过电压分为几类
过电压与防雷
雷电过电压的Biblioteka 种基本形式:(1)直接雷击:雷电直接击中电气设备或线路,其过电压引起强大的雷电流通 过这些物体放电入地,产生破坏性极大的热效应和机械效应,还有电磁脉冲 和闪络放电。
(2)间接雷击:雷电未直接击中电力系统中的任何部分而是由雷对设备、线或 其他物体的静电感应所产生的过电压。 雷电过电压还有一种是由于架空线路或金属管道遭受直接或间接雷击而引起 的过电压波,沿线路或管道侵入变配电所,这称为雷电波侵入或高电位侵入。据 统计,其事故占整个雷害事故的50%~70%,因此对雷电波侵入的防护应予以足 够的重视。 2、雷电的形成及概念 1)雷电的形成 雷电是带有电荷的“雷云”之间或雷云对大地之间产生急剧放电的一种自然现 象。据观测,在地面上产生雷击的雷云多为负雷云。
第四节 过电压与防雷
一、过电压及雷电
1、过电压
过电压是指在电气线路或电气设备上出现的超过正常工作要求 的电压。可分为内部过电压和雷电过电压两大类。
1)内部过电压 内部过电压是由于电力系统内的开关操作、发生故障或其他原因,使系统的
工作状态突然改变,从而在系统内部出现电磁振荡而引起的过电压。 内部过电压又分操作过电压和谐振过电压等形式。内部过电压一般不会超
当空中的雷云靠近大地时,雷云与大地之间形成一个很大的雷电场。由于静电感 应作用,使地面出现雷云的电荷极性相反的电荷。当两者在某一方位的电场强度达到 25~30kV/cm时,雷云就会开始向这一方位放电,形成一个导电的空气通道,称为雷 电先导。先导相通道中的正、负电荷强烈吸引中和而产生强大的雷电流,并伴有强烈 的雷鸣电闪。这就是直击雷的主放电阶段,时间一般约50~100μs,图8—26所示。
过系统正常运行时相电压的3~4倍,因此对电力线路和电气设备绝缘的威胁不 是很大。
电源系统的过电压类别-基础电子
电源系统的过电压类别-基础电子市电供电电气设备的工作环境根据浪涌保护等级分为四个过电压类别(OVC)。
本文将介绍这四个类别的不同之处,以及在某些情况下如何在OVC III使用原本额定为OVC II的AC/DC电源。
大多数市电供电设备的用户都相信,只需将设备插入使用方便的插座,设备就可以安全且可靠地运行,而严格的强制性电源国际标准也支持这个概念,即使安装在其他设备里的模块化产品也要达到低级别的电气隔离和电磁兼容性,包括对电压浪涌和瞬变的抗干扰能力。
事实上,在家里、办公室或工厂的任何地方,市电都来自壁式插座,提供的应该是相对干净的市电电源,不会产生不正常的瞬态电压而损坏终端设备。
但是随着建筑内的电气设备通过基础设施布线经过配电板终连接到交流电源,来自外部产生的过电压事件会逐渐增加,例如雷击或公用事业网络上安装的负载突降,这些都是风险。
环境中的过电压在一些应用中,单相或多相AC/DC电源连接到中央配电盘,例如电动汽车的家用充电器或DIN导轨安装电源。
相较于插入式电源,较为严重的瞬变幅度和能级要求这些位置上的电源转换器要有额外的过压保护。
国际标准IEC 60664-1《低压系统内设备的绝缘配合》定义了四个类别,分别为OVC I至OVC IV,如表1所示。
表1:IEC 60664-1:2020的过电压类别OVC I是通过隔离电源与下游电路连接的设备,例如笔记本充电器提供DC给计算机,而OVC IV则是直接连接到主输入电源的设备(图1)。
这代表建筑物中大多数的电源供电设备都属于OVC II和OVC III。
简而言之,OVC II包括所有配有插头的家庭、车间和办公设备,分别由保险丝或断路器保护着。
OVC III主要是指安装在开关柜或配电箱内部的连线设备,例如继电器、断路器和固定安装电源。
特别讨论到雷电防护时,IEC 62305-1标准定义了与OVC IV至I对应的LPZ 0至LPZ3的防护区。
电涌保护器(SPD)的标准IEC 61643-11也与防护设备I、II和III类以及LPZ 0、1和2的定义相关联。
安规 过电压等级
安规过电压等级
安规过电压等级是描述设备在配电网络中的位置,位置不同承受的过电压等级不同,共分为4个等级,具体参考IEC60664。
1. 过电压等级I:低压低能量级别,并带保护装置,一般指电子设备的内部电压。
2. 过电压等级II:低压高能量级别,从主供电电路分支出来的,家里照明电路220V电压属于此类。
3. 过电压等级III:高压高能量级别,指固定安装的主供电电路,一般指380V 三相电压。
4. 过电压等级IV:暂无数据。
此外,用万用表测量电压时,为安全考虑,需要采用比所测电压等级和电压值高的万用表。
如要测量上述三相380V的电压,需要采用CAT III 600V以上的万用表。
电力系统过电压分类和特点
电力系统过电压分类和特点电力系统过电压主要分以下几种类型:大气过电压、工频过电压、操作过电压、谐振过电压。
产生的原因及特点是:大气过电压:由直击雷引起,特点是持续时间短暂,冲击性强,与雷击活动强度有直接关系,与设备电压等级无关。
因此,220KV以下系统的绝缘水平往往由防止大气过电压决定。
工频过电压:由长线路的电容效应及电网运行方式的突然改变引起,特点是持续时间长,过电压倍数不高,一般对设备绝缘危险性不大,但在超高压、远距离输电确定绝缘水平时起重要作用。
操作过电压:由电网内开关操作引起,特点是具有随机性,但最不利情况下过电压倍数较高。
因此30KV及以上超高压系统的绝缘水平往往由防止操作过电压决定。
谐振过电压:由系统电容及电感回路组成谐振回路时引起,特点是过电压倍数高、持续时间长。
变压器中性点接地方式的安排一般如何考虑?变压器中性点接地方式的安排一般如何考虑?答:变压器中性点接地方式的安排应尽量保持变电所的零序阻抗基本不变.遇到因变压器检修等原因使变电所的零序阻抗有较大变化的特殊运行方式时,应根据规程规定或实际情况临时处理.(1)变电所只有一台变压器,则中性点应直接接地,计算正常保护定值时,可只考虑变压器中性点接地的正常运行方式。
当变压器检修时,可作特殊运行方式处理,例如改定值或按规定停用、起用有关保护段。
(2)变电所有两台及以上变压器时,应只将一台变压器中性点直接接地运行,当该变压器停运时,将另一台中性点不接地变压器改为直接接地.如果由于某些原因,变电所正常必须有两台变压器中性点直接接地运行,当其中一台中性点直接接地的变压器停运时,若有第三台变压器则将第三台变压器改为中性点直接接地运行。
否则,按特殊运行方式处理。
(3)双母线运行的变电所有三台及以上变压器时,应按两台变压器中性点直接接地方式运行,并把它们分别接于不同的母线上,当其中一台中性点直接接地变压器停运时、将另一台中性点不接地变压器直接接地。
《电力系统过电压》课件
设备绝缘损坏
设备损坏
过电压可能导致设备绝缘层击穿,引 发短路或设备故障。
过高的过电压可能导致设备直接损坏 ,造成经济损失。
设备性能下降
过电压可能使设备性能参数发生变化 ,导致设备运行不稳定。
对系统的危害
系统稳定性受影响
过电压可能引起系统电压波动, 影响电力系统的稳定运行。
设备连锁跳闸
过电压可能导致连锁跳闸,影响整 个系统的供电可靠性。
案例二:某变电站操作过电压事故
总结词
操作过电压事故
案例分析
操作人员未按照规程进行操作 ,导致断路器断口电容放电, 产生过电压。
详细描述
某变电站在进行倒闸操作时, 因操作不当引发过电压事故。
解决方案
加强操作人员的培训和管理, 确保严格按照规程进行操作,
并定期检查和维护设备。
案例三:某输电线路内部过电压事故
调度管理
合理调度和管理电力系统的运行,避免因操作不当或调度失误引 起的过电压问题。
人员培训
培训计划
制定详细的培训计划,对电力系统的工作人员进行定期培训,提高 他们的技能和知识水平。
培训内容
培训内容应包括电力系统的基本知识、过电压的危害及预防措施、 应急处理等方面的知识和技能。
培训效果评估
对培训效果进行评估,及时发现并改进培训中的不足之处,确保工作 人员具备足够的技能和知识来应对过电压问题。
继电保护
02
继电保护是电力系统中的重要组成部分,当系统出现异常时,
继电保护能够迅速切断故障部分,防止过电压的扩大。
系统监控
03
通过实时监测系统的运行状态,可以及时发现和解决潜在的问
题,从而避免过电压的发生。
04
过电压等级和电气间隙-概述说明以及解释
过电压等级和电气间隙-概述说明以及解释1.引言1.1 概述在电力系统运行过程中,过电压问题一直是一个关注的焦点。
过电压会对电气设备造成损坏,并且可能引发火灾等安全隐患。
为了有效防范和处理过电压问题,了解过电压等级和电气间隙的关系至关重要。
过电压等级是指系统或设备在运行过程中可能遭遇的电压超过额定值的情况。
而电气间隙则是指电气设备或线路中两个导体之间的间隔距离。
了解过电压等级和电气间隙之间的关系,有助于合理设计和选择设备,提高系统的稳定性和安全性。
本文将重点探讨过电压等级和电气间隙的关系,并就其重要性、改进方向以及未来发展趋势进行深入分析和探讨。
希望通过本文的研究,能够为电力系统的过电压防护提供一定的参考和借鉴。
"1.2 文章结构"部分内容如下:本文将首先介绍过电压等级的概念,包括常见的过电压类型和等级分类。
接着将深入探讨电气间隙的定义和不同类型的间隙形式。
随后,将重点分析过电压等级和电气间隙之间的关系,探讨它们在电气系统中的重要性和作用。
最后,结合实际案例和数据,总结过电压等级和电气间隙对电气设备和系统的影响,并探讨可能的改进方向和未来发展趋势。
通过本文的介绍和分析,读者将更加深入了解过电压等级和电气间隙在电气工程领域中的重要性和应用价值。
1.3 目的:本文旨在探讨过电压等级和电气间隙在电力系统中的重要性及其相互关系。
通过深入分析过电压等级和电气间隙对电力设备的影响,以及它们之间的联系,旨在帮助读者更好地理解和应用这两个概念。
此外,本文还旨在提出可能的改进方向,以及展望未来发展趋势,为电力系统的安全稳定运行提供参考和指导。
}请编写文章1.3 目的部分的内容2.正文2.1 过电压等级:过电压是指在电力系统中出现的电压瞬时值或持续时间超过规定数值的现象。
它通常分为内部过电压和外部过电压两种类型。
内部过电压是由系统本身的故障或操作引起的,而外部过电压则是由系统外部的原因引起的,比如雷击、电网故障等。
输电线路过电压的保护措施有哪些
输电线路过电压的保护措施有哪些输电线路过电压的保护措施。
随着电力系统的不断发展,输电线路的过电压问题也日益凸显。
过电压是指电压在瞬时或持续时间内超过了系统正常工作范围的现象。
输电线路过电压可能由雷电、开关操作、负荷变化等原因引起,如果不加以有效的保护措施,将给电网设备和系统带来严重的损害。
因此,针对输电线路过电压问题,需要采取一系列的保护措施,以确保电网的安全稳定运行。
一、过电压的类型。
输电线路过电压可以分为内部过电压和外部过电压两种类型。
内部过电压是指由于电网内部原因引起的过电压,如电容性过电压、感应性过电压等。
外部过电压是指由于外部原因引起的过电压,如雷电引起的过电压等。
二、过电压的危害。
输电线路过电压会给电网设备和系统带来严重的危害,主要表现在以下几个方面:1. 对设备的损害,过电压会导致设备绝缘击穿、绝缘老化,甚至损坏设备。
2. 对系统的影响,过电压会引起系统频率偏差、电压不稳定等问题,影响系统的正常运行。
3. 对安全的威胁,过电压会引起火灾、爆炸等安全事故,对人员和设备造成严重威胁。
因此,对输电线路过电压问题必须高度重视,采取有效的保护措施。
三、过电压的保护措施。
针对输电线路过电压问题,可以采取以下一些保护措施:1. 避雷装置,在输电线路上设置避雷装置,用于防止雷电引起的过电压。
避雷装置可以分为避雷针、避雷带等,用于释放雷电的能量,减小雷电对输电线路的影响。
2. 避雷接地,在输电线路上设置良好的接地系统,用于释放过电压的能量。
良好的接地系统可以有效地降低过电压对设备和系统的影响。
3. 过电压保护装置,在输电线路上设置过电压保护装置,用于监测和控制过电压。
过电压保护装置可以根据输电线路的实际情况,采取不同的保护措施,如限流、分流、短路等,以保护设备和系统。
4. 绝缘监测系统,在输电线路上设置绝缘监测系统,用于监测绝缘状态。
绝缘监测系统可以及时发现绝缘老化、击穿等问题,采取相应的措施,以保护设备和系统。
过电压类别和防止过电压的措施电工基础
过电压类别和防止过电压的措施 - 电工基础过电压定义:用数字表示的瞬态过电压条件。
此概念仅适用于直接由低压电网供电的设备。
用I、II、III和IV表示过电压类别。
——过电压类别I:连接至具有限制瞬态过电压至相当低水平措施的电路的设备(例如:具有过电压爱护的电子电路)上所承受的过电压。
——过电压类别II:由配电装置供电的耗能设备(此类设备包含如器具,可移动式工具及其他家用和类似用途负荷)上所承受的过电压。
假如此类设备的平安(牢靠)性和适用性具有特强要求时,则接受过电压类别III;——过电压类III:安装在配电装置中的设备,以及设备的使用平安(工作牢靠)性和适用性必需符合特殊要求者(此类设备包含如安装在配电装置中的开关电器和永久连续至配电装置的工业用设备)上所承受的过电压;——过电压类别IV:使用在配电装置电源端的设备(此类设备包含如电表和前级过电流爱护设备)上所承受的过电压;怎样防止过电压的产生电气系统的内部过电压触发的缘由很多,既有线路参数匹配引起的工频过电压,也有开关操作时电弧复燃引起的操作过电压;此外还有电感负载负荷截流引起的过电压和电感电容串联引起的谐振过电压。
内部过电压,特殊是操作过电压引起的事故时有发生;据统计资料,一般工频过电压不会超过2倍相电压,切除空载线路引起的操作过电压和间歇性电弧引起的过电压不会超过3. 5倍相电压,铁磁谐振过电压不会超过3倍相电压。
但是,实际运行阅历证明,事故的发生往往是几种过电压叠加在一起,过电压倍数有时高达额定相电压的7~8倍。
1.操作过电压在6~35 kV的中性点非直接接地系统中,当进行负载的起动或停止操作或发生事故时,由于开关触头间电弧重燃,运行状态发生突变,引起电容和电感元件之间电磁能量相互转换,消灭一种振荡性过电压,即产生操作过电压。
(1)电动机起动合闸过电压理论上认为,电动机合闸起动时,电动机机端产生的过电压为式中,;为合闸电压瞬时值;z;为电动机冲击波阻抗;Z 为电缆冲击波阻抗。
1000kV特高压交流输电线路的过电压研究与分析
1000kV特高压交流输电线路的过电压研究与分析摘要:随着电力负荷的日益增长,建设特高压线路可以实现跨地区、长距离的电能输送和交易,更好地调节电能供需平衡。
特高压线路由于输电距离长、传送容量大、充电功率大,其过电压比常规线路过电压更严重。
本文介绍了特高压线路过电压的种类、分析计算条件、仿真研究、合格标准和实际案例。
研究表明单回线路应重点考虑线路空载合闸时的操作过电压、线路两端发生无故障掉闸后的空载长线电压升高和线路末端单相短路甩负荷的工频过电压。
关键词:1000kV交流输电、操作过电压、工频过电压、潜供电流和恢复电压引言随着电力负荷的日益增长,传统电网无法应对用电量和输电容量成倍增加的需求,煤炭资源与负荷中心距离远,环保压力也越来越大,随着电力设备的不断发展,特高压交流输电可以更好的解决以上问题。
特高压交流输电线路是指电压等级为1000kV及以上的交流输电线路,1条特高压线路比500kV超高压线路传输功率大4倍。
与其它输电方式相比,特高压交流输电具有输电容量大、传输距离远、线路损耗低、占地面积少等突出优势。
但是特高压交流输电线路具有输电线路长,分布电容大,分布电阻和电感小等特点,如果其发生过电压也更为严重。
1、过电压的种类过电压总体上主要分为外部过电压和内部过电压两种。
外部过电压主要就是雷电过电压,分为四种类型,分别为:雷电侵入波过电压、雷电反击过电压、感应雷击过电压、直接雷击过电压。
通常采用避雷器、避雷针、避雷线等方法限制外部过电压。
内部过电压主要分为操作过电压、工频过电压和谐振过电压等。
由于过电压种类众多,一般工程研究时主要选择几种较为严重的过电压进行计算。
本文结合某1000kV外送工程案例,从反送电阶段和机组运行阶段进行分析计算,包括线路操作过电压、工频过电压、潜供电流和恢复电压、发电机自励磁过电压。
2、分析计算条件2.1试验系统模型和参数发电机组规模:2×660MW直接空冷凝汽式发电机组,型号为QFSN-660-2-22B,额定容量为733.33MVA,额定功率因数0.9(滞后),额定电压22kV。
对过电压的认识
对过电压的认识过电压是指电力系统在特定条件下所出现的超过正常工作电压的异常电压升高现象。
过电压的发生可能会对电力设备和电力系统造成严重危害,因此对过电压的认识和处理至关重要。
一、过电压的分类过电压主要分为两大类:外部过电压和内部过电压。
外部过电压也称为雷电过电压,是由于雷击引起的过电压现象。
而内部过电压是由于电力系统内部的操作、故障或异常情况引起的过电压现象。
二、过电压的危害过电压可能会对电力设备和电力系统造成以下危害:1.绝缘击穿:过高的电压会使得电力设备的绝缘材料击穿,导致设备损坏或短路。
2.设备损坏:过电压会使电力设备承受超过其额定值的电流和电压,从而导致设备损坏。
3.系统稳定性受影响:过电压可能会对电力系统的稳定性造成影响,使得系统出现振荡、失步等问题。
4.引发火灾:过高的电压可能导致电火花、电弧等产生,引发火灾事故。
三、过电压的预防和处理为了预防和处理过电压,可以采取以下措施:1.安装避雷设施:在建筑物、设施等处安装避雷针、避雷带等避雷设施,以防止雷击引起的过电压。
2.安装过电压保护装置:在电力系统中安装过电压保护装置,以限制过电压的幅值和持续时间。
3.加强设备维护:定期对电力设备进行维护和检修,确保设备的绝缘性能良好。
4.合理规划设计:在规划设计电力系统时,应充分考虑各种可能出现的异常情况,并采取相应的措施进行防范。
5.建立健全的运行管理制度:建立完善的运行管理制度,加强设备的运行监测和记录,及时发现和处理异常情况。
总之,对于过电压的认识和处理是保障电力系统安全稳定运行的重要环节。
通过加强设备维护、合理规划设计、建立健全的运行管理制度等措施,可以有效地预防和处理过电压问题,从而减少电力设备和电力系统的损失和风险。
什么是过电压-过电压类别有哪些-电力系统过电压分类
什么是过电压?过电压类别有哪些?电力系统过电压分类过电压这块在系统设计中比较重要,特别是500kV电压等级以上设计,但是由于专业性比较强,对其理解也是基于参与工程的过电压专题以及EMTP过电压计算的一个课题,对这块也做一个总结。
一、何谓过电压所谓过电压,是指电力系统在特定条件下所出现的超过工作电压的异常电压升高,属于电力系统中的一种电磁扰动现象。
电工设备的绝缘长期耐受着工作电压,同时还必须能够承受一定幅度的过电压,这样才能保证电力系统安全可靠地运行。
研究各种过电压的起因,预测其幅值,并采取措施加以限制,是确定电力系统绝缘配合的前提,对于电工设备制造和电力系统运行都具有重要意义。
过电压分两类,外过电压和内过电压。
外过电压又称雷电过电压、大气过电压。
由大气中的雷云对地面放电而引起的。
内过电压是电力系统内部运行方式发生改变而引起的过电压,分为工频过电压、操作过电压和谐振过电压。
个人涉及的一般都是内过电压分析,外过电压也会尝试稍作总结。
二、工频过电压工频过电压指系统中由线路空载、不对称接地故障和甩负荷引起的的频率等于工频(50Hz)或接近工频的过电压。
主要是三类原因:1.空载长线路的电容效应;2.不对称短路引起的非故障相电压升高;3.甩负荷引起的工频电压升高。
其中1和3经常结合在一起造成过电压。
实际计算过程中,与线路长短、短路容量、有无并联电抗器、故障前负荷都有关系。
为何讨论工频过电压?直接影响操作过电压的幅值持续时间长的工频电压升高仍可能危及设备的安全运行(油纸绝缘局放、绝缘子污闪、电晕等)在超高压系统中,为降低电气设备绝缘水平,不但要对工频电压升高的数值予以限制,对持续时间也给予规定(母线侧1.3pu,线路侧1.4pu,时间一般为1min)决定避雷器额定电压(灭弧电压)的重要依据(3、6、l0kV系统工频电压升高可达系统最高运行线电压的1.1倍,称为110%避雷器;35~60kV系统为100%避雷器;110、220kV 系统为80%避雷器;330kV及以上系统,分为电站型避雷器(即80%避雷器)及线路型避雷器(即90%避雷器)两种)工频过电压的幅值、持续时间与出现的机率对设备的影响及避雷器的选用应该说是非常重要的,但是现在广泛采用了不带间隙的氧化锌避雷器,由于有一定热容级,选择其额定电压时,工频过电压只是条件之一,不仅决定于工频过电压的幅值、而且决定于其持续时间,但由于我国这块持续时间与几率比较低(单相重合闸,一般不超过0.5S-1S),所以工频过电压可能已不是选择氧化锌避雷器额定电压的关健条件。
电力系统操作过电压
❖ 常见类型:
❖ 空载线路电容效应引起的电压高; ❖ 不对称短路时正常相上的工频电压升高 ❖ 甩负荷引起发电机加速而产生的电压升高
电力系统操作过电压
三、空载线路电容效应引起的工频过电压 1、线路较短时 (1)等值电路图和相量图
电力系统操作过电压
从相量图看出: 由于空载线路的电容效应,空载线路末端电压
双电源的线路中,合闸时电源容量大的一侧先 合闸,从电源容量小的一侧先分闸
电力系统操作过电压
四、不对称短路引起的工频电压升高
❖ 对于中性点不接地系统,当单相接地时,健全相的工 频电压升高约为线电压的1.1倍,因此,在选择避雷器 时,灭弧电压取110%的线电压,称为110%避雷器
❖ 对中性点经消弧线圈接地系统在过补偿时,单相接地 时健全相上电压接近线电压,因此在选择避雷器灭弧 电压时,取100%的线电压,称为100%避雷器
电力系统操作过电压
K 20U E 2cosc(o s )cosc ( osl )
当 xL0 0,0
K21U E2 co1scos1l
即空载线路末端电压恒比首端电压高,且线路越长,末 端电压越高,这种现象称为长输电线路的电容效应,又 称为费兰梯效应
电力系统操作过电压
(5)工频电压及其影响因素 a.与电源容量有关,电源容量越小工频电 压升高越严重 b.通过补偿电容电流,可削弱电容效应以 降低工频过电压
电力系统操作过电压
2.按其性质可分为三类 (1).线性谐振 (2).铁磁谐振 (3).参数谐振
电力系统操作过电压
二、铁磁谐振的基本原理
1、铁磁谐振
产生谐振条件:
L 1 C
电力系统操作过电压
2、物理过程 (1)串联铁磁谐振回路的伏安特性
过电压的概念与分类
过电压的概念与分类
过电压是指在电力系统中,电压超过了正常的工作范围。
这种情况可能会对设备和人员造成危害。
过电压可以分为以下几种类型:
1. 操作过电压:这是由于电路中的电感、电容和电阻相互作用产生的电压升高。
例如,开关操作、电力系统振荡、雷电等都可能产生操作过电压。
2. 暂态过电压:这是由于电力系统的非线性特性产生的电压升高。
例如,电力系统的开断、短路等都可能产生暂态过电压。
3. 操作冲击过电压:这是由于电力系统的开断或短路产生的电压升高。
这种过电压的幅值高,上升速度快,可能对设备和系统造成严重损害。
4. 雷电过电压:这是由于雷击产生的电压升高。
这种过电压的幅值非常高,可能超过设备的工作电压数倍,对设备和人员造成严重危害。
5. 工频过电压:这是由于电力系统的振荡或非正常操作产生的电压升高。
这种过电压的幅值相对较低,但持续时间长,可能对设备和系统造成慢性损害。
过电压的防治是电力系统安全运行的重要环节,需要通过合理的设计、运行和维护以及有效的保护装置来实现。
电力系统操作过电压
2、特点 (1)它的大小会直接影响操作过电压的实际 幅值
(2)它的大小会影响保护电器的工作条件 和保护效果
(3)工频电压升高使断路器操作时流过其 并联电阻的电流增大 (4)持续时间长,对设备绝缘及其运行性 能有重大影响
3、分析结论 (1)工频过电压就其过电压倍数的大小来 讲,对系统中正常绝缘的电气设备一般不够 成危险 (2)对于超高压系统,决定电气设备的 绝缘水平将起愈来愈大的作用
5、限压措施
主要采用阀型避雷器
二、间隙电弧接地过电压
1、产生原因 在中心点不接地系统中,当一相发生 故障时,故障点的电弧熄灭和重燃(称之 为间隙性电弧)引起电磁暂态的振荡过渡 过程而引起的过电压。(称之为间隙电弧 接地过电压)
2.单相接地电路图及相量图
3、分析
注意几点 (1)应假设某故障相达到最大值时电弧接地, 这是最严重情况 (2)掌握某一状态、某一时间下电压初始值、 稳态值 (3)过电压的最大幅值可用下面公式估算 过电压幅值=稳态值+(稳态值-初始值)
四、不对称短路引起的工频电压升高
对于中性点不接地系统,当单相接地时,健全相的工 频电压升高约为线电压的1.1倍,因此,在选择避雷器 时,灭弧电压取110%的线电压,称为110%避雷器 对中性点经消弧线圈接地系统在过补偿时,单相接地 时健全相上电压接近线电压,因此在选择避雷器灭弧 电压时,取100%的线电压,称为100%避雷器 对中性点直接接地系统单相故障接地时,健全相电压 约为0.8倍线电压,对于该系统避雷器的最大灭弧电压 取为最大线电压的80%,称为80%避雷器
1
L
2
0
(2)谐振一旦激发,将发生相位反倾现象,并产生 过电压和过电流 (3)铁芯的饱和会限制过电压的幅值
简述过电压的类型及原因
答: (一)外部过电压(大气过电压、内部过电压)
1.直击雷过电压,雷直接击于电气设备或输电线路时,巨大的雷电流在被击物上流过造成的过电压。
2.感应雷过电压,雷击电气设备、输电线路附近的地面或其他物体时,由于电磁感应和静电感应在电气设备或输电线路上产生的过电压。
3.侵入波,雷击输电线路产生的雷电波沿线路侵入发电厂和变电所。
(二)内部过电压
1.暂时过电压(作用时间长)
(1)工频过电压
①空载长线路末端电压升高;
②不对称短路时正常相上的电压升高(中性点不接地系统的单相接地故障) ;
③甩负荷过电压(发电机) 。
(2)谐振过电压(参数变化)
①线性谐振(放大) ,过电压的大小主要取决于回路的阻尼电阻 R;
②铁磁谐振过电压,是由于铁芯饱和引起的;
③参数谐振过电压(对于水轮机 Xd”、Xq”不同,转一周感应不同,发生周期性谐振) 。
2.操作过电压
(1)切空线过电压,是由于 QF 重燃引起的;
(2)合空线过电压,由于合闸时 QF 触头间有电位差,引起电磁能量振荡而产生的;
(3)切空变过电压,是由于 QF 截流引起的;
(4)电弧接地过电压,是由于故障点电弧时燃时熄,引起系统中电磁能量振荡而产生的。
(属于故障操作,电弧无法自行熄灭)。
overvoltage category分类
overvoltage category分类过电压是指电压在电网或电气设备中超过额定值或正常范围的现象。
由于过电压可能导致设备的损坏或事故,因此对过电压进行分类是非常重要的。
根据过电压的来源和性质,可以将过电压分为若干个不同的类别。
本文将会详细讨论几种常见的过电压分类。
1. 外部原因引起的过电压:外部原因包括雷击、地电压、电网故障等。
这类过电压通常是突发性的且峰值较高。
雷击是最常见的外部原因,其产生的过电压可以达到几十千伏甚至更高。
地电压通常由于信号地线与电网地线之间存在电位差而引起。
电网故障可以是上游电力系统的故障,也可以是电网中的短路、接地故障等。
2. 内部原因引起的过电压:内部原因包括电网自身和电气设备的因素。
电网自身的过电压包括正常的运行过电压和突发的故障过电压。
正常的运行过电压是由于电网运行状态的变化引起的,例如电动机的启动、停止以及其他负载的变化。
故障过电压则是由电力系统中的短路、接地故障等故障引起的,这类过电压通常是突发的且峰值很高。
电气设备因素包括设备的故障、绝缘击穿等。
这些因素也可能导致过电压的产生。
3. 意外原因引起的过电压:意外原因包括供电系统的不可靠性、错误操作、人为事故等。
供电系统的不可靠性包括电网的不稳定性、电网中的电能负荷失衡等,这些因素可能导致过电压。
错误操作和人为事故包括错误的接线、错误的操作步骤、设备的误操作等。
根据过电压的峰值和时间特性,可以进一步将过电压分为瞬变过电压和持续过电压。
1. 瞬变过电压:瞬变过电压是指过电压峰值非常高,但持续时间很短的现象。
这类过电压通常由于突发事件引起,如雷击、电网故障等。
瞬变过电压的峰值可以达到几十千伏,但持续时间通常只有几微秒至几十微秒。
2. 持续过电压:持续过电压是指过电压峰值较低,但持续时间较长的现象。
这类过电压通常由于电力系统的正常运行或设备故障引起。
持续过电压的峰值通常在几千伏以下,但持续时间可以达到几十分钟甚至更长。
避雷器及过电压防护基础知识
避雷器及过电压防护
二、雷电危害及防雷
避免发电厂和变电所的电气设备以及输电线路遭到直接雷 击侵害的有效措施是安装避雷针、避雷线;在导线和大地之间 ,装设与保护设备并联的避雷器,从而限制过电压,保护电力 系统的安全运行。
避雷器及过电压防护
三、避雷器类型
避雷器能释放雷电或兼能释放电力系统操作过电压能量, 保护电工设备免受瞬时过电压危害,又能截断续流,不致引起 系统接地短路的电器装置。
避雷器及过电压防护
瓷 外 套 避 雷 器
避雷器及过电压防护
复 合 外 套 避 雷 器
避雷器及过电压防护
三、避雷器类型
(4)氧化锌雷器分类 • 按标称放电电流分
避雷器及过电压防护
三、避雷器类型
(4)氧化锌雷器分类
• 按结构性能分类 • 金属氧化物避雷器按结构性能可分为无间隙﹝W﹞、 带串联
间隙﹝C﹞、带并联间隙 ﹝B﹞三类。
避雷器及过电压防护
三、避雷器类型 (3)阀型避雷器:阀型避雷器是由火花间隙和非线性电阻
这两种基本元件组成的。间隙与非线性电阻相串联。
我国目前生产的阀型避雷器主要分为普通阀型避雷器和磁吹 阀型避雷器两大类。普通阀型避雷器有FS和FZ两种系列;磁吹 阀型避雷器有FCD和FCZ两种系列。避雷器Leabharlann 过电压防护避雷器及过电压防护
八、电力系统的防雷接地
关于接地事故的反措要求
(1)根据地区短路容量的变化,应校核接地装置(包括设备接地引下线)的热 稳定容量,并据短路容量的变化及接地装置的腐蚀程度对接地装置进行改造。
式中:Sg——接地线的最小截面,mm2; Ig——流过接地线的短路电流稳定值,A(根据系统5~10 年发展规划,
避雷器及过电压防护
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
过电压分为几类
过电压分为几类
1、过电压是指工频下交流电压均方根值升高,超过额定值的10%,并且持续时间大于1分钟的长时间电压变动现象。
2、过电压分外过电压和内过电压两大类。
(1)外过电压:又称雷电过电压、大气过电压。
由大气中的雷云对地面放电二次过电压保护器而引起的。
分直击雷过电压和感应雷过电压两种。
雷电过电压的持续时间约为几十微秒,具有脉冲的特性,故常称为雷电冲击波。
直击雷过电压是雷闪直接击中电工设备导电部分时所出现的过电压。
雷闪击中带电的导体,如架空输电线路导线,称为直接雷击。
雷闪击中正常情况下处于接地状态的导体,如输电线路铁塔,使其电流互感器过电位升高以后又对带电的导体放电称为反击。
直击雷过电压幅值可达上百万伏,会破坏电工设施绝缘,引起短路接地故障。
感应雷过电压是雷闪击中电工设备附近地面,在放电过程中由于空间电磁场的急剧变化而使未直接遭受雷击的电工设备(包括二次设备、通信设备)上感应出的过电压。
因此,架空输电线路需架设避雷线和接地装置等进行防护。
通常用线路耐雷水平和雷击跳闸率表示输电线路的防雷能力。
(2)内过电压:电力系统内部运行方式发生改变而引起的过电压。
有暂态过电压、操
作过电压和谐振过电压。
暂态过电压是由于断路器操作或发生短路故障,使电力系统经历过渡过程以后重新达到某种暂时稳定的情况下所出现的过电压,又称工频电压升高。
常见的有:
①空载长线电容效应(费兰梯效应)。
在工频电源作用下,由于远距离空载线路电容效应的积累,使沿线电压分布不等,末端电压最高。
②不对称短路接地。
三相输电线路a相短路接地故障时,b、c 相上的电压会升高。
③甩负荷过电压,输电线路因发生故障而被迫突然甩掉负荷时,由于电源电动势尚未及时自动调节而引起的过电压。
操作过电压是由于进行断路器操作或发生突然短路而引起的衰减较快持续时间较短的过电压,常见的有:
①空载线路合闸和重合闸过电压。
②切除空载线路过电压。
③切断空载变压器过电压。
④弧光接地过电压。
谐振过电压是电力系统中电感、电容等储能元件在某些接线方式下与电源频率发生谐振所造成的过电压。