mems光开关的控制
mems光开关原理
mems光开关原理MEMS光开关是利用微型机械系统以及光学元件来控制光在通信系统中的传输,其原理主要是通过控制光学元件中的光路和波导,实现光信号的开关和控制。
本文将对MEMS光开关的原理进行详细介绍。
一、MEMS光开关的原理MEMS光开关是一种基于微机械系统和光学器件的光开关技术,其基本构造包括驱动电极、弯曲驱动膜、静电力电极、波导、反射镜等。
波导是在芯片上制造的,用于传输光信号;反射镜则是用来将光信号从一个波导转移到另一个波导。
在光学元件上会有一个电极,这个电极有两种状态,一种是关闭状态,一种是打开状态,这两种状态可以由微型加热器和电流进行控制。
MEMS光开关的工作原理是,当加上电压时,静电作用力会产生引力,将反射镜向波导方向平移。
由于光线的绕射效应,反射镜的平移可以改变光线的传输路径,使其从一个波导转移到另一个波导,实现光信号的开关和控制。
二、MEMS光开关的分类MEMS光开关根据其工作原理的不同可以分为机械光开关和全光开关两种类型。
1. 机械光开关机械光开关是使用微型机械系统来控制光的路由。
在机械光开关中,电极位置和反射镜之间的距离决定了光的路径,这种开关在路由时需要较大的功率和时间。
机械光开关主要用于制造低成本的和切换速度较慢的光开关器件。
2. 全光开关全光开关是利用非线性光学材料在电场作用下产生的折射率变化来控制光路的开关,光的传输不需要机械部件作为介质。
全光开关可以通过较小的功率和时间进行光路的路由和控制,因此速度比机械光开关快很多。
全光开关主要用于制造高速,高功能的光开关器件。
三、MEMS光开关的优缺点MEMS光开关的优点主要有以下几个方面:1. 小型化MEMS光开关器件可以在单个芯片上制造,由于微型机械系统集成技术的进步,器件尺寸越来越小,已经可以制造出毫米级别的MEMS光开关器件。
2. 具有较快的切换速度MEMS光开关器件的开关速度快,可以从纳秒到毫秒的时间范围内,可以快速实现光信号的切换和控制。
1X64 MEMS光开关
1×64MEMS光开关
1.产品简介
MEMS光开关是一种光路控制器件,起着控制光路和转换光路的作用。
在光通信应用中具有重要作用。
MEMS光开关主要应用于:光传输系统中的多路光监控、远程光纤测试系统以及光传感多点动态监测系统;光测试系统中用于光纤、光器件、网络和野外工程光缆测试;模块与系统集成及仪器仪表等。
2.产品特点
(1)、具有尺寸小、切换快和寿命长等特点。
(2)、可以通过TTL UART接口接收控制信号来实现自动测量或实时监控。
3.性能指标
2.所有参数均不包括连接头插入损耗,一对连接头增加0.3dB损耗。
4.数据位切换逻辑表
/RESET D7D6D5D4D3D2D1D0Channel 0X X X X X X X X0
1000000001 000000012 000000103 000000114 (11111111256)
5.设备维护
产品的合理使用与妥善保管可长期保持良好的性能指标,延长其使用寿命,因此需要适当维护:(1)、设备应避免强烈的机械振动、碰撞、跌落及其他机械损伤。
运输时必须要有良好的包装和减振、防雨及防水措施;
(2)、应当经常保持设备清洁,工作环境应无酸、碱等腐蚀性气体存在。
可用沾有清水或肥皂水的干净毛巾轻轻擦洗机箱和面板。
禁止用酒精等溶剂擦洗。
(3)、卸下光纤连接线应及时盖上防尘帽,以防止硬物、灰尘或其它脏物触及光纤端面。
未尽事宜,请与我们联系。
我们将非常高兴听到您的宝贵意见。
Meomes 光开关
重庆大学的光开关SEM 北京Байду номын сангаас学的光开关SEM
清华大学应力诱导式光开关照片
Momes光开关主要驱动方式: 光开关主要驱动方式: 光开关主要驱动方式 MOEMS光开关的驱动方式目前主要有两种,静 光开关的驱动方式目前主要有两种, 光开关的驱动方式目前主要有两种 电驱动和电磁驱动方式。 电驱动和电磁驱动方式。
全光网络图解
光开关在全光通信网络中的应用: 光开关在全光通信网络中的应用: 1.光路通断 光路通断 2.光纤通道的自愈保护 光纤通道的自愈保护 3.光开关在 光开关在OADM和OXC系统中的使用 光开关在 和 系统中的使用
Momes光开关结构设计: 光开关结构设计: 光开关结构设计
MOEMS光开关的指标主要有插入损耗、开关速度和驱动 光开关的指标主要有插入损耗、 光开关的指标主要有插入损耗 电压等,另外还要考虑MOEMS光开关的可靠性以及开关 电压等,另外还要考虑 光开关的可靠性以及开关 寿命等性能。插入损耗是光学设计方面的内容, 寿命等性能。插入损耗是光学设计方面的内容,开关速度 和驱动电压与光开关的机电结构设计有关。 和驱动电压与光开关的机电结构设计有关。
Moemes
光开关
Company
LOGO
主要内容
1 2 3 4
课题研究背景 Momes技术简介 Momes光开关介绍 Momes光开关基本结构设计
研究背景
全光通信:
信息时代人们对信息获取和信息处理的极大需求, 又直接促进了光通信技术的进步。随着WDM, DWDM技术的应用虽然满足了大容量、高带宽、高 速率的网络需求,但同时对光通信技术提出了新的 挑战。传统的电交换网络已经不能满足大规模网络 信息交换的需求。 组建全光通信网络成为未来光通信网络发展的必然 趋势。
MEMS光开关综述
MEMS光开关MEMS光开关既有机械式光开关的低插损、低串扰、低偏振敏感性和高消光比的优点,又有波导开关的高开关速度、小体积、易于大规模集成等优点。
同时MEMS光开关与光信号的格式、波长、协议、调制方式、偏振、传输方向等均无关,与未来光网络发展所要求的透明性和可扩展等趋势相符合。
MEMS光开关结构分类MEMS光开关的驱动方式主要有平行板电容静电驱动,梳状静电驱动器驱动,电致、磁致伸缩驱动,形变记忆合金驱动,光功率驱动和热驱动等。
MEMS光开关所用材料大致分为单晶硅、多晶硅、氧化硅、氮氧化硅、氮化硅等硅基材料,Au、Al等金属材料,压电材料及有机聚合物等其他材料。
MEMS 光开关所用工艺主要有体硅工艺,表面工艺和LIGA工艺。
MEMS光开关按功能实现方法可分为光路遮挡型、移动光纤对接型和微镜反射型。
从目前国外各研究机构及公司发布的信息来看,MEMS光开关及其阵列的总体发展趋势为由2D结构向3D结构发展,其驱动方式重要集中在静电驱动、电磁驱动、热电驱动三种形式上,其中静电驱动方式是目前采用最为广泛的一种。
1、光路遮挡型MEMS光开关具有代表性的光路遮挡型光开关是悬臂梁式光开关。
例如朗讯公司研制的光驱动微机械光开关,整个器件尺寸约l~2mm,材料由金、氮化硅和多晶硅组成,并由体硅工艺加工出悬臂梁。
它利用8个多晶硅PiN电池(一种非晶硅太阳电池)串联组成光发电机,在光信号的作用下,产生3V电压,电容板受到电场力吸引,将遮片升起,光开关处于开通状态,如无光信号,光发电机无电压输出,遮片下降,光开关关闭。
该开关由远端的光信号控制,所以光开关本地是无源的。
该光开关驱动光功率仅2.7μW,传输距离达128 km,开关速度3.7ms,插损小于0.5dB。
但串扰比较大,隔离度不高,一般用于组成光纤线路倒换系统。
2、移动光纤对接型MEMS光开关图3所示为一种具有代表性的移动光纤对接型光开关,由美国加州大学戴维斯分校研制。
mems开关在射频技术上的详细应用
mems开关在射频技术上的详细应用MEMS开关在射频技术上的详细应用MEMS(Micro-Electro-Mechanical Systems)技术是一种微观尺度下制造微型机械和电子元器件的技术。
由于MEMS器件具有小型化、低功耗、高可靠性和低成本等优点,因此在射频技术领域得到了广泛的应用。
其中,MEMS开关在射频技术上的应用尤其重要。
1. MEMS开关的原理MEMS开关是一种基于微机械系统的射频开关。
其主要原理是利用微小的机械结构来控制射频信号的开关,从而实现对射频系统的控制。
当MEMS开关处于关闭状态时,其机械结构会挡住射频信号,从而阻止信号的传输。
而当MEMS开关处于打开状态时,其机械结构会打开,允许射频信号传输。
2. MEMS开关的优点与传统的机电开关相比,MEMS开关具有以下几个优点:(1)小型化:MEMS开关的结构非常小,可以制造出微米或纳米级别的开关,适用于微型化的射频系统。
(2)低功耗:MEMS开关的机械结构非常轻,因此需要很小的电力才能驱动它们。
(3)高可靠性:MEMS开关没有传统机电开关的机械部件,因此可以获得更高的可靠性和稳定性。
(4)高速响应:MEMS开关的机械结构非常轻,因此可以快速地响应射频信号的开关。
(5)低成本:由于MEMS开关采用微机械制造技术,因此可以大规模生产,从而降低成本。
3. MEMS开关在射频技术上的应用MEMS开关在射频技术上的应用非常广泛,包括无线通信、雷达、卫星通信、医疗设备等领域。
下面重点介绍MEMS开关在无线通信领域的应用。
(1)射频功率放大器的控制在无线通信中,射频功率放大器(PA)是非常重要的组件,用于放大低功率的射频信号。
然而,当PA处于高电平时,会产生大量的热量,从而降低设备的寿命。
为了解决这个问题,可以采用MEMS 开关来控制PA的输入信号。
当PA处于闲置状态时,MEMS开关会将输入信号断开,从而降低功耗和热量,延长设备的寿命。
(2)天线选择器的控制在多天线系统中,天线选择器用于控制信号从哪个天线发送或接收。
MEMS光开关切换时间测试报告
MEMS 光开关模块切换时间测试报告本报告分别对MEMS 1xN 和MxN 两种系列产品进行切换时间测试,具体结果见下文。
1. 1XN MEMS 光开关模块纯光路切换时间测试1.1. 测试原理框图MEMS 光开关模块纯光路切换测试,输入端接光源,待测通道经光电探测器后接示波器通道1和通道2;系统框图如下图所示:1.2. 测试步骤1)光源从端口COM端口输入,从端口CH1~CHn 输出,输出的光经光电转换器转换成电信号,最后将其显示在示波器上;2)示波器的纵轴为电压、横轴为时间,示波器设为扫描方式;3)对光开关进行通道切换,记录示波器在这段时间内的曲线,可从中计算出切换时间t ,电压时间光光1.3.测试结果1)电路未滤波,光开关在切换过程有轻微抖动通道1切换到通道2:通道2切换到通道1:3ms3ms通道1切换到通道5:通道5切换到通道1:3ms3ms通道1切换到通道8:通道8切换到通道1:3ms3ms小结:在电路未滤波的情况下,1xN MEMS光开关模块任意通道之间的切换时间约3ms 左右。
2)电路滤波,光开关在切换过程未有抖动通道1切换到通道2:通道2切换到通道1:5ms5ms通道1切换到通道5:通道5切换到通道1:5ms5ms通道1切换到通道8:通道8切换到通道1:5ms5ms小结:去抖动的情况下,1xN MEMS光开关模块任意通道之间的切换时间约5ms左右。
综上所述,1xN MEMS光开关模块任意通道的切换时间建议设置为5ms。
2. 1XN MEMS 光开关模块含控制信号时间的切换测试2.1. 测试原理框图光开关的COM 端接光电探测器,然后再接示波器通道1,控制信号接示波器通道2,; 系统框图如下图所示:2.2. 测试步骤1)光源从端口CH1~CHn端口输入,从端口COM 输出,输出的光经光电转换器转换成电信号,最后与控信号同时显示在示波器上;2)示波器的纵轴为电压、横轴为时间,示波器设为扫描方式;3)通过控制信号,对光开关进行通道切换,记录示波器在这段时间内的曲线,可从中计算出切换时间t ,电压时间2.3.测试结果1)TTL数据位电平控制切换通道1切换到通道2:通道2切换到通道1:10ms10ms通道1切换到通道5:通道5切换到通道1:10ms10ms通道1切换到通道8:通道8切换到通道1:10ms10ms小结:根据上述波形图可知,整个模块从接收信号到切换完毕总时间约10ms,其中模块内部TTL软硬件处理时间需要5ms,光路切换时间约5ms。
MEMS光开关的研究及市场分析
MEMS光开关的研究及市场分析集成电路专业学年论文论文题目: MEMS光开关的研究及市场分析学院: 电子工程学院年级: 2008级专业: 集成电路设计与集成系统姓名: 刘欣学号: 20083410指导教师: 窦雁巍2011年 7月 2日摘要光开关是光通信网络的重要功能器件,MEMS光开关是最具发展前景的光开关之一。
在简介不同种类光开关原理特点的基础上,详细分析了当前主要的MEMS光开关的分类、结构、工艺与性能特点,并给出了研究与发展情况和采用MEMS体硅工艺制作的三种结构的微机械光开关。
它们的工作原理都基于硅数字微镜技术。
这三种光开关采用了静电力驱动,具有较低的驱动电压。
在硅基上制作了光纤自对准耦合槽,并对光开关的开关特性进行了计算机模拟与分析,并进行结果分析。
关键词微机械;光开关;开关阵列;微镜;硅-玻璃键合;光纤通信IAbstractOptical switch is an important functional device in optical fibre communication networks, MEMS optical switch is one of the mostpromiseful optical switches. This paper introduces basic principles and characters of several kinds of optical switches, and illustrates the classification, structures, fabrication methods and functional characters of current MEMS optical switch in details. And recent development and progress on this research area are presented and three kinds of MEMS optical switches with different mechanical structures are produced by the bulk-micromachining processes. Their principles of operation are all based on silicon digital micro mirrors technology. The electrostatic actuators with low driving voltage are used in the three kinds of optical switch. The grooves used for optical fibers being self-aligned coupling are made on silicon substrate for device. Computer simulation and analysis of on-off characteristic show that the second and the third optical switches have switching time.Key wordsMEMS; optical switch; switch array; micro mirror; silicon-on-glass bonding;optical fibercommunicationII目录摘要 ..................................................................... .. (I)Abstract ............................................................... . (II)前言 ..................................................................... ................................................................ 3 第一章光开关的种类...................................................................... .. (4)1.1 物理效应光开关 ..................................................................... . (4)1.1.1 固态波导光开关 ..................................................................... .. (4)1.1.2 液晶光开关 ..................................................................... . (4)1.1.3 热光开关 ..................................................................... .. (4)1.1.4 全息光栅开关 ..................................................................... (5)1.2 微机械光开关...................................................................... . (5)1.2.1 光路遮挡型MEMS光开关 ..................................................................... . (6)1.2.2移动光纤对接型MEMS光开关 .....................................................................61.3微镜发射型MEMS光开关 ..................................................................... (7)1.3.1弹出式微镜光开关 ..................................................................... .. (8)1.3.2扭转式微镜光开关 ..................................................................... (9)1.3.3滑动式微镜光开关 ..................................................................... (10)1.3.4三维阵列光开关 ..................................................................... .................... 11 第二章微机械光开关的原理、设计与分析 ....................................................................142.1 MEMS光开关的工作原理 ..................................................................... . (14)2.1.1 水平驱动2D光开关 ..................................................................... (14)2.1.2 垂直驱动2D光开关 ..................................................................... (14)2.1.3 扭摆驱动2D、3D光开关 ..................................................................... .. (15)2.1.4 2D与3D耦合方式 ..................................................................... (15)2.2 分析与设计 ..................................................................... (16)2.2.1 水平驱动2D光开关 ..................................................................... (16)2.2.2 垂直驱动2D光开关 ..................................................................... (17)2.2.3 扭摆驱动2D、3D光开关 ..................................................................... .. (18)2.3 实验 ..................................................................... (19)2.3.1 水平驱动2D光开关 ..................................................................... (19)2.3.2 垂直驱动与扭摆驱动2D、3D光开关 (19)2.3.3 测试 ..................................................................... ..................................... 20 第三章 MEMS光开关的控制 ..................................................................... . (22)3.1 MEMS光开关控制原理 ..................................................................... .. (22)3.1.1 MEMS光开关简介 ..................................................................... .. (22)3.1.2 控制原理与过程 ..................................................................... (22)3.2 控制系统设计...................................................................... .. (23)3.2.1 硬件设计方案 ..................................................................... . (23)3.2.2 软件设计方案 ..................................................................... ...................... 24 第四章光开关的市场分析 ..................................................................... .. (26)4.1 光开关的技术优势 ..................................................................... . (26)4.2 国内外的技术现状 ..................................................................... . (27)4.2.1 国内情况 ..................................................................... (27)4.2.2 国外情况 ..................................................................... (28)4.3 发展动态 ..................................................................... .. (28)4.4 市场潜力 ..................................................................... ........................................ 30 结论 ..................................................................... .............................................................. 31 参考文献 ..................................................................... . (32)学年论文题目,五号楷体居中书写,前言光纤通信技术的问世和发展给通信业带来了革命性的变革,目前世界大约85%的通信业务经光纤传输,长途干线网和本地中继网也已广泛使用光纤。
mems光开关的工作原理及应用
MEMS光开关的工作原理及应用1. 简介MEMS光开关是一种基于微机电系统(MEMS)技术的光学元件,常用于光纤通信和光学网络中。
它具有微小尺寸、低功耗、快速响应和高可靠性等优点,因此在通信领域得到广泛应用。
2. 工作原理MEMS光开关的工作原理基于光学的电光效应和MEMS技术的微加工制造。
下面将详细介绍其工作原理。
2.1 光学的电光效应光学的电光效应是指一些材料在电场的作用下会发生光学性质发生改变的现象。
其中最常用的光学的电光效应是Pockels效应。
Pockels效应是指在一些特定晶体材料中,当施加电场时,其光学折射率将会发生改变,从而实现光信号的调控。
2.2 MEMS技术的应用于光开关MEMS技术通过精密的微加工工艺,制造出微小的机械元件,将其应用于光学领域。
MEMS光开关利用微机电系统中的微机械执行机构,通过对电光效应材料施加电场调控光信号的传输路径。
3. MEMS光开关的结构MEMS光开关的结构主要包括以下几个部分:3.1 光学通道光学通道是指光信号的传输路径,通常通过光纤或波导实现。
在MEMS光开关中,光学通道的连接状态可以通过机械运动来切换,从而实现光信号的调控。
3.2 电光效应材料电光效应材料是实现MEMS光开关工作的关键材料。
常用的电光效应材料包括锂钽酸铌(LiNbO3)、锂钕酸铌(LiNdO3)等。
这些材料在施加电场时可以改变光的折射率,从而控制光信号的传输。
3.3 微机械执行机构微机械执行机构是MEMS光开关的核心部件,它通过微小的机械运动实现光学通道的切换。
常见的执行机构包括微镜、微电机、微弹簧等,它们可以控制光学通道的连接状态。
4. MEMS光开关的应用MEMS光开关在通信领域具有广泛的应用,主要应用于光网络、光纤通信设备和光学传感器等方面。
以下是其常见的应用场景。
4.1 光纤通信在光纤通信中,MEMS光开关可以用于实现光路的切换和光信号的调控,从而提高通信网络的可靠性和灵活性。
mems光开关
MEMS光开关研究袁矿英(深圳大学研究生一年级信息工程学院通信专业2100130220 )摘要:光开关是光网络中完成全光交换的核心器件,它的研究日益成为全光通信领域关注的焦点。
文章重点介绍了MEMS光开关的结构和工作原理以及在全光网络中的应用,并就其他光开关作了简要介绍。
文章比较全面地综述了近几年来各种光开关技术的研究进展,并详细分析了各种技术相应的发展状况、技术特点和发展趋势,概述了光开关的各种性能指标。
最后文章介绍了MEMS光开关的发展动态。
关键词 MEMS光开关全光网络1 引言光开关是光纤通信系统重要的光器件之一,具有一个或多个可选择的传输端口,可对光传输线路或集成光路中的光信号进行互相转换或逻辑操作。
光开关可用于光纤通信系统、光线测量系统、以及光纤传感系统中,起到切换光路的作用。
交换作为光网络中的关键技术,而光交换系统的基本单元是光开关,作为光通信中的一种重要器件,人们对光开关的研究已有二三十年的历史。
由于人们对器件材料、器件工作原理和加工工艺等多方面认识和研究的不断深化。
光开关的类型呈现出多元化发展的趋势。
当今通信研究中,如何实现大规模数据在任意两点的高速、高效、可靠的传输,一直是通信研究的方向。
光纤通信的出现,为高速信息传输提供了巨大的频带资源,目前世界大约85%的通信业务京广线传输,长途干线网和本地网也已广泛使用光纤。
同时,随着密集波分复用(DWDM)技术的应用和新型光通信器件技术的发展,光联网(OTN)已成为下一代高速度宽带通讯网络的发展趋势。
光联网技术以新型光开关、光放大器、光衰减器、光限幅器等器件为核心技术。
九十年代中期,密集波分复用技术(DWDM)的应用为宽带高速光联网的发展提供了可能,同时也对作为光通信网络连接的光交叉互联系统(OXCS)和波长上下路复用上下路技术的核心器件。
OXCS中的光开关矩阵可实现动态光路经管理、光网络的故障保护、波长动态分配等功能,对解决目前复杂网络中的波长争用,提高波长重用率,进行网络灵活配置均有重要的意义。
MEMS光开关
例子
韩国国立研究实验室设计的三维光开关
阵列的一个微镜单元以表面工艺为基础, 利用3D光刻镀铜技术制成,与CMOS 工艺有着良好的兼容性。它由5层结构 组成,由底层往上依次是电连接用底部
电极、底部支撑柱、扭转梁和被抬起的
电极、顶部微镜支撑柱、微镜。在静电 力作用下,微镜可以绕x轴和y轴运动, 从而使输入光束产生不同方向上的输出。 在244V驱动电压下微镜最大偏转角可 达到2.65o,镜面的曲率半径3.8cm, 镜面的表面粗糙度为12nm。构成阵列 时采用两组微镜相对安装,这种结构的
MEMS光开关的特点
微型化; 高的交换速度; 小的插入损耗; 提供光功能器件和波导或光纤所需的亚微
米级定位精度; 与IC工艺相容,可大规模生产,成本低。
MEMS光开关的基本原理
通过静电力或电磁力的作用, 使可以活动的微镜产生升降、 旋转或移动, 从而改变输入光的传播方向以实现光路通断 的功能, 使任一输入和输出端口相连接, 且1 个输出端口 在同一时间只能和1个输入端口相连接。
MEMS光开关
微机械设计
目录Contents
1 MEMS光开关的研究背景 ck to add Title
2 MEMS以及MEMS光开关的概念 Click to add Title
3 MEMS光开关的分类及原理 Click to add Title
mems光开关电压驱动问题
mems光开关电压驱动问题
回答:
MEMS光开关是一种基于微机电系统技术的光学开关,其工作原理是利用微机电系统的微结构控制光学信号的传输。
MEMS光开关具有体积小、响应速度快、功耗低等优点,因此在光通信、光网络和光计算等领域得到了广泛应用。
MEMS光开关的电压驱动问题是指如何通过电压控制MEMS光开关的开关状态。
一般来说,MEMS光开关的电压驱动可以分为两种方式:静电驱动和磁性驱动。
静电驱动是指利用电场力控制MEMS光开关的微结构运动,从而实现光学信号的传输。
静电驱动的优点是驱动电压低,响应速度快,但是其缺点是需要高精度的制造工艺和控制电路,成本较高。
磁性驱动是指利用磁场力控制MEMS光开关的微结构运动,从而实现光学信号的传输。
磁性驱动的优点是制造工艺简单,成本低,但是其缺点是驱动电压较高,响应速度较慢。
因此,选择何种驱动方式需要根据具体应用场景来决定。
如果要求响应速度快,可以选择静电驱动;如果要求成本低,可以选择磁性驱动。
当然,还有其他因素需要考虑,比如制造工艺、控制电路等,需要综合考虑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MEMS(Micro-Electro-Mechanical System s,微机电系统)是指将微型机械、微型执行器
、信号处理和控制电路等集于一体的可批量制作的微型器件或系统。
而MOEMS
是 Micro-Opto-Electro- Mechanical Sy ST em的缩写,意为微光机电系统,把
微光学应用到微机电系统中,这是MEMS在光通信中的重要应用。
微光电机械芯片通常是指包含一个以上微机械元件的光系统或光电子系统,其应用将遍及光通信、光显示、数据存储、自适应光学及光学传感等多个方面。
随着光通信的快速发展,作为光网络节点的光互连与光交换的地位越来越重要。
光交换器件是以光为核心实现光的通断和交叉连接的系统部件,不存在光电转换。
MEMS光开关
具备了低损耗和高稳定的优点,且与传输的数据速率和信号协议无关。
实用化的MEMS光开关原理十分简单,其结构实质上是一个二维微镜片阵列,当进行光交换时,通过移动或改变镜片角度,把光直接送到或反射到光开关的不同输出端。
MEMS光开关是利用机械开关的原理,但又能像波导开关那样,集成在单片
硅基底上,因此兼有机械光开关和波导光开关的优点,同时克服了它们所固有的缺点。
MEMS光开关响应速度和可靠性大大提高,插入损耗和串音低,偏振和
波长相关损耗也非常低,对不同环境的适应能力良好,功率和控制电压较低,并具有闭锁功能。
2 MEMS光开关控制原理
2.1 MEMS光开关简介
典型的MEMS光开关器件可分为二维和三维结构。
二维MEMS的空间旋转镜通过表面微机械制造技术单片集成在硅基底上,准直光通过微镜的适当旋转被接到适当的输出端。
微铰链把微镜铰接在硅基底上,微镜两边有两个推杆,推杆一端连接微镜铰接点,另一端连接可平移梳妆电极。
转换状态通过调节梳妆电极使微镜发生转动,当微镜为水平时,可使光束从该微镜上面通过,当微镜旋转到与硅基底垂直时,它将反射入射到它表面的光束,从而使该光束从该微镜对应的输出端口输出。
三维MEMS的镜面能向任何方向偏转,这些阵列通常是成对出现,输入光线到达第一个阵列镜面上被反射到第二个阵列的镜面上,然后光线被反射到输出端口。
在多种可能的驱动方法中,静电和磁感应法为主选方案。
静电法依赖于电荷极性相反的机械元素之间的相互吸引,这是MEMS技术中使用的主要的驱动方法,它具有可重复性和容易屏蔽等优点。
磁感应驱动依赖于磁体或者电磁体之间的相互吸引。
尽管磁感应驱动能够产生更大的驱动力并具有较高的线性度,但由于磁感应应用中还有许多问题有待于解决,所以目前静电驱动方案仍然是可靠设备的最
本文阐述的控制方案针对的是二维结构、采用静电法驱动的MEMS光开关。
2.2 控制原理与过程
MEMS 4×4光开关是OXC节点设备中的核心子系统之一。
其在整个系统中负责将4种波长的光按照要求进行路由切换,以达到光交换的目的。
MEMS光开关的优点在于光波路由的切换是通过外部控制信息以及相应的高低电平控制内部16块微镜片抬升与否来完成的。
我们选用的MEMS光开关规定在控制信息的格式上,不管其内部有多少个微镜片,都需要由一系列"1"和"0"组成的 64位串行数据来完成控制。
依据MEMS光开关的具体工作原理以及所需数字信号间的时序关系,所需的64位控制信息、以及其他信号(如CLK、ENA信号)可以由高速单片机
来提供。
本控制系统在单板调试期间,由一台PC机的相应程序模拟本地控制,发出相应的路由信息。
PC机的信息通过串口
发送给单片机,单片机再进行进一步的控制动作。
MEMS光开关路由成功与否等信息由单片机读取其内部寄存器中的64位控制数据,与原始的正确的64位数据进行对比完成。
操作完成后,又由单片机通过串口向PC机产生相应的反馈信息。
形成人机、远程与本地之间的交互。
为了保持与整个OXC系统的兼容性,MEMS 子系统除了可以受控于本地单片机,应该还可以由专门的主控制电路中的FPGA
芯片直接控制。
如此一来就可以做到确保子系统万无一失。
为此,电路设计上也将为其保留接口。
3 控制系统设计
基于前述原理,该子系统的设计将分为硬件和软件设计两方面。
3.1 硬件设计方案
试验阶段将为MEMS设计四个控制通道,其中保留厂家的测试板电路并以此作为一个控制通道;为本地单片机不同类型的控制信息提供两个通道;此外,为将来可能用到的FPGA芯片控制信息预留一个通道。
实际应用阶段将只保留一个单片机通道与一个FPGA控制通道。
在单板调试期间,路由与管理信息来自模拟网管的PC机软件,而在实际应用中,一切路由与管理信息将来自主控制板。
图1是硬件设计框图。
虽然试验与实用阶段控制通道不止一个,但某一时期起作用的只有一个通道。
通道的切换通过手动跳线完成。
单片机选用高速低耗双串口多中断的单片机。
此单片机将为MEMS光开关提供64位控制信息以及所需的其他控制信号,如时钟CLK信号、路由使能信号等。
并-串转换电路用于将单片机并行发出的控制信息转换成MEMS要求的串行数据。
这一功能由单片机和并-串转换芯片共同完成;串-并转换电路用于单片机并行读入MEMS内部寄存器中的串行原始路由信息。
这一功能由单片机和串-并转换芯片共同完成。
3.2 软件设计方案:
因为在调试中需要人机交互,所以需要PC机程序和单片机控制程序各一套。
两套程序通过RS-232接口进行通信。
程序间的通信协议制定如下:
(1) PC发往单片机的数据
PC机程序采用图形界面,收发的各种信息将会在程序界面上给管理员作出相应的实时提示。
图2给出PC机网管模拟程序流程图。
单片机控制程序与PC机程序相比,难度在于其既要发送MEMS需要的时钟信号、使能信号等,又要发送64位微镜片控制数据。
这些信号之间有着严格的时序关系。
编程时应该特别注意延时程序和指令编写技巧。
单片机程序流程图,如图3所示。
4 结束语
通过软硬件的协调工作,MEMS光开关子系统可以顺利完成对多路光波路由的任意切换。
调试阶段管理员利用计算机软件模拟网管发送路由控制指令给MEMS
控制板上的单片机,实际应用中此路由控制指令由系统中的主控制板发出。
单片机收到指令后,发出具体的、符合MEMS光开关控制要求的指令,控制MEMS光开关内部镜片相应动作,从而完成光路的交叉连接。
此过程无需进行任何光-电转换。