燃烧理论5着火的理论基础
2.燃烧和火灾的基本知识
燃烧和火灾的基本知识第一节燃烧基础知识一、燃烧的定义燃烧是指可燃物与氧化剂作用发生的放热反应,通常伴有火焰、发光和(或)发烟的现象。
二、燃烧的条件可燃物(按所处状态):气、液、固助燃物(氧化剂):与可燃物结合能导致和支持燃烧的物质引火源(温度):明火、电火花、雷击、高温、自燃引火源三、燃烧类型1、按燃烧发生瞬间的特点分类着火又称起火,它是日常生活、生产中最常见的燃烧现象,与是否由外部热源引发无关,并以出现火焰为特征。
爆炸:在周围介质中瞬间形成高压的化学反应或状态变化,通常伴有强烈的放热、发光和声响的现象称为爆炸。
①爆炸按原理和性质不同分为:物理爆炸、化学爆炸、核爆炸。
②爆炸极限:可燃的蒸汽、气体或粉尘与空气组成的混合物,遇火源即能发生爆炸的最高或最低浓度称为爆炸极限。
遇火源即能发生爆炸的最低浓度称为爆炸下限,遇火源即能发生爆炸的最高浓度称为爆炸上限。
下限和上限之间的间隔称为爆炸极限范围。
范围越大,危险性越高。
2.按燃烧形态分类:①气体燃烧分为:扩散燃烧、预混燃烧扩散燃烧:可燃性气体与氧化剂互相扩散,边混合边燃烧,燃烧速度的快慢由物理混合速度决定。
燃烧比较稳定,扩散火焰不运动预混燃烧:可燃气体预先同氧化剂混合后的燃烧。
燃烧反应快,温度高,火焰传播速度快,从管口喷出燃烧,流速过大会脱火,流速过小会回火。
②液体燃烧:a.闪燃:可燃性液体挥发的蒸汽与空气混合后达到一定浓度后,遇明火发生一闪即灭的燃烧现象。
b.蒸发燃烧:可燃液体受热后边蒸发边与空气相互扩散混合,遇引火源后发生燃烧,呈现有火焰的气相燃烧形式。
液体可燃物在燃烧过程中,并不是液体本身在燃烧,而是蒸发出来的蒸气燃烧。
c.沸溢燃烧:正在燃烧的油层下的水层因受热沸腾膨胀,导致燃烧着的油品喷溅使燃烧瞬间增大的现象。
d.喷溅燃烧:储罐中含有水垫层的重质油品在燃烧过程中,随着热波温度逐渐升高,热波向下传播的距离也不断加大。
当热波达到水垫层时,水垫层的水变成水蒸气,体积迅速膨胀,蒸汽压力达到足以把水垫层上面的油层抬起时,蒸汽冲破油层将燃烧着的油滴和包油的油气抛向上空,向四周喷溅燃烧。
燃烧理论基础-燃烧热力学
u=u(T,v)
h=h(T,P)
微分方程
du=
( u T
)v dT
(u v
)T
dv
dh=
h
h
( T
)P dT
( P
)T
dP
9
定容比热Constant-volume specific heats
du
( u T
)v
dT
热力学定义:du/dT=cv
(
u v
)T
d
v
cv
(
u T
)v
dh
(
h T
)P
dT
(
h P
燃烧学导论:概念与应用
主要围绕燃烧物理及相关的概 念,燃烧化学内容偏少。
CK Law,Combustion Physics Irvin Glassman,Combustion James House, Principle of Chemical Kinetics
第2讲 燃烧热力学
问题1:燃烧第一直接目的是获得什么? 锅炉、发动机、煤气灶、热气球。。。
(A
/
F
) stoic
4.76(2.24) 28.85 1 8 .2 8 6
1 6 .8 2 ,
则从上述方程有
(A /F ) ( A / F ) sto ic 1 6 .8 2 5 8 .8
0 .2 8 6
46
由于 (A/F) 是空气流率与燃料流率之比,
m ma ir 1 5 .9 k g / s 0 .2 7 0 k g / s
温度升高有更多的转动和 振动模式变得活跃:温度 越高,分子平动速度越快, 分子碰撞频率越高,有更 多的动能转变为分子转动 能和振动能。
燃烧理论基础ppt课件
微波燃烧是一种新型的热工技术,利用微波电磁场与燃料 的相互作用产生热量,实现燃料的快速、高效燃烧。微波 燃烧具有低污染、高效率和节能等优点。
06
未来展望
清洁能源的发展
清洁能源
随着环境保护意识的提高,清洁能源的发展越来越受到重视。未来,化石燃料的使用将逐渐减少,取而代之的是 太阳能、风能、水能等可再生能源。
02
燃烧化学
燃烧反应方程
燃烧反应方程是表示燃烧过程中物质 变化和能量转换的数学表达式。它由 反应物和生成物的化学式及其相应的 反应系数组成,遵循质量守恒和能量 守恒定律。
燃烧反应方程可以用来表示燃料与氧 气或其他氧化剂反应生成二氧化碳、 水蒸气等产物的过程,如C + O2 → CO2 + H2O。
热工仪表
热工仪表用于监测和控制燃烧系统的运行状态,包括温度计、压力计、流量计、氧分析仪 等。这些仪表能够实时监测燃烧过程中的各种参数,如温度、压力、流量和含氧量等。
燃烧控制技术
01
空燃比控制
空燃比是燃料和空气的混合比例,合适的空燃比是保证燃烧效率和经济
性的关键。通过控制燃料和空气的流量,可以调节空燃比,使燃烧过程
燃烧温度
01
燃烧温度是指燃烧过程中火焰或 反应区的温度,它与燃料的种类 、空气的供给、燃烧方式等因素 有关。
02
燃烧温度的高低直接影响到燃烧 产物的组成和燃烧效率,过高或 过低的温度都不利于燃烧过程的 进行。
燃烧产物
燃烧产物是指燃料在燃烧过程中产生 的气体、烟尘和灰渣等物质,它们由 燃料中的可燃元素转化而来。
可持续发展的重要性
资源节约
可持续发展强调资源的合理利用和节约,通过提高能源利用效率和减少浪费,实现经济、 社会和环境的协调发展。
消防燃烧学课件
爆炸升压速度:
爆炸威力指数=最大爆炸压力×平均升压速度。 爆炸总能量:
可燃气体的燃烧
爆炸极限
一、基本概念
1、爆炸下限:可燃气与空气组成的混合气体遇火源能发生爆炸 的最低浓度。 2、爆炸上限:可燃气与空气组成的混合气体遇火源能发生爆炸 的最高浓度。
二、实用意义
(一)评定气体和液体蒸气的火灾危险性大小。 (二)评定气体生产、储存的火险类别。 (三)确定安全生产操作规程。
着火与灭火的基本理论
三、着火条件
1、着火条件 如果在一定的初始条件下,系统将不可能在整个时间 区段保持低温水平的缓慢反应态,而将出现一个剧烈的加 速的过渡过程,使系统在某个瞬间达到高温反应态,这个 初始条件便称为着火条件。 2、正确理解着火条件 ① 达到着火条件,只是具备着火的可能。 ② 着火条件指的是系统初始应具备的条件。 ③ 着火条件是多种因素的总和。
(二)阻火器:阻火器是阻止火焰传播的火焰阻断装置。 金属网阻火器:在器内用若干层有一定 孔径的金属网,把空间分隔成许多小孔隙。 砾石阻火器:器内是用沙粒、卵石、玻璃 球、铁屑等作为充填料,将器内空间分隔 成许多小孔隙。 波纹金属片阻火器:通常由交迭放置的 波纹金属片组成的有三角形孔隙的方形 阻火器和将一条波纹带与一条扁平带绕 在一个芯子上组成的圆形阻火器。
2、爆轰区的特点:
(1)燃烧后气体压力要增加; (2)燃烧后气体密度要增加; (3)燃烧波以超音速传播。
可燃气体的燃烧
层流预混气中正常火焰传播速度
火焰传播机理
1、热理论
火焰能在混气中传播是由于火焰中加速的结果。
2、扩散理论
火焰能在新鲜混气中传播是由于火焰中的自由基向新鲜冷混
着火与灭火的基本理论
谢苗诺夫自燃理论
燃烧过程的理论基础
烟煤Vdaf=40%
650
烟煤Vdaf=30%
750
烟煤Vdaf=20%
840
贫煤Vdaf=14%
900
无烟煤Vdaf=4%
1000
挥发分越高的煤,着火温度越低,即越容易着火; 挥发分越低的煤,着火温度越高,越不容易着火。
着火热
一次风:现代大中容量锅炉广泛燃用煤粉,为了使煤粉气流被更快加热到煤粉颗粒的着火温度,总是不把煤粉燃烧所需的全部空气都与煤粉混合来输送煤粉,而只是用其中一部分来输送煤粉,这部分空气称为一次风。
只有粗煤粉在炉膛高温区才可能处于扩散。
其他区域为动力或过渡区,故提高炉膛温度可强化煤粉燃烧。
一次反应:式3-26;一次产物
燃烧机理:在碳粒的吸附表面进行的多相燃烧反应。
二次反应:式3-27;二次产物
碳粒的燃烧
02
不同温度下的碳粒燃烧过程:
图3-6 低于1200℃; 高于1200℃;
气流速度影响:
影响煤粉气流着火的因素
煤粉空气混合物经燃烧器喷入炉膛后,通过湍流扩散和回流,卷吸周围的高温烟气,同时又受到炉膛四壁及高温火焰的辐射,被迅速加热,热量达到一定温度后就开始着火。
1.燃料的性质 挥发分:含量低,煤粉气流的着火温度高,着火热增大,着火所需时间长,着火点离燃烧器喷口的距离也增大。 水分:水分大,着火热也随之增大,炉内温度水平降低,从而使煤粉气流卷吸的烟气温度以及火焰对煤粉汽流的辐射热也相应降低,对着火不利。 灰分:灰分在燃烧过程中不能放热还要吸热,灰分在着火和燃烧过程中使得炉内烟气温度降低,同样使煤粉气流的着火推迟,并进一步影响了着火的稳定性。 煤粉细度: 煤粉愈细,着火愈容易。(这是因为在同样的煤粉浓度下,煤粉愈细,进行燃烧反应的表面积就会越大,而煤粉本身的热阻却减小,在加热时,细煤粉的温升速度就比粗煤粉要快,这样就可以加快化学反应速度,更快地着火。)
燃烧基本理论
内容:燃烧基本理论一、燃烧的本质和条件(一)燃烧的本质燃烧是一种放热发光的化学反应。
燃烧同时具备三个特征,即化学反应、放热和发光,具备一个或两个特征不能称为燃烧。
(二)燃烧的条件1.必要条件:任何物质发生燃烧必须具备三个条件,即可燃物、助燃物(氧化剂)和着火源。
2.充分条件:一定的可燃物浓度,一定的氧气含量,一定的着火能量,三者相互作用。
二、燃烧类型燃烧类型主要有闪燃、自燃、着火、爆炸。
(一)闪燃在一定温度下,易燃、可燃液体表面上产生足够的可燃蒸汽,与空气混合遇着火源产生一闪即灭的燃烧现象叫作闪燃。
(二)自燃可燃物质在没有外部明火等火源的作用下,因受热或自身发热并蓄热所产生的自行燃烧现象称为自燃。
自燃包括受热自燃和本身自燃。
1、受热自燃。
可燃物质在空气中,连续均匀地加热到一定温度,在没有外部火源的作用下,发生自行燃烧的现象叫作受热自燃。
2、本身自燃。
可燃物质在空气中,自然发热经一定时间的积蓄使物质达到自燃点而燃烧的现象,叫作本身自燃。
(三)着火可燃物质与空气(氧化剂)共存,达到某一温度时与火源接触即发生燃烧,当火源移去后,仍能继续燃烧,直到可燃物燃尽为止,这种持续燃烧的现象叫作着火。
(四)爆炸物质从一种状态迅速转变成另一种状态,并在瞬间放出大量能量,同时产生声响的现象叫爆炸。
爆炸浓度极限:可燃气体、蒸气或粉尘与空气的混合物,遇火源能够发生爆炸的浓度。
遇火源能够发生爆炸的最低浓度叫作爆炸浓度下限(也称为爆炸下限);遇火源能发生爆炸的最高浓度叫作爆炸浓度上限(也称为爆炸上限)。
在火场上,常见的爆炸主要有以下三种:1. 气体爆炸:可燃气体与空气混合后遇到明火或电火花等火源时发生爆炸的现象。
气体爆炸必须具备三个条件:气体本身具有可燃性;气体必须与空气混合达到一定的浓度;有点火源的存在。
2、粉尘爆炸:悬浮于空气中的可燃粉尘遇到明火或电火花等火源时发生爆炸的现象。
粉尘爆炸必须具备三个条件:粉尘本身具有可燃性;粉尘必须悬浮在空气中并与气混合达到爆炸浓度;有足以引起粉尘爆炸的点火能量。
燃烧过程的基本理论
煤粉着火的主要加热源
• 要使煤粉着火。必须要有热源将煤粉加热到足够 高的温度。这个热源主要包括:煤粉气流卷吸回 流的高温烟气;火焰、炉墙等对煤粉的辐射;燃 料进行化学反应释放的热量 • 建模,研究结果表明:煤粉气流中,只有表面一 层煤粉可以接受辐射加热,考虑到这一影响,说 明煤粉气流的着火主要靠高温烟气回流 • 为了使煤粉气流更快加热到煤粉颗粒着火温度, 不能把燃烧所需要的空气全部用来输送煤粉,而 是用一部分输送煤粉,这部分为一次风,其余的 为二次风和三次风
活化能 E 破坏原有化学键并建立新化学键所必须消耗的能量,具有活化能 的分子为活化分子。活化能 E与反应物种类有关,挥发分含量小的煤,E大 在一定的温度下,活化能 E越大,则反应速度常数 k值越小,反应速率越小; 而在一定的活化能 E下,温度越高,则反应速度常数k值越大,反应速率越 大 不同反应活化能不同,而且正反应和逆反应的活化能也不同。(见书119页)
§6-2煤、焦炭和煤粉的燃烧
一、煤粉燃烧燃烧的四个阶段 预热、干燥(吸热) 挥发分析出(热解),并着火 燃烧(挥发分、焦炭)(保证O2、足够温度 ) 燃尽(残余焦炭→灰渣)影响q4 着火是前提、燃尽是目的 如何强化着火→第四节 如何强化燃烧、燃尽→第五节 煤粉的燃烧,四个阶段往往交错进行,挥发分析出几乎延续 到煤粉燃烧的最后阶段,甚至是更小的粒子先着火
M M ar M mf 2510 cq T0 100 (6 45) Br ar 2510 cq Tzh 100 100 M 100 mf
第一项为加热煤粉和一次风所需热量 第二项为煤粉中水分蒸发、过热所需热量 请问第二项中两个水分的意思?为什么要减? 着火热大,着火所需时间长,着火点离开燃烧器喷口的距离大,着火困难
燃烧理论基础简介
燃烧理论基础简介一、碳粒燃烧的动力区、扩散区、过渡区1.动力区:温度低于900~1000℃时,化学反应速度小于氧气向碳粒表面的扩散速度,氧气的供应十分充足,提高扩散速度对燃烧速度影响不大,燃烧速度取决于温度。
2.扩散区:温度高于1200℃时,化学反应速度大于氧气向碳粒表面的扩散速度,以至于扩散到碳粒表面的氧气立刻被消耗掉,碳粒表面处的氧浓度接近于0,提高温度对燃烧速度影响不大,燃烧速度取决于氧气向碳粒表面的扩散速度。
3.过渡区:介于动力区和扩散区之间,提高温度和提高扩散速度都可以提高燃烧速度。
若扩散速度不变,只提高温度,燃烧过程向扩散区转化;若温度不变,只提高扩散速度,燃烧过程向动力区转化。
二、直流煤粉燃烧器1、煤粉燃烧器的作用煤粉燃烧器是燃煤锅炉燃烧设备的主要部件。
其作用是:(1) 向炉内输送燃料和空气;(2) 组织燃料和空气及时、充分的混合;(3) 保证燃料进入炉膛后尽快、稳定的着火,迅速、完全的燃尽。
在煤粉燃烧时,为了减少着火所需的热量,迅速加热煤粉,使煤粉尽快达到着火温度,以实现尽快着火。
故将煤粉燃烧所需的空气量分为一次风和二次风。
一次风的作用是将煤粉送进炉膛,并供给煤粉初始着火阶段中挥发分燃烧所需的氧量。
二次风在煤粉气流着火后混入,供给煤中焦炭和残留挥发分燃尽所需的氧量,以保证煤粉完全燃烧。
直流燃烧器通常由一列矩形喷口组成。
煤粉气流和热空气从喷口射出后,形成直流射流。
(二)、直流煤粉燃烧器的类型直流煤粉燃烧器的一、二次风喷口的布置方式大致上有两种类型。
一类适用于燃烧容易着火的煤,如烟煤、挥发分较高的贫煤以及褐煤。
这类燃烧器的一、二次风喷口通常交替间隔排列,相邻两个喷口的中心间距较小。
我们称为均等配风方式,这种方式适合烟煤的燃烧。
因一次风携带的煤粉比较容易着火,故希望在一次风中煤粉着火后及时、迅速地和相邻二次风喷口射出的热空气混合。
这样,在火焰根部不会因为缺乏空气而燃烧不完全,或导致燃烧速度降低。
燃烧与爆炸学第三章着火理论
2θ y12
(
x0 z0
)
2θ z12
ΔHC
KnC
n A0
Ex02
KRT02
e E / RT
论
3.3.1弗兰克-卡门热自燃理论概述
3.3
2
x12
( x0 )2 y0
2
y12
(
x0 z0
)
2
z12
HC KnCAn0 KRTa2
Ex02
eE / RT
弗
兰
δ
ΔHC
K
nC
n A0
Ex02
KRT02
e E /(RT0 )
3.3.1弗兰克-卡门热自燃理论概述
3.3
2
x12
( x0 )2 y0
2
y12
(
x0 z0
)
2
z12
exp( )
弗
-
兰 克 卡
相应边界条件为:在边界面 z1=f (x1,y1) 上, =0;在
论 愈大,或容器壁面积A愈小,混合气着火的临界压力Pc也
愈低,即愈有利于着火。
3.3
大Bi数条件下,物质体系 内部温度分布不均匀。
弗 兰 克
-
卡
门
热
自
燃
理 论
(a)谢苗诺夫模型
(b)弗兰克-卡门涅次基模型
3.3.1弗兰克-卡门热自燃理论概述
3.3
F-K自燃理论认为:自热体系能否着火,取决于
该体系能否得到稳态温度分布。体系得不到稳态温
3.3
-
弗 兰 克 卡 门
x1 x / x0
燃烧学重点知识(第二部分)
4燃烧理论基础4.1燃烧反应的热力学基础1、单相反应:在一个系统内反应物与生成物属同一物态。
2、多向反应(异相反应):在一个系统内反应物与生成物不属与同一物态。
3、浓度:单位体积中所含某物质的量。
摩尔浓度: 质量浓度: 摩尔相对浓度: 质量相对浓度: 4、标准生成焓、反应焓、燃烧焓、显焓、绝对焓(P98-100)5、化学反应速率:单位时间内,反应物(或生成物)浓度的变化量。
其单位为:kg/(m3s)、 kmol/(m3s)、 分子数/(m3s)①例: a 、b 、c 、d 为对应于反应物A 、B 和产物C 、D 的化学反应计量系数②反应速率可以表示为:③化学反应速率与计量系数之间有如下关系:/i i mi i i i i i i i i n N VM VN n C X N n C M Y M nρρ=====∑∑∑∑∑==aA bB cC dD+→+,,C A B D A B C D dC dC dC dC r r r r d d d d ττττ=-=-==或1111::::::C A B D A B C D dC dC dC dC a d b d c d d d r r r r a b c dττττ-=-==⇒=④化学反应速率的三种表示方法:反应物的消耗速度、生成物的生成速度、r 为反应速度⑤影响化学反应的因素:(温度、活化能、压力、浓度、可燃混合气的配比、混合气中的惰性成分)1. 浓度:浓度越大,反应速度越快。
2. 压力:对于气体燃料,压力升高,体积减少,浓度增加,反应速度加快。
(压力对化学反应速度的影响与浓度相同。
)3. 温度:温度增加,反应速度近似成指数关系增加,体现在反应速度常数。
①阿累尼乌斯定律: A —常数,频率因子,由实验确定;R —通用气体常数,8.28kJ/molK ,1.98kcal/molK ;E —活化能,J/mol ,由实验确定⏹ 气体分子的运动速度、动能有大有小;⏹ 在相同温度下,分子的能量不完全相同,有些分子的能量高于分子的平均能量,这样的分子称为活1111G A B H A B G H dC dC dC dC r a d b d g d h d r ar r br r grr hrττττ-=-====-=-==b B a A C kC =rRT E Ae k -=化分子(自由基、活化中心、活化络合物、中间不稳物)⏹ 化学反应中,由普通分子到达活化分子所需最小能量---活化能E ;(讨论活化能对反应速率影响,通过阿累尼乌斯定律) ⏹ 阿累尼乌斯定律反应了温度对反应速率的影响; 阿累尼乌斯定律是实验得出的结果;并不是所有的化学反应都符合阿累尼乌斯定律。
自燃理论燃烧学基础PPT课件
34
四、热自燃理论中的着火感应期
(一)T-t曲线图
q
ql T
b
Tc
c a
T0 Tc
T
t
35
第二节 弗兰克-卡门涅茨基自燃理论 Frank-Kamenetski
第一节 谢苗诺夫自燃理论
一、热自燃理论的基本出发点
体系能否着火取决于化学反应放热因素与体系向 环境散热因素的相对大小。如果反应放热占优势, 体系就会出现热量积累,温度升高,反应加速,出 现自燃。反之,不能自燃。 二、谢苗诺夫自燃理论
谢苗诺夫自燃理论的基本出发点:自然体系的着 火成功与否取决于放热因素和散热因素的相互关系。
31
三、热自燃理论的着火条件 (二)放热速率的影响因素
1、发热量 2、温度 3、催化物质 4、比表面积 5、新旧程度 6、压力
压力越大,反应物密度越大,单位体积产 生的热量越多,易发生自燃。
32
三、热自燃理论的着火条件 (三)散热速率的影响因素
1、导热作用 导热系数越小,越易蓄热,易自燃;
2、对流换热作用 对流换热作用差的,容易自燃。如:通风
决定曲线位置关系的因素 :T0,P一定; h变!
q
Q1
Q2
a点:
b
b点:
c点:
a
c
T0
T
相交: 相切: 相离:
21
放热速率:
散热速率:
决定曲线位置关系的因素 :T0,P一定; h变!
q
Q1
b
Q2 自燃重要的准则:
燃烧过程的理论基础化学反应速度均相反应质量作用定律多相反应
燃烧过程的理论基础⏹化学反应速度化学反应速度影响反应速度的因素⏹固体燃料的燃烧煤燃烧的四个阶段焦炭的燃烧煤和煤粉的燃烧特点⏹煤粉气流的着火与燃烧着火与熄火的热力条件煤粉气流着火热源煤粉气流的着火及影响因素完全燃烧条件燃烧反应是一种发光放热的高速化学反应,同时伴随各种物理过程均相燃烧燃料和氧化剂物态相同,如气体燃料在空气中燃烧多相燃烧燃料和氧化剂物态不同,如固体燃料在空气中燃烧化学反应速度化学反应速度在反应系统单位体积中物质(反应物或生成物)浓度的变化率,单位是mol /(cm 3·s )对于反应式αA +βB → γG +δH反应速度为C A 、C B 、C G 、C H 分别为反应物A、B和生成物G、H的浓度,mol/cm 3α、β、γ、δ 分别为相应的化学计量系数)14(dtdC 1dt dC 1dt dC 1dt dC 1w HG B A -⨯δ=⨯γ=⨯β-=α-= 均相反应质量作用定律质量作用定律反映浓度对化学反应速度的影响对于均相反应,在一定温度下,化学反应速度与参加反应各反应物浓度乘积成正比,各反应物浓度的幂指数等于其相应的化学计量系数对反应αA+βB →γG+δH质量作用定律可用下式表示式中:k 为反应速度常数,表示单位物质浓度时的反应速度)34(C kC w B A -=βα 在温度不变的情况下,反应物的浓度越高,分子的碰撞机会越多,化学反应速度就越快。
多相反应质量作用定律多相燃烧反应在固体表面进行,固体燃料浓度不变(C A =常数),故多相反应速度w 是指在单位时间、单位表面上反应物(气相)浓度的变化率式中f A -单位容积两相混合物中固相物质的表面积;C B -气相反应物质的浓度β=-=B A BC kf dtdC w 阿累尼乌斯定律阿氏定律反映温度对化学反应速度的影响反应物浓度不变时,反应速度常数k 随温度变化的关系式中k 0-频率因子,近似为一常数R、T、E -通用气体常数、热力学温度、活化能)44(e k k RTE 0-=- 活化能E 能够破坏原有化学键并建立新化学键所必须消耗的能量,具有活化能的分子为活化分子。
燃烧学第五章着火与熄火
0 yB
i 0 ( y0 yB ) / W0
W0 k0 ( 0 y0 ) n e E / RT0
y 0 y B TB T0 y 0 0 Tm T0
y0 y B y0 TB T0 Q (TB T0 ) Tm T0 CV
H O2 M HO2 M
而代替原来的增殖反应[b],使链载体H与O2化合 成相对寿命较长的分子HO2(用光谱仪测到), 它向容器壁面扩散而碰壁终止,如:
2HO2 壁 H2 2O2
其结果是破坏了一个增殖链环,因此整个反 应再次由速率很高的爆炸反应回复到稳定的反应。 一般称此界限为爆炸高限或第二极限。
相对于指数中的T0,其 影响很小,可视为常数 压力、温度下降时,感应期增大。
二、非稳态分析法
着火感应期i :
i 0 RT02CV ( EQk 0 ( 0 y0 ) n exp( E / RT0 )
E ln i 常数 RT0
当温度和混气成分不变时:
ln i ~ (1 n) ln p
在压力很低时,由于反应[e]比较显著,所以反应无法加 速到自燃。随着压力的升高,这些链载体的自由行程就 大大的减小,以致能够到达容器壁面的链载体变得很小, 而大部分链载体参与[b]、[C]、[d]得链增殖反应,从而 使反应加速而达到自燃,这时出现图中的第一极限。
当压力升到很高时,分子很密集,就可能出现三 分子反应:
lim n lim
t t
w1
(et 1)
w1
Φ =0:
n lim
0
w2
(et 1) w1t
燃烧与污染及污染控制技术燃烧理论基础教学课件
颗粒物排放
颗粒物排放
可吸入颗粒物
燃烧过程中会产生各种颗粒物,如烟尘、 灰烬等,这些颗粒物对环境和人体健康造 成危害。
可吸入颗粒物对人体健康危害极大,尤其 是对呼吸系统的影响,可引起咳嗽、呼吸 困难等症状。
细颗粒物
灰烬
细颗粒物又称PM2.5,是一种直径小于2.5 微米的颗粒物,其危害性更大,可进入肺 部深处,甚至进入血液循环系统。
燃烧污染控制的政策法规与标准
制定严格的排放标准
01
政府应制定更加严格的排放标准,限制燃烧过程产生的污染物
排放。
推行环保政策
02
通过实施环保税收、绿色金融等政策,鼓励企业采用清洁能源
和环保技术。
加强监管力度
03
加强对燃烧污染源的监管力度,对违规排放行为进行严厉处罚
。
THANKS
谢谢
氮氧化物
燃烧过程中会产生多种氮氧化物,如一氧化氮、二氧化氮 等,这些气体对人体健康和环境造成危害,如形成光化学 烟雾和酸雨等。
硫氧化物
燃烧煤、石油等化石燃料会产生大量硫氧化物,如二氧化 硫和三氧化硫,这些气体在大气中会形成酸雨,对生态环 境和人类健康造成危害。
一氧化碳
燃烧过程中会产生大量一氧化碳气体,这是一种有毒气体 ,对人体健康造成严重危害,尤其在密闭环境中更为危险 。
燃烧与污染及污染控制技术燃 烧理论基础教学课件
目录
CONTENTS
• 燃烧理论基础 • 燃烧产生的污染 • 燃烧污染控制技术 • 燃烧效率与污染物排放的关系 • 未来燃烧技术的发展趋势与挑战
01
CHAPTER
燃烧理论基础
燃烧的定义与特性
总结词
燃烧是一种化学反应过程,涉及 可燃物与氧气发生反应,释放出 光和热。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主要任务 研究不同着火方式的着火机理。 着火方式与机理 着火过程及方式 着火温度 热自燃过程分析 着火温度求解 着火的热自燃理论 谢苗诺夫公式 热自燃界限 热自燃的延迟期 着火理论 基础 链反应速度 着火的链式反应理论 链反应的发展过程 链反应的延迟期
强迫着火 强迫着火过程 常用点火方法 电火花点火 点火的可燃界限
结论:增大容器的尺寸,可以降低着火临界压力。 应用:高原地区不宜用小尺寸的燃烧室 。
容器体积对热自燃着火 过程的影响
五、热自燃的延迟期
概念
由T0自动升高到着火温度TB需要一定的时间,这段着 火前的自动加热时间称为热自燃感应期或着火延迟期。
系统的热平衡工况
着火过程中的温度变化曲线
概念
q1 q2 VC
易热自燃 不易热自燃
应用:内燃机在高原地区,
航空发动机在高空时着火
性能不好。 热自燃界限图
热自燃温度与混合气组分的关系
无论是均相气体燃料还是固体燃料,当周围
介质温度T0达到一定值后,即出现热自燃着火,
其临界自燃条件前已分析,此时的周围介质温度 即为自燃温度。但试验亦表明,在一定的炉内压 力下,可燃混合物的浓度变化时,其自燃温度也 不相同。
着火浓度界限(P =定植)
着火浓度界限(T0 =定值)
着火的可燃界限:P=定值,得出着火温度与混合气 成分的关系;T0 =定值,得出 临界压力与混合气成 分的关系。
只有x1~x2的浓度范围内混合气才可能着火。 x2— —浓限(富油); x1——稀限(贫油)。
当压力(或温度)下降时,则可燃界限缩小,当压
绝热工况下的着火延迟期:
ln t ig E v 1 ln P A RT0
log P T0
1 2 / v
A B T0
谢苗诺夫公式的应用价值
对高温范围的着火规律而言,该公式在定 性方面的解释相当合理的,在定量方面仍 有一定的参考价值,可作为半经验公式来 估算着火条件。
可用着火的临界条件来确定活化能。
四、热自燃界限
热自燃温度与压力的关系
P ↗ :T0 ↘ P ↘ : T0 ↗
E
——热自燃条件的表达式
系统的散热条件(α、S、V)和混合气的化学性能参 数(E、Q、k0、v)已知,则根据上式有: 若给定C T0 ; 若给定T0 着火时混合气的临界浓度值C。
VQk0C v Ee RT0 e 1 RT02 S
E
P取代C
气体压力和自燃温度的关系式,也即为谢苗诺夫 公式,或称为热自燃界限方程:
着火的临界压力与容器尺寸的关系
PV CVNa RT0
VQk0C v Ee RT0 e 1 RT02 S
T0及其余参数不变
E
E VQk0 P v Ee exp 1 v 1 v 2 v aSN a R T0 RT0
V P S 定值
v
球形容器,ν=1
PD=定值
q1 T q2 T
B B
(放热速率与散热率相等)
dq1 dT
TB
dq2 dT
(放热率与散热率对温度的导数值相等)
TB
TB对应的自燃温度为T0,解得TB:
4 RT0 E TB 1 1 2R E
化简得:
TB T0
R 2 T0 E
得到着火的条件: T T T R T 2 B B 0 0
利—恰及利耶(Le—chatelier)明确提出了着火 的临界条件:反应放热曲线与系统向环境散 热的散热曲线相切。
谢苗诺夫(Semonov)完成了数学上的描述。
谢苗诺夫的可燃混合气热自燃理论
有一体积为V(m3)的容器,其中充满有化学均匀 可燃气体混合物,其分反应物浓度为C(mol/m3),容器 的壁温为T0(K),容器内的可燃气体混合物正以速度 w(mol/m3s)在进行反应,化学反应后所放出的热量, 一部份加热了气体混合物,使反应系统的温度提高, 另一部份则通过容器壁而传给周围环境。
着火过程是一种典型的受化学动力学控制的燃 烧现象。
5.1 着火过程及方式
一、着火的方式与机理
自然界中燃料的着火方式
自燃着火 预混可燃气体由于自身温度的升高而导致化学反应
(自燃)
速率自行加速引起的着火称为自然—— 整体加热。
预混可燃气体由于外界能量的加入,如电火花等点 强迫着火 火源点致使预混可燃气体化学反应速度急剧加快引 (点燃或点火) 起的着火——局部加热。
知识要点
着火概念、方式和机理,谢苗诺夫热自燃理论, 链式反应理论,烃类—空气混合着火特性,强迫着火 的两种理论,着火界限 知识重点 谢苗诺夫热自燃理论 知识难点 链式反应理论
燃烧与火焰
三个阶段:混合,加热着火,燃 烧反应 燃烧的分类: 气体燃烧为均相燃烧 预混气体及半预混燃烧 一次空气系数α1 半预混0<α1<1 ,半无焰燃烧 全预混α1≥1,无焰燃烧 扩散燃烧α1=0 层流火焰,湍流火焰 均相与非均相燃烧
dT dt
曲线Ⅰ:初温低于T0的工况。最后稳定于A工况,温度 逐 渐趋近于TB,不能自燃; 曲线Ⅱ:初温恰好等于T0的临界状况。以着火温度TB为 极限,着火延迟期是无限长的。 曲线Ⅲ、Ⅳ、Ⅴ:初温高于T0的工况。在系统温度达到 TB之前,虽然q1-q2 >0, dT/dt>0 , 但 是因为d2T/dt2 < 0,温度变化是减速缓慢 升 高的,即曲线上凸。在T= TB时, q1-q2 = 0, d2T/dt2 =0,曲线出现拐点。经过拐点 以后,q1-q2 >0,而且增大很快,故 d2T/dt2 >0,温度 加速上升,曲线上凹。我们规定这个拐点出现的时间 (温度达到τig)为着火延迟期。
氢 (H2) 一氧化碳 (CO) 甲烷 (CH4) 乙烷 (C2H6) 丙烯 (C3H6) 乙炔 (C2H2) 硫化氢 (H2S) 氨 (NH3) 高炉煤气 焦炉煤气 发生炉煤气 生活用煤气 天然煤气
571 609 632 472 504 305 290 651 700~800 650~750 700~800 560~750 530
力(或温度)下降到某一值时,则可燃界限缩小成 一点,当压力(或温度)再继续下降,则任何混合
气成分都不能着火。
几种可燃气体的着火范围
名称 着火温度℃ 可燃物着火 的浓度范围 低限 % 高限 % 4.0 74.2 12.4 73.8 4.6 14.6 2.9 14 2.08 10.6 2.5 80 4.3 45.5 15.5 26.6 46 68 60 30.0 20.7 73.7 5.3 31.0 4.5 13.5 着火范围相应 的过量空气系数 高限 % 低限 % 2.94 2.17 2.0 1.96 0.184 0.61 0.37 0.35
之间的反应过程)放热的反作用的结果。
着火延迟期 :着火前的物理准备过程。
5.2 着火的热自燃理论
一.热自燃过程分析
放热和散热过程
着火是反应放热因素和散热因素相互
作用的结果。
放热>散热:着火成功;
放热<散热:着火失败。
着火热理论的发展
范特—荷夫(Vant‘Hoff)提出基本思想,认为, 当反应系统与周围介质间热平衡破坏时就发 生着火。
自燃和点燃过程统称之为着火过程 。
影响着火的因素
燃料性质 燃料与氧化剂的比例 环境压力及温度 气流速度 燃烧室尺寸等等。
化学动力学因素(本章分析的重点) 流体力学因素(燃烧阶段)
自燃着火机理主要包括两种
热自燃机理——反应物温度不断升高,反应加 快,直到着火,可用阿累尼乌斯定律和质量作 用定律解释。 链锁自燃机理——活性中心增值数大于销毁, 反应不断加快,分支链反应和直链反应。
数学模型
反应放热速率
q1 wQV
(1)
式中:w——混合气的化学反应速率, (mol/m3s) Q —— 混合气的反应热,即生成每摩尔生成物所 放出的热量,(kJ/mol) V ——容器的体积,(m3) 据化学动力学知识:
E w kC k0C exp RT
E
物理意义:可燃混合气的温度如比容器壁过热时,即
RT02 TB E
时,将发生热自燃;反之,如
RT02 TB E
时,
则不会引起热自燃。
着火温度是不是物性参数? 自燃温度是不是物性参数? 结论:自燃温度T0显然与混合气的浓度(或压力)、反应级数v、 活化能E和散热情况(αS)有关。可燃混合气的活性很强(即值 小),则具有较低的自燃温度;散热条件加强时(即值增大), 则自燃温度升高;可燃混合气的压力升高时,将使自燃温度降低。
三、谢苗诺夫公式
问题的提出
已知混合气的初温和散热条件,如何预估着火时混合 气的临界压力(或浓度)?
问题的解决(谢苗诺夫公式 )
对
E E VQk0C exp S 2 RT RT B B
做近似处理:
TB≈T0
VQk0C v Ee RT0 e 1 2 RT0 S
自燃过程中,反应物浓度、反应温度、反应速度和反应时 间的关系可用下图表示: w T
C
ti
ti称为着火感应期,着火延迟期或着火诱导期
一般情况下,放热率q1曲线 和散热率q2曲线有两个交点, A点和C点。 A点稳定。当外界有微小扰 动时,如T ↗,则 q2 > q1 , 散热>放热,T↘,回到A点; 当T↘ ,q2 < q1 , 散热<放热, T ↗ ,回到A点。 C点不稳定。轻微扰动将使B 点失去平衡。 A点温度低,称为熄灭状态。