开关电源设计工艺

合集下载

开关电源工程化实用设计指南

开关电源工程化实用设计指南

开关电源工程化实用设计指南开关电源是一种非常重要的电力转换设备,它可以将输入的直流电压转换为输出的交流电压,从而满足各种电子设备的供电需求。

开关电源的工程化实用设计是一项涉及到多个领域的技术工作,包括电路设计、磁性元件设计、功率转换器设计、控制器设计和可靠性设计等。

下面将介绍开关电源的工程化实用设计指南。

一、电路设计开关电源的电路设计是整个设计的核心,也是最关键的一步。

在电路设计中,需要考虑以下几个方面的因素:输入和输出电压:开关电源的输入和输出电压需要根据电子设备的实际需求来确定。

在输入电压方面,需要考虑到电网电压的波动和噪声等因素,确保开关电源能够稳定工作。

在输出电压方面,需要根据电子设备的功率和负载特性来进行设计,确保输出的电压能够满足电子设备的供电需求。

功率容量:开关电源的功率容量需要根据电子设备的功率需求来确定。

在确定功率容量时,需要考虑到开关电源的最大负载和可能出现的峰值负载等因素,确保开关电源的功率容量足够且不会出现过载或损坏的情况。

电路拓扑:开关电源的电路拓扑是指其基本电路结构。

根据不同的需求,可以选择不同的电路拓扑来进行设计。

常用的电路拓扑包括BUCK型、BOOST型、BUCK-BOOST型等,需要根据实际情况来选择合适的电路拓扑。

控制方式:开关电源的控制方式是指如何控制开关管的导通和关断,以达到稳定输出电压的目的。

常用的控制方式包括脉冲宽度调制(PWM)、脉冲频率调制(PFM)和电流模式控制等,需要根据实际情况来选择合适的控制方式。

二、磁性元件设计开关电源中的磁性元件主要包括电感和变压器,它们在功率转换器中起到重要的作用。

在磁性元件设计中,需要考虑以下几个方面的因素:磁芯材料:磁芯材料的选择是磁性元件设计的关键。

常用的磁芯材料包括铁氧体、坡莫合金和非晶合金等,需要根据实际情况来选择合适的磁芯材料。

线圈设计:线圈设计是磁性元件设计的另一个关键因素。

在电感设计中,需要考虑到线圈的匝数、线径和绕制方式等因素,以确保电感能够满足开关电源的负载需求。

开关电源设计

开关电源设计

一个比较好的解决方案是:以轻巧的高频变压器取代笨重的工频变压器,采用脉冲调制技术的直流--直流变换器型稳压电源,即我们马上就要讲到的开关电源。

开关电源具有管耗小、效率高、稳压范围宽及体积小、重量轻等优点,目前已在各种电子仪器和设备、航空和宇宙飞行器、发射机、电子计算机、通讯设备和电视机、录放像机等中得到了广泛应用。

开关电源按变换方式可分为以下四大类:1、AC/DC 开关电源2、DC/DC 开关电源3、DC/AC 逆变器4、AC/AC 变频器目前只将前面两类称为开关电源,将后面两类分别称为逆变器和变频器。

开关电源按应用方式可分为以下三大类:1、外置电源与设备分开放置的电源模块或电源系统,如:---通信用一次电源模块和系统---电力操作电源模块和系统---手机电池充电器---笔记本电脑的Adapter---各类手提设备、便携设备的电池充电器等等2、内置电源放在设备内部的电源模块或电源系统,如:---计算机内部的SilverBox和VRM---家电(如:普通电视机、等离子电视机、液晶电视机)内部的供电电源---工业控制设备内部的电源---仪器中使用的电源---通信设备内部的电源模块和系统---复印机、传真机、打印机等的内部电源等等3、板上电源放在设备内单板上的电源模块,如:---标准砖类电源(全砖、半砖、1/4砖、1/8砖)---非隔离POL(Point of Load 负载点)变换器---VRM(V oltage regulator module电压调节模块)和VRD(V oltage regulator down)---小功率SMD电源---SIP和DIP电源等等开发一个开关电源产品所需要的基本技能:1、认识组成开关电源的所有元器件2、掌握各种元器件的电气性能和电路符号3、会自己制作各种磁芯元件4、会正确装配电源中的各个部分5、了解电源各项指标的意义并掌握如何测试的方法6、会使用仪器对装配后的电源进行正确的调试,优化和折中7、会对获得的实验结果进行分析,并进行总结8、会从不同渠道不断地学习电源知识并能够和别人交流开发一个开关电源产品所需要的专业理论知识:1、有源PFC的拓扑分析,控制与设计2、DC/DC功率变换器的拓扑与稳态分析3、开关电源的功率级参数设计4、开关电源的控制与动态分析5、开关电源的小信号分析与设计6、开关电源的大信号分析与设计7、开关电源的EMI分析与设计8、开关电源的热分析与设计9、开关电源的容差分析与设计10、开关电源的各种保护技术11、开关电源的同步整流技术12、开关电源的模块均流控制技术有些技术很成熟了,只要查表或者使用现成电路或专用芯片就可以做好。

开关电源适配器的制作流程

开关电源适配器的制作流程

开关电源适配器的制作流程(1)开关电源适配器的设计与制作要从主电路开始,其中功率变换电路是开关电源适配器的核心。

功率变换电路的结构也称开关电源拓扑结构,该结构有多种类型。

拓扑结构也决定了与之配套的PWM控制器和输出整流/滤波电路。

下面介绍开关电源适配器设计与制作的一般流程。

1. 确定电路的结构无论是AC/DC开关电源还是DC/DC开关电源,其核心都是DC/DC变换器。

因此,开关电源适配器的电路结构就是指DC/DC变换器的结构。

开关电源中常用的DC/DC变换器拓扑结构如下:a) 降压式变换器(Buck Converter),亦称降压式稳压器。

b) 升压式变换器(Boost Converter),亦称升压式稳压器。

c) 反激式(亦称回扫式)变换器(Flyback Converter)。

d) 正激式变换器(Forward Converter)。

e) 半桥式变换器(Half Bridge Converter)。

f) 全桥式变换器(Full Bridge Converter)。

g) 推挽式变换器(Push-pull Converter)。

降压式变换器和升压式变换器主要用于输入、输出不需要隔离的DC/DC开关电源中;反激式变换器主要用于输入、输出需要隔离的小功率AC/DC或DC/DC开关电源中;正激式变换器主要用于输入、输出需要隔离的较大功率AC/DC或DC/DC开关电源中;半桥式变换器和全桥式变换器主要用于输入、输出需要隔离的大功率AC/DC或DC/DC开关电源中,其中全桥式变换器能够提供比半桥式变换器更大的输出功率;推挽式变换器主要用于输入/输出需要隔离的较低输入电压的DC/DC或DC/AC开关电源中。

降压式变换器的输出电压低于输入电压,升压式变换器的输出电压大于输入电压。

在反激式、正激式、半桥式、全桥式和推挽式等具有隔离变压器的DC/DC变换器中,可以通过调节高频变压器的一、二次匝数比,很方便地实现电源的降压、升压和极性变换。

开关电源设计(精通型)

开关电源设计(精通型)

开关电源设计(精通型)一、开关电源基本原理及分类1. 基本原理开关电源的工作原理是通过控制开关器件的导通与关断,实现电能的高效转换。

它主要由输入整流滤波电路、开关变压器、输出整流滤波电路和控制电路组成。

在开关电源中,开关器件将输入的交流电压转换为高频脉冲电压,通过开关变压器实现电压的升降,经过输出整流滤波电路,得到稳定的直流电压。

2. 分类(1)PWM(脉冲宽度调制)型开关电源:通过调节脉冲宽度来控制输出电压,具有高效、高精度等特点。

(2)PFM(脉冲频率调制)型开关电源:通过调节脉冲频率来控制输出电压,适用于负载变化较大的场合。

二、开关电源关键技术与设计要点1. 高频变压器设计(1)选用合适的磁芯材料,保证变压器在高频工作时的磁通密度不超过饱和磁通密度。

(2)合理设计变压器的绕组匝数比,以满足输出电压和电流的要求。

(3)考虑变压器损耗,包括铜损、铁损和杂散损耗,确保变压器具有较高的效率。

2. 开关器件的选择与应用(1)开关频率:根据开关电源的设计要求,选择合适的开关频率。

(2)电压和电流等级:确保开关器件能承受最大电压和电流。

(3)功率损耗:选择低损耗的开关器件,提高开关电源的效率。

(4)驱动方式:根据开关器件的特点,选择合适的驱动电路。

3. 控制电路设计(1)稳定性:确保控制电路在各种工况下都能稳定工作。

(2)精度:提高控制电路的采样精度,降低输出电压的波动。

(3)保护功能:设置过压、过流、短路等保护功能,提高开关电源的可靠性。

三、开关电源设计实例分析1. 确定设计指标输入电压:AC 85265V输出电压:DC 24V输出电流:4.17A效率:≥90%2. 高频变压器设计选用EE型磁芯,计算磁芯尺寸、绕组匝数和线径。

3. 开关器件选择根据设计指标,选择一款适合的MOSFET作为开关器件。

4. 控制电路设计采用UC3842作为控制芯片,设计控制电路,实现开关电源的稳压输出。

5. 实验验证搭建实验平台,对设计的开关电源进行测试,验证其性能指标是否符合要求。

开关电源设计步骤

开关电源设计步骤

开关电源设计步骤开关电源设计步骤步骤1 确定开关电源的基本参数① 交流输入电压最小值umin② 交流输入电压最大值umax③ 电网频率Fl 开关频率f④ 输出电压VO(V):已知⑤ 输出功率PO(W):已知⑥ 电源效率η:一般取80%⑦ 损耗分配系数Z:Z表示次级损耗与总损耗的比值,Z=0表示全部损耗发生在初级,Z=1表示发生在次级.一般取Z=0.5步骤2 根据输出要求,选择反馈电路的类型以及反馈电压VFB步骤3 根据u,PO值确定输入滤波电容CIN、直流输入电压最小值VImin① 令整流桥的响应时间tc=3ms② 根据u,查处CIN值③ 得到Vimin确定CIN,VImin值u(V) PO(W) 比例系数(μF/W) CIN(μF) VImin(V)固定输入:100/115 已知 2~3 (2~3)×PO ≥90通用输入:85~265 已知 2~3 (2~3)×PO ≥90固定输入:230±35 已知 1 PO ≥240步骤4 根据u,确定VOR、VB① 根据u由表查出VOR、VB值② 由VB值来选择TVSu(V) 初级感应电压VOR(V) 钳位二极管反向击穿电压VB(V)固定输入:100/115 60 90通用输入:85~265 135 200固定输入:230±35 135 200步骤5 根据Vimin和VOR来确定最大占空比Dmax① 设定MOSFET的导通电压VDS(ON)② 应在u=umin时确定Dmax值,Dmax随u升高而减小步骤6 确定初级纹波电流IR与初级峰值电流IP的比值KRP,KRP=IR/IPu(V) KRP最小值(连续模式) 最大值(不连续模式)固定输入:100/115 0.4 1通用输入:85~265 0.4 1固定输入:230±35 0.6 1步骤7 确定初级波形的参数① 输入电流的平均值IAVG② 初级峰值电流IP③ 初级脉动电流IR④ 初级有效值电流IRMS步骤8 根据电子数据表和所需IP值 选择TOPSwitch芯片① 考虑电流热效应会使25℃下定义的极限电流降低10%,所选芯片的极限电流最小值ILIMIT(min)应满足:0.9 ILIMIT(min)≥IP步骤9和10 计算芯片结温Tj① 按下式结算:Tj=[I2RMS×RDS(ON)+1/2×CXT×(VImax+VOR) 2 f ]×Rθ+25℃式中CXT是漏极电路结点的等效电容,即高频变压器初级绕组分布电容② 如果Tj>100℃,应选功率较大的芯片步骤11 验算IP IP=0.9ILIMIT(min)① 输入新的KRP且从最小值开始迭代,直到KRP=1② 检查IP值是否符合要求③ 迭代KRP=1或IP=0.9ILIMIT(min)步骤12 计算高频变压器初级电感量LP,LP单位为μH步骤13 选择变压器所使用的磁芯和骨架,查出以下参数:① 磁芯有效横截面积Sj(cm2),即有效磁通面积.② 磁芯的有效磁路长度l(cm)③ 磁芯在不留间隙时与匝数相关的等效电感AL(μH/匝2)④ 骨架宽带b(mm)步骤14 为初级层数d和次级绕组匝数Ns赋值① 开始时取d=2(在整个迭代中使1≤d≤2)② 取Ns=1(100V/115V交流输入),或Ns=0.6(220V或宽范围交流输入)③ Ns=0.6×(VO+VF1)④ 在使用公式计算时可能需要迭代步骤15 计算初级绕组匝数Np和反馈绕组匝数NF① 设定输出整流管正向压降VF1② 设定反馈电路整流管正向压降VF2③ 计算NP④ 计算NF步骤16~步骤22 设定最大磁通密度BM、初级绕组电流密度J、磁芯的气隙宽度δ,进行迭代.① 设置安全边距M,在230V交流输入或宽范围输入时M=3mm,在110V/115V交流输入时M=1.5mm.使用三重绝缘线时M=0② 最大磁通密度BM=0.2~0.3T若BM>0.3T,需增加磁芯的横截面积或增加初级匝数NP,使BM在0.2~0.3T范围之内.如BM<0.2T,就应选择尺寸较小的磁芯或减小NP值.③ 磁芯气隙宽度δ≥0.051mmδ=40πSJ(NP2/1000LP-1/1000AL)要求δ≥0.051mm,若小于此值,需增大磁芯尺寸或增加NP值.④ 初级绕组的电流密度J=(4~10)A/mm2若J>10A/mm2,应选较粗的导线并配以较大尺寸的磁芯和骨架,使J<10A/mm2.若J<4A/mm2,宜选较细的导线和较小的磁芯骨架,使J>4A/mm2;也可适当增加NP的匝数.⑤ 确定初级绕组最小直径(裸线)DPm(mm)⑥ 确定初级绕组最大外径(带绝缘层)DPM(mm)⑦ 根据初级层数d、骨架宽带b和安全边距M计算有效骨架宽带be(mm)be=d(b-2M)然后计算初级导线外径(带绝缘层)DPM:DPM=be/NP步骤23 确定次级参数ISP、ISRMS、IRI、DSM、DSm① 次级峰值电流ISP(A) ISP=IP×(NP/NS)② 次级有效值电流ISRMS(A)③ 输出滤波电容上的纹波电流IRI(A)⑤ 次级导线最小直径(裸线)DSm(mm)⑥ 次级导线最大外径(带绝缘层)DSM(mm)步骤24 确定V(BR)S、V(BR)FB① 次级整流管最大反向峰值电压V(BR)SV(BR)S=VO+VImax×NS/NP② 反馈级整流管最大反向峰值电压V(BR)FBV(BR)FB=VFB+ VImax×NF/NP步骤25 选择钳位二极管和阻塞二极管步骤26 选择输出整流管步骤27 利用步骤23得到的IRI,选择输出滤波电容COUT① 滤波电容COUT在105℃、100KHZ时的纹波电流应≥IRI② 要选择等效串连电阻r0很低的电解电容③ 为减少大电流输出时的纹波电流IRI,可将几只滤波电容并联使用,以降低电容的r0值和等效电感L0④ COUT的容量与最大输出电流IOM有关步骤28~29 当输出端的纹波电压超过规定值时,应再增加一级LC滤波器① 滤波电感L=2.2~4.7μH.当IOM<1A时可采用非晶合金磁性材料制成的磁珠;大电流时应选用磁环绕制成的扼流圈.② 为减小L上的压降,宜选较大的滤波电感或增大线径.通常L=3.3μH③ 滤波电容C取120μF /35V,要求r0很小步骤30 选择反馈电路中的整流管步骤31 选择反馈滤波电容反馈滤波电容应取0.1μF /50V陶瓷电容器步骤32 选择控制端电容及串连电阻控制端电容一般取47μF /10V,采用普通电解电容即可.与之相串连的电阻可选6.2Ω、1/4W,在不连续模式下可省掉此电阻.步骤33选定反馈电路步骤34选择输入整流桥① 整流桥的反向击穿电压VBR≥1.25√2 umax③ 设输入有效值电流为IRMS,整流桥额定有效值电流为IBR,使IBR≥2IRMS.计算IRMS公式如下: cosθ为开关电源功率因数,一般为0.5~0.7,可取cosθ=0.5步骤35 设计完毕在所有的相关参数中,只有3个参数需要在设计过程中进行检查并核对是否在允许的范围之内.它们是最大磁通密度BM(要求BM=0.2T~0.3T)、磁芯的气隙宽度δ(要求δ≥0.051mm)、初级电流密度J(规定J=4~10A/。

开关电源制作设计(电路原理图+PCB)

开关电源制作设计(电路原理图+PCB)

一、工作原理我们先熟悉一款开关电源的工作原理,该电源可输出5V电压,如图1所示。

1. 抗干扰电路在电网输入端首先设置一个NTC5D-9负温度系数热敏电阻,作用是保护后面的整流桥,刚开机时热敏电阻处于冷态,阻值比较大,可以限制输入电流,正常工作时,电阻比较小。

这样对开机时的浪涌电流起到有效的缓冲作用。

电容CY1、CY2、CY3、CY4用以滤除从工频电网上进入开关稳压电源和从开关稳压电源进入工频电网的不对称杂散信号,电容CX1、CX2用以滤除从工频电网上进入开关稳压电源和从开关稳压电源进入工频电网的对称杂散信号,用电感L1抑制从工频电网上进入开关稳压电源和从开关稳压电源进入工频电网的频率相同、相位相反的杂散干扰电流信号。

采用高频特性好的瓷片电容和铁芯电感,实现开关稳压电源电路中的高频辐射不污染工频电网和工频电网上的杂散电磁波不会窜入开关稳压电源电路中而干扰和影响其工作,对高频分量或工频的谐波分量具有急剧阻止通过功能,而对于几百赫兹以下的低频分量近似一条短路线。

图1 开关电源的工作原理图2. 整流滤波电路在电路中D1、D2、D3、D4组成全桥整流电路,把输入的交流电压进行全波整流,然后用C1进行滤波,最后变成直流输出供电电压,为后级的功率变换器供电,整流滤波后的电压约为300V。

3. UC3842供电与振荡300V的脉动直流电压,此电压经R12降压后给C4充电,供电UC3842的7脚,当C4的电压达到UC3842的启动电压门槛值时,UC3842开始工作并提供驱动脉冲,由6脚输出推动开关管工作。

一旦开关管工作,反馈绕组的能量经过D6整流,C4滤波,又供电到UC3842的7脚,这时可以不需要R12的启动了。

C9、R11接UC3842的定时端,和内部电路构成振荡电路,振荡的工作频率计算为:f=1.8/(Rt*Ct)代入数据可计算工作频率:f=68.18K4. 稳压电路该电路主要由精密稳压源T L 4 3 1 和线性光耦P C 8 1 7 组成,假设输出电压↑→经过R 1 6 、R 1 9 、R20、RES3的取样电压↑→TL431的1脚电压↑,当该脚电压大于TL431的基准电压2.5V时,TL431的2、3脚导通,→通过光电耦合到UC3842的2脚,于是UC3842的6脚驱动脉冲的占空比↓→开关变压器T1绕组上的能量↓→输出电压↓,达到稳压作用;反之,假设输出电压下降,则稳压过程与上相反。

(整理)开关电源的设计与制作

(整理)开关电源的设计与制作

开关电源的设计与制作第一章开关电源概述一. 什幺是开关电源(Switching Power Supply)所谓开关电源是指以高频变压器取代工频变压器,采用脉冲调制技术的直流直流变换器型稳压电源.开关晶体管,开关二级管和开关变压器是组成开关电源的三个关键组件.二. 隔离式高频开关电源.图标说明:1)交流线路电压无论是来自电纲的,还是经过变压器降压的,首先要经过电纲滤波,以消除电磁干扰和射频干扰;2)经电纲滤波后的电流首先要经过整流,滤波电路变成含有一定脉动电压成分的直流电压,然后进入高频变换部分;3)高频变换器具有多种形式,主要分为半桥式,全桥式,推挽式,单端正激式,单端反激式等;高频变换部分的核心是一个高频功率开关组件,比如开关晶体管,场效应管(MDSFET)等组件,高频变换器产生高频(20KHZ以上)高压方波,所得到的高压方波送给高频隔离变压器的初级,在变压器的次级感应出的电压被整流,滤波后就产生了低压直流.4)脉冲宽度调制器(P WM)主要用于调节输出电压,使得在输入交流和输出直流负载发生变化时,输出电压能保持稳定,运作过程是P WM电路通过输出电压采样,并把采样的结果反馈给控制电路,控制电路把它与基准电压作比较,根据比较结果来控制高频功率开关组件的开关时间比例(占空比),达到调整输出电压的目的.(注:控制电路还有调频方式的)5)为了使整个电路安全可靠地工作,必须设置过压,过流保护电路等辅助电路.三.开关电源常用术语.1.效率(dfficiency):电源的输出功率与输入功率的百分比(测量条件为满负载,输入交流电压为标准值)2.ESR: 等效串联电阻,它表示电解电容呈现的电阻值的总和. ESR值越低的电容,性能越好.3.输出电压保持时间: 在开关电源的输入电压撤离后,依然保持其额定输出电压的时间;4.激活浪涌电流限制电路: 属保护电路,它对电源激活时产生的尖峰电流起限制作用.5.隔离电压: 电源电路中的任何一部分与电源基板地之间的最大电压.或者能够加在开关电源的输入端与输出端之间的最大直流电压.6.线性调整率: 输出电压随输入线性电压在指定范转内变化的百分率,条件是线电压和环境温度保持不变.7.负载调整率: 输出电压随负载在指定范围内变化的百分率,条件是线电压和环境温度保持不变.8.噪音和纹波: 附加在直流输出信号上的交流电压和高频兴峰信号的峰值.通常是以mV度量.9.隔离式开关电源: 一般指高频开关电源,它从输入的交流电源直接进行整流和滤波,不使用低频隔离变压器.10.输出瞬态响应时间: 从输出负载电流产生变化开始,经过整个电路的调节作用,到输出电压恢复额定值所需要的时间.11.过载或过流保护: 防因负载过重,使电流超过原设计的额定值而造成电源损坏的电路.12.远程检测: 为了补赏电源输出的电压降,直接从负载上检测输出电压的方法.13.软激活: 在系流激活时,一种延长开关波形的工作周期的方法,工作周期是从零到它的正常工作点所用的时间.14.电磁干扰无线频率干扰(EMI一RFI):那些由开关电源的开关组件引起的,不希望传输和发射的高频能量频谱.15.快速短路保护电路:一种用于电源输出端的保护电路,当出现过压现象时,保护电路激活,将电源输出端电压快速短路.16.占空比:在高频开关电源中,开关组件的导通时间和变换器的工作周期之比.即:δ=Ton /Τ(T= Ton+Toff)开关电源的设计与制作第二章输入电路一.电压倍压整流技术世界范围内的交流输入电压,通常是交流90~130V和180~260V的范围,为了适应不同电源输入环境的需要,实现两种输入电源的转换,要利用倍压整流技术.如下图2一1所示.2一15可用于110V和220V交流的开关电源输入电路电路工作过程为:1)当开关S1闭合时,电路在115V交流输入电压下工作,在交流电的正半周,通过二极管VD1和电容器C1被充电到交流电压的峰值,即115×1.4=160V,在交流电的负半周,电容器C2通过二极管VD4也被冲电到160V, 这样,电路输出的直流电压应该是电容器C1和C2上充电电压之和(160+160V=320V) 注意:不同的用电环境电压选择开关位置一定要选择正确.否则,会导致直流变换器中的开关功率管损坏,或因为输入电压太低而使开关电源进入欠压输入自动保护状态.二.抗电磁干扰和射频干扰电路考虑输入滤波电路(电纲滤波)1.开关电源的设计,生产,一定要将其辐射和传导干扰降低到可接受的程度.在美国,权威的指导性文件是F CCD ocket20780,在国际上,德国的Verband Deutscher Elektronotechniker(VDE)安全标准则得到了广泛的采用.2.开关电源中的RFI产生源:开关噪声的主要来源是开关晶体管,主回路整流器,输出二极管,晶体三极管的保护二极管以及控制单元本身.反激式变换器,由于设计的原因,其输入电流波形呈现三角形,较之输入波形为矩形的变换器,如正激式,桥式变换器等将产生较少的传导RFI噪声.(付里叶分析表明,一个三角形电流波形的高频谐波幅度是以40dB每倍频程进行跌落的,而对一个差不多的矩形电流波形,则只呈现20dB每倍频程的跌落)3.交流输入线路噪声滤波器对RFI的抑制.通常在开关电源中采用的噪声抑制方法是在主交流输入回路接入一个LC组成的滤波器,用于差模一共模方式的RFI抑制,通常是交流线路上串入一对电感L1, , 其两端并联二只电容器(X电容器),并在交流线二端对大地各接一只电容器(Y电容器),如图2一2(低通滤波纲络)2一2开关电源输入线路滤波器结构1)上图中电容电感的值可以采用下列的数值:C (X): 0.1~2UF;C(Y): 2200PF~ 0.033uF;L: 在25A时, 为1.8mH; 0.3A时, 为47mH注意:在选择滤波器的组件时,重要的是要使输入滤波器的谐振频率远低于电源的工作频率;另一方面,滤波器使得电源的工作频率增加时,会使噪声的传导变得更容易.2)上图中并联在交流输入线的电阻R是X电容的放电电阻,这是由VDE一0806和IEC一380两个标准中的有关安全的规范条款推荐应用的.IEC一380的8.8节阐明:若线路滤波器的X电容器的值大于0.1UF,则放电电阻的数值应由下式确定:R=t /2.21c (2一1)式中,t=ls, c为l电容器的总和值3)为进一步减少对称和不对称的干扰电压的措施是在交流线路中另外再接入一对电感L2,从而使得电容C4(X)的充电电流得到限制,于是降低了干扰,如图2一32一3改进的线路滤波器上图中L1与C3.C4组成常模抗干扰回路,L1与C1.C2组成共模,抗干扰回路,L2用于C4的充电电流的限制,因此,整个组合对各种高频干扰信号的抑制作用较好.三.输入整流器及整流后滤波电路.一)输入整流器如图2一1中,此整流电路由VD1~VD4组成(桥式或倍压整流)在选择组合组件或分立组件的整流器时,必须要查对下面的一些重要参数:1.最大正向整流电流,这个参数主要根据开关电源设计的输出功率决定.所选择的整流二极管的稳态电流容量至少应是计算值的2倍.2.峰值反向截止电压(PIV).由于整流器工作在高电压的环境,所以它们必须有较高的PIV值,一般应为600V以上.3.要有能承受高的浪涌电流的能力.二.输入滤波电容.由于滤波电容的选择将会影响到:电源输出端的低频交流波及电压和输出电压保护时间.一般情况下,高质量的电解电容所具有的滤除交流波纹电压的能力越强,它的ESR值越低.其工作电压的额定值至少应达到200V.在图2一1中,C1,C2 为滤波电容,电阻R4,R5与之并联以便在电源关闭时,给电容提拱一个放电通路.计算滤波电容的公式为:C=It /ΔV (2一2)式中C: 电容量, F;I: 负载电流 At: 电容提供电流的时间, s;ΔV: 所允许的峰一峰值纹波电压v .例:计算50w开关电源的输入滤波电容器的值.设输入交流电压为115V,60HZ,允许30V峰一峰值的纹波电压,且电容可维持电压电平的时间为半周期.解:1)计算直流负载电流假定一个最坏的情况,电源的效率为70%,那幺,输出功率为50W的电源其输入功率应该是:Pin=Pout/η=50 / 0.7=71.5(w)利用电压倍压技术(图2一1),在输入交流为115V时,直流输出电压将是2×(115×1∙4)=320(V),则负载直流电流应为I=P/E=7105/320=0.22(A)2)因半周期的线性频率或者说对于60HZ的交流电压大约是8ms,即t=1/2×1/60=8.33ms,故根据式2一2有.C=0.22(8×10 –3) /30=58×10 _6 =58(uF)选择标称值为50 uF的电容器.3)因为在倍压结构中,C4C5为串联,故有1/C=1/C1+1/C2,有C1=C2=100uF,即50W的开关电源,其滤波电容C4,C5为100uF.四.输入保护电路一).浪涌电流1.浪涌,一般情况下,只是电容的ESR值,如果不采取任何保护措施,浪涌电流可接近几百安培.2.控制电流主要是由滤波电容充电引起的,在开关管开始导通的瞬间,电容对交流电呈现出很低的阻抗浪涌电流的方法:广泛采用的措施有两种,一种是利用电阻 双向可控硅并联纲络;另一种是采用负温度系数(NTC)的热敏电阻,用以增加对交流线路的阻抗.1) 如图2一1,R 1,VS 组成此电路,R 1与VS 并联,当输入滤波电容充满电后,由于双向可控硅和电阻是并联的,可以把电阻短路,对其进行分流.这种电路结构需要一个触发电路,当某些预定的条件满足后,触发电路把双向可控硅触发导通,如图2一4 所示.1 T 2可控硅VS 的工作过程为:当电源接通后,C 6两端的电压逐渐升高,电流相应稳定.在C 6两端的电压稳定之前,浪涌电流被与之串联的电阻R 1(6.8Ω)所抑制,当输入交流为115V 时,C6两端的电压V C =115×1∙4=160(V).当电容器C 6充电时,电压加到高频变压器T 1的绕组LB 上,则在绕组LP 4端上产生感应电压,当感应电压达到1.5V 时,电流I G 开启可控硅.即当IG 流过可控硅的控制极G 时,触发T 1与T 2短接,可控硅导通,电阻R 1被VS 短路,使其温度下降,于是实现了R 1抑制浪涌电流的目的 .注:设计时要认真地选择双向可控硅的参数,并加上足够的散热片,因为在它导通时,要流过全部的输入电流.2)热敏电阻技术:这种方法是把负温度系数(NTC)的热敏电阻串联在交流输入或者串联在经过桥式整流后的直流线上,如2一1图中的RT 1和RT 2,其工作原理为:当开关电源接通后,热敏电阻的阻值基本上是电阻的标称值,这样,由于阻值较大,它就限制了浪涌电流,当电容开始充电时,充电电流流过热敏电阻开始对其加热.由于其具有负温度系数,随着电阻的加热,其电阻值开始下降,如果热敏电阻选择得合适,在负载电流达到稳定状态时,其阻值应该是最小,这样,就不会影响整个开关电源的效率..二) 输入瞬间电压保护一般情况下,交流电纲上的电压比较稳定,但由于电纲附近电感性开关,暴风雨天气雷电等现象的存在,都会产生高压的尖峰(如受严重的雷电影响,电纲上的高压尖峰可达5KV;而电感性开关产生的电压尖峰的能量公式W=1/2L.I2.式中L是电感器的漏感:I是通过线圈的电流)可是,虽然电压尖峰持续的时间很短,但是它有足够的能量使开关电源的输入滤波器,开关晶体管等造成致命的损坏,故必须采取措施加以干扰.最通用的抑制干扰器件是金属氧化物物压敏电阻(MOV)瞬态电压抑制器.如图2一1中的RV 把压敏电阻RV连在交流电压的输入端,起到一个可变阻抗的作用.即,当高压尖峰瞬间出现在压敏电阻两端时,它的阻抗急剧减小到一个低消值,消除了尖峰电压使输入电压达到安全值.其瞬能量消耗在压敏电阻上,选择压敏电阻时应按下述步骤进行.(1)选择压敏电阻的电压额定值,应比最大的电路电压稳定值大10%~20%;(2)计算或估计出电路所要承受的最大瞬间能量的焦耳数.(3)查明器件所需要承受的最大尖峰电流开 关 电 源 的 设 计第三章 高频电源变换器的基本类型一. 高频电源变换器的基本类型高频电源变换器的基本类型有五种:单端反激式,单端正激式,推挽式.半桥式和全桥式变换器,而半桥式和全桥式变换器电路实际上是推挽式变换器电路的改进型,所以,有人把这三种电路形式统称为推挽式变换器.高频电源变换器从激励方式上可分为单端(单极性)激励和双极性激励变换器,双极性变换器包括推挽式,半桥式,桥式等,其工作原理的实质是两个单端正激式变换器电路,从其耦合方式可分为直接耦合和变压器隔离两种,其中直接耦合形式为其基本形式.近年来出现的新型的变换器为C U K 变换器.1.单端反激式变换器的模型图: (3一1)(a) (b) 3 一1单端反激式变换器模型图单端反激式变换器的工作原理为:1) 当开关s 闭合时,电流I 流过电感L,在L 中储存能量,由于电压的作用,使二极VD 处于反向偏置,因此,在负载电阻R L 上无电压;2) 当开关S 打开时(上b 图),电感上的感应电压极性相反,则二极管VD 处于正向偏置,并产生电流Iv,这样,在负载电阻R L 上就出现一个与输入电压极性相反的电压.由于开关S 不断地开关动作,电路中的电流就以及脉的形式出现,因此,在单端反激式变换器中,当开关闭合时,能量存储在电感L 中,在开关打开时,能量被传递到负载RL 上.3. 单端正激式变换器的电路模式图(3一2)单端正激式变换器的工作原理为:Vin Ic------------- 1) 当开关S 闭合时,电流I 流过电感L,系,二极管VD 处于反向偏置; 2) 当开关S 打开时,电感L 中的磁场极性发生变化,,b2单端正激式变换器模型图,无脉动现象,恰恰与其相反,输入电流则是不连续的,. 3.(3一3)推挽式变换器的工作原理为:1)当S 1闭合S 2打开时,电源电流流过方向为 a Lp 1 b s1 d V in,那幺此时,在变压器次级绕组中咸应出电压并形成感应电流Is 1.2)当S 2闭 合S 1打工时,电源电流方向为 a f e d vin,那幺此时在变压器次级绕组LS 2中感应出电压形成感应电流IS 2二. 隔离式单端反激式变换器电路.概述 :一般情况下,隔离式开关电源都是用高频变压器作为主要隔离器件.在单端反激式隔离L-------------电路中,高频变压器是以变压器的形成出现的,但实际上它起的作用是扼流圈,所以应称之为变压器 扼流圈.如图3一4中,由于隔离变压器T 除了具有初次级间安全隔离的作用外,它还有变压器和扼流圈的作用,所以在反激式变换器的输出部分一般不需要加电感,但在实际应用中,往往在整流器和滤波电容之间加一个小的电感线圈,用以降低高频开关噪声的峰值.单端隔离激式变换器的工作过程为:1) 当晶体管VT1导通时,它在变压器初 级电感线圈中储存能量,与变压器次 级相连的二极管VD 处于反偏压状 态而截止,故在变压器次级回路无电 流流过,即没有能量传给负截. 2) 当晶体管VT 1截止时,变压器次级电 感感线圈中的电压极性反转过来,使得二极管VD 导通,给输出电容C 充电,同时在负载L 年也有了电流I L 3 一4隔离单端反激式变换器电路注:图3一4中C 为输出滤波电容.1.单端反激式变换器电路中的开关晶体管在单端反激式变换器电路中,所使用的开关晶体管必须具备两个条件:1)在晶体管截止时,要能承受集电极尖峰电压; 2)在晶体管导通时,要能承受集电极的尖峰电流.1) 晶体管截止时尖峰电压的计算公式:V CE max =Vin / 1一δmax式中Vin 是输入电路整流滤波后的直流电压, δmax 是晶体管最大工作占空比(注意:为了限制限晶体管的集电板安全电压,工作占空比应保持在相对地低一些,一般要低于50%,δmax<0.5,在实际设计时, δmax 一般取0.4左右,这样就限制集电极峰值电压: V CE max ≦2.2Vin,因此,在单端反激式变换器电路设计中,晶体管的工作电压一般在800V 通常接900V 计算可安全可靠地工作.)2) 晶体管导通时的集电极电流计算式:I C = I L / n式中,I L 是变压器初级绕组的峰值电流,而n 是变压器初级与次级间的匝数比.注: 为了导出用变压器输出功率和输入电压表达集电极峰值工作电流的公式.变压器绕组传递的能量Pout =可用下式表示:Pout = L . I L 2 / 2T ·η (3 一 3 )式中,η是变换器的效率.则有: Ic= 2Pout / η·Vin ·δmax ( 3 一 4 )假定变器的效率η是0.8,最大占空比δmax=0.4(即40%),那幺Ic = 6. 2Pout / Vin ( 3 一 5 )2. 单端反激式变换电路中的变压器绕组.在单端反激式变换器电路中,在设计时要汪意不要使磁芯饱和,所选的磁芯一定要有足够大+ RL 一的有效体积,通常应用空气隙来扩大其有效体积:V=Uo ·Ue · I L max ·L / B 2max ( 3一6 )中,Ilmax: 最大负载电流;L :变压器次级绕组的电感量; Uo : 空气的导磁率,其值为1;Ue: 所选磁芯的磁性材料的相对导磁率Bmax:磁芯的最大磁通密度;(具体见第五章)3一53.基本的单端反激式变换器的变形.1)如图3一5中,由于考虑到单只晶体管有时承受不了过高的输入电压,(一般商甲晶体管达不到指针),故利用两只晶体管工作.图中VD 1和VD 2同时导通或截止,二管起箝位作用,它们把晶体管的最大集电板电压限制在Vin,这样耐压低的晶体管就可以使用了.2单端反激式变换器电路的优点是:电路结构简单,可以实现多路电压输出.如图3一6,在电路中隔离变压器对各路输出电压起到公共扼流圈的作用变压器的次级可以有多个绕组,故可以实现多路输出 .每个次级绕组只需一个整流二极管和一个滤波电容,就可以得到一组直流输出电压.3一6有多路输出的单端反激式变换器电路+ R L 一1 1 out 1 out2 + V out3 一 L L3一7隔离单端正激式变换器电路图三.隔离单端正激式变换器电路1.概述:如图3一7所示1)在单端正激式变换器电路中,隔离组件是一个纯粹的变压器,为了有效地传递能量,,在输出电路中, 必须有储能组件电感线圈Lo同时,初次级绕组的极性是相同的.其电路工作过程为:当VT1导通时,在变压器的初级产生了电流,并储存了能量,由于变压器的次级极性与初级同相,这个能量也传到了变压器的次级并处在偏正的二极管VD2把能量储存到了电感L中.此时,二极管VD3是处在反向偏压状态,为截止状态,当三极管VT1截止时,二极管VD2是反向偏压,变压器绕组中的电压反向,续流二级管VD3处于正向偏压,在输出回路中,储存在电感中的能量通过电感L 继续传负载R L .2)变压器的第三绕组称为箝位绕组(或回授绕组)LP2,它与二极管VD1串联,其作用是用来限制晶体管C一E结上的电压尖峰,在晶体管截止时,还能使高频变压器的磁通复位, 这是因为:A.在VT1导通时,变压器初级绕组LP 1中会储存能理,当VT1截止时,变压器次级侧二极管VD2截止,那幺储存在LP1中的能量再不能传递到次级绕组了,此时必须要通过一种途径释放出来,否则,必然在线圈两端产生过高的电压,解决的办法是增加箝位绕组和二极管VD1,并使箝位绕组的匝数与初级绕组的匝数相同,二者紧密耦合,这样,当箝位绕组上的感应电超过电源电压时,二极管VD1导通,将磁能送回电源中,就可以把初级绕组的电压限制在电源电压上,所以,开关晶体管VT1的C一E极间的最高电压就被限制在二倍电源电压上.B.为满足磁芯复位的条件,使磁通建立和复位的时间相等,所以这种把电路的占空比不能超过50%.3)磁化电流Imag的计算公司为:Ima= Tδmax·Vin∕N ( 3一7)式中, T·δmax是VT时向,L是输出电感Ho4))单端正激式变换器是在晶体管导通时通过变压向负载传输能量,故运用的输出功率范转较大,一般情况下可达50~200W,其高频变压器要起变压器隔离和传输能量的作用,又起电感线圈储存能量的作用.2单端正激式变换器电路中的开关晶体管1)晶体管截止峰值电压:在单端正激式变换器电路中,由于有第三绕组和续流二极管VD1的作用,所以其截止时降在VT1上的最大电压VCEmax应为2Vin,且只要二极管VD1处于导通状态,即在Tδmax这个时间内,降在VT铁C 一E间的2Vin的峰值电压就维持不变.2)晶体管导通时集电极电流的峰值:为正激式变换器的电流值加上磁化电流Imag.Ic= Ic / n + Tδmax Vin / L =6.2Pout / Uin式中.n: 变压器初次级匝数比;IL : 输出电感电流. A;Tδmax: 晶体管导通时间L: 输出电感, H.3.单端正激式变换器电路的传输变压器在设计正激式变换器的传输变压器时,应十分注意选择适当的磁芯有效体积,并选择空气隙,以避免磁芯的饱和,其有效体积V为:V= UoUe I2mag L / B2max注意:A.这种电源的最大工作占空比应保持低于50%,以便通过第三绕组将变压器的电压进行箝位,将总电限制在2倍输入电压之内.这样,当VT1导通时,为箝位电平:当VT停止时,使该总电压接近于0值.如果最大工作占空比大于50%,即δmax > 0.5,将打破这种2倍于电源电压的平衡,导致变压器发生饱和,反过来会产生很高的集电峰位电流,这可能会损坏开关晶体管.B.尽管有第三绕组以及箝位二极管可将开关晶体管的峰值集电极电压限制在2倍直流输入电压之内,但在制作变压器时,还要严格注意初级绕组和第三绕组间的紧密耦合,以消除由于漏感引起的致命的电压尖峰.4.单端正激式变换器电路的变形.1)如同单端反激式变换器电路一样,也可用两个晶体管代替一个晶体管工作,它们同时导通或同时截止,但每个晶体管所承受的电压不会高于Vin.2)此电路也可以产生多路的出电压,但是需增加二极管和扼流圈应指出的是,续流二极管的容量至少要与主回路中的整流二极管相同,因为在晶体管VT1截止时,它要提供输出电路中的全部电流.四. 推挽式变换器电路概述:如图3一8所示,推挽式变换器电路实际上是由两个正激式变换器电路组成,只是它们工作时相位相反,在每个周期里,,两个晶体管交替导通和截止,在各自导通的半个周期内,分别把能量传递给负载,所以称之为”推挽”电路.故在推挽式变换器电路中,两组开关三极管和输出整流二极管因流过每一组组件的平均电流比同等的单端正激式变换器电路减少35%以上,其设计计算可接单端正激式变换器.还应看到,在只开关晶体管导通间隙,二极管VD1和VD2同时导通,它们把高频变压器的次级给短路了,与此同时,把能量传递到了输出回路,实质上,它们起到了续流二极管的作用.推挽式变换器电路的输出电压可用下式计算:V out= 2δmax·Vin / n (3一10)注意:为了避免两只开关晶体管同时导通而引起损坏,公式中δmax的值必须得持在0.5以下.假定δmax=0.4则有:Vout = 0.8Vin / n (3一11 )式中n是高频变压器的初级对次级的匝数比.1)每只开关管的峰值集电极电流Ic=Ic / n (3一12)Ic = Pout / η. (3一13)设η=0.8 δmax=0.8则Ic= 1.6Pout / Vin (3一14)2)每只管所承受的峰值电压限制在2Vin以内.3.推挽式变换器电路中的高频变压器在推挽式变换器电路中,两只晶体管导通时间相等(或者说强制两管导通时间相等),高频变压器的。

pkload 开关电源设计要点

pkload 开关电源设计要点

一、概述越来越多的电子产品使用pkload开关电源设计,这种设计可以提高电源转换效率并减小电路尺寸。

然而,要想设计一个高质量的pkload开关电源,需要考虑许多方面的要点。

本文将分析pkload开关电源设计的关键要点,以帮助工程师设计出更加稳定、高效的电源系统。

二、电源拓扑选择1. pkload开关电源可以采用多种不同的拓扑,包括Boost、Buck、Buck-Boost等。

在选择拓扑时,需要考虑输入/输出电压范围、负载变化情况以及转换效率等因素。

不同的拓扑适用于不同的应用场景,工程师需要根据具体情况进行选择。

2. 特殊应用场景可能需要特殊的拓扑,如高压、高频变换器等。

在选择拓扑时需充分考虑这些特殊情况,并针对性地进行设计和优化。

三、功率器件选择1. 选择合适的功率器件是pkload开关电源设计的关键。

工程师需要考虑器件的导通/关断损耗、开关速度、最大工作电压和电流、热阻等参数,以保证电源系统的稳定性和效率。

2. 典型的功率器件包括MOSFET、IGBT、二极管等,不同的器件有各自的优缺点,工程师需要根据实际需求进行选择。

四、控制策略设计1. 控制策略是pkload开关电源设计中至关重要的一环。

常见的控制策略包括电压模式控制、电流模式控制以及混合控制等,工程师需要根据应用场景选择适合的控制策略。

2. 控制策略的设计需要充分考虑系统动态响应、稳态误差、过载/短路保护等方面,以确保电源系统在各种工况下都能稳定可靠地工作。

五、参考设计及仿真验证1. 对于pkload开关电源设计,工程师可以参考已有的设计方案和资料,以快速搭建原型并进行测试验证。

2. 在实际设计过程中,可以利用仿真软件如SPICE、PSIM等进行电路仿真,以评估系统的性能、稳定性和可靠性,并优化设计方案。

六、EMI/EMC设计1. 电磁兼容性(EMC)和电磁干扰(EMI)是pkload开关电源设计中需要重点考虑的问题。

电源系统产生的干扰可能影响其他电子设备的正常工作,因此需要进行EMI/EMC设计并满足相应标准要求。

开关电源设计工艺设计

开关电源设计工艺设计

开关电源的设计及生产工艺2011-10-2313:23:51| 分类:默认分类 |字号大中小定阅第一从开关电源的设计及生产工艺开始描绘吧,先谈谈印制板的设计。

开关电源工作在高频率,高脉冲状态,属于模拟电路中的一个比较特别种类。

布板时须依照高频电路布线原则。

1、布局:脉冲电压连线尽可能短,此中输入开关管到变压器连线,输出变压器到整流管连结线。

脉冲电流环路尽可能小如输入滤波电容正到变压器到开关管返回电容负。

输出部分变压器出端到整流管到输出电感觉输出电容返回变压器电路中 X电容要尽量接近开关电源输入端,输入线应防止与其余电路平行,应避开。

Y电容应搁置在机壳接地端子或FG 连结端。

共摸电感觉与变压器保持必定距离,以防止磁巧合。

如不好办理可在共摸电感与变压器间加一障蔽,以上几项对开关电源的EMC性能影响较大。

输出电容一般可采纳两只一只凑近整流管另一只应凑近输出端子,可影响电源输出纹波指标,两只小容量电容并联成效应优于用一只大容量电容。

发热器件要和电解电容保持一定距离,以延伸整机寿命,电解电容是开关电源寿命的瓶劲,如变压器、功率管、大功率电阻要和电解保持距离,电解之间也须留出散热空间,条件同意可将其搁置在进风口。

控制部分要注意:高阻抗弱信号电路连线要尽量短如取样反应环路,在办理时要尽量避免其受扰乱、电流取样信号电路,特别是电流控制型电路,办理不好易出现一些想不到的不测。

下边谈一谈印制板布线的一些原则线间距:跟着印制线路板制造工艺的不停完美和提升,一般加工厂制造出线间距等于甚至小于0.1mm已经不存在什么问题,完好能够知足大部分应用处合。

考虑到开关电源所采用的元器件及生产工艺,一般双面板最小线间距设为0.3mm,单面板最小线间距设为0.5mm,焊盘与焊盘、焊盘与过孔或过孔与过孔,最小间距设为0.5mm,可防止在焊接操作过程中出现“桥接”现象。

,这样大部分制板厂都能够很轻松知足生产要求,并能够把成品率控制得特别高,亦可实现合理的布线密度及有一个较经济的成本。

开关电源的制作流程

开关电源的制作流程

开关电源的制作流程开关电源(Switch Mode Power Supply,SMPS)具有高效率、低功率、体积小、重量轻等显著优点,代表了稳压电源的发展方向,现已成为稳压电源的主流产品。

开关电源的设计与制作要求设计者具有丰富的实践经验,既要完成设计制作,又要懂得调试、测试与分析等。

本文章介绍开关电源组成及制作、调试所需的基本步骤和方法。

第一节开关电源的电路组成开关电源一般是指输入与输出隔离的电源变换器,包括AC/DC电源变换器和DC/DC电源变换器,也称为AC/DC开关电源和DC/DC开关电源。

非隔离式DC/DC变换器也属于开关电源,通常称之为开关稳压器。

1、AC/DC开关电源的组成AC/DC开关电源的典型结构如图1-1-1所示。

电源由输入电磁干扰(EMI)滤波器、输入整流/滤波电路、功率变换电路、PWM控制器电路、输出整流/滤波电路和输出电压反馈电路组成。

图1-1-1 AC/DC开关电源的典型结构其中输入整流/滤波电路、功率变换电路、输出整流/滤波电路和PWM控制器电路是主要电路,其他为辅助电路。

有些开关电源中还有防雷击电路、输入过压/欠压保护电路、输出过压保护电路、输出过流保护电路、输出短路保护电路等其他辅助电路。

2. DC/DC开关电源的组成DC/DC开关电源的组成相对AC/DC开关电源要简单一点,其典型结构如图1-1-2所示。

电源由输入滤波电路、功率变换电路、PWM控制器电路、输出整流/滤波电路和输出电压反馈电路组成。

当然,有些DC/DC开关电源也会包含其他辅助电路。

图1-1-2 DC/DC开关电源的典型结构第二节开关电源的制作流程开关电源的设计与制作要从主电路开始,其中功率变换电路是开关电源的核心。

功率变换电路的结构也称开关电源拓扑结构,该结构有多种类型。

拓扑结构也决定了与之配套的PWM控制器和输出整流/滤波电路。

下面介绍开关电源设计与制作一般流程。

1.解定电路结构(DC/DC变换器的结构)无论是AC/DC开关电源还是DC/DC开关电源,其核心都是DC/DC变换器。

(整理)开关电源电路设计实例分析(设计流程)

(整理)开关电源电路设计实例分析(设计流程)

开关电源电路设计实例分析(设计流程)1. 目的希望以简短的篇幅,将公司目前设计的流程做介绍,若有介绍不当之处,请不吝指教.2 设计步骤:2.1 绘线路图、PCB Layout.2.2 变压器计算.2.3 零件选用.2.4 设计验证.3 设计流程介绍(以DA-14B33 为例):3.1 线路图、PCB Layout 请参考资识库中说明.3.2 变压器计算:变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的,以下即就DA-14B33 变压器做介绍.3.2.1 决定变压器的材质及尺寸:依据变压器计算公式B(max) = 铁心饱合的磁通密度(Gauss)Lp = 一次侧电感值(uH)Ip = 一次侧峰值电流(A)Np = 一次侧(主线圈)圈数Ae = 铁心截面积(cm2)B(max) 依铁心的材质及本身的温度来决定,以TDK FerriteCore PC40 为例,100℃时的B(max)为3900 Gauss,设计时应考虑零件误差,所以一般取3000~3500 Gauss 之间,若所设计的power 为Adapter(有外壳)则应取3000 Gauss 左右,以避免铁心因高温而饱合,一般而言铁心的尺寸越大,Ae 越高,所以可以做较大瓦数的Power。

3.2.2 决定一次侧滤波电容:滤波电容的决定,可以决定电容器上的Vin(min),滤波电容越大,Vin(win)越高,可以做较大瓦数的Power,但相对价格亦较高。

3.2.3 决定变压器线径及线数:当变压器决定后,变压器的Bobbin即可决定,依据Bobbin的槽宽,可决定变压器的线径及线数,亦可计算出线径的电流密度,电流密度一般以6A/mm2为参考,电流密度对变压器的设计而言,只能当做参考值,最终应以温升记录为准。

设计流程简介3.2.4 决定Duty cycle (工作周期):由以下公式可决定Duty cycle ,Duty cycle 的设计一般以50%为基准,Duty cycle 若超过50%易导致振荡的发生。

开关电源设计报告

开关电源设计报告

1开关电源主电路设计1.1主电路拓扑结构选择由于本设计的要求为输入电压176-264V交流电,输出为24V直流电,因此中间需要将输入侧的交流电转换为直流电,考虑采用两级电路。

前级电路可以选用含电容滤波的单相不可控整流电路对电能进行转换,后级由隔离型全桥Buck电路构成。

总体要求是先将AC176-264V整流滤波,然后再经过BUCK电路稳压到24V。

考虑到变换器最大负输出功率为1000W,因此需采用功率级较高的Buck电路类型,且必须保证工作在CCM工作状态下,因此综合考虑,本文采用全桥隔离型Buck变换器。

其主电路拓扑结构如下图所示:下面将对全桥隔离型BUCK变换器进行稳态分析,主要是推导前级输出电压V与后级输g 出电压V之间的关系,为主电路参数的设计提供参考。

将前级输出电压V代替前级电路,作g 为后级电路的输入,且后级BUCK变换器工作在CCM模式,BUCK电路中的变压器可以用等效电路代替。

由于全桥隔离型BUCK变换器中变压器二次侧存在两个引出端,使得后级BUCK电路的工作频率等同于前级二倍的工作频率,如图1-1所示。

在2T的工作时间内,总共可分为四种S 开关阶段,其具体分析过程如下:1)当0<t<DT时,此时Q、Q和D导通,其等效电路图如图1-2所示。

S145/?1-1) 1-2) 1-3)3) du.•川L i (t )m 严+仃(t )c 二二v (t )R图1-3在DT<t<T 时等效电路SSv=0sv=-v Li=i -v /R C当TS <t<a+D )TS 时,此时Q2、1-4) 1-5)1-6)Q 和D 导通,其等效电路图如图1-2所示。

36图1-2在0<t<DT 时等效电路Sv=nvs gv=nv -vL gi=i -v /RC2)当DT<t<T 时,此时Q ~Q 全部关断,D 和D 导通,其等效电路图如图1-3SS 1465所示。

开关电源PCB设计流程及布线技巧

开关电源PCB设计流程及布线技巧

开关电源PCB设计流程及布线技巧在任何开关电源设计中,PCB板的物理设计都是最后一个环节,如果设计方法不当,PCB可能会辐射过多的电磁干扰,造成电源工作不稳定,以下针对各个步骤中所需注意的事项进行分析:一、从原理图到PCB的设计流程建立元件参数-》输入原理网表-》设计参数设置-》手工布局-》手工布线-》验证设计-》复查-》cam输出。

二、参数设置相邻导线间距必须能满足电气安全要求,而且为了便于操作和生产,间距也应尽量宽些。

最小间距至少要能适合承受的电压,在布线密度较低时,信号线的间距可适当地加大,对高、低电平悬殊的信号线应尽可能地短且加大间距,一般情况下将走线间距设为8mil。

焊盘内孔边缘到印制板边的距离要大于1mm,这样可以避免加工时导致焊盘缺损。

当与焊盘连接的走线较细时,要将焊盘与走线之间的连接设计成水滴状,这样的好处是焊盘不容易起皮,而是走线与焊盘不易断开。

如图:三、元器件布局实践证明,即使电路原理图设计正确,印制电路板设计不当,也会对电子设备的可靠性产生不利影响。

例如,如果印制板两条细平行线靠得很近,则会形成信号波形的延迟,在传输线的终端形成反射噪声;由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,因此,在设计印制电路板的时候,应注意采用正确的方法。

每一个开关电源都有四个电流回路:(1)电源开关交流回路(2)输出整流交流回路(3)输入信号源电流回路(4)输出负载电流回路输入回路通过一个近似直流的电流对输入电容充电,滤波电容主要起到一个宽带储能作用;类似地,输出滤波电容也用来储存来自输出整流器的高频能量,同时消除输出负载回路的直流能量。

所以,输入和输出滤波电容的接线端十分重要,输入及输出电流回路应分别只从滤波电容的接线端连接到电源;如果在输入/输出回路和电源开关/整流回路之间的连接无法与电容的接线端直接相连,交流能量将由输入或输出滤波电容并辐射到环境中去。

电源开关交流回路和整流器的交流回路包含高幅梯形电流,这些电流中谐波成分很高,其频率远大于开关基频,峰值幅度可高达持续输入/输出直流电流幅度的5倍,过渡时间通常约为50ns。

开关电源(适配器)工艺详解(史上最全最完整)

开关电源(适配器)工艺详解(史上最全最完整)

三.生产制程
3.1 注意事项
3.1.1 ESD防护
静电(ESD)是一种客观存在的自然现象,产生的方式多种,如接触、 摩擦、电器间感应等。静电的特点是长时间积聚、高电压、低电量、小电流 和作用时间短的特点。
人体自身的动作或与其他物体的接触,分离,摩擦或感应等因素,可以 产生几千伏甚至上万伏的静电。
静电在多个领域造成严重危害。摩擦起电和人体静电是电子工业中的两 大危害,常常造成电子电器产品运行不稳定,甚至损坏。
6
5
4
插件中投板工位作业要求:
NG
3.4 补焊
元件空 焊不良 元件连 锡不良
➢主要检查元件是否有虚焊、短路、少锡、锡尖、锡多、假焊等不良现象并进行修补; ➢必须做好静电防护。
良好焊点标准:
➢ 光滑亮泽、锡量适中、形状良好; ➢ 无冷焊(虚假焊)、针孔; ➢ 元件脚清晰可见,无包焊、无锡尖; ➢ 无残留松香焊剂、残锡、锡珠; ➢ 无起铜皮、无烫傷元器件本体及绝缘皮现象; ➢ 焊锡应覆盖整个焊盘,至少覆盖95%以上 。
环境温度 /Temp.
输入电压 /AC Input
输入频率 /Freq.
输出负载设置 /Output Load Setup
25°C
90V/115V/132V 180V/230V/264V
NG
锡点
检查
OK
装外壳 OK
功能 测试
OK
超声波压合
NG 维修
NG
PE NG
报废
老化 测试
OK
高压 测试
OK
ATE 测试
OK
外观 检查
OK 包装
返工
NG
成品
检验
OK
入库

(完整版)反激式开关电源的设计方法

(完整版)反激式开关电源的设计方法

1 设计步骤:1.1 产品规格书制作1.2 设计线路图、零件选用.1.3 PCB Layout.1.4 变压器、电感等计算.1.5 设计验证.2 设计流程介绍:2.1 产品规格书制作依据客户的要求,制作产品规格书。

做为设计开发、品质检验、生产测试等的依据。

2.2 设计线路图、零件选用。

2.3 PCB Layout.外形尺寸、接口定义,散热方式等。

2.4 变压器、电感等计算.变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的,2.4.1 决定变压器的材质及尺寸:依据变压器计算公式Gauss x NpxAeLpxIp B 100(max ) ➢ B(max) = 铁心饱合的磁通密度(Gauss)➢ Lp = 一次侧电感值(uH)➢ Ip = 一次侧峰值电流(A)➢ Np = 一次侧(主线圈)圈数➢ Ae = 铁心截面积(cm 2)➢B(max) 依铁心的材质及本身的温度来决定,以TDK FerriteCore PC40为例,100℃时的B(max)为3900 Gauss ,设计时应考虑零件误差,所以一般取3000~3500 Gauss 之间,若所设计的power 为Adapter(有外壳)则应取3000 Gauss 左右,以避免铁心因高温而饱合,一般而言铁心的尺寸越大,Ae 越高,所以可以做较大瓦数的Power 。

2.4.2 决定一次侧滤波电容:滤波电容的决定,可以决定电容器上的Vin(min),滤波电容越大,Vin(win)越高,可以做较大瓦数的Power ,但相对价格亦较高。

2.4.3 决定变压器线径及线数:变压器的选择实际中一般根据经验,依据电源的体积、工作频率,散热条件,工作环境温度等选择。

当变压器决定后,变压器的Bobbin 即可决定,依据Bobbin 的槽宽,可决定变压器的线径及线数,亦可计算出线径的电流密度,电流密度一般以6A/mm 2为参考,电流密度对变压器的设计而言,只能当做参考值,最终应以温升记录为准。

详解一步一步设计开关电源

详解一步一步设计开关电源

详解一步一步设计开关电源【开篇】针对开关电源很多人觉得难,主要是理论与实践相结合;万事开头难,我在这里只能算抛砖引玉,慢慢讲解如何设计,有任何技术问题可以随时打断,我将尽力来进展解答。

设计一款开关电源并不难,难就难在做精;我也不是一个很精熟的工程师,只能算一个领路人。

希望大家喜欢大家一起努力!!【第一步】开关电源设计的第一步就是看规格,具体的很多人都有接触过;也可以提出来供大家参考,我帮助分析。

我只带大家设计一款宽围输入的,12V2A 的常规隔离开关电源1. 首先确定功率,根据具体要求来选择相应的拓扑构造;这样的一个开关电源多项选择择反激式(flyback) 根本上可以满足要求备注一个,在这里我会更多的选择是经历公式来计算,有需要分析的,可以拿出来再讨论【第二步】2.当我们确定用flyback 拓扑进展设计以后,我们需要选择相应的PWM IC 和MOS 来进展初步的电路原理图设计(sch)无论是选择采用分立式的还是集成的都可以自己考虑。

对里面的计算我还会进展分解分立式:PWM IC 与MOS 是分开的,这种优点是功率可以自由搭配,缺点是设计和调试的周期会变长〔仅从设计角度来说〕集成式:就是将PWM IC 与MOS 集成在一个封装里,省去设计者很多的计算和调试分步,适合于刚入门或快速开发的环境集成式,多是指PWM controller 和power switch 集成在一起的芯片不限定于是PSR 还是SSR【第三步】3. 确定所选择的芯片以后,开场做原理图(sch),在这里我选用ST VIPer53DIP(集成了MOS) 进展设计,原因为何(因为我们是销售这一颗芯片的).设计之前最好都先看一下相应的datasheet,自己确认一下简单的参数无论是选用PI 的集成,或384x 或OB LD 等分立的都需要参考一下datasheet一般datasheet 里都会附有简单的电路原理图,这些原理图是我们的设计依据【第四步】4. 当我们将原理图完成以后,需要确定相应的参数才能进入下一步PCB Layout当然不同的公司不同的流程,我们需要遵守相应的流程,养成一个良好的设计习惯,这一步可能会有初步评估,原理图确认,等等,签核完毕后就可以进展计算一般有芯片厂家提供相关资料【第五步】5. 确定开关频率,选择磁芯确定变压器芯片的频率可以通过外部的RC 来设定,工作频率就等于开关频率,这个外设的功能有利于我们更好的设计开关电源,也可以采取外同步功能。

开关电源pcb电路设计

开关电源pcb电路设计

开关电源pcb电路设计摘要:开关电源PCB排版是开发电源产品中的一个重要过程。

许多情况下,一个在纸上设计得非常完美的电源可能在初次调试时无法正常工作,原因是该电源的PCB排版存在着许多问题(详细讨论了开关电源PCB排版的基本要点,并描述了一些实用的PCB排版例子。

关键词:PCB排版;开关电源0、引言为了适应电子产品飞快的更新换代节奏,产品设计工程师更倾向于选择在市场上很容易采购到的AC,DC适配器,并把多组直流电源直接安装在系统的线路板上。

由于开关电源产生的电磁干扰会影响到其电子产品的正常工作,正确的电源PCB排版就变得非常重要。

开关电源PCB排版与数字电路PCB排版完全不一样。

在数字电路排版中,许多数字芯片可以通过PCB软件来自动排列,且芯片之间的连接线可以通过PCB软件来自动连接。

用自动排版方式排出的开关电源肯定无法正常工作。

所以,没计人员需要对开关电源PCB排版基本规则和开关电源工作原理有一定的了解。

1、开关电源PCB排版基本要点1.1 电容高频滤波特性图1是电容器基本结构和高频等效模型。

电容的基本公式是式(1)显示,减小电容器极板之间的距离(d)和增加极板的截面积(A)将增加电容器的电容量。

电容通常存在等效串联电阻(ESR)和等效串联电感(ESL)二个寄生参数。

图2是电容器在不同工作频率下的阻抗(Zc)。

一个电容器的谐振频率(fo)可以从它自身电容量(C)和等效串联电感量(LESL)得到,即当一个电容器工作频率在fo以下时,其阻抗随频率的上升而减小,即当电容器工作频率在fo以上时,其阻抗会随频率的上升而增加,即当电容器工作频率接近fo时,电容阻抗就等于它的等效串联电阻(RESR)。

电解电容器一般都有很大的电容量和很大的等效串联电感。

由于它的谐振频率很低,所以只能使用在低频滤波上。

钽电容器一般都有较大电容量和较小等效串联电感,因而它的谐振频率会高于电解电容器,并能使用在中高频滤波上。

瓷片电容器电容量和等效串联电感一般都很小,因而它的谐振频率远高于电解电容器和钽电容器,所以能使用在高频滤波和旁路电路上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
器件散热,在一些小功率电源中,线路板走线也可兼散热功能,其特点是走线尽量宽大,以增加散热面积,并不涂阻焊剂,有条件可均匀放置过孔,增强导热性能。
下面是铝基板在开关电源中的应用和多层印制板在开关电源电路中的应用
铝基板由其本身构造,具有以下特点:导热性能非常优良、单面缚铜、器件只能放置在缚铜面、不能开电器连线孔所以不能按照单面板那样放置跳线。
由于铝基板优良的导热性,在小量手工焊接时比较困难,焊料冷却过快,容易出现问题现有一个简单实用的方法,将一个烫衣服的普通电熨斗(最好有调温功能), 翻过来,熨烫面向上,固定好,温度调到150℃左右,把铝基板放在熨斗上面,加温一段时间,然后按照常规方能时器件损坏,甚至铝基板铜皮剥离,温度太低焊接效果不好,要灵活掌握.
正激和反激电路各有其特点,在设计电路的过程中为达到最优性价比,可以灵活运用。一般在小功率场合可选用反激式。稍微大一些可采用单管正激电路,中等功 率可采用双管正激电路或半桥电路,低电压时采用推挽电路,与半桥工作状态相同。大功率输出,一般采用桥式电路,低压也可采用推挽电路。
反激式电源因其结构简单,省掉了一个和变压器体积大小差不多的电感,而在中小功率电源中得到广泛的应用。在有些介绍中讲到反激式电源功率只能做到几十瓦, 输出功率超过100瓦就没有优势,实现起来有难度。本人认为一般情况下是这样的,但也不能一概而论,PI公司的TOP芯片就可做到300瓦,有文章介绍反 激电源可做到上千瓦,但没见过实物。输出功率大小与输出电压高低有关。
控制部分要注意:高阻抗弱信号电路连线要尽量短如取样反馈环路,在处理时要尽量避免其受干扰、电流取样信号电路,特别是电流控制型电路,处理不好易出现 一些想不到的意外。
下面谈一谈印制板布线的一些原则
线间距:随着印制线路板制造工艺的不断完善和提高,一般加工厂制造出线间距等于甚至小于0.1mm已经不存在什么问题,完全能够满足大多数应用场合。考虑 到开关电源所采用的元器件及生产工艺,一般双面板最小线间距设为0.3mm,单面板最小线间距设为0.5mm,焊盘与焊盘、焊盘与过孔或过孔与过孔,最小 间距设为0.5mm,可避免在焊接操作过程中出现“桥接”现象。,这样大多数制板厂都能够很轻松满足生产要求,并可以把成品率控制得非常高,亦可实现合理 的布线密度及有一个较经济的成本。
最近几年,随着多层线路板在开关电源电路中应用,使得印制线路变压器成为可能,由于多层板,层间距较小,也可以充分利用变压器窗口截面,可在主线路板上再 加一到两片由多层板组成的印制线圈达到利用窗口,降低线路电流密度的目的,由于采用印制线圈,减少了人工干预,变压器一致性好,平面结构,漏感低,偶合 好。开启式磁芯,良好的散热条件。由于其具有诸多的优势,有利于大批量生产,所以得到广泛的应用。但研制开发初期投入较大,不适合小规模生。
电气连线应尽量宽,原则宽度应大于焊盘直径,特殊情况应在连线于与焊盘交汇必须将线加宽(俗称生成泪滴),避免在某些条件线与焊盘断裂。原则最小线宽应大于0.5mm。
单面板上元器件应紧贴线路板。需要架空散热的器件,要在器件与线路板之间的管脚上加套管,可起到支撑器件和增加绝缘的双重作用,要最大限度减少或避免外力 冲击对焊盘与管脚连接处造成的影响,增强焊接的牢固性。线路板上重量较大的部件可增加支撑连接点,可加强与线路板间连接强度,如变压器,功率器件散热器。
铝基板上一般都放置贴片器件,开关管,输出整流管通过基板把热量传导出去,热阻很低,可取得较高可靠性。变压器采用平面贴片结构,也可通过基板散热,其温 升比常规要低,同样规格变压器采用铝基板结构可得到较大的输出功率。铝基板跳线可以采用搭桥的方式处理。铝基板电源一般由由两块印制板组成,另外一块板放 置控制电路,两块板之间通过物理连接合成一体。
单面板焊接面引脚在不影响与外壳间距的前题条件下,可留得长一些,其优点是可增 加焊接部位的强度,加大焊接面积、有虚焊现象可即时发现。引脚长剪腿时,焊接部位受力较小。在台湾、日本常采用把器件引脚在焊接面弯成与线路板成45度 角,然后再焊接的工艺,的其道理同上。今天谈一谈双面板设计中的一些事项,在一 些要求比较高,或走线密度比较大的应用环境中采用双面印制板,其性能及各方面指标要比单面板好很多。
1, 将走线设置成焊盘属性,这样在线路板制造时该走线不会被阻焊剂覆盖,热风整平时会被镀上锡。
2, 在布线处放置焊盘,将该焊盘设置成需要走线的形状,要注意把焊盘孔设置为零。
3, 在阻焊层放置线,此方法最灵活,但不是所有线路板生产商都会明白你的意图,需用文字说明。在阻焊层放置线的部位会不涂阻焊剂
线路镀锡的几种方法如上,要注意的是,如果很宽的的走线全部镀上锡,在焊接以后,会粘接大量焊锡,并且分布很不均匀,影响美观。一般可采用细长条镀锡宽度在1~1.5mm,长度可根据线路来确定,镀锡部分间隔0.5~1mm 双面线路板为布局、走线提供了很大的选择性,可使布线更趋于合理。关于接地,功率地与信号地一定要分开,两个地可在滤波电容处汇合,以避免大脉冲电流通过 信号地连线而导致出现不稳定的意外因素,信号控制回路尽量采用一点接地法,有一个技巧,尽量把非接地的走线放置在同一布线层,最后在另外一层铺地线。输出 线一般先经过滤波电容处,再到负载,输入线也必须先通过电容,再到变压器,理论依据是让纹波电流都通过旅滤波电容。
双面板焊盘由于孔已作金属化处理强度较高,焊环可比单面板小一些,焊盘孔孔径可 比管脚直径略微大一些,因为在焊接过程中有利于焊锡溶液通过焊孔渗透到顶层焊盘,以增加焊接可靠性。但是有一个弊端,如果孔过大,波峰焊时在射流锡冲击下 部分器件可能上浮,产生一些缺陷。
大电流走线的处理,线宽可按照前帖处理,如宽度不够,一般可采用在走线上镀锡增加厚度进行解决,其方法有好多种。
输出电容一般可采用两只一只靠近整流管另一只应靠近输出端子,可影响电源输出纹波指标,两只小容量电容并联效果应优于用一只大容量电容。发热器件要和电解 电容保持一定距离,以延长整机寿命,电解电容是开关电源寿命的瓶劲,如变压器、功率管、大功率电阻要和电解保持距离,电解之间也须留出散热空间,条件允许 可将其放置在进风口。
单面板,市场流通通用开关电源几乎都采用了单面线路板,其具有低成本的优势,在设计,及生产工艺上采取一些措施亦可确保其性能。
今天谈谈单面印制板设计的一些体会,由于单面板具有成本低廉,易于制造的特点,在开关电源线路中得到广泛应用,由于其只有一面缚铜,器件的电器连接,机械固定都要依靠那层铜皮,在处理时必须小心。
电压反馈取样,为避免大电流通过走线的影响,反馈电压的取样点一定要放在电源输出最末梢,以提高整机负载效应指标。
走线从一个布线层变到另外一个布线层一般用过孔连通,不宜通过器件管脚焊盘实现,因为在插装器件时有可能破坏这种连接关系,还有在每1A电流通过时,至少应有2个过孔,过孔孔径原则要大于0.5mm,一般0.8mm可确保加工可靠性。
最小线间距只适合信号控制电路和电压低于63V的低压电路,当线间电压大于该值时一般可按照500V/1mm经验值取线间距。
鉴于有一些相关标准对线间距有较明确的规定,则要严格按照标准执行,如交流入口端至熔断器端连线。某些电源对体积要求很高,如模块电源。一般变压器输入 侧线间距为1mm实践证明是可行的。对交流输入,(隔离)直流输出的电源产品,比较严格的规定为安全间距要大于等于6mm,当然这由相关的标准及执行方法 确定。一般安全间距可由反馈光耦两侧距离作为参考,原则大于等于这个距离。也可在光耦下面印制板上开槽,使爬电距离加大以满足绝缘要求。一般开关电源交流 输入侧走线或板上元件距非绝缘的外壳、散热器间距要大于5mm,输出侧走线或器件距外壳或散热器间距要大于2mm,或严格按照安全规范执行。
为保证良好的焊接机械结构性能,单面板焊盘应稍微大一些,以确保铜皮和基板的良好缚着力,而不至于受到震动时铜皮剥离、断脱。一般焊环宽度应大于 0.3mm。焊盘孔直径应略大于器件引脚直径,但不宜过大,保证管脚与焊盘间由焊锡连接距离最短,盘孔大小以不妨碍正常查件为度,焊盘孔直径一般大于管脚 直径0.1-0.2mm。多引脚器件为保证顺利查件,也可更大一些。
反激电源变压器漏感是一个非常关键的参数,由于反激电源需要变压器储存能量,要 使变压器铁芯得到充分利用,一般都要在磁路中开气隙,其目的是改变铁芯磁滞回线的斜率,使变压器能够承受大的脉冲电流冲击,而不至于铁芯进入饱和非线形状 态,磁路中气隙处于高磁阻状态,在磁路中产生漏磁远大于完全闭合磁路。
变压器初次极间的偶合,也是确定漏感的关键因素,要尽量使初次极线圈靠近,可采用三明治绕法,但这样会使变压器分布电容增大。选用铁芯尽量用窗口比较长的磁芯,可减小漏感,如用EE、EF、EER、PQ型磁芯效果要比EI型的好。
开关电源分为,隔离与非隔离两种形式,在这里主要谈一谈隔离式开关电源的拓扑形式,在下文中,非特别说明,均指隔离电源。隔离电源按照结构形式不同,可分 为两大类:正激式和反激式。反激式指在变压器原边导通时副边截止,变压器储能。原边截止时,副边导通,能量释放到负载的工作状态,一般常规反激式电源单管 多,双管的不常见。正激式指在变压器原边导通同时副边感应出对应电压输出到负载,能量通过变压器直接传递。按规格又可分为常规正激,包括单管正激,双管正 激。半桥、桥式电路都属于正激电路。
开关电源的设计及生产工艺
2011-10-23 13:23:51| 分类:默认分类|字号大中小订阅
首先从开关电源的设计及生产工艺开始描述吧,先说说印制板的设计。开关电源工作在高频率,高脉冲状态,属于模拟电路中的一个比较特殊种类。布板时须遵循高频电路布线原则。
1、布局:脉冲电压连线尽可能短,其中输入开关管到变压器连线,输出变压器到整流管连接 线。脉冲电流环路尽可能小如输入滤波电容正到变压器到开关管返回电容负。输出部分变压器出端到整流管到输出电感到输出电容返回变压器电路中X电容要尽量接 近开关电源输入端,输入线应避免与其他电路平行,应避开。 Y电容应放置在机壳接地端子或FG连接端。共摸电感应与变压器保持一定距离,以避免磁偶合。如不好处理可在共摸电感与变压器间加一屏蔽,以上几项对开关电 源的EMC性能影响较大。
相关文档
最新文档