∴b=,∴ab=2.故答案为:2【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.3.(3.00分)某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员3451人,将3451用科学记数法表示为 3.451×103.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:3451=3.451×103,故答案为:3.451×103.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3.00分)分解因式:x2﹣4=(x+2)(x﹣2).【分析】直接利用平方差公式进行因式分解即可.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.5.(3.00分)如图,已知AB∥CD,若=,则=.【分析】利用相似三角形的性质即可解决问题;【解答】解:∵AB∥CD,∴△AOB∽△COD,∴==,故答案为.【点评】本题考查平行线的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.(3.00分)在△ABC中,AB=,AC=5,若BC边上的高等于3,则BC边的长为9或1.【分析】△ABC中,∠ACB分锐角和钝角两种:①如图1,∠ACB是锐角时,根据勾股定理计算BD和CD的长可得BC的值;②如图2,∠ACB是钝角时,同理得:CD=4,BD=5,根据BC=BD﹣CD代入可得结论.【解答】解:有两种情况:①如图1,∵AD是△ABC的高,∴∠ADB=∠ADC=90°,由勾股定理得:BD===5,CD===4,∴BC=BD+CD=5+4=9;②如图2,同理得:CD=4,BD=5,∴BC=BD﹣CD=5﹣4=1,综上所述,BC的长为9或1;故答案为:9或1.【点评】本题考查了勾股定理的运用,熟练掌握勾股定理是关键,并注意运用了分类讨论的思想解决问题.二、选择题(共8小题,每小题4分,满分32分.每小题只有一个正确选项)7.(4.00分)函数y=的自变量x的取值范围为()A.x≤0 B.x≤1 C.x≥0 D.x≥1【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:∵1﹣x≥0,∴x≤1,即函数y=的自变量x的取值范围是x≤1,故选:B.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.8.(4.00分)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥【分析】由三视图及题设条件知,此几何体为一个的圆锥.【解答】解:此几何体是一个圆锥,故选:D.【点评】考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.9.(4.00分)一个五边形的内角和为()A.540°B.450°C.360° D.180°【分析】直接利用多边形的内角和公式进行计算即可.【解答】解:解:根据正多边形内角和公式:180°×(5﹣2)=540°,答:一个五边形的内角和是540度,故选:A.【点评】此题主要考查了正多边形内角和,关键是掌握内角和的计算公式.10.(4.00分)按一定规律排列的单项式:a,﹣a2,a3,﹣a4,a5,﹣a6,……,第n个单项式是()A.a n B.﹣a n C.(﹣1)n+1a n D.(﹣1)n a n【分析】观察字母a的系数、次数的规律即可写出第n个单项式.【解答】解:a,﹣a2,a3,﹣a4,a5,﹣a6,……,(﹣1)n+1•a n.故选:C.【点评】考查了单项式,数字的变化类,注意字母a的系数为奇数时,符号为正;系数字母a的系数为偶数时,符号为负.11.(4.00分)下列图形既是轴对称图形,又是中心对称图形的是()A.三角形B.菱形C.角D.平行四边形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、三角形不一定是轴对称图形和中心对称图形,故本选项错误;B、菱形既是轴对称图形又是中心对称图形,故本选项正确;C、角不一定是轴对称图形和中心对称图形,故本选项错误;D、平行四边形不一定是轴对称图形和中心对称图形,故本选项错误;故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念:判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.12.(4.00分)在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠A的正切值为()A.3 B.C.D.【分析】根据锐角三角函数的定义求出即可.【解答】解:∵在Rt△ABC中,∠C=90°,AC=1,BC=3,∴∠A的正切值为==3,故选:A.【点评】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键.13.(4.00分)2017年12月8日,以“[数字工匠]玉汝于成,[数字工坊]溪达四海”为主题的2017一带一路数学科技文化节•玉溪暨第10届全国三维数字化创新设计大赛(简称“全国3D大赛”)总决赛在玉溪圆满闭幕.某学校为了解学生对这次大赛的了解程度,在全校1300名学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅统计图.下列四个选项错误的是()A.抽取的学生人数为50人B.“非常了解”的人数占抽取的学生人数的12%C.a=72°D.全校“不了解”的人数估计有428人【分析】利用图中信息一一判断即可解决问题;【解答】解:抽取的总人数为6+10+16+18=50(人),故A正确,“非常了解”的人数占抽取的学生人数的=12%,故B正确,α=360°×=72°,故正确,全校“不了解”的人数估计有1300×=468(人),故D错误,故选:D.【点评】本题考查条形统计图、扇形统计图等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.14.(4.00分)已知x+=6,则x2+=()A.38 B.36 C.34 D.32【分析】把x+=6两边平方,利用完全平方公式化简,即可求出所求.【解答】解:把x+=6两边平方得:(x+)2=x2++2=36,则x2+=34,故选:C.【点评】此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.三、解答题(共9小题,满分70分)15.(6.00分)计算:﹣2cos45°﹣()﹣1﹣(π﹣1)0【分析】本题涉及零指数幂、负指数幂、锐角三角函数、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3﹣2×﹣3﹣1=2﹣4【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值、特殊角的锐角三角函数值等知识点.16.(6.00分)如图,已知AC平分∠BAD,AB=AD.求证:△ABC≌△ADC.【分析】根据角平分线的定义得到∠BAC=∠DAC,利用SAS定理判断即可.【解答】证明:∵AC平分∠BAD,∴∠BAC=∠DAC,在△ABC和△ADC中,,∴△ABC≌△ADC.【点评】本题考查的是全等三角形的判定、角平分线的定义,掌握三角形全等的SAS定理是解题的关键.17.(8.00分)某同学参加了学校举行的“五好小公民•红旗飘飘”演讲比赛,7名评委给该同学的打分(单位:分)情况如下表:评委评委1评委2评委3评委4评委5评委6评委7打分6878578(1)直接写出该同学所得分数的众数与中位数;(2)计算该同学所得分数的平均数【分析】(1)根据众数与中位数的定义求解即可;(2)根据平均数的定义求解即可.【解答】解:(1)从小到大排列此数据为:5,6,7,7,8,8,8,数据8出现了三次最多为众数,7处在第4位为中位数;(2)该同学所得分数的平均数为(5+6+7×2+8×3)÷7=7.【点评】本题考查了平均数、众数与中位数,用到的知识点是:给定一组数据,出现次数最多的那个数,称为这组数据的众数.中位数的定义:将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.平均数=总数÷个数.18.(6.00分)某社区积极响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对社区的一些区域进行绿化改造.已知甲工程队每小时能完成的绿化面积是乙工程队每小时能完成的绿化面积的2倍,并且甲工程队完成300平方米的绿化面积比乙工程队完成300平方米的绿化面积少用3小时,乙工程队每小时能完成多少平方米的绿化面积?【分析】设乙工程队每小时能完成x平方米的绿化面积,则甲工程队每小时能完成2x平方米的绿化面积,根据工作时间=总工作量÷工作效率结合甲工程队完成300平方米的绿化面积比乙工程队完成300平方米的绿化面积少用3小时,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设乙工程队每小时能完成x平方米的绿化面积,则甲工程队每小时能完成2x平方米的绿化面积,根据题意得:﹣=3,解得:x=50,经检验,x=50是分式方程的解.答:乙工程队每小时能完成50平方米的绿化面积.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.19.(7.00分)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)所有可能出现的结果.(2)求取出的两张卡片上的数字之和为偶数的概率P.【分析】(1)首先根据题意画出树状图,然后由树状图即可求得所有等可能的结果;(2)由(1)中的树状图,可求得抽取的两张卡片结果中数字之和为偶数的情况,然后利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:由树状图知共有6种等可能的结果:(1,2)、(1,3)、(2,1)、(2,3)、(3,1)、(3,2);(2)∵共有6种等可能结果,其中数字之和为偶数的有2种结果,∴取出的两张卡片上的数字之和为偶数的概率P==.【点评】此题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.20.(8.00分)已知二次函数y=﹣x2+bx+c的图象经过A(0,3),B(﹣4,﹣)两点.(1)求b,c的值.(2)二次函数y=﹣x2+bx+c的图象与x轴是否有公共点,求公共点的坐标;若没有,请说明情况.【分析】(1)把点A、B的坐标分别代入函数解析式求得b、c的值;(2)利用根的判别式进行判断该函数图象是否与x轴有交点,由题意得到方程﹣x2+x+3=0,通过解该方程求得x的值即为抛物线与x轴交点横坐标.【解答】解:(1)把A(0,3),B(﹣4,﹣)分别代入y=﹣x2+bx+c,得,解得;(2)由(1)可得,该抛物线解析式为:y=﹣x2+x+3.△=()2﹣4×(﹣)×3=>0,所以二次函数y=﹣x2+bx+c的图象与x轴有公共点.∵﹣x2+x+3=0的解为:x1=﹣2,x2=8∴公共点的坐标是(﹣2,0)或(8,0).【点评】考查了抛物线与x轴的交点,二次函数图象上点的坐标特征.注意抛物线解析式与一元二次方程间的转化关系.21.(8.00分)某驻村扶贫小组为解决当地贫困问题,带领大家致富.经过调查研究,他们决定利用当地生产的甲乙两种原料开发A,B两种商品,为科学决策,他们试生产A、B两种商品100千克进行深入研究,已知现有甲种原料293千克,乙种原料314千克,生产1千克A商品,1千克B商品所需要的甲、乙两种原料及生产成本如下表所示.甲种原料(单位:千克)乙种原料(单位:生产成本(单位:元)千克)A商品32120B商品 2.5 3.5200设生产A种商品x千克,生产A、B两种商品共100千克的总成本为y元,根据上述信息,解答下列问题:(1)求y与x的函数解析式(也称关系式),并直接写出x的取值范围;(2)x取何值时,总成本y最小?【分析】(1)根据题意表示出两种商品需要的成本,再利用表格中数据得出不等式组进而得出答案;(2)利用一次函数增减性进而得出答案.【解答】解:(1)由题意可得:y=120x+200(100﹣x)=﹣80x+20000,,解得:72≤x≤86;(2)∵y=﹣80x+20000,∴y随x的增大而减小,∴x=86时,y最小,则y=﹣80×86+20000=13120(元).【点评】此题主要考查了一次函数的应用以及不等式的应用,正确利用表格获得正确信息是解题关键.22.(9.00分)如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.(1)求证:CD是⊙O的切线;(2)若∠D=30°,BD=2,求图中阴影部分的面积.【分析】(1)连接OC,易证∠BCD=∠OCA,由于AB是直径,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°,CD是⊙O的切线(2)设⊙O的半径为r,AB=2r,由于∠D=30°,∠OCD=90°,所以可求出r=2,∠AOC=120°,BC=2,由勾股定理可知:AC=2,分别计算△OAC的面积以及扇形OAC的面积即可求出影响部分面积【解答】解:(1)连接OC,∵OA=OC,∴∠BAC=∠OCA,∵∠BCD=∠BAC,∴∠BCD=∠OCA,∵AB是直径,∴∠ACB=90°,∴∠OCA+OCB=∠BCD+∠OCB=90°∴∠OCD=90°∵OC是半径,∴CD是⊙O的切线(2)设⊙O的半径为r,∴AB=2r,∵∠D=30°,∠OCD=90°,∴OD=2r,∠COB=60°∴r+2=2r,∴r=2,∠AOC=120°∴BC=2,∴由勾股定理可知:AC=2=×2×1=易求S△AOCS扇形OAC==∴阴影部分面积为﹣【点评】本题考查圆的综合问题,涉及圆的切线判定,勾股定理,含30度的直角三角形的性质,等边三角形的性质等知识,需要学生灵活运用所学知识.23.(12.00分)如图,在平行四边形ABCD中,点E是CD的中点,点F是BC边上的点,AF=AD+FC,平行四边形ABCD的面积为S,由A、E、F三点确定的圆的周长为t.(1)若△ABE的面积为30,直接写出S的值;(2)求证:AE平分∠DAF;(3)若AE=BE,AB=4,AD=5,求t的值.=×AB×EG=30得AB•EG=60,即可得【分析】(1)作EG⊥AB于点G,由S△ABE出答案;(2)延长AE交BC延长线于点H,先证△ADE≌△HCE得AD=HC、AE=HE及AD+FC=HC+FC,结合AF=AD+FC得∠FAE=∠CHE,根据∠DAE=∠CHE即可得证;(3)先证∠ABF=90°得出AF2=AB2+BF2=16+(5﹣FC)2=(FC+CH)2=(FC+5)2,据此求得FC的长,从而得出AF的长度,再由AE=HE、AF=FH知FE⊥AH,即AF 是△AEF的外接圆直径,从而得出答案.【解答】解:(1)如图,作EG⊥AB于点G,则S=×AB×EG=30,则AB•EG=60,△ABE∴平行四边形ABCD的面积为60;(2)延长AE交BC延长线于点H,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADE=∠HCE,∠DAE=∠CHE,∵E为CD的中点,∴CE=ED,∴△ADE≌△HCE,∴AD=HC、AE=HE,∴AD+FC=HC+FC,由AF=AD+FC和FH=HC+FC得AF=FH,∴∠FAE=∠CHE,又∵∠DAE=∠CHE,∴∠DAE=∠FAE,∴AE平分∠DAF;(3)连接EF,∵AE=BE、AE=HE,∴AE=BE=HE,∴∠BAE=∠ABE,∠HBE=∠BHE,∵∠DAE=∠CHE,∴∠BAE+∠DAE=∠ABE+∠HBE,即∠DAB=∠CBA,由四边形ABCD是平行四边形得∠DAB+∠CBA=180°,∴∠CBA=90°,∴AF2=AB2+BF2=16+(5﹣FC)2=(FC+CH)2=(FC+5)2,解得:FC=,∴AF=FC+CH=,∵AE=HE、AF=FH,∴FE⊥AH,∴AF是△AEF的外接圆直径,∴△AEF的外接圆的周长t=π.【点评】本题主要考查圆的综合问题,解题的关键是掌握平行四边形的性质、矩形的判定与性质、全等三角形的判定与性质及等腰三角形的性质、勾股定理等知识点.。

相关文档
最新文档