燃烧理论基础

合集下载

燃烧理论基础-燃烧热力学

燃烧理论基础-燃烧热力学

u=u(T,v)
h=h(T,P)
微分方程
du=
( u T
)v dT
(u v
)T
dv
dh=
h
h
( T
)P dT
( P
)T
dP

9
定容比热Constant-volume specific heats
du
( u T
)v
dT
热力学定义:du/dT=cv
(
u v
)T
d
v
cv
(
u T
)v
dh
(
h T
)P
dT
(
h P
燃烧学导论:概念与应用
主要围绕燃烧物理及相关的概 念,燃烧化学内容偏少。
CK Law,Combustion Physics Irvin Glassman,Combustion James House, Principle of Chemical Kinetics
第2讲 燃烧热力学
问题1:燃烧第一直接目的是获得什么? 锅炉、发动机、煤气灶、热气球。。。
(A
/
F
) stoic
4.76(2.24) 28.85 1 8 .2 8 6
1 6 .8 2 ,
则从上述方程有
(A /F ) ( A / F ) sto ic 1 6 .8 2 5 8 .8
0 .2 8 6
46
由于 (A/F) 是空气流率与燃料流率之比,
m ma ir 1 5 .9 k g / s 0 .2 7 0 k g / s
温度升高有更多的转动和 振动模式变得活跃:温度 越高,分子平动速度越快, 分子碰撞频率越高,有更 多的动能转变为分子转动 能和振动能。

燃料与燃烧原理

燃料与燃烧原理

dC dC A dCG dC H B W WA — WH W — G B dt dt dt dt
第一章 燃烧理论基础

质量作用定律的意义 质量作用定律说明了参加反应物质的浓度对化学反应速度的影响。其意义是:对于均相反应,在一 定温度下,化学反应速度与 参加反应的各反应物的浓度乘积成正比,而各反应物浓度的方次等于 化学反应式中相应的反应系数。因此,反应速度又可以表示为:
第一章 燃烧理论基础
二.

阿累尼乌斯定律 在实际燃烧过程中,由于燃料与氧化物 (空气)是按一定比例连续供给的,当混 合十分均匀时,可以认为燃烧反应是在反应物质浓度不变的条件下进行的.这 时,化学反应速度与燃料性质及温度的关系为: k=k0e(-E/RT) 式中, k0 --相当于单位浓度中,反应物质分子间的碰撞频率及有效碰撞次数的 系 数 E—反应活化能; R—通用气体常数; T—反应温度: k—反应速度常数(浓度不变)。 阿累尼乌斯定律说明了燃料本身的“活性”与反应温度对化学反应速度的 影响的关系。 什么是燃料的“活性”呢?可以简单地理解为燃料着火与燃尽的难易程度。 例如,气体燃料比固体燃料容易着火,也容易燃尽。而不同的固体燃料, “活性”也不同,烟煤比无烟煤容易着火,也容易燃尽。因此,燃料的 “活性”也表现为燃料燃烧时的反应能力。燃料的“活性”程度可用“活 化能”来表示。
WA —
式中
dC A a b k AC A C B dt
WB —
dC B a b k BC A CB dt

CA, CB---反应物A,B的浓度 a , b---化学反应式中,反应物A,B的反应系数; kA, kB---反应速度常数。 多相燃烧的化学反应速度 对于多相反应,如煤粉燃烧,燃烧反应是在固体表面上进行的,固体燃料的浓度不变,即CA=1。 反应速度只取决于燃料表面附近氧化剂的浓度。用下式表示:

燃烧理论基础-化学动力学

燃烧理论基础-化学动力学

pN AV
2 AB
[
8kBT
]1/ 2
exp[ EA
/
RuT ]
4.17
• 不幸的是,碰撞理论没有给出确定活化能和空间因子的方 法.
• 更先进的理论, 具有破碎和形成键的分子结构的假设, 活样化的络讨合论物不理在论本,讲的就范可围以,从有基兴本趣原可理参来考计算Rekfbsim.[o2le]ca。nd这[3]. (第141页)
12
1. 总包反应与基元反应
反应机制可以只包括几步 (基元反应)或可以达到几百个。 如何选择最少的基元小步骤来描述一个特定的反应是一个活跃的研究领域
(寻找主要反应途径)。
13
1. 总包反应与基元反应
包含194种反应物和1459个 基元反应的 H2/CO/C1-C12 动力学模型。
JetSurF网站首页 (/JetSurF/)
反应的速度与以下的参数有关:
– 反应物浓度 – 温度 – 催化剂的存在与浓度 – 固体、液体或催化剂的表面积
反应速度随浓度变化一般用实验速度规律来表示。
为什么不用理论推导?
20
2.反应速率和反应级数
aA总包+ 反bB应 C 速度 = -[A]/t = k[A]m[B]n
• [A] & [B] = 反应物浓度 (M) • m, n =指数 [与化学反应中的系数(a和b)无关,一般是实验测量值]
A2(g) + B2(g)
2AB(g)
反应将会如何发生?
39
3. 基元反应速度
40
3. 基元反应速度 一个有效的碰撞
活化复合体-假设
分离
41
3. 基元反应速度
• 例 直如观,感在觉O,H希和望HH反要应撞形在成羟H基2O的的O反一应侧中要, 比在H一侧更容易反应,因为产物是形成 H-O-H这样的键。一般地,空间因子要远 小于1;但也有例外。

燃烧理论

燃烧理论

aA bB gG hH
(燃料)(氧化剂) (燃烧产物) 化学反应速度可用正向反应速度表示,也可用逆 向反应速度来表示。即
dC A WA = — dt
dCG WG = dt
dC B WB = — dt
dC H WH = dt
CA 、CB 、CG、、CH为摩尔组分浓度,kg/m3 或mol/m3。
过程所占的时间很长,约为90%,燃尽时间为1~2.8
秒。从燃烧放热量来看,焦碳占煤粉总放热量的 60~ 95%。 三、煤粉燃烧的主要特征 煤粉着火燃烧过程的细节十分复杂,只能说明几个 阶段的主要特征。
煤粉颗粒必须首先吸热升温,热源来自炉内1300~ 1600℃的高温烟气,燃煤得到干燥,随着水分的蒸发, 燃煤温度不断升高。挥发分析出后,剩余的固态物形成 焦碳。 可燃挥发分气体的着火温度比较低,450~550℃以 上就可着火、燃烧,同时释放热量,加热焦碳。焦碳温 度升高到着火温度时,即着火燃烧,并放出大量热量。 当焦碳大半烧掉之后,内部灰分将对燃尽过程产生 影响。其原因是:外层的灰分裹在内层焦碳上,形
3.正常燃烧向爆炸性燃烧的转变 当火焰正常燃烧时,有时会发生响声。此时,如 果绝热压缩很弱,不会引起爆炸性燃烧。但当未燃混 合物数量增多时,绝热压缩将逐渐增强,缓慢的火焰 传播过程就可能自动加速,转变为爆炸性燃烧。 四、煤粉气流火焰传播速度的影响因素 一般情况下,挥发分大的煤,火焰传播速度快;灰 分大的煤火焰传播速度小;水分增大时,火焰传播速度 降低。
k ko e
E RT
k0:频率因子; E:活化能; R:通用气体常数; T:热力学温度; 活化能E、频率因子k0都与温度无关;
什么是燃料的“活性”呢?
燃料的“活性”表示燃料着火与燃尽的难易程度。 例如,气体燃料比固体燃料容易着火,也容易燃尽。 而不同的固体燃料,“活性”也不同,燃料的“活 性”也表现为燃料燃烧时的反应能力。各种燃料所 具有的“活性”程度可用“活化能”的概念来描述。

燃烧过程的理论基础

燃烧过程的理论基础
550
烟煤Vdaf=40%
650
烟煤Vdaf=30%
750
烟煤Vdaf=20%
840
贫煤Vdaf=14%
900
无烟煤Vdaf=4%
1000
挥发分越高的煤,着火温度越低,即越容易着火; 挥发分越低的煤,着火温度越高,越不容易着火。
着火热
一次风:现代大中容量锅炉广泛燃用煤粉,为了使煤粉气流被更快加热到煤粉颗粒的着火温度,总是不把煤粉燃烧所需的全部空气都与煤粉混合来输送煤粉,而只是用其中一部分来输送煤粉,这部分空气称为一次风。
只有粗煤粉在炉膛高温区才可能处于扩散。
其他区域为动力或过渡区,故提高炉膛温度可强化煤粉燃烧。
一次反应:式3-26;一次产物
燃烧机理:在碳粒的吸附表面进行的多相燃烧反应。
二次反应:式3-27;二次产物
碳粒的燃烧
02
不同温度下的碳粒燃烧过程:
图3-6 低于1200℃; 高于1200℃;
气流速度影响:
影响煤粉气流着火的因素
煤粉空气混合物经燃烧器喷入炉膛后,通过湍流扩散和回流,卷吸周围的高温烟气,同时又受到炉膛四壁及高温火焰的辐射,被迅速加热,热量达到一定温度后就开始着火。
1.燃料的性质 挥发分:含量低,煤粉气流的着火温度高,着火热增大,着火所需时间长,着火点离燃烧器喷口的距离也增大。 水分:水分大,着火热也随之增大,炉内温度水平降低,从而使煤粉气流卷吸的烟气温度以及火焰对煤粉汽流的辐射热也相应降低,对着火不利。 灰分:灰分在燃烧过程中不能放热还要吸热,灰分在着火和燃烧过程中使得炉内烟气温度降低,同样使煤粉气流的着火推迟,并进一步影响了着火的稳定性。 煤粉细度: 煤粉愈细,着火愈容易。(这是因为在同样的煤粉浓度下,煤粉愈细,进行燃烧反应的表面积就会越大,而煤粉本身的热阻却减小,在加热时,细煤粉的温升速度就比粗煤粉要快,这样就可以加快化学反应速度,更快地着火。)

燃烧过程的基本理论

燃烧过程的基本理论

煤粉着火的主要加热源
• 要使煤粉着火。必须要有热源将煤粉加热到足够 高的温度。这个热源主要包括:煤粉气流卷吸回 流的高温烟气;火焰、炉墙等对煤粉的辐射;燃 料进行化学反应释放的热量 • 建模,研究结果表明:煤粉气流中,只有表面一 层煤粉可以接受辐射加热,考虑到这一影响,说 明煤粉气流的着火主要靠高温烟气回流 • 为了使煤粉气流更快加热到煤粉颗粒着火温度, 不能把燃烧所需要的空气全部用来输送煤粉,而 是用一部分输送煤粉,这部分为一次风,其余的 为二次风和三次风
活化能 E 破坏原有化学键并建立新化学键所必须消耗的能量,具有活化能 的分子为活化分子。活化能 E与反应物种类有关,挥发分含量小的煤,E大 在一定的温度下,活化能 E越大,则反应速度常数 k值越小,反应速率越小; 而在一定的活化能 E下,温度越高,则反应速度常数k值越大,反应速率越 大 不同反应活化能不同,而且正反应和逆反应的活化能也不同。(见书119页)
§6-2煤、焦炭和煤粉的燃烧
一、煤粉燃烧燃烧的四个阶段 预热、干燥(吸热) 挥发分析出(热解),并着火 燃烧(挥发分、焦炭)(保证O2、足够温度 ) 燃尽(残余焦炭→灰渣)影响q4 着火是前提、燃尽是目的 如何强化着火→第四节 如何强化燃烧、燃尽→第五节 煤粉的燃烧,四个阶段往往交错进行,挥发分析出几乎延续 到煤粉燃烧的最后阶段,甚至是更小的粒子先着火
M M ar M mf 2510 cq T0 100 (6 45) Br ar 2510 cq Tzh 100 100 M 100 mf
第一项为加热煤粉和一次风所需热量 第二项为煤粉中水分蒸发、过热所需热量 请问第二项中两个水分的意思?为什么要减? 着火热大,着火所需时间长,着火点离开燃烧器喷口的距离大,着火困难

燃烧理论基础简介

燃烧理论基础简介

燃烧理论基础简介一、碳粒燃烧的动力区、扩散区、过渡区1.动力区:温度低于900~1000℃时,化学反应速度小于氧气向碳粒表面的扩散速度,氧气的供应十分充足,提高扩散速度对燃烧速度影响不大,燃烧速度取决于温度。

2.扩散区:温度高于1200℃时,化学反应速度大于氧气向碳粒表面的扩散速度,以至于扩散到碳粒表面的氧气立刻被消耗掉,碳粒表面处的氧浓度接近于0,提高温度对燃烧速度影响不大,燃烧速度取决于氧气向碳粒表面的扩散速度。

3.过渡区:介于动力区和扩散区之间,提高温度和提高扩散速度都可以提高燃烧速度。

若扩散速度不变,只提高温度,燃烧过程向扩散区转化;若温度不变,只提高扩散速度,燃烧过程向动力区转化。

二、直流煤粉燃烧器1、煤粉燃烧器的作用煤粉燃烧器是燃煤锅炉燃烧设备的主要部件。

其作用是:(1) 向炉内输送燃料和空气;(2) 组织燃料和空气及时、充分的混合;(3) 保证燃料进入炉膛后尽快、稳定的着火,迅速、完全的燃尽。

在煤粉燃烧时,为了减少着火所需的热量,迅速加热煤粉,使煤粉尽快达到着火温度,以实现尽快着火。

故将煤粉燃烧所需的空气量分为一次风和二次风。

一次风的作用是将煤粉送进炉膛,并供给煤粉初始着火阶段中挥发分燃烧所需的氧量。

二次风在煤粉气流着火后混入,供给煤中焦炭和残留挥发分燃尽所需的氧量,以保证煤粉完全燃烧。

直流燃烧器通常由一列矩形喷口组成。

煤粉气流和热空气从喷口射出后,形成直流射流。

(二)、直流煤粉燃烧器的类型直流煤粉燃烧器的一、二次风喷口的布置方式大致上有两种类型。

一类适用于燃烧容易着火的煤,如烟煤、挥发分较高的贫煤以及褐煤。

这类燃烧器的一、二次风喷口通常交替间隔排列,相邻两个喷口的中心间距较小。

我们称为均等配风方式,这种方式适合烟煤的燃烧。

因一次风携带的煤粉比较容易着火,故希望在一次风中煤粉着火后及时、迅速地和相邻二次风喷口射出的热空气混合。

这样,在火焰根部不会因为缺乏空气而燃烧不完全,或导致燃烧速度降低。

燃烧理论基础-燃烧热力学

燃烧理论基础-燃烧热力学
C x H y a (O 2 3 .7 6 N 2 ) x C O 2 ( y / 2 ) H 2O 3 .7 6 a N 2 a = x + y/4
• 3.76=79(N2)/21( O2)
37
反应物和产物混合物
重要概念:
• 化学当量空燃比(理论空燃比):化学当 量燃烧时空气与燃料的质量比。
温度升高有更多的转动和 振动模式变得活跃:温度 越高,分子平动速度越快, 分子碰撞频率越高,有更 多的动能转变为分子转动 能和振动能。
比热的温度特性
15
比热(热容)
比热随温度变化使状态参数计算更复杂
T
u(T ) uref cv (T )dT
Tref T
h(T ) href cp (T )dT
问题2
• 如果你将1kg的甲烷与20kg的空气混合燃 烧,最终的产物是怎样的?
• 如果将空气量减少到10kg,产物会不一 样吗?
产物的分子结构由化学过程决定;产物中各 种组分的比例由热力学过程决定。
3
问题3
• 如果你将1kg的甲烷与20kg的空气混合燃 烧,最终的温度如何?
• 如果将空气量减少到10kg,最终的温度如 何?
40
过量空气百分比
% excess (1- ) 100%
41
例 2.1
一个小型的低污染排放的固定燃气轮机, 在满负荷下运行(3950kW),此时的当量 比为0.286(贫燃),空气流量为 15.9kg/s。 当量的燃料(天然气)成分是 C1.16H4.32. 请求出燃料的流率及这台燃气 轮机的运行空燃比。
温度是重要燃烧参数,通过温度知道后续热力 过程、传热过程的品质。
4
主要内容
• 状态参数 • 热力学第一定律 • 反应物与产物的组成 • 绝对(标准)焓与形成焓 • 燃烧焓与热值 • 绝热燃烧温度 • 化学平衡 • 燃烧的平衡产物
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.NOx的生成机理(四种生成NO的途径)(**)
高温途径,即在已燃区产生的NO成为热NO(Thermal NO)或称Zeldovich-NO
瞬发途径,即在火焰区产生的NO称为瞬发NO(Prompt NO)或称Fenimore-NO
途径:(燃气轮机)
燃料氮途径。(燃煤)
内燃机中的NO途径:高温途径、瞬发途径。
C——实际浓度,Cst——理论浓度
15.浓度(空燃比)(C=#@¥)
一定体积混合气体中的燃料重量/空气重量
16.化学计量浓度
时的浓度
17.绝热火焰温度的求解方法,尤其是考虑化学平衡时的计算方法(**)(附图)
首先分别根据平衡常数Kp和能量守恒方程得到的反应度λ和绝热火焰温度 的关系,然后采用迭代法计算得到
3.研究基础有哪些基本定律和现象(**)
牛顿粘性定律,傅里叶导热定律,费克扩散定律,斯蒂芬流问题
4.自然:不需要外界的火源引火,在适当的温度压力条件下可燃混合气(剂)自身的化学反应速度已经快得足以产生足够的热量,使之着火燃烧或爆炸(**)
5.引燃:可燃混合气(剂)依靠外火源(如电火花,引燃火焰,火星等)来引燃的。
18.绝热燃烧火焰计算程序及数据处理。
第二章化学动力学
1.化学反应动力学是研究化学反应机理和化学反应速率的科学。(*)
2.燃烧机理研究的核心问题有:燃烧的反应机构,反应速度,反应程度,燃烧产物的生成机理等
3.净反应速度(*)(公式见书本)
消耗速度与生成速度的代数和。
4.反应级数n
一般碳氢燃料n=1.7~2.2≈2
5.Arrhenius定律
A-频率因子(分子间碰撞的频率);E-活化能;T-温度
比反应速度
6.分子碰撞理论与Arrhenius定律属热爆燃理论
7.热爆燃理论(**)
反应物在一定温度的反应系统中,分子碰撞使部分分子完成放热反应,放出的燃烧热提高反应系统中的温度,从而加速反应速度。反应系统处于一种正反馈的加热、加速反应过程。当反应速度趋于无穷大,就产生爆炸。这种由于反应热量聚集的加速反应乃至燃烧爆炸的理论称为热爆燃理论。
6.关于混合流动的一些结论。
混合流动通量是各组分流动通量之和。
组分k的平均质量流量为该组分在混合流中的扩散通量和对流通量之和
混合流中对流通量之和为混合流的通量。
7.牛顿粘性定律表明,粘性是动量交换的必要条件,由速度梯度变为动量梯度(**)
8.傅里叶导热定律表明:热扩散是能量交换的必要条件,由温度梯度变为焓的梯度(**)
12.烃类燃料燃烧(**)
烃类燃料的着火界限曲线大致呈反S形,带有冷焰区和热焰区。烃类在内燃机中的自然过程一般经历冷焰、蓝焰和热焰三阶段。
13.冷焰过程的特征(**)
过氧化物以爆炸形式分解、主要生成甲醛、反应物质自加热的程度不大、冷焰强度随温度变化存在一个峰值、有辐射光发出、冷焰仅存在于一定的温度和压力范围内。
本课程的学习内容
第一章燃烧热力学
第二章化学动力学
第三章燃烧物理系
第四章着火(自然与引燃)
第五章预混合气体燃烧火焰
第六章扩散火焰与液体燃料燃烧
第七章气体燃料的喷射与燃烧
第八章固体燃料的燃烧
课程实验
考试说明
课程考核形式
闭卷考试
依托大纲,参考教材
70%考卷,30%平时
题型:填空、(判断、)多项选择、名词解释、简答、计算、图解分析
14.蓝焰和热焰的特性
15.为什么动力机械在冷启动时要用浓混合气?
烃类燃料的着火界限曲线大致呈反S形;不同浓度下,着火界限形态所处位置有很大区别:当混合气浓度较大时,着火界限曲线移向低压和低温方向一边,这说明:当提高混合气体浓度后,它可在较低温度和较低压力下着火,因此动力机械在冷起动时要用浓混合气。
5.反应焓的计算(**)
6.燃烧焓(**)
单位质量的燃料(不包括氧化剂)在定温——定容或定温——定压条件下,燃烧反应时的反应焓之值(KJ/Kg)。
7.燃料热值(**)
燃料热值有高热值与低热值之分,相差一个燃烧产物中的水的汽化潜热。
8.平衡常数的三种表达方式和相互间的关系(**)
按浓度定义的反应平衡常数,以分压定义的反应平衡常数,以体积百分比定义的反应平衡常数。
8.热爆燃理论的局限性体现在什么地方?
热爆燃理论只是描述了过程的始末,没有涉及其所经历的过程。燃烧和爆炸是一步完成的。热爆燃理论对于许多反应、燃烧现象无法解释,有其局限性。如燃烧半岛、倒S图无法解释。
9.图解燃烧半岛现象
会画 燃烧半岛示意图,并能初步解释
10.链反应(**)
整个反应由若干相继发生或相继平行发生的基元反应组成、有直链反应,分支链反应之分,经历引发,传播,抑制,中断过程。
反应物能有效变为产物的程度
10.Gibbs函数的定义
自由焓,为状态参数。g=h-Ts
11.Helmholtz函数
自由能f
12.焓与生成焓仅是温度的单一函数,而自由焓与P、T有关。
13.过量空气系数(**)( )
燃烧1Kg燃料,实际提供空气量/理论所需空气量。
14.当量比(ϕ=!#@¥%!@)
2.燃烧速度的决定因素有哪些?举例说明哪些燃烧现象受物理过程控制,哪些受化学过程控制?
9.费克组分扩散定律表明,传质(扩散)是组分扩散的必要条件,由密度梯度变为质量分数的梯度(**)
10.分子传输定律是否具有通用传输方程形式?
11.Stefen流产生的物理条件、化学条件
存在扩散过程及物理化学过程
第四章着火(自燃或引燃)
1.着火过程由什么因素控制的?
着火与混合气的压力、温度、浓度、壁面的散热率、(点火能量)、气体流动有关。
第三章燃烧物理学
1.燃烧现象按照混合气的制备、着火、燃烧过程中火焰与燃烧室的相对位置、可燃混合气体的流动等事怎样分类的?
预混合燃烧及扩散燃烧,分别举2~3例
自燃与引燃
定置火焰与行进火焰
层流燃烧与湍流燃烧
2.描述燃烧物理现象的方程有哪些?(**)
质量守恒方程,动量守恒方程,能量守恒方程,组分守恒方程。
考试时间:6月9日下午或晚上
第一章
1
2
3.化合物的标准生成焓
化合物的构成元素在标准状态下(25℃,0.1MPa)。定温——定容或者定温定压;经化合反应生成一个mol的该化合物的焓的增量(KJ/mol)
所有元素在标准状态下的标准生成焓均为零。
4.反应焓(**)
在定温——定容或定温——定压条件下,反应物与产物之间的焓差为该反应物的反应焓(KJ)。
相关文档
最新文档