第10章__Matlab在最优化问题中的应用
matlab最小值优化问题中fminunc、fmincon的应用

工程最优化即最大(小)值问题1、无约束(无条件)的最优化(1)使用fminunc函数(un-condition)(2)可用于任意函数求最小值(3)将最大、最小问题统一为求最小值问题(即只能求最小值)。
如求最大值,而变成求最小值问题,最后即为函数的最大值。
)(前后都是函数y两次取反,而自变量X不要取反)(4)使用格式x=fminunc(‘程序名’, x0)左边的结果还可以写成[x,fval] 或[x,fval,exitflag] 或必须预先把函数存入到一个程序中,(所编的程序一定是只有一个参数,则当为多元函数时,则x(1),x(2),x(3)…分别代表每个自变量)其中fval为函数的最小值,x0为自变量初始向量,一般不影响结果(如有n个变量(即n元函数),则x0中就有n个元素)exitflag为退出标志,当它大于0时表示函数收敛于x,当它等于0时表示迭代次数超过,当它小于0时表示函数不收敛(所以解完题后还必须判断exitflag的值是否>0,以决定结果的正误/有效性)函数存在最值的条件:在闭区间连续,存在导数等(说明有很多函数不存在最值:有大、有小、有大小、都无)最后一定要看看exitflag........的值(判断结果是否有效)---所以函数可以用内联函数inline(‘表达式’)(程序中的.* ./ .^可要可不要,一般还是不要吧)(5)y= x2+4x+5 的最小值(结果-2,1)其函数形式为:---可以@, 内联函数inline(‘x2+4x+5’),function f=a1(x)f=x^2+4*x+5;------最好不要.* .^ ./因为不是向量(一批数)的运算,初始x0就是变量的个数(调用该程序时,所提供的每个变量的初始值)函数名:’zhc1’或 @zhc1 或 inline(‘…’)>> [x,f,g]=fminunc(inline('x^2+4*x+5'),1)还有学生f=y=x^2+4*x+5;??????>> edit>> [x,fval,exitflag]=fminunc('max1',1)Warning: Gradient must be provided for trust-region method;using line-search method instead.> In fminunc at 241Optimization terminated: relative infinity-norm of gradient less than options.TolFun.x =-2.0000fval =1.0000exitflag =1>> [a,b,c]=fminunc('max1',1)Warning: Gradient must be provided for trust-region method;using line-search method instead.> In fminunc at 241Optimization terminated: relative infinity-norm of gradient less than options.TolFun.a = -2.0000b = 1.0000c = 1>> [x,fval,exitflag]=fminunc('max1',0)>> [x,fval,exitflag]=fminunc('max1',5)>> [x,fval,exitflag]=fminunc(@max1,5)>> [x,fval,exitflag]=fminunc(inline('x^2+4*x+5'),1)>> [x,fval,exitflag]=fminunc(@(x)x^2+4*x+5,1)>> a=@(x)x^2+4*x+5;>> [x,fval,exitflag]=fminunc(a,1)(6)例如:求y=1+2x-x2的最大值(结果为:x=1,y=-(-2) )---X不要取反,两次都是函数取反其函数形式为:function f=a1(x) 命令形式[x,y,z]=fminunc('a1',3)f=-(1+2*x-x^2) 或负号展开—最后再取反------需两次取反>> a1(1)ans = -2>> a1(0)ans = -1(7)求函数f(x,y)=e2x(x+y2+2y)的最小值其函数形式为:function f=a1(r)--fmin所要求的程序一定是一个参数x=r(1);y=r(2);f=exp(2*x)*(x+y^2+2*y);----有学生写成f(x,y)=……或function f=a2(a) x=a(1);y=a(2);f= 或f中直接用x(1),x(2)命令为:[x,fval,exitflag]=fminunc('a1',[2,1])—即a1调用时的参数x =0.5000 -1.0000 ---fval =-1.3591 (即-e/2)exitflag =1此题的x0也可为[1,1],[0,1],[1,0],[0,0],但不能用[1,2],如出问题,可尝试换一个初值----x0建议最好用[1,1,1]此题说明可对任意函数、任意n元求最小值(此题为二元,含exp函数)n元,则x视作一个向量,它的每个元素分别代表某一个自变量(可以a=x(1);b=x(2);…..)结果x也是一个向量,每个元素分别代表每个自变量此题不存在最大值。
最优化方法及其matlab实现

一、引言1.1 阐述最优化方法的重要性 1.2 介绍文章内容二、最优化方法的基本概念与分类2.1 最优化问题的定义2.2 最优化方法的分类2.2.1 无约束最优化2.2.2 约束最优化三、常用最优化方法的原理与特点3.1 梯度下降法3.1.1 原理介绍3.1.2 算法流程3.1.3 特点分析3.2 牛顿法3.2.1 原理介绍3.2.2 算法流程3.2.3 特点分析3.3 共轭梯度法3.3.1 原理介绍3.3.2 算法流程3.3.3 特点分析四、最优化方法在实际问题中的应用4.1 工程优化问题4.1.1 结构优化设计4.1.2 控制优化问题4.2 数据拟合与机器学习4.2.1 深度学习中的优化问题4.2.2 模型参数的优化五、 Matlab实现最优化方法的实例5.1 Matlab在最优化方法中的应用 5.2 梯度下降法的Matlab实现5.2.1 代码示例5.2.2 实例分析5.3 牛顿法的Matlab实现5.3.1 代码示例5.3.2 实例分析5.4 共轭梯度法的Matlab实现5.4.1 代码示例5.4.2 实例分析六、结论及展望6.1 对最优化方法的总结与归纳6.2 未来最优化方法的发展方向七、参考文献以上是一篇关于“最优化方法及其Matlab实现”的文章大纲,您可以根据这个大纲和相关资料进行深入撰写。
文章内容需要涉及最优化方法的基本概念与分类、常用最优化方法的原理与特点、最优化方法在实际问题中的应用、Matlab实现最优化方法的实例等方面,保证文章内容的权威性和实用性。
另外,在撰写文章过程中,建议加入一些案例分析或者数据实验,通过具体的应用场景来展示最优化方法的有效性和优越性,增强文章的说服力和可读性。
对于Matlab实现部分也要注重代码的清晰性和易懂性,方便读者理解和实践。
希望您能够通过深入的研究和精心的撰写,呈现一篇高质量、流畅易读、结构合理的中文文章,为读者提供有益的知识和参考价值。
MATLAB在高等数学教学中的应用

MATLAB在高等数学教学中的应用1. 引言1.1 MATLAB在高等数学教学中的应用概述在微积分教学中,MATLAB可以用来绘制曲线和图形,解决数值积分和微分方程等数学问题,帮助学生更深入地理解微积分的概念和应用。
在线性代数教学中,MATLAB可以用来求解线性方程组、计算矩阵的特征值和特征向量,加深学生对向量空间和线性变换的理解。
MATLAB在高等数学教学中的应用不仅帮助教师更好地传授知识,也提升了学生的学习效果和兴趣。
随着技术的不断发展和完善,MATLAB在高等数学教学中的应用前景将更加广阔,为数学教育带来更多的可能性和创新。
2. 正文2.1 MATLAB在微积分教学中的应用MATLAB可以用来绘制函数的图像,帮助学生直观地理解数学概念。
通过输入函数表达式,学生可以立即看到函数的图像,从而更好地理解函数的性质和特点。
MATLAB可以进行数值计算,帮助学生解决一些复杂的积分和微分问题。
对于一些无法通过解析方法求解的问题,可以利用MATLAB进行数值积分和数值微分,提高学生的问题求解能力。
MATLAB还可以用来进行符号计算,帮助学生简化复杂的数学表达式,进行代数化简和方程求解,加深学生对微积分概念的理解。
MATLAB在微积分教学中的应用可以帮助学生更好地理解和掌握微积分知识,提高他们的问题求解能力和数学建模能力。
通过结合理论知识和实际计算,MATLAB可以使微积分课程变得更加生动和有趣,激发学生对数学学习的兴趣。
2.2 MATLAB在线性代数教学中的应用1. 矩阵运算:在线性代数课程中,学生需要进行大量的矩阵运算,包括矩阵相加、相乘、求逆等操作。
利用MATLAB可以快速进行这些运算,并且可以帮助学生更好地理解线性代数的概念。
2. 线性方程组求解:线性代数中最基本的问题之一就是求解线性方程组。
MATLAB提供了很多线性代数相关的函数,可以帮助学生查找线性方程组的解,包括使用高斯消元法、LU分解等方法。
Matlab在运筹学与优化中的应用方法

Matlab在运筹学与优化中的应用方法1. 引言运筹学与优化是一个重要的研究领域,它致力于寻求最佳解决方案以满足各种约束条件。
而Matlab作为一种强大的数值计算软件,被广泛应用于运筹学与优化中。
本文将介绍Matlab在该领域的应用方法,并探讨其在解决实际问题中的潜力和局限性。
2. 线性规划与整数规划线性规划是运筹学与优化中的基本方法之一。
它通过线性模型来描述问题,利用Matlab的优化工具箱可以方便地求解线性规划问题。
首先,我们需要定义目标函数和约束条件,然后使用linprog函数进行求解。
Matlab会返回问题的最优解以及对应的目标值。
整数规划则是线性规划的一种扩展,其中变量取整数值。
Matlab 也提供了intlinprog函数来求解整数规划问题。
3. 非线性规划在许多实际问题中,目标函数和约束条件并不是线性的,而是非线性的。
在这种情况下,我们可以使用Matlab的fmincon函数来求解非线性规划问题。
该函数利用了优化算法,可以找到目标函数的局部最小值。
然而,需要注意的是,fmincon求解的是连续非线性规划问题,并不能保证找到全局最优解。
4. 整数规划与非线性规划的组合实际问题中,常常会出现整数规划与非线性规划相结合的情况。
这种问题被称为混合整数非线性规划(MINLP)。
Matlab提供了fmincon函数的扩展,可以求解这种类型的问题。
通过设置变量的整数约束条件,我们可以将连续非线性规划问题转化为整数规划问题,然后利用Matlab的intlinprog函数求解。
5. 动态规划动态规划是一种求解最优化问题的方法,其适用于具有重叠子问题和最优子结构特性的问题。
Matlab可以很方便地实现动态规划算法。
我们可以使用Matlab的矩阵操作和循环结构来定义问题的状态转移方程,并通过动态规划来求解问题的最优解。
例如,背包问题、旅行商问题等都可以通过动态规划求解。
6. 遗传算法遗传算法是一种模拟进化过程的优化算法,它借鉴了自然界中的进化原理。
MATLAB R2020a从入门到精通(升级版)

第11章 M脚本文件
11.1 M脚本文件概述 11.2 MATLAB中的变量类型 11.3设置执行时间 11.4启动和终止 11.5本章小结
第12章 M函数文件
12.1 M函数 12.2函数工作区 12.3 M函数文件的使用 12.4本章小结
第13章 M文件的调试
13.1调试方法 13.2语法检查 13.3本章小结
第5章数组运算
5.1简单数组 5.2数组寻址 5.3数组排序 5.4数组检测 5.5数组结构 5.6数组元素运算 5.7数组的基本运算 5.8数组的创建实例 5.9本章小结
第6章高维数组
6.1高维数组的创建 6.2高维数组的处理 6.3高维数组的常用函数 6.4高维数组的创建实例 6.5本章小结
第33章 Simulink应用
33.1 Simulink概述 33.2模块操作 33.3 Simulink系统仿真 33.4 Stateflow建模与应用 33.5 Simulink工具箱的应用 33.6本章小结
作者介绍
同名作者介绍
这是《MATLAB R2020a从入门到精通(升级版)》的读书笔记模板,暂无该书作者的介绍。
第7章字符串
7.1字符串的创建 7.2字符串的比较 7.3字符串的查找函数和替换函数 7.4字符串与数值的转换 7.5字符串函数 7.6利用正则表达式进行搜索 7.7本章小结
第8章结构体数组
8.1结构体数组的创建 8.2访问结构体数组中的数据 8.3本章小结
第9章单元数组
9.1单元数组的创建 9.2单元数组的处理 9.3单元内容的获取 9.4单元数组的创建实例 9.5本章小结
目录分析
1
第1章 MATLAB 入门
2
第2章 MATLAB 主界面
Matlab在最优化问题中的应用举例

在企业生产和日常生活中,人们总是希望用最少的人力、物力、财力和时间去办更多的事,这就是所谓的最优化问题。
线性规划方法是解决最优化问题的有效方法之一,因此受到人们的普遍关注。
在企业生产过程中,生产计划安排直接影响到企业的经济效益,而生产计划本质就是在目标一定时,对于人力、时间和物质资源的优化配置问题。
1。
综述了最优化方法,归纳了最优化闯题中线性规划和非线性规划模型的解法,并给出了相应的matlab求解代码。
2。
提出了基于信息增益率的用电客户指标选择方法,根据信息增益率的大小选择对分类有贡献的指标。
关键词:Matlab,最优化方法,应用举例In enterprise production and daily life, people always hope with the least amount of human, material and financial resources and time to do more things, this is the so-called optimization problem. Linear programming method is to solve the optimal problem, so one of the effective method by people's attention. In enterprise production process, production plan directly affect the enterprise economic benefit, but in essence is the production plan for the target certain human, time and material resources optimization allocation problem.1·Studying the optimization,summing up the solutions ofoptimization problem for both linear and non-linear programming model and proposing the matlabcode.2·Proposing a new way based on information-gain-ratio to choose the powercustomer indices,selecting the indices which are more contributive to theclassification,in order to avoid over learning。
最优化方法及其matlab程序设计习题答案

证明:根据严格凸函数定义证明。
定义:对任意x ̸= y,及任意实数λ ∈ (0, 1)都有f (λx + (1 − λ)y) ≤ λf (x) + (1 − λ)f (y).
充分条件:∀x, y ∈ ℜn, 有f (x + y) ≤ f (x) + f (y)
对任意x ̸= y,及任意实数λ ∈ (0, 1)都有f (λx+(1−λ)y) ≤ f (λx)+f ((1−λ)y)
8
k= 2 (2)阻尼牛顿法 function He=Hesstwo(x) n=length(x); He=zeros(n,n); He=[8, 0; 0, 2]; ≫ x0=[0,1]’;[x val k]=dampnm(’funtwo1’,’gfuntwo1’,’Hesstwo’,x0) x= 1 2 val = -8 k= 1 第3题. function f=fun(x) f = (x(1) − 2)4 + (x(1) − 2 ∗ x(2))2; function gf=gfun(x) gf = [4 ∗ (x(1) − 2)3 + 2 ∗ (x(1) − 2 ∗ x(2)), −4 ∗ (x(1) − 2 ∗ x(2))]′; ≫clear all; ≫x0=[0 3]’;[v,val,k]=grad(’fun’,’gfun’,x0)
(1
−
λ)y)=
1 2
(λx
+
(1
−
λ)y)T
G(λx
+
(1
−
λ)y)
+
bT
(λx
+
(1
−
λ)y)
λf
(x)
BFGS和DFP法的最优化问题求解及在MATLAB中的实现[1]
![BFGS和DFP法的最优化问题求解及在MATLAB中的实现[1]](https://img.taocdn.com/s3/m/3831ab92bceb19e8b8f6baf9.png)
BFGS 方法和 DFP 方法对非线性无约束优化问题进行了仿真研究 , 结果表明利用 matlab 软件解答非线性无约束优化问题获得 了好的效果, 为数学工作者求解非线性无约束优化问题提供了一种新的方法 . 关键词:matlab 软件; 数学建模; BFGS 算法; DFP 算法; 最优解 中图分类号:TB112 文献标识码:A 文章编号:1008 - 4681 ( 2012 ) 05 - 0001 - 03 DFP 算法的一般计算步骤如下 : dk = - ( Bk )
3 1 3 1 2 2 2
ans = 0. 0027 - 0. 0003 - 0. 0057 - 0. 0057 % 采用立方插值法 options( 6 ) = 0 ; Options( 7 ) = 1 ; fminunc ( ‘pfun’ , x0 ,Options) ans = - 0. 0156 0. 0015 - 0. 0146 - 0. 0146 DFP 方法 % 采用混合插值法 options( 6 ) = 1 ; Options( 7 ) = 0 ; fminunc ( ‘pfun’ , x0 ,Options)
[1 , 2 ]
gk
x k +1 = x k + a k d k B k +1 = B k -
T yk 2 Bk sk yT sT B s k + yk sk Bk 2 + 1 + kT k k · T T sk yk sk yk sk yk
(
)
a k 为步长因子, 其中 s k = a k d k ; y k = g k +1 - g k , 它由具体的线 搜索准则确定. Goldstein - Armijor 线搜索下的 DFP 算法 B1 ∈ Rn* n 且对称正定, k = 1; 步骤 1 : 取 x1 ∈ Rn, 步骤 2 : 计算 g k = f( x k ) , 如果 g k = 0 , 则终止, 最优解 为 x k ; 如果 g k ≠ 0 , 令 dk = - ( Bk )
matlab在机械优化设计中的应用

matlab在机械优化设计中的应用一、引言随着科技的不断发展,机械优化设计在工程领域中得到了广泛的应用。
而在机械优化设计中,matlab作为一款强大的数学软件,在优化算法的实现和结果分析等方面具有很大的优势。
本文将探讨matlab在机械优化设计中的应用。
二、matlab在机械优化设计中的基础知识1. matlab基础知识Matlab是一种交互式数值计算环境和编程语言,可用于科学计算、数据分析和可视化等多个领域。
Matlab有着丰富的函数库和工具箱,可进行各种数学运算、统计分析、图像处理、信号处理等操作。
2. 机械优化设计基础知识机械优化设计是指通过运用数学模型和计算方法对机械结构进行全面分析和综合考虑,以达到最佳性能指标或最小成本等目标。
其中包括了多目标规划、遗传算法、神经网络等多种方法。
三、matlab在机械优化设计中的应用1. 优化算法实现Matlab提供了各种常见的数值计算方法和最优化方法,如线性规划、非线性规划、遗传算法等。
通过Matlab的函数库和工具箱,可以轻松地实现各种优化算法,并且可以根据具体需求进行自定义编程。
2. 结果分析Matlab在结果分析方面也有很大的优势。
通过Matlab的图形界面,可以绘制各种图表,如散点图、折线图、柱状图等。
同时,Matlab还提供了多种统计分析方法,如方差分析、回归分析等,可以对优化结果进行全面的统计分析。
3. 机械结构设计Matlab还可以用于机械结构设计。
通过建立机械结构模型,并运用Matlab中的有限元分析工具箱进行模拟计算,可以得到机械结构在不同载荷下的应力和变形情况。
这些数据可以进一步用于优化设计和结构改进。
4. 案例应用以一台压缩机为例,利用Matlab进行机械优化设计。
首先建立压缩机的数学模型,并根据实际需求设置相关参数和目标函数。
然后采用遗传算法对压缩机进行优化设计,并得到最佳设计方案。
最后利用Matlab中的有限元分析工具箱对最佳设计方案进行模拟计算,并得到应力和变形等数据。
精通MATLAB最优化计算一书的MATLAB优化工具箱课件

精通MATLAB最优化计算一书的MATLAB优化工具箱课件
智能优化算法(ga求解器)
优化工具箱中的智能优化算法包括遗传算法(ga)和模拟退火算法(simulannealbnd),MATLAB中的ga求解器功能非常强大,既能求解无约束优化问题,也能求解约束优化问题,而且约束条件可以是非线性的,但是simulannealbnd求解器只能求解无约束优化问题。 在Solver下拉选框中选择ga; 在适应函数栏输入@(x)x^4-3*x^3+x^2-2; 变量个数输入1,其余参数默认; 单击Start按钮运行。
精通MAI优化工具应用实例
例5-1 fminunc求解器应用实例。 例5-2 fminsearch求解器应用实例。 例5-3 fmincon求解器应用实例。 例5-4 lsqnonlin求解器应用实例。 例5-5 linprog求解器应用实例。 例5-6 ga求解器应用实例。
精通MATLAB最优化计算一书的MATLAB优化工具箱课件
5.4 小结
本章全面介绍了优化工具箱函数的功能、语法,以及GUI优化工具的使用及实例,GUI优化工具是进行MATLAB最优化计算的最简洁、最容易掌握的工具,后面的章节还会对常用的工具箱的函数进行详细讲述,并辅以实例。 通过本章读者不仅对MATLAB优化工具箱函数的强大功能有一个初步了解,还为后面更具体的介绍及应用打下基础。
精通MATLAB最优化计算一书的MATLAB优化工具箱课件
5.3.2 GUI优化工具的界面
GUI优化工具的界面主要分为三大块: 左边为优化问题的描述及计算结果显示(Problem Setup and Results); 中间为优化选项的设置(Options); 右边为帮助(Quick Reference)。 为了界面的简洁,可以单击右上角的“<<”按钮将帮助隐藏起来。
(最新整理)Matlab最优化方法

minf = c x
s.t .Axb = ( 1)
x0
这 里 A=(a ij)m , nx , =x1 x2 xnT
b=b 1 b 2 b nT, c =c1 c2 cn
2021/7/26
9
例 m i n z = 1 0 x 1 + 9 x 2 s . t . 6 x 1 + 5 x 2 ≤ 6 0 1 0 x 1 + 2 0 x 2 ≥ 1 5 0 x 1 ≤ 8 x 1 , x 2 ≥ 0
解:这是个最优化问题,其目标为经济价值最高,约束 条件为三种资源的数量有限,决策为生产甲、乙产品的 数量。令生产产品甲的数量为x1,生产产品乙的数量为 x2。由题意可以建立如下的线性规划模型。
2021/7/26
6
故目标函数为:
mz ax 7x15x2
约束条件为:
3 x1 2 x2 90
4
7
内容
1、无约束优化基本思想及基本算法。 2、MATLAB优化工具箱简介 3、用MATLAB求解无约束优化问题。
4、实验作业。
2021/7/26
21
无约束最优化问题
求解无约束最优化问题的的基本思想
*无约束最优化问题的基本算法
2021/7/26
返回 22
求解无约束最优化问题的基本思想
标准形式:
m f X in
问题一 : 任务分配问题:某车间有甲、乙两台机床,可用
于加工三种工件。假定这两台车床的可用台时数分别为800和 900,三种工件的数量分别为400、600和500,且已知用三种 不同车床加工单位数量不同工件所需的台时数和加工费用如 下表。问怎样分配车床的加工任务,才能既满足加工工件的 要求,又使加工费用最低?
MATLAB7.0使用详解-第10章 SIMULINK高级仿真技术

10.5.3 平衡点的分析
平衡点(Equilibrium points)在数学上描述为 使状态一阶导数为零的点。其对于非线性系统的 系统稳定性的分析和评估是很有用的。 MATLAB中用于求取平衡点的函数是trim。trim函 数的工作原理是先从一个指定的初始值开始,借 助数值运算,搜索最接近初始值的平衡点。事实 上,该指令并不保证搜索到的平衡点就一定是最 接近初始值,当trim指令找不到导数为零的平衡 点时,将返回搜索中使得状态导数最大绝对值最 接近零的点。如果搜索失败,可以改变初始值再 进行尝试。
10.2.2 Initialization标签页
初始化设置标签页如图10.10所示。其中的对话变量表是在用户设 置了参数设置页(Parameters)之后自动生成的。初始化命令 (Initialization conmmands)一般是MATLAB指令,可以通过 MATLAB命令定义封装后子系统空间中的各种变量,以便这些变量 在被封子系统模块图标绘制指令或其他初始化指令中使用。
10.3.1
使能子系统(Enable Subsystem)
使能子系统(Enable Subsystem)将控制信号分 为允许(enable)和禁止(disenable)两种。当 控制信号为正时,即控制信号为允许状态,系统 可以执行使能子系统中的模块;否则就禁止模块 功能。
10.3.2 触发子系统(Triggered Subsystem)
10.4.3 设置断点
如果用户知道自己系统执行到某些点或者满足一 定条件就会出错,那么设置断点就将显得很有用。 简单来说,断点就是仿真执行到该处时会暂停仿 真,这时用户可以通过Continue指令跳过这一断 点继续执行到下一断点。SIMULINK调试器允许用 户设置的断点有两类:无条件中断和有条件中断。
最优化方法的Matlab实现(公式(完整版))

第九章最优化方法的Matlab实现在生活和工作中,人们对于同一个问题往往会提出多个解决方案,并通过各方面的论证从中提取最佳方案。
最优化方法就是专门研究如何从多个方案中科学合理地提取出最佳方案的科学。
由于优化问题无所不在,目前最优化方法的应用和研究已经深入到了生产和科研的各个领域,如土木工程、机械工程、化学工程、运输调度、生产控制、经济规划、经济管理等,并取得了显著的经济效益和社会效益。
用最优化方法解决最优化问题的技术称为最优化技术,它包含两个方面的内容:1)建立数学模型即用数学语言来描述最优化问题。
模型中的数学关系式反映了最优化问题所要达到的目标和各种约束条件。
2)数学求解数学模型建好以后,选择合理的最优化方法进行求解。
最优化方法的发展很快,现在已经包含有多个分支,如线性规划、整数规划、非线性规划、动态规划、多目标规划等。
9.1 概述利用Matlab的优化工具箱,可以求解线性规划、非线性规划和多目标规划问题。
具体而言,包括线性、非线性最小化,最大最小化,二次规划,半无限问题,线性、非线性方程(组)的求解,线性、非线性的最小二乘问题。
另外,该工具箱还提供了线性、非线性最小化,方程求解,曲线拟合,二次规划等问题中大型课题的求解方法,为优化方法在工程中的实际应用提供了更方便快捷的途径。
9.1.1 优化工具箱中的函数优化工具箱中的函数包括下面几类:1.最小化函数表9-1 最小化函数表2.方程求解函数表9-2 方程求解函数表3.最小二乘(曲线拟合)函数表9-3 最小二乘函数表4.实用函数表9-4 实用函数表5.大型方法的演示函数表9-5 大型方法的演示函数表6.中型方法的演示函数表9-6 中型方法的演示函数表9.1.3 参数设置利用optimset函数,可以创建和编辑参数结构;利用optimget函数,可以获得o ptions优化参数。
● optimget函数功能:获得options优化参数。
语法:val = optimget(options,'param')val = optimget(options,'param',default)描述:val = optimget(options,'param') 返回优化参数options中指定的参数的值。
MATLAB在机械优化设计中的应用

线 性规 划模 型如下 :
mif X n
x Hx+ rx T
() 3
,
A *X ( 性 不 等 式 约 束 ) 线
st JA q* = bq 线性等式约束 ) .. e e( I 鱼 优化变量 上下界约束) / b l(
略) ;
ei a z g为迭 代终 止 条件 ( 省 略 ) 为正 数 时 , 可 ,
表示 目标 函数 收 敛 于 解 z处 ; 负 数 时 , 示 目标 为 表 函数不 收敛 ; 为零 , 则表 示 已经达 到 函数评 价或 迭代 的最大次 数 ;
设 计 中 的问题 不仅方 便 实用 , 而且 编程 简单 易懂 。
问 题 采 用 f n n 函 数 、 miu e函 数 和 f n mib d f nn mi— sac e rh函 数 , 中 默 认 的 算 法 就 是 B GS算 法 。 其 F
式 中 , ( ) C q x 分 别 为非 线性 函数 , C 、 e() 其余 参 数 意
义 同 式 ( ) 1。
fA
.
线性不等式约束
() 1
式 中 , 为对 称矩 阵 , 余参 数 意义 同式 ( ) H 其 1。
q apo u d rg函数 调用 格式 为 : L 知a , x a o t u , a d ]一 q a — , l e i g, up t lmb a u d
fJA q X= bq 线性等式约束 ) . e e(
曾怀 灵 , 建 国 贺
( 沙矿 山研 究院 有 限责任 公 司 , 湖 南 长沙 长 4 01 ) 1 0 2
matlab实用教程实验十遗传算法与优化问题

matlab实用教程实验十遗传算法与优化问题matlab实用教程实验十遗传算法与优化问题一、问题背景与实验目的二、相关函数(命令)及简介三、实验内容四、自己动手一、问题背景与实验目的遗传算法(Genetic Algorithm—GA),是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,它是由美国Michigan大学的J.Holland教授于1975年首先提出的.遗传算法作为一种新的全局优化搜索算法,以其简单通用、鲁棒性强、适于并行处理及应用范围广等显著特点,奠定了它作为21世纪关键智能计算之一的地位.本实验将首先介绍一下遗传算法的基本理论,然后用其解决几个简单的函数最值问题,使读者能够学会利用遗传算法进行初步的优化计算.1.遗传算法的基本原理遗传算法的基本思想正是基于模仿生物界遗传学的遗传过程.它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体.这个群体在问题特定的环境里生存竞争,适者有最好的机会生存和产生后代.后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程.群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解.值得注意的一点是,现在的遗传算法是受生物进化论学说的启发提出的,这种学说对我们用计算机解决复杂问题很有用,而它本身是否完全正确并不重要(目前生物界对此学说尚有争议).(1)遗传算法中的生物遗传学概念由于遗传算法是由进化论和遗传学机理而产生的直接搜索优化方法;故而在这个算法中要用到各种进化和遗传学的概念.首先给出遗传学概念、遗传算法概念和相应的数学概念三者之间的对应关系.这些概念如下:序号遗传学概念遗传算法概念数学概念1个体要处理的基本对象、结构也就是可行解2群体个体的集合被选定的一组可行解3染色体个体的表现形式可行解的编码4基因染色体中的元素编码中的元素5基因位某一基因在染色体中的位置元素在编码中的位置6适应值个体对于环境的适应程度,或在环境压力下的生存能力可行解所对应的适应函数值7种群被选定的一组染色体或个体根据入选概率定出的一组可行解8选择从群体中选择优胜的个体,淘汰劣质个体的操作保留或复制适应值大的可行解,去掉小的可行解9交叉一组染色体上对应基因段的交换根据交叉原则产生的一组新解10交叉概率染色体对应基因段交换的概率(可能性大小)闭区间[0,1]上的一个值,一般为0.65~0.9011变异染色体水平上基因变化编码的某些元素被改变12变异概率染色体上基因变化的概率(可能性大小)开区间(0,1)内的一个值, 一般为0.001~0.0113进化、适者生存个体进行优胜劣汰的进化,一代又一代地优化目标函数取到最大值,最优的可行解(2)遗传算法的步骤遗传算法计算优化的操作过程就如同生物学上生物遗传进化的过程,主要有三个基本操作(或称为算子):选择(Selection)、交叉(Crossover)、变异(Mutation).遗传算法基本步骤主要是:先把问题的解表示成“染色体”,在算法中也就是以二进制编码的串,在执行遗传算法之前,给出一群“染色体”,也就是假设的可行解.然后,把这些假设的可行解置于问题的“环境”中,并按适者生存的原则,从中选择出较适应环境的“染色体”进行复制,再通过交叉、变异过程产生更适应环境的新一代“染色体”群.经过这样的一代一代地进化,最后就会收敛到最适应环境的一个“染色体”上,它就是问题的最优解.下面给出遗传算法的具体步骤,流程图参见图1:第一步:选择编码策略,把参数集合(可行解集合)转换染色体结构空间;第二步:定义适应函数,便于计算适应值;第三步:确定遗传策略,包括选择群体大小,选择、交叉、变异方法以及确定交叉概率、变异概率等遗传参数;第四步:随机产生初始化群体;第五步:计算群体中的个体或染色体解码后的适应值;第六步:按照遗传策略,运用选择、交叉和变异算子作用于群体,形成下一代群体;第七步:判断群体性能是否满足某一指标、或者是否已完成预定的迭代次数,不满足则返回第五步、或者修改遗传策略再返回第六步.图1 一个遗传算法的具体步骤遗传算法有很多种具体的不同实现过程,以上介绍的是标准遗传算法的主要步骤,此算法会一直运行直到找到满足条件的最优解为止.2.遗传算法的实际应用例1:设,求.注:这是一个非常简单的二次函数求极值的问题,相信大家都会做.在此我们要研究的不是问题本身,而是借此来说明如何通过遗传算法分析和解决问题.在此将细化地给出遗传算法的整个过程.(1)编码和产生初始群体首先第一步要确定编码的策略,也就是说如何把到2这个区间内的数用计算机语言表示出来.编码就是表现型到基因型的映射,编码时要注意以下三个原则:完备性:问题空间中所有点(潜在解)都能成为GA编码空间中的点(染色体位串)的表现型;健全性:GA编码空间中的染色体位串必须对应问题空间中的某一潜在解;非冗余性:染色体和潜在解必须一一对应.这里我们通过采用二进制的形式来解决编码问题,将某个变量值代表的个体表示为一个{0,1}二进制串.当然,串长取决于求解的精度.如果要设定求解精度到六位小数,由于区间长度为,则必须将闭区间分为等分.因为所以编码的二进制串至少需要22位.将一个二进制串(b21b20b19…b1b0)转化为区间内对应的实数值很简单,只需采取以下两步(Matlab程序参见附录4):1)将一个二进制串(b21b20b19…b1b0)代表的二进制数化为10进制数:2)对应的区间内的实数:例如,一个二进制串a=<0111>表示实数0.637197.=(0111)2=2288967二进制串<0000>,<1111>,则分别表示区间的两个端点值-1和2.利用这种方法我们就完成了遗传算法的第一步——编码,这种二进制编码的方法完全符合上述的编码的三个原则.首先我们来随机的产生一个个体数为4个的初始群体如下:pop(1)={<1110>, %% a1<0010>, %% a2<0000>, %% a3<0101>} %% a4(Matlab程序参见附录2)化成十进制的数分别为:pop(1)={ 1.523032,0.574022 ,-0.697235 ,0.247238 }接下来我们就要解决每个染色体个体的适应值问题了.(2)定义适应函数和适应值由于给定的目标函数在内的值有正有负,所以必须通过建立适应函数与目标函数的映射关系,保证映射后的适应值非负,而且目标函数的优化方向应对应于适应值增大的方向,也为以后计算各个体的入选概率打下基础.对于本题中的最大化问题,定义适应函数,采用下述方法:式中既可以是特定的输入值,也可以是当前所有代或最近K代中的最小值,这里为了便于计算,将采用了一个特定的输入值.若取,则当时适应函数;当时适应函数.由上述所随机产生的初始群体,我们可以先计算出目标函数值分别如下(Matlab程序参见附录3):f [pop(1)]={ 1.226437 , 1.318543 , -1.380607 , 0.933350 }然后通过适应函数计算出适应值分别如下(Matlab程序参见附录5、附录6):取,g[pop(1)]= { 2.226437 , 2.318543 , 0 , 1.933350 }(3)确定选择标准这里我们用到了适应值的比例来作为选择的标准,得到的每个个体的适应值比例叫作入选概率.其计算公式如下:对于给定的规模为n的群体pop={},个体的适应值为,则其入选概率为由上述给出的群体,我们可以计算出各个个体的入选概率.首先可得,然后分别用四个个体的适应值去除以,得:P(a1)=2.226437 / 6.478330 = 0.343675 %% a1P(a2)=2.318543 / 6.478330 = 0.357892 %% a2P(a3)= 0 / 6.478330 = 0 %% a3P(a4)=1.933350 / 6.478330 = 0.298433 %% a4(Matlab程序参见附录7)(4)产生种群计算完了入选概率后,就将入选概率大的个体选入种群,淘汰概率小的个体,并用入选概率最大的个体补入种群,得到与原群体大小同样的种群(Matlab 程序参见附录8、附录11).要说明的是:附录11的算法与这里不完全相同.为保证收敛性,附录11的算法作了修正,采用了最佳个体保存方法(elitist model),具体内容将在后面给出介绍.由初始群体的入选概率我们淘汰掉a3,再加入a2补足成与群体同样大小的种群得到newpop(1)如下:newpop(1)={<1110>, %% a1<0010>, %% a2<0010>, %% a2<0101>} %% a4(5)交叉交叉也就是将一组染色体上对应基因段的交换得到新的染色体,然后得到新的染色体组,组成新的群体(Matlab程序参见附录9).我们把之前得到的newpop(1)的四个个体两两组成一对,重复的不配对,进行交叉.(可以在任一位进行交叉)<110101110 1001100011110>, <0010>交叉得:<100001100 1010001000010>, <1110><10000110010100 01000010>, <0101>交叉得:<01101010011011 10010101>, <0010>通过交叉得到了四个新个体,得到新的群体jchpop (1)如下:jchpop(1)={<0010>,<1110>,<0101>,<0010>}这里采用的是单点交叉的方法,当然还有多点交叉的方法,不过有些烦琐,这里就不着重介绍了.(6)变异变异也就是通过一个小概率改变染色体位串上的某个基因(Matlab程序参见附录10).现把刚得到的jchpop(1)中第3个个体中的第9位改变,就产生了变异,得到了新的群体pop(2)如下:pop(2)= {<0010>,<1110>,<0101>,<0010> }然后重复上述的选择、交叉、变异直到满足终止条件为止.(7)终止条件遗传算法的终止条件有两类常见条件:(1)采用设定最大(遗传)代数的方法,一般可设定为50代,此时就可能得出最优解.此种方法简单易行,但可能不是很精确(Matlab程序参见附录1);(2)根据个体的差异来判断,通过计算种群中基因多样性测度,即所有基因位相似程度来进行控制.3.遗传算法的收敛性前面我们已经就遗传算法中的编码、适应度函数、选择、交叉和变异等主要操作的基本内容及设计进行了详细的介绍.作为一种搜索算法,遗传算法通过对这些操作的适当设计和运行,可以实现兼顾全局搜索和局部搜索的所谓均衡搜索,具体实现见下图2所示.图2 均衡搜索的具体实现图示应该指出的是,遗传算法虽然可以实现均衡的搜索,并且在许多复杂问题的求解中往往能得到满意的结果,但是该算法的全局优化收敛性的理论分析尚待解决.目前普遍认为,标准遗传算法并不保证全局最优收敛.但是,在一定的约束条件下,遗传算法可以实现这一点.下面我们不加证明地罗列几个定理或定义,供读者参考(在这些定理的证明中,要用到许多概率论知识,特别是有关马尔可夫链的理论,读者可参阅有关文献).定理1 如果变异概率为,交叉概率为,同时采用比例选择法(按个体适应度占群体适应度的比例进行复制),则标准遗传算法的变换矩阵P是基本的.定理2 标准遗传算法(参数如定理1)不能收敛至全局最优解.由定理2可以知道,具有变异概率,交叉概率为以及按比例选择的标准遗传算法是不能收敛至全局最最优解.我们在前面求解例1时所用的方法就是满足定理1的条件的方法.这无疑是一个令人沮丧的结论.然而,庆幸的是,只要对标准遗传算法作一些改进,就能够保证其收敛性.具体如下:我们对标准遗传算法作一定改进,即不按比例进行选择,而是保留当前所得的最优解(称作超个体).该超个体不参与遗传.最佳个体保存方法(elitist model)的思想是把群体中适应度最高的个体不进行配对交叉而直接复制到下一代中.此种选择操作又称复制(copy).De Jong 对此方法作了如下定义:定义设到时刻t(第t代)时,群体中a*(t)为最佳个体.又设A(t+1)为新一代群体,若A(t+1)中不存在a*(t),则把a*(t)作为A(t+1)中的第n+1个个体(其中,n为群体大小)(Matlab程序参见附录11).采用此选择方法的优点是,进化过程中某一代的最优解可不被交叉和变异操作所破坏.但是,这也隐含了一种危机,即局部最优个体的遗传基因会急速增加而使进化有可能限于局部解.也就是说,该方法的全局搜索能力差,它更适合单峰性质的搜索空间搜索,而不是多峰性质的空间搜索.所以此方法一般都与其他选择方法结合使用.定理3 具有定理1所示参数,且在选择后保留当前最优值的遗传算法最终能收敛到全局最优解.当然,在选择算子作用后保留当前最优解是一项比较复杂的工作,因为该解在选择算子作用后可能丢失.但是定理3至少表明了这种改进的遗传算法能够收敛至全局最优解.有意思的是,实际上只要在选择前保留当前最优解,就可以保证收敛,定理4描述了这种情况.定理4 具有定理1参数的,且在选择前保留当前最优解的遗传算法可收敛于全局最优解.例2:设,求,编码长度为5,采用上述定理4所述的“在选择前保留当前最优解的遗传算法”进行二、相关函数(命令)及简介本实验的程序中用到如下一些基本的Matlab函数:ones, zeros, sum, size, length, subs, double 等,以及 for, while 等基本程序结构语句,读者可参考前面专门关于Matlab的介绍,也可参考其他数学实验章节中的“相关函数(命令)及简介”内容,此略.三、实验内容上述例1的求解过程为:群体中包含六个染色体,每个染色体用22位0—1码,变异概率为0.01,变量区间为,取Fmin=,遗传代数为50代,则运用第一种终止条件(指定遗传代数)的Matlab程序为:[Count,Result,BestMember]=Genetic1(22,6,'-x*x+2*x+0.5',-1,2,-2,0.01,50)执行结果为:Count =50Result =1.0316 1.0316 1.0316 1.0316 1.0316 1.03161.4990 1.4990 1.4990 1.4990 1.4990 1.4990BestMember =1.03161.4990图2 例1的计算结果(注:上图为遗传进化过程中每一代的个体最大适应度;而下图为目前为止的个体最大适应度——单调递增)我们通过Matlab软件实现了遗传算法,得到了这题在第一种终止条件下的最优解:当取1.0316时,.当然这个解和实际情况还有一点出入(应该是取1时,),但对于一个计算机算法来说已经很不错了.我们也可以编制Matlab程序求在第二种终止条件下的最优解.此略,留作练习.实践表明,此时的遗传算法只要经过10代左右就可完成收敛,得到另一个“最优解”,与前面的最优解相差无几.四、自己动手1.用Matlab编制另一个主程序Genetic2.m,求例1的在第二种终止条件下的最优解.提示:一个可能的函数调用形式以及相应的结果为:[Count,Result,BestMember]=Genetic2(22,6,'-x*x+2*x+0.5',-1,2,-2,0.01,0.00001)Count =13Result =1.0392 1.0392 1.0392 1.0392 1.0392 1.03921.4985 1.4985 1.4985 1.4985 1.4985 1.4985BestMember =1.03921.4985可以看到:两组解都已经很接近实际结果,对于两种方法所产生的最优解差异很小.可见这两种终止算法都是可行的,而且可以知道对于例1的问题,遗传算法只要经过10代左右就可以完成收敛,达到一个最优解.2.按照例2的具体要求,用遗传算法求上述例2的最优解.3.附录9子程序 Crossing.m中的第3行到第7行为注解语句.若去掉前面的%号,则程序的算法思想有什么变化?4.附录9子程序 Crossing.m中的第8行至第13行的程序表明,当Dim(1)>=3时,将交换数组Population的最后两行,即交换最后面的两个个体.其目的是什么?5.仿照附录10子程序Mutation.m,修改附录9子程序 Crossing.m,使得交叉过程也有一个概率值(一般取0.65~0.90);同时适当修改主程序Genetic1.m 或主程序Genetic2.m,以便代入交叉概率.6.设,求,要设定求解精度到15位小数.。
MATLAB语言与应用

2024年4月3日2时14分
MATLAB语言与应用
16
【例1-7】 二维曲线绘制
>>x=0:0.1:2*pi;
y1=sin(x);y2=cos(x);
plot(x,y1,x,y2) %绘制正弦、余弦曲线
plot(sin(x),cos(x))
axis equal
%绘制圆
ezplot(‘1/y-log(x)+log(-1+y)+x-sin(x)’)
MATLAB语言与应用
24
本课程的相关内容
第6章 数据插值与函数拟合 第7章 代数方程与微分方程 第8章 工程优化 第9章 工程统计 第10章 其它工具箱的应用
2024年4月3日2时14分
MATLAB语言与应用
25
互联网资源
The MathWorks公司官方网站 – 产品与全套工具箱手册下载 – 第三方工具箱下载
超星下载
原思聪. MATLAB语言及机械工程应用.北京:
机械工业出版社. 2008.6
¥50.00
2024年4月3日2时14分
MATLAB语言与应用
28
练习
在计算机上安装MATLAB语言程序,熟悉 MATLAB使用环境,并键入demo命令,领略 MATLAB语言的功能。
2024年4月3日2时14分
2024年4月3日2时14分
MATLAB语言与应用
14
【例1-5】非线性常微分方程组
微分方程 没有解析解 传统数值方法
– 计算步长选择 – 计算时间 – 变步长 解决方法:计算机数学语言+算法
2024年4月3日2时14分
MATLAB语言与应用
15
【例1-6】 最优化问题
MATLAB在优化方案选择中的应用

20 年第 4期 06
W 5 2 00只即 可 满 足 市 场 需 求 , 而 系 数 组 成 的 向量 ; 一 等 式 约 束 条 用 10 0根原 材 料 石 英 管 按 方案 1 A 0 4 5根石 英 管 按 方案 6截 料 , 且 减少 了库存 , 降低 了管 理成 本 , 加 件的 系数 所组 成 的 3 5矩 阵 ;一 截 料 , 4 ×3 6 速 了资金 流动 。 5 5截 可 等 式 约 束 条 件 的 常 数 所 组 成 的 向 2 0根石 英 管 按 方案 3 料 , 截
型 金属 卤灯 , 们 所 需 的石 英 管 长 题 , 性 规 划 的求 解 方 法 主要 是单 了大量 原材 料 , 效 降低 了成本 。 它 线 有
度 分 别 为 1 2 mm、 3 l、 2 纯 形 2 l 5 mi 2 0 l
法
( i l Meh d) 2 建 立 数 学 模 型 Smpc to 。
根据 长 期 的市 场需 求 , 我们 总
() 1 市场对 2 0W 、 0 的需 5 4 0W
足市 场 对 每 种规 格 的需 求 , 其 他 定 目标 函数为所 有方案 所剩 的料头 结 出 以下 2条 规律 : 而
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第10章 Matlab 在最优化问题中的应用优化理论是一门实践性很强的学科,广泛应用于生产管理、军事指挥和科学试验等各种领域,Matlab 优化工具箱提供了对各种优化问题的一个完整的解决方案。
在数学上,所谓优化问题,就是求解如下形式的最优解:Min fun (x)Sub. to [C.E.][B.C.]其中fun (x)称为目标函数,“Sub. to ”为“subject to ”的缩写,由其引导的部分称为约束条件。
[C.E.]表示Condition Equations ,即条件方程,可为等式方程,也可为不等式方程。
[B.C.]表示Boundary Conditions ,即边界条件,用来约束自变量的求解域,以lb ≤x ≤ub 的形式给出。
当[C.E.]为空时,此优化问题称为自由优化或无约束优化问题;当[C.E.]不空时,称为有约束优化或强约束优化问题。
在优化问题中,根据变量、目标函数和约束函数的不同,可以将问题大致分为:·线性优化 目标函数和约束函数均为线性函数。
·二次优化 目标函数为二次函数,而约束条件为线性方程。
线性优化和二次优化统称为简单优化。
·非线性优化 目标函数为非二次的非线性函数,或约束条件为非线性方程。
·多目标优化 目标函数并非一个时,称为多目标优化问题。
本章将对以上几类优化问题在Matlab 中的实现作比较详细的讲解。
另外还将介绍两个利用优化方法解非线性方程的函数。
通过本章的介绍,用户可以不必掌握艰涩的各种优化算法而轻易地解决一些常用的最优化问题了。
10.1 线性规划问题线性规划问题即目标函数和约束条件均为线性函数的问题。
其标准形式为:min C ’xsub. To Ax = bx ≥0其中C, b, 0∈R n ,A ∈R m ⨯n ,均为数值矩阵,x ∈R n 。
若目标函数为:max C ’x ,则转换成:min –C ’x 。
标准形式的线性规划问题简称为LP (Linear Programming )问题。
其它形式的线性规划问题经过适当的变换均可以化为此种标准形。
线性规划问题虽然简单,但在工农业及其他生产部门中应用十分广泛。
在Matlab 中,线性规划问题由linprog 函数求解。
函数:linprog %求解如下形式的线性规划问题:x f T xmin such that b x A ≤⋅beq x Aeq =⋅ub x lb ≤≤其中f, x, b, beq, lb, ub 为向量,A, Aeq 为矩阵。
格式:x = linprog(f,A,b)x = linprog(f,A,b,Aeq,beq)x = linprog(f,A,b,Aeq,beq,lb,ub)x = linprog(f,A,b,Aeq,beq,lb,ub,x0)x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options)[x,fval] = linprog(...)[x,fval,exitflag] = linprog(...)[x,fval,exitflag,output] = linprog(...)[x,fval,exitflag,output,lambda] = linprog(...)说明:x = linprog(f,A,b) 求解问题 min f ’*x ,约束条件为A*x<=b 。
x = linprog(f,A,b,Aeq,beq) 求解上面的问题,但增加等式约束,即Aeq*x = beq 。
若没有不等式存在,则令A = [ ]、b = [ ]。
x = linprog(f,A,b,Aeq,beq,lb,ub) 定义设计变量x 的下界lb 和上界ub ,使得x 始终在该范围内。
若没有等式约束,令Aeq = [ ]、beq = [ ]。
x = linprog(f,A,b,Aeq,beq,lb,ub,x0) 设置初值为x0。
该选项只适用于中型问题,默认时大型算法将忽略初值。
x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options) 用options 指定的优化参数进行最小化。
[x,fval] = linprog(...) 返回解x 处的目标函数值fval 。
[x,fval,exitflag] = linprog(...) 返回exitflag 值,描述函数计算的退出条件。
[x,fval,exitflag,output] = linprog(...) 返回包含优化信息的输出变量output 。
[x,fval,exitflag,output,lambda] = linprog(...) 将解x 处的Lagrange 乘子返回到lambda 参数中。
exitflag 参数描述退出条件:·>0 表示目标函数收敛于解x 处;·=0 表示已经达到函数评价或迭代的最大次数;·<0 表示目标函数不收敛。
output 参数该参数包含下列优化信息:·output .iterations 迭代次数;·output .cgiterations PCG 迭代次数(只适用于大型规划问题);·output .algorithm 所采用的算法。
lambda 参数该参数是解x 处的Lagrange 乘子。
它有以下一些属性:·lambda.lower —lambda 的下界;·lambda.upper —lambda 的上界;·lambda.ineqlin —lambda 的线性不等式;·lambda.eqlin —lambda 的线性等式。
例10-1 求解下列优化问题:min 321645)(x x x x f ---=sub.to 20321≤+-x x x42423321≤++x x x302321≤+x x3210,0,0x x x ≤≤≤解:在Matlab 命令窗口键入:>> f=[-5;-4;-6];>> A=[1 -1 1;3 2 4;3 2 0];>> b=[20;42;30];>> lb=zeros(3,1);>> [x,fval,exitflag,output,lambda]=linprog(f,A,b,[],[],lb)Optimization terminated successfully.x =0.000015.00003.0000fval =-78.0000exitflag =1output =iterations: 6cgiterations: 0algorithm: 'lipsol'lambda =ineqlin: [3x1 double]eqlin: [0x1 double]upper: [3x1 double]lower: [3x1 double]>> lambda.ineqlinans =0.00001.50000.5000>> lambda.lowerans =1.00000.00000.0000lambda 向量中的非零元素表示哪些约束是主动约束。
本例中,第2个和第3个不等式约束,第1个下界约束是主动约束(如这些解位于约束边界上)。
exitflag = 1表示过程正常收敛于解x 处。
例10-2 生产决策问题。
某厂生产甲乙两种产品,已知制成一吨产品甲需资源A 3吨,资源B 4m 3;制成一吨产品乙需资源A 2吨,资源B 6 m 3;资源C 7个单位。
若一吨产品甲和乙的经济价值分别为7万元和5万元,三种资源的限制量分别为90吨、200 m 3和210个单位,试决定应生产这两种产品各多少吨才能使创造的总经济价值最高?解:令生产产品甲的数量为x 1,生产产品甲的数量为x 2。
由题意可以建立下面的数学模型:2157maxx x z += sub. to 902321≤+x x2006421≤+x x21072≤x0,021≥≥x x该模型中要求目标函数最大化,需要按照Matlab 的要求进行转换,即目标函数为2157minx x z --= 在Matlab 中实现:>> f=[-7;-5];>> A=[3 2;4 6;0 7];>> b=[90;200;210];>> lb=[0;0];>> [x,fval,exitflag,output,lambda]=linprog(f,A,b,[],[],lb)Optimization terminated successfully.x =14.000024.0000fval =-218.0000exitflag =1output =iterations: 5cgiterations: 0algorithm: 'lipsol'lambda =ineqlin: [3x1 double]eqlin: [0x1 double]upper: [2x1 double]lower: [2x1 double]由上可知,生产甲种产品14吨、乙种产品24吨可使创造的总经济价值最高为218万元。
exitflag = 1表示过程正常收敛于解x 处。
例10-3 厂址选择问题。
考虑A 、B 、C 三地,每地都出产一定数量的原料也消耗一定数量的产品(见下表)。
已知制成每吨产品需3吨原料,各地之间的距离为:A —B :150km ,A —C :100km ,B —C :200km 。
假定每万吨原料运输1km 的运价是5000元,每万吨产品运输1km 的运价是6000元。
由于地区条件的差异,在不同地点设厂的生产费用也不同。
问究竟在哪些地方设厂,规模多大,才能使总费用最小?另外,由于其它条件限制,在B 处建厂的规模(生产的产品数量)不能超过5万吨。
ij ij 吨),i ,j = 1,2,3(分别对应A 、B 、C 三地)。
根据题意,可以建立问题的数学模型(其中目标函数包括原料运输费、产品运输费和生产费用(万元)):min 21121132233113211221024015010010050507575y y y x x x x x x z ++++++++= 323122220160120y y y +++sub.to 2033312113121211≤--+++x x x x y y1633322321122221≤-++-+x x x x y y2433323123133231≤++--+x x x x y y7312111=++y y y13322212=++y y y52221≤+y yj i j i x ij ≠=≥;3,2,1,,02,1;3,2,1,0==≥j i y ij在Matlab 中实现:>> f=[75;75;50;50;100;100;150;240;210;120;160;220];>> A=[1 -1 1 -1 0 0 3 3 0 0 0 0-1 1 0 0 1 -1 0 0 3 3 0 00 0 -1 1 -1 1 0 0 0 0 3 30 0 0 0 0 0 0 0 1 1 0 0];>> b=[20;16;24;5];>> Aeq=[0 0 0 0 0 0 1 0 1 0 1 00 0 0 0 0 0 0 1 0 1 0 1];>> beq=[7;13];>> lb=zeros(12,1);>> [x,fval,exitflag,output,lambda]=linprog(f,A,b,Aeq,beq,lb)Optimization terminated successfully.x =0.00001.00000.00000.00000.00000.00007.00000.00000.00005.00000.00008.0000fval =3.4850e+003exitflag =1output =iterations: 8cgiterations: 0algorithm: 'lipsol'lambda =ineqlin: [4x1 double]eqlin: [2x1 double]upper: [12x1 double]lower: [12x1 double]因此,要使总费用最小,需要B 地向A 地运送1万吨原料,A 、B 、C 三地的建厂规模分别为7万吨、5万吨、8万吨。