华东师大版九年级上数学期末模拟试题

合集下载

华东师大版九年级数学上册期末试卷【含答案】

华东师大版九年级数学上册期末试卷【含答案】

华东师大版九年级数学上册期末试卷【含答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab = 2.已知x+1x =6,则x 2+21x =( ) A .38 B .36 C .34 D .323.已知m=4+3,则以下对m 的估算正确的( )A .2<m <3B .3<m <4C .4<m <5D .5<m <64.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)5.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C .45357x x ++=D .45357x x --= 6.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x 个队参赛,根据题意,可列方程为( )A .()11362x x -=B .()11362x x += C .()136x x -= D .()136x x +=7.如图,直线AB ∥CD ,则下列结论正确的是( )A .∠1=∠2B .∠3=∠4C .∠1+∠3=180°D .∠3+∠4=180°8.如图,已知BD 是ABC 的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .339.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°10.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.计算:02(3)π-+-=_____________.2.因式分解:a 3-ab 2=____________.3.函数2y x =-x 的取值范围是__________.4.如图,一次函数y=﹣x ﹣2与y=2x+m 的图象相交于点P (n ,﹣4),则关于x 的不等式组22{20x m x x +----<<的解集为__________.5.如图,已知正方形ABCD 的边长是4,点E 是AB 边上一动点,连接CE ,过点B 作BG ⊥CE 于点G ,点P 是AB 边上另一动点,则PD+PG 的最小值为________.6.如图抛物线y=x 2+2x ﹣3与x 轴交于A ,B 两点,与y 轴交于点C ,点P 是抛物线对称轴上任意一点,若点D 、E 、F 分别是BC 、BP 、PC 的中点,连接DE ,DF ,则DE+DF 的最小值为__________.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--2.先化简,再求值(32m ++m ﹣2)÷2212m m m -++;其中m 23.如图,在四边形ABCD 中,∠ABC=90°,AC=AD ,M ,N 分别为AC ,CD 的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.4.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D 竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.5.为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖问答活动,并用得到的数据绘制了如图条形统计图:请根据图中信息,解答下列问题:(1)本次调查一共抽取了名居民;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”,请你根据调查结果,帮社区工作人员估计需准备多少份“一等奖”奖品.6.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、B4、C5、B6、A7、D8、D9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、32、a (a+b )(a ﹣b )3、2x ≥4、﹣2<x <25、6、2三、解答题(本大题共6小题,共72分)1、2x =2、11m m +-,原式=.3、(1)略;(24、河宽为17米5、(1)50;(2)平均数是8.26;众数为8;中位数为8;(3)需要一等奖奖品100份.6、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.。

【华东师大版】九年级数学上期末模拟试卷(含答案)

【华东师大版】九年级数学上期末模拟试卷(含答案)

一、选择题1.下列说法中正确的是( )A .通过多次试验得到某事件发生的频率等于这一事件发生的概率B .某人前9次掷出的硬币都是正面朝上,那么第10次掷出的硬币反面朝上的概率一定大于正面朝上的概率C .不确定事件的概率可能等于1D .试验估计结果与理论概率不一定一致2.下列说法正确的是( )A .调查舞水河的水质情况,采用抽样调查的方式B .数据2.0,﹣2,1,3的中位数是﹣2C .可能性是99%的事件在一次实验中一定会发生D .从2000名学生中随机抽取100名学生进行调查,样本容量为2000名学生 3.从2,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是( ) A .15 B .25 C .35 D .454.甲、乙两人玩游戏:从1,2,3三个数中随机选取两个不同的数,分别记为a 和c ,若关于x 的一元二次方程230ax x c ++=有实数根,则甲获胜,否则乙获胜,则甲获胜的概率为( )A .14B .13C .12 D .165.已知O 的半径为5,若4PO =,则点P 与O 的位置关系是( ) A .点P 在O 内 B .点P 在O 上 C .点P 在O 外 D .无法判断 6.如图,AB 为O 的弦,半径OC 交AB 于点D ,AD DB =,5OC =,3OD =,则AB 的长为( )A .8B .6C .4D .2 7.已知AB 是经过圆心O 的直线,P 为O 上的任意一点,则点P 关于直线AB 的对称点P '与O 的位置关系是( ) A .点P '在⊙○内 B .点P '在O 外 C .点P '在O 上 D .无法确定8.如图,⊙O 是四边形 ABCD 的内切圆,连接 OA 、OB 、OC 、OD .若∠AOB =110°,则∠COD 的度数是( )A .60°B .70°C .80°D .45°9.如图,正方形ABCD 内一点P ,5AB =,2BP =,把ABP △绕点B 顺时针旋转90°得到CBP ',则PP '的长为( )A .22B .23C .3D .3210.如图,在平面直角坐标系中,点A 、B 、C 的坐标分别为(1,0),(0,1),()1,0-.一个电动玩具从坐标原点O 出发,第一次跳跃到点1P ,使得点1P 与点O 关于点A 成中心对称;第二次跳跃到点2P ,使得点2P 与点1P 关于点B 成中心对称;第三次跳跃到点3P ,使得点3P 与点2P 关于点C 成中心对称:第四次跳跃到点4P ,使得点4P 与点3P 关于点A 成中心对称;第五次跳跃到点5P ,使得点6P 与点4P 关于点B 成中心对称;…,照此规律重复下去,则点2013P 的坐标为( )A .(2,2)B .()2,2-C .()0,2-D .()2,0-11.()11,y -()20,y ()34,y 是抛物线22y x x c =-++上三点的坐标,则1y ,2y ,3y 之间的大小关系为( ) A .123y y y << B .213y y y << C .312y y y << D .321y y y <<12.关于x 的一元二次方程(a -1)x²-x +a²-1=0的一个根是0,则a 的值为( )A .1B .-1C .1或-1D .0二、填空题13.一只袋中装有三只完全相同的小球,三只小球上分别标有1,2-,3,第一次从袋中摸出一只小球,把这只小球的标号数字记作一次函数y kx b =+中的k ,然后放回袋中搅匀后,再摸出一只小球,把这只小球的标号数字记作一次函数y kx b =+中的b .则一次函数y kx b =+的图象经过一、二、三象限的概率为______.14.如图,点O 为正方形的中心,点E 、F 分别在正方形的边上,且∠EOF =90°,随机地往图中投一粒米,则米粒落在图中阴影部分的概率是___________.15.小明走进迷宫,迷宫中的每一个门都相同,第一道关口有四个门,只有第三个门有开关,第二道关口有两个门,只有第一个门有开关,他一次就能走出迷宫的概率是________.16.已知正方形MNKO 和正六边形ABCDEF 边长均为1,把正方形放在正六边形外边,使OK 边与AB 边重合,如图所示,按下列步骤操作:将正方形在正六边形外绕点B 顺时针旋转,使KN 边与BC 边重合,完成第一次旋转;再绕点C 顺时针旋转,使NM 边与CD 边重合,完成第二次旋转;…在这样连续的旋转过程中,第一次点M 在图中直角坐标系中的坐标是_______,第6次点M 的坐标是_______.17.如图,在ABC 中,4AB =, 5.8BC =,60B ∠=︒,将ABC 绕点A 顺时针旋转得到ADE ,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为________.18.湖州南浔镇河流密如蛛网,民间有“千步一桥”之说.如图,某圆弧形桥拱的跨度AB =12米,拱高CD =4米,则该拱桥的半径为____米.19.抛物线y =x 2+2x-3与x 轴的交点坐标为____________________.20.已知a 、b 是方程2320190x x +-=的两根,则24a a b ++的值为________.三、解答题21.暑假将至,某商场为了吸引顾客,设计了可以自由转动的转盘(如图所示,转盘被均匀地分为20份),并规定:顾客每 200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.若某顾客购物300元.(1)求他此时获得购物券的概率是多少?(2)他获得哪种购物券的概率最大?请说明理由.22.某校团委在“五·四”青年节举办了一次“我的中国梦”作文大赛,广三批对全校20个班的作品进行评比在第一批评比中,随机抽取A 、B 、C 、D 四个班的征集作品,对其数量进行统计后,绘制如下两幅不完整的统计图,(1)第一批所抽取的4个班共征集到作品 件;在扇形统计图中表示C 班的扇形的圆心角的度数为 ;(2)补全条形统计图;(3)第一批评比中,A 班D 班各有一件、B 班C 班各有两件作品获得一等奖.现要在获得一等奖的作品中随机抽取两件在全校展出,用树状图或列表法求抽取的作品在两个不同班级的概率.23.如图,在Rt △ABC 中,∠ACB=90°,CD 是斜边AB 上的中线,以CD 为直径的⊙O 分别交AC 、BC 于点 M 、N ,过点N 作NE ⊥AB ,垂足为E .(1)求证:NE 与⊙O 相切;(2)若⊙O 的半径为52,AC=6,求BN 的长. 24.如图,△ABC 三个顶点的坐标分别为A (1,1),B (4,2),C (3,4). (1)请画出将△ABC 向左平移4个单位长度后得到的图形△A 1B 1C 1;(2)请画出△ABC 关于点(1,0)成中心对称的图形△A 2B 2C 2;(3)若△A 1B 1C 1绕点M 旋转可以得到△A 2B 2C 2,请直接写出点M 的坐标;(4)在x 轴上找一点P ,使PA +PB 的值最小,请直接写出点P 的坐标.25.在平面直角坐标系xOy 中,抛物线2223y x nx n n =-++-与y 轴交于点C ,与x 轴交于点,A B ,点A 在B 的左边,x 轴正半轴上一点D ,满足.OD OA OB =+(1)①当2n =时,求点D 的坐标和抛物线的顶点坐标;②当2AB BD =时,求n 的值;(2)过点D 作x 轴的垂线交抛物线于P ,作射线CP ,若射线CP 与x 轴没有公共点,直接写出n 的取值范围.26.某地为刺激旅客来旅游及消费,讨论5月至9月推出全城推广活动.杭州某旅行社为吸引市民组团去旅游,推出了如下收费标准:某单位组织员工去旅游,共支付给该旅行社旅游费用54000元,请问该单位这次共有多少员工去旅游?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果,故选D.【详解】A. 错,应为:多次试验得到某事件发生的频率可以估计这一事件发生的概率;B. 错,反面朝上的概率仍为0.5;C. 错,概率等于1即为必然事件;D. 正确.故答案选D.【点睛】本题考查了概率的意义,解题的关键是熟练的掌握概率的意义.2.A解析:A【解析】分析:根据调查的方式、中位数、可能性和样本知识进行判断即可.详解:A、调查舞水河的水质情况,采用抽样调查的方式,正确;B、数据2.0,-2,1,3的中位数是1,错误;C、可能性是99%的事件在一次实验中不一定会发生,错误;D、从2000名学生中随机抽取100名学生进行调查,样本容量为2000,错误;故选A.点睛:此题考查概率的意义,关键是根据调查的方式、中位数、可能性和样本知识解答.3.C解析:C【解析】∵在2?0?3.14?6π、、、、这5个数中只有0、3.14和6为有理数,∴从2?0?3.14?6π、、、、这5个数中随机抽取一个数,抽到有理数的概率是35.故选C.4.B解析:B【分析】画树状图展示所有6种等可能的结果数,找出满足△=9-4ac≥0的有a=1,c=2或a=2,c=1,然后根据概率公式求解.【详解】解:画树状图为:共有6种等可能的结果数,其中满足△=9-4ac≥0的结果数有2种,即a=1,c=2或a=2,c=1;∴甲获胜的概率=21=63.故选:B.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.也考查了根的判别式.5.A解析:A【分析】已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d 时,点P在⊙O上,③当r<d时,点P在⊙O外,根据以上内容判断即可.【详解】∵⊙O的半径为5,若PO=4,∴4<5,∴点P与⊙O的位置关系是点P在⊙O内,故选:A.【点睛】本题考查了点与圆的位置关系的应用,注意:已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外.6.A解析:A【分析】连接OB,根据⊙O的半径为5,CD=2得出OD的长,再由垂径定理的推论得出OC⊥AB,由勾股定理求出BD的长,进而可得出结论.【详解】解:连接OB,如图所示:∵⊙O的半径为5,OD=3,∵AD=DB,∴OC⊥AB,∴∠ODB=90°,∴2222-=-=,.534BD OB OD∴AB=2BD=8.故选:A.【点睛】本题考查的是垂径定理以及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.7.C解析:C【分析】圆是轴对称图形,直径所在的直线就是对称轴,从而得到圆上的点关于对称轴对称的点都在圆上求解.【详解】解:∵圆是轴对称图形,直径所在的直线就是对称轴,∴点P关于AB的对称点P′与⊙O的位置为:在⊙O上,故选:C.【点睛】本题考查了点与圆的位置关系,利用了圆的对称性求解.8.B解析:B【分析】设四个切点分别为E 、F 、G 、H ,分别连接切点和圆心,利用切线性质和HL 定理可以得到4对全等三角形,进而可得∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8,根据8个角之和为360°即可求解.【详解】解:设四个切点分别为E 、F 、G 、H ,分别连接切点和圆心,则OE ⊥AB ,OF ⊥BC ,OG ⊥CD ,OH ⊥AD ,OE=OF=OG=OH ,在Rt △BEO 和△BFO 中,OE OF OB OB =⎧⎨=⎩, ∴Rt △BEO ≌△BFO (HL )∴∠1=∠2,同理可得:∠3=∠4,∠5=∠6,∠7=∠8,∴∠1+∠8=∠2+∠7,∠4+∠5=∠3+∠6,∵∠1+∠2+∠3+∠4+∠5+∠6+∠7+∠8=360°,∴∠1+∠8+∠4+∠5=180°,即∠AOB+∠COD=180°,∵∠AOB=110°,∴∠COD=180°﹣∠AOB=180°﹣110°=70°,故选:B .【点睛】本题考查了圆的切线性质、全等三角形的判定与性质,利用圆的的切线性质,添加辅助线构造全等三角形是解答的关键.9.A解析:A【分析】由△ABP 绕点B 顺时针旋转90°得到△CBP',根据旋转的性质得BP=BP′,∠PBP′=90,则△BPP′为等腰直角三角形,由此得到2BP ,即可得到答案..【详解】解:解:∵△ABP 绕点B 顺时针旋转90°得到△CBP',而四边形ABCD 为正方形,BA=BC ,∴BP=BP′,∠PBP′=90,∴△BPP′为等腰直角三角形,而BP=2,∴PP′=2BP=22.故选:A .【点睛】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了正方形和等腰直角三角形的性质. 10.C解析:C【分析】计算出前几次跳跃后,点P 1,P 2,P 3,P 4,P 5,P 6,P 7的坐标,可得出规律,继而可求出点P 2013的坐标.【详解】解:∵点1P 与点O 关于点A 成中心对称,∴P 1(2,0),过P 2作P 2D ⊥OB 于点D ,∵2P 与点1P 关于点B 成中心对称,∴P 1B=P 2B ,在△P 1BO 和△P 2BD 中121212PBO P BD POB P DB PB P B ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△P 1BO ≌△P 2BD ,∴P 2D=P 1O=2,BD=BO=1,∴OD=2,∴P 2(-2,2),同理可求:P 3(0,-2),P 4(2,2),P 5(-2,0),P 6(0,0),P 7(2,0),从而可得出6次一个循环,∵20136=335…3, ∴点P 2013的坐标为(0,-2).故选C .【点睛】本题考查了中心对称,全等三角形的判定与性质,以及点的坐标的规律变换,解答本题的关键是求出前几次跳跃后点的坐标,总结出一般规律.11.C解析:C【分析】先判断函数的开口向下,对称轴为x=1,从而得出距离对称轴越远,函数值越小,再结合三点坐标即可判断1y ,2y ,3y 之间的大小关系.【详解】解:∵在22y x x c =-++中,21,122b a a =--=-=-, ∴该函数开口向下,对称轴为x=1,且距离对称轴越远,函数值越小,∵()11,y -、()20,y 、()34,y 三点距离对称轴的距离为:2,1,3,∴312y y y <<,故选:C .【点睛】本题考查比较二次函数值的大小.理解二次函数当a<0时距离对称轴越远的点,函数值越小是解题关键.12.B解析:B【分析】把0x =代入,求出a 的值即可.【详解】解:把0x =代入可得210a -=,解得1a =±,∵一元二次方程二次项系数不为0,∴1a ≠,∴1a =-,故选:B .【点睛】本题考查一元二次方程的解,注意二次项系数不为0.二、填空题13.【分析】画树状图展示所有9种等可能的结果数再出k >0b >0的结果数然后根据一次函数的性质和概率公式求解【详解】画树状图为:共有9种等可能的结果数其中的结果数为4所以一次函数的图象经过一二三象限的概率解析:49【分析】画树状图展示所有9种等可能的结果数,再出k >0,b >0的结果数,然后根据一次函数的性质和概率公式求解.【详解】画树状图为:共有9种等可能的结果数,其中0k >,0b >的结果数为4,所以一次函数y kx b =+的图象经过一、二、三象限的概率为49. 故答案为:49. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.也考查了一次函数的性质. 14.【分析】先证△OAE ≌△OBF 四边形EOFC 的面积=三角形AOE 面积+四边形AOFC 面积=三角形BOF 面积+四边形AOFC 面积=正方形AOBC 的面积=S 大正方形米粒落在图中阴影部分的概率就是阴影部分解析:14【分析】先证△OAE ≌△OBF ,四边形EOFC 的面积=三角形AOE 面积+四边形AOFC 面积=三角形BOF 面积+四边形AOFC 面积=正方形AOBC 的面积=14S 大正方形,米粒落在图中阴影部分的概率就是阴影部分的面积同正方形总面积的比.【详解】解:过O 作OA ⊥CE 于A ,OB ⊥CF 交CF 延长线于B ,∵点O 为正方形的中心,∴OA=OB ,∠OAE=∠OBF=90º=∠AOB ,∵∠EOF =90°,∴∠EOA+∠AOF=90º,∠AOF+∠FOB=90º,∴∠EOA=∠FOB ,∴△EOA ≌△FOB ,S四边形EOFC =S△AOE +S四边形AOFC =S△BOF +S四边形AOFC =S正方形AOBC =14S 大正方形, S 四边形EOFC =S 正方形AOBC =14S 大正方形, 如图所示: , P=EOFC AOBC S 1=S S 4S 四边形正方形大正方形大正方形, 因此米粒落在图中阴影部分的概率是14. 故答案为:14【点睛】本题考查点投阴影部分的概率,掌握利用几何图形面积来确定概率的方法,不规则图形用全等三角形转化为正方形规则图形是解题关键. 15.【分析】根据题意列举出所有情况让小明一次就能走出迷宫的情况数除以总情况数即为所求的概率【详解】设第一道关口的四个门分别为第二道关口的两个门分别为列表得:由表格得共有8种等可能的结果而一次能走出迷宫的解析:18【分析】根据题意,列举出所有情况,让小明一次就能走出迷宫的情况数除以总情况数即为所求的概率.【详解】设第一道关口的四个门分别为1234,,,A A A A ,第二道关口的两个门分别为12,B B ,列表得:由表格得,共有8种等可能的结果,而一次能走出迷宫的只有1种,所以P(一次就能走出迷宫)=18, 故答案为:18.【点睛】本题考查了概率公式的应用,解题的关键是理解题意.用到的知识点为:概率=所求情况数与总情况数之比.16.【分析】先将正方形旋转六次的图形画出确定六次旋转之后点的位置然后通过添加辅助线构造出直角三角形进而利用含角的直角三角形的性质求得再根据勾股定理求得再根据正六边形的性质线段的和差即可求得即可得解【详解解析:13,12⎛⎫+⎪⎪⎝⎭33,2⎛⎫⎪⎪⎝⎭【分析】先将正方形旋转六次的图形画出,确定六次旋转之后点M的位置,然后通过添加辅助线构造出直角三角形,进而利用30含角的直角三角形的性质求得12FH=、12CJ=,再根据勾股定理求得63JM=,再根据正六边形的性质、线段的和差即可求得32JF=,即可得解.【详解】解:经历六次旋转后点M落在点6M处,过M作MH x⊥于点H,过6M作6M J x⊥于点J,连接6IM,如图:∵在Rt AFH中,1AF=,60AFH∠=︒,30FAH∠=︒∴1122FH AF==∵已知点M的纵坐标是3131MH=∴点M 的坐标是:1,12⎛ ⎝⎭; ∵在6Rt CJM 中,61CM =,660JCM ∠=︒,630CM J ∠=︒∴61122CJ CM ==,6JM == ∵点I 是正六边形的中心∴1IC IF == ∴32JF IF IC CJ =+-=∴点6M 的坐标是:3,22⎛⎫ ⎪ ⎪⎝⎭.故答案是:1,12⎛⎝⎭;32⎛ ⎝⎭【点睛】本题考查了正多边形、旋转变换、含30角的直角三角形、勾股定理、线段的和差以及坐标系中的图形与坐标,体现了数形结合的数学思想. 17.【分析】先根据旋转的性质可得再根据等边三角形的判定与性质可得然后根据线段的和差即可得【详解】由旋转的性质得:是等边三角形故答案为:【点睛】本题考查了旋转的性质等边三角形的判定与性质等知识点熟练掌握旋 解析:1.8【分析】先根据旋转的性质可得AB AD =,再根据等边三角形的判定与性质可得4BD AB ==,然后根据线段的和差即可得.【详解】由旋转的性质得:4AB AD ==,60B ∠=︒,ABD ∴是等边三角形,4BD AB ∴==,5.8BC =,5.84 1.8CD BC BD ∴=-=-=,故答案为:1.8.【点睛】本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键.18.65【分析】根据垂径定理的推论此圆的圆心在CD 所在的直线上设圆心是O 连接OA 根据垂径定理和勾股定理求解【详解】根据垂径定理的推论知此圆的圆心在CD 所在的直线上设圆心是O 连接OA 拱桥的跨度AB=12m解析:6.5【分析】根据垂径定理的推论,此圆的圆心在CD 所在的直线上,设圆心是O .连接OA .根据垂径定理和勾股定理求解.【详解】根据垂径定理的推论,知此圆的圆心在CD 所在的直线上,设圆心是O ,连接OA . 拱桥的跨度AB =12m ,拱高CD =4m ,根据垂径定理,得AD=6 m ,利用勾股定理可得:()22264AO AO =--,解得:AO =6.5m .即圆弧半径为6.5米,故答案为:6.5.【点睛】本题综合运用了勾股定理以及垂径定理.注意由半径、半弦、弦心距构造的直角三角形进行有关的计算. 19.【分析】要求抛物线与x 轴的交点即令y =0解方程即可【详解】令y =0则x2+2x ﹣3=0解得x1=﹣3x2=1则抛物线y =x2+2x ﹣3与x 轴的交点坐标是(﹣30)(10)故答案为:(﹣30)(10)解析:()()3.0,1,0-【分析】要求抛物线与x 轴的交点,即令y =0,解方程即可.【详解】令y =0,则x 2+2x ﹣3=0,解得x 1=﹣3,x 2=1.则抛物线y =x 2+2x ﹣3与x 轴的交点坐标是(﹣3,0),(1,0).故答案为:(﹣3,0),(1,0).【点睛】此题考察二次函数与一元二次方程的关系,一元二次方程的解即为二次函数图像与x 轴交点的横坐标.20.2016【分析】将x=a 代入可得然后由根与系数之间的关系得到整理即可得到答案【详解】解:由题意可知【点睛】本题考查了一元二次方程的解以及根与系数之间的关系熟练掌握基础知识是解题的关键解析:2016【分析】将x=a 代入2320190x x +-=,可得2320190a a +-=,然后由根与系数之间的关系得到3a b +=-,整理即可得到答案.【详解】解:由题意可知,2320190a a +-=,3a b +=-,232019a a ∴+=,24a a b ∴++23()a a a b =+++20193=-2016=.【点睛】本题考查了一元二次方程的解以及根与系数之间的关系,熟练掌握基础知识是解题的关键.三、解答题21.(1)12;(2)获得50元购物券的概率最大. 【分析】(1)由转盘被均匀地分为20份,他此时获得购物券的有10份,直接利用概率公式求解即可求得答案;(2)分别求得获得200元、100元、50元的购物券的概率,即可求得答案. 【详解】 解:(1)∵转盘被均匀地分为20份,他此时获得购物券的有10份,∴他此时获得购物券的概率是:=; (2)∵P (获得200元购物券)=,P (获得100元购物券)=,P (获得50元购物券)==, ∴他获得50元购物券的概率最大.22.(1)24;150°(2)见解析(3)1315【分析】(1)根据B 班的作品数量及占比即可求出第一批所抽取的4个班共征集的作品件数,再求出C 班的作品数量,求出其占比即可得到扇形的圆心角的度数;(2)根据C 班的作品数量即可补全统计图;(3)根据题意画出树状图,根据概率公式即可求解.【详解】(1)第一批所抽取的4个班共征集到作品为6÷25%=24套,∴C 班的作品数量为24-4-6-4=10套,故C 班的扇形的圆心角的度数为150°故答案为24;150°;(2)∵C班的作品数量为10套,故补全条形统计图如下:(3)依题意可得到树状图:∴P(抽取的作品在两个不同班级)=2613.3015【点睛】本题考查了统计调查与概率的求解,解题的关键是熟知利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A 或事件B的概率.也考查了统计图.23.(1)见解析;(2)4.【分析】(1)连接DN,根据直角三角形的性质、等腰三角形的性质以及平行线的判定与性质证得ON⊥NE即可证明;(2)连接ON,先根据直角三角形的性质求得AB=10,再由勾股定理可求BC=8,最后由等腰三角形的性质求解即可.【详解】解:(1)如图:连接DN∵∠ACB=90°,D为斜边的中点,∴CD=DA=DB=1AB,2∴∠BCD=∠B,∵OC=ON,∴∠BCD=∠ONC,∴∠ONC=∠B,∴ON//AB,∵NE⊥AB,∴ON⊥NE,∴NE为OO的切线;(2)如图:连接ON∵⊙O的半径为52∴CD=5∵∠ACB=90°,CD是斜边AB上的中线,∴BD=CD=AD=5,∴AB=10,∵AC=6∴BC=22=8106∵CD为直径∴∠CND=90°,且BD=CD∴BN=NC=4.【点睛】本题主要考查圆的切线判定和性质、直角三角形的性质、等腰三角形的性质以及平行线的判定与性质等知识点,掌握圆的切线判定和性质是解答本题的关键.24.(1)见解;(2)见解析;(3)M的坐标为(-1,0);(4)P的坐标为(2,0)【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)分别作出A,B,C关于点(1,0)的对称点A2,B2,C2即可.(3)连接A1A2,B1B2交于点M,点M即为所求.(4)连接BA2交x轴于点P,点P即为所求.【详解】解:(1)如图,△A1B1C1即为所求.(2)如图,△A2B2C2即为所求.(3)如图,点M即为所求,点M的坐标为(-1,0).(4)如图,点P即为所求,点P的坐标为(2,0).【点睛】本题考查作图——旋转变换,平移变换,轴对称最短问题等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.(1)①()4,0D ,顶点为()2,1-;②2n =或0n =;(2)131131322n n <<<-或 【分析】(1)①把n=2代入2223y x nx n n =-++-求得243y x x =-+经过配方即可求得顶点坐标;再令y=0,求出x 的值,可得A ,B 的坐标,根据OD OA OB =+可求出点D 的坐标;②设点A 的坐标为(x 1,0),点B 的坐标为(x 2,0),根据2AB BD =列式求解即可; (2)首先求出点P 的坐标,再根据抛物线与x 轴有两个交点以及点P 的纵坐标大于0求出n 的取值范围即可.【详解】(1)①把2n =代入2223y x nx n n =-++-,得243y x x =-+配方得,()221y x =--∴顶点为()2,1-令0y =,则()221=0x --解得,1x =或3,即点()()1,0,3,0,A B∴OA=1,OB=3∵.OD OA OB =+∴OD=4∴()4,0D②设点A 的坐标为(x 1,0),点B 的坐标为(x 2,0),则有,12=2bx x n α+=,2123b x n n ax ==+-, 2222121212()24x x x x x x n +=++=,2222224226226x x n n n n n +=--+=-+22222121212()2226226124x x x x x x n n n n n -=+-=-+--+=-∴21AB x x =-=122OA OB x x n +=+=222BD OD OB n x n n n =-=-=-=∵2AB BD = ∴2(n =解得,n=2,n=-6当n=-6时,点D 在点B 的左侧,不合题意,舍去,∴n=2;当点A 在x 轴负半轴,B 在x 轴正半轴上时,2AB OA =即OB OA =所以,抛物线对称轴为y 轴,此时0n =综上所述,2n =或0n =(3)∵CP 与x 轴没有公共点,∴CP//x 轴或CP 斜向上,当x=0时,23y n n =+-∴点P 的纵坐标为23n n +-,代入2223y x nx n n =-++-得 220-=x nx ,解得,0x =(舍去),2x n =,∴2(2,3)P n n n +-∴23n n +->0, ∴2113()24n +>解得,122n +>或122n +<-,即,12n >或12n <- ∵抛物线2223y x nx n n =-++-与x 轴交于点,A B ,∴△=22(2)4(3)0n n n --+->,解得,3n <,∴n 的取值范围为:11322n n <<<-或 【点睛】本题主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用函数图象,从而求出相关字母的取值.26.30名【分析】首先根据共支付给旅行社旅游费用54000元,确定旅游的人数的范围,然后根据每人的旅游费用×人数=总费用,设该单位这次共有x名员工去旅游.即可由对话框,超过25人的人数为(x-25)人,每人降低20元,共降低了20(x-25)元.实际每人收了[1000-20(x-25)]元,列出方程求解.【详解】解:设该单位这次共有x名员工去旅游.因为2000×25=50000<54000,所以员工人数一定超过25人.根据题意列方程得:[2000-40(x-25)]x=54000.解得x1=45,x2=30.当x1=45时,2000-40(x-25)=1200<1700,故舍去;当x2=30时,2000-40(x-25)=1800>1700,符合题意.答:该单位这次共有30名员工去旅游.【点睛】本题考查了列一元二次方程解实际问题的应用,一元二次方程的解法的运用,有利于培养学生应用数学解决生活中实际问题的能力.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.本题应注意的地方有两点:1、确定人数的范围;2、用人均旅游费用不低于1700元来判断,得到满足题意的x的值.。

【华东师大版】九年级数学上期末模拟试题(及答案)(1)

【华东师大版】九年级数学上期末模拟试题(及答案)(1)

一、选择题1.从﹣2,0,1,2,3中任取一个数作为a ,既要使关于x 一元二次方程ax 2+(2a ﹣4)x+a ﹣8=0有实数解,又要使关于x 的分式方程211x a ax x++--=3有正数解,则符合条件的概率是( ) A .15B .25C .35D .452.设口袋中有5个完全相同的小球,它们的标号分别为1,2,3,4,5.现从中随机摸出(同时摸出)两个小球并记下标号,则标号之和大于5的概率是( ) A .310B .35C .45D .7103.三张外观相同的卡片分别标有数字1,2,3,从中随机一次性抽出两张,则这两张卡片上的数字恰好都小于3的概率是( ) A .19B .16C .13D .234.下列事件发生的可能性为0的是( ) A .掷两枚骰子,同时出现数字“6”朝上B .小明从家里到学校用了10分钟,从学校回到家里却用了15分钟C .今天是星期天,昨天必定是星期六D .小明步行的速度是每小时50千米5.在ABC 中,90,4,3C AC BC ∠=︒==,把它绕AC 旋转一周得一几何体,该几何体的表面积为( ) A .24πB .21πC .16.8πD .36π6.以O 为中心点的量角器与直角三角板ABC 如图所示摆放,直角顶点B 在零刻度线所在直线DE 上,且量角器与三角板只有一个公共点P ,∠POB =40°,则∠CBD 的度数是( )A .50°B .45°C .35°D .40°7.如图,O 的半径为5,弦AB 的长为8,M 是弦AB 上的一个动点,则线段OM 可取的整数值有( )个A .1B .2C .3D .48.如图,AB 是⊙的直径,DB 、DE 分别切⊙O 于点B 、C ,若∠ACE =35°,则∠D 的度数是( )A .65°B .55°C .60°D .70°9.观察下列“风车”的平面图案,其中既是轴对称又是中心对称图形的有( )A .B .C .D .10.下列图形中,既是轴对称又是中心对称图形的是( )A .B .C .D .11.如图1,是某次排球比赛中运动员垫球时的动作,垫球后排球的运动路线可近似地看作抛物线,在图2所示的平面直角坐标系中,运动员垫球时(图2中点A )离球网的水平距离为5米,排球与地面的垂直距离为0.5米,排球在球网上端0.26米处(图2中点B )越过球网(女子排球赛中球网上端距地面的高度为2.24米),落地时(图2中点C )距球网的水平距离为2.5米,则排球运动路线的函数表达式为( ).A .2148575152y x x =--+ B .2148575152y x x =-++ C .2148575152y x x =-+ D .2148575152y x x =++ 12.关于x 的方程2mx 0x +=的一个根是1-,则m 的值为( )A .1B .0C .1-D .1或0二、填空题13.一个盒子中装有10个红球和若干个白球,这些球除颜色外都相同,摇匀后从中随机摸出一个球, 若摸到白球的概率为57,则盒子中原有的白球的个数为_________个. 14.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.15.桌上放有完全相同的三张卡片,卡片上分别标有数字2,1,4,随机摸出一张卡片(不放回),其数字为p ,随机摸出另一张卡片,其数字记为q ,则满足关于x 的方程x 2+px+q =0有实数根的概率是_____.16.如图,点C ,D 是半圈O 的三等分点,直径43AB =.连结AC 交半径OD 于E ,则阴影部分的面积是_______.17.如图,△ABC 内接于O ,∠BAC=45°,AD ⊥BC 于D , BD=6,DC=4,则AD 的长是_____.18.点)1,5Aa -与点()2,5Bb +-关于原点对称,则(a +b )2 020=____ .19.已知自变量为x 的二次函数4()()y ax b x b=++经过(,4),(2,4)m m +两点,若方程4()()0ax b x b++=的一个根为3x =,则其另一个根为__________.20.参加足球联赛的每两队之间都进行两场比赛,共要比赛90场,共有________个队参加比赛.三、解答题21.复工复学后,为防控冠状病毒,学生进校园必须戴口罩,测体温.某校开通了两种不同类型的测温通道共三条.分别为:红外热成像测温(A 通道)和人工测温(B 通道和C 通道).在三条通道中,每位同学都可随机选择其中的一条通过,周五有甲、乙两位同学进校园.(1)当甲同学进校园时,从人工测温通道通过的概率是______.(2)请用列表或画树状图的方法求甲、乙两位同学从不同类型测温通道通过的概率.22.2019年5月,某校八年级部分同学参加了学校首届“中国诗词大会”活动,根据学生的成绩划分为A、B、C、D四个等级,并绘制了不完整的两种统计图.根据图中提供的信息,回答下列问题:(1)请把条形图补充完整.(2)扇形统计图中,m=______.(3)某班要从B等级中的小明和小刚中选一人参加复赛,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去;否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.23.如图,在等腰直角ABC中,=90ACB∠,12AB=,P是AB上一个动点,连结CP,以CP为斜边构造等腰直角CPQ(C、Q、P按逆时针方向),射线PQ与CA交于点D.(1)证明:2=CP CD CA⋅.(2)若12QDDP=,求CP的长.(3)连接AQ,记Q关于直线AC的对称点为Q',若APC△的外接圆经过Q',则APQ的面积为________(直接写出答案).24.如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2.25.一网店经营一种玩具,购进时的单价是30元.根据市场调查表明:当销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该玩具的销售单价为x元(40x>),请你分别用x的代数式来表示销售量y件和销售该玩具获得利润w元,并把结果填写在表格中:销售单价(元)x销售量y(件)销售玩具获得利润w(元)x应定为多少元?(3)若该网店要完成不少于550件的销售任务,求网店销售该品牌玩具获得的最大利润是多少?26.已知关于x的方程kx2﹣(3k﹣1)x+2(k﹣1)=0.(1)求证:无论k为何实数,方程总有实数根;(2)若此方程有两个根x1,x2,且x12+x22=8,求k的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先利用判别式的意义得到a≠0且△=(2a﹣4)2﹣4a(a﹣8)>0,再解把分式方程化为整式方程得到x=34a+,利用分式方程有正数解可得到关于a的不等式组,则可求得a的取值范围,则可求得满足条件的整数a 的个数. 【详解】解:∵方程ax 2+(2a ﹣4)x+a ﹣8=0有两个不相等的实数根, ∴a≠0且△=(2a ﹣4)2﹣4a (a ﹣8)>0, 解得:a >﹣1且a≠0, 分式方程2311x a ax x++=--, 去分母得x+a ﹣2a =﹣3(x ﹣1),解得x =34a+, ∵分式方程2311x a ax x++=--有正数解, ∴34a +>0且34a+≠1, 解得a >﹣3且a≠1,∴a 的范围为﹣1<a 且a≠0,a≠1,∴从﹣2,0,1,2,3中任取一个数作为a ,符合条件的整数a 的值是2,3,即符合条件的a 只有2个, 故符合条件的概率是25. 故选:B . 【点睛】本题主要考查概率,掌握一元二次方程根的判别式,分式方程的解法是解题的关键.2.B解析:B 【分析】根据列表或画树状图方法列出所有可能性,根据概率公式计算即可. 【详解】 解:列表得于5的概率是123= 205.故选:B【点睛】本题考查了列表法或画树状图求概率,解题关键是根据列表法或画柱状图确定出所有可能性,注意本题同时摸出两个小球这一条件.3.C解析:C【分析】画出树状图即可求解.【详解】解:画树状图得:∵共有6种等可能的结果,而两张卡片上的数字恰好都小于3有2种情况,∴两张卡片上的数字恰好都小于3概率=13;故选:C.【点睛】本题考查的是概率,熟练掌握树状图是解题的关键.4.D解析:D【分析】事件发生的可能性是0,说明这件事情不可能发生.据此解答即可.【详解】解:A、掷两枚骰子,同时出现数字“6”朝上,是可能事件;B、小明从家里到学校用了10分钟,从学校回到家里却用了15分钟,是可能事件;C、今天是星期天,昨天必定是星期六,是必然事件,概率为1;D、小明步行的速度是每小时50千米,是不可能事件,概率为0.故选:D.【点睛】此题主要考查可能性的判断.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件发生的可能性为1,即P(必然事件)=1;不可能事件发生的可能性为0,即P(不可能事件)=0;如果A为不确定事件,那么0<P(A)<1.5.A解析:A【分析】以直线AC 为轴旋转一周所得到的几何体的表面积是圆锥的侧面积加底面积,根据圆锥的侧面积公式计算即可. 【详解】解:根据题意得:圆锥的底面周长6π=, 所以圆锥的侧面积165152ππ=⨯⨯=, 圆锥的底面积239ππ=⨯=,所以以直线AC 为轴旋转一周所得到的几何体的表面积15924πππ=+=. 故选:A . 【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了扇形的面积公式.6.D解析:D 【分析】根据切线的性质得到∠OPB =90°,证出OP //BC ,根据平行线的性质得到∠POB =∠CBD ,于是得到结果. 【详解】∵AB 是⊙O 的切线, ∴∠OPB =90°, ∵∠ABC =90°, ∴OP //BC ,∴∠CBD =∠POB =40°, 故选D . 【点睛】本题考查了切线的性质,平行线的判定和性质,熟练掌握切线的判定和性质是解题的关键.7.C解析:C 【分析】当M 与A 或B 重合时,达到最大值;当OM ⊥AB 时,为最小,从而确定OM 的取值范围即可解决问题. 【详解】 解:如图所示,过O作OM′⊥AB,连接OA,∵过直线外一点与直线上的所有连线中垂线段最短,∴当OM于OM′重合时OM最短,∵AB=8,OA=5,∴AM′=1×8=4,2∴在Rt△OAM′中,O M′=2222OA AM=--'=3,54∴线段OM长的最小值为3,最大值为5.所以,OM的取值范围是:3≤OM≤5,故线段OM长的整数值为3,4,5,共3个.故选:C.【点睛】本题考查的是勾股定理和最值.本题容易出现错误的地方是对点M的运动状态不清楚,无法判断什么时候会为最大值,什么时候为最小值.8.D解析:D【分析】连结BC,则由已知可以求得∠BCD与∠CBD的度数,最后由三角形的内角和定理可以得到∠D的度数.【详解】解:如图,连结BC,则由弦切角定理可知:∠ABC=∠ACE=35°,∵DB与⊙O相切,∴∠CBD=90°-∠ABC=90°-35°=55°,∵AB是⊙的直径,∴∠ACB=90°,∴∠BCD=180°-∠ACE-∠90°=55°,∴∠D=180°-∠BCD-∠CBD=70°,故选D .【点睛】本题考查圆的应用,灵活运用直线与圆相切的性质求解是解题关键.9.A解析:A【分析】根据轴对称图形和中心对称图形的两个概念对各选项分析判断即可得解.【详解】解:A、既是轴对称又是中心对称图形,故此项正确;B、是轴对称,不是中心对称图形,故此项错误;C、不是轴对称,是中心对称图形,故此项错误;D、是轴对称,不是中心对称图形,故此项错误.故选:A.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.10.B解析:B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故错误;B、是轴对称图形,是中心对称图形,故正确;C、不是轴对称图形,是中心对称图形,故错误;D、是轴对称图形,不是中心对称图形,故错误.故选B.【点睛】本题考查的是中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.11.A解析:A【分析】根据题意结合函数的图象,得出图中A、B、C的坐标,再利用待定系数法求出函数关系式即可.【详解】解:50.26 2.24 2.52+==(米)根据题意和所建立的坐标系可知,A(-5,12),B(0,52),C(52,0),设排球运动路线的函数关系式为y=ax2+bx+c,将A、B、C的坐标代入得:125252255042a b c c a b c ⎧-+=⎪⎪⎪=⎨⎪⎪++=⎪⎩, 解得,1485,,75152a b c =-=-=, ∴排球运动路线的函数关系式为2148575152y x x =--+, 故选:A .【点睛】 本题考查待定系数法求二次函数的关系式,根据题意得出图象所过点的坐标是正确解答的关键.12.A解析:A【分析】由关于x 的方程x 2+mx=0的一个根为-1,得出将x=-1,代入方程x 2+mx=0求出m 即可.【详解】解:∵-1是方程x 2+mx=0的根,∴1-m=0,∴m=1,故答案为:A.【点睛】此题主要考查了一元二次方程的解,由方程的根为-1,代入方程是解决问题的关键.二、填空题13.25【分析】设盒子中原有的白球的个数为个利用简单事件的概率计算公式可得一个关于x 的方程再解方程即可得【详解】设盒子中原有的白球的个数为个由题意得:解得经检验是所列分式方程的解则盒子中原有的白球的个数 解析:25【分析】设盒子中原有的白球的个数为x 个,利用简单事件的概率计算公式可得一个关于x 的方程,再解方程即可得.【详解】设盒子中原有的白球的个数为x 个, 由题意得:5107x x =+, 解得25x =,经检验,25x=是所列分式方程的解,则盒子中原有的白球的个数为25个,故答案为:25.【点睛】本题考查了简单事件的概率计算、分式方程的应用,熟练掌握简单事件的概率计算方法是解题关键.14.20【分析】利用频率估计概率设原来红球个数为x个根据摸取30次有10次摸到白色小球结合概率公式可得关于x的方程解方程即可得【详解】设原来红球个数为x个则有=解得x=20经检验x=20是原方程的根故答解析:20【分析】利用频率估计概率,设原来红球个数为x个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x的方程,解方程即可得.【详解】设原来红球个数为x个,则有1010x+=1030,解得,x=20,经检验x=20是原方程的根.故答案为20.【点睛】本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.15.【分析】画树状图列出所有等可能结果从中依据根的判别式找到使方程x2+px+q=0有实数根的结果数利用概率公式计算可得【详解】画树状图如下:由树状图知共有6种等可能结果其中使关于x的方程x2+px+q解析:1 2【分析】画树状图列出所有等可能结果,从中依据根的判别式找到使方程x2+px+q=0有实数根的结果数,利用概率公式计算可得.【详解】画树状图如下:由树状图知共有6种等可能结果,其中使关于x 的方程x 2+px+q=0有实数根的结果有3种结果,∴关于x 的方程x 2+px+q=0有实数根的概率为3=612, 故答案为12. 【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比. 16.【分析】连接OC 由点CD 是半圆O 的三等分点得到根据垂径定理得到OD ⊥AC ∠DOC=60°求得OE=CE=3根据扇形和三角形的面积公式即可得到结论【详解】解:连接OC ∵点CD 是半圆O 的三等分点∴∴OD 解析:332π-【分析】连接OC ,由点C ,D 是半圆O 的三等分点,得到AD CD CB ==,根据垂径定理得到OD ⊥AC ,∠DOC=60°,求得OE=3,CE=3,根据扇形和三角形的面积公式即可得到结论.【详解】解:连接OC ,∵点C ,D 是半圆O 的三等分点,∴AD CD CB ==,∴OD ⊥AC ,∠DOC=60°,∴∠OCE=30°,∵3AB =∴3∴3CE=3,∴S 阴影=S 扇形COD -S △OCE =260(23)133********ππ⋅⋅-⨯=-. 故答案为:3322π-. 【点睛】本题考查了扇形的面积的计算,垂径定理,含30°角的直角三角形的性质,正确的识别图形是解题的关键.17.12【分析】连接OAOBOC 过点O 作OE ⊥AD 于EOF ⊥BC 于F 根据圆周角定理得到∠BOC=90°再根据等腰直角三角形的性质计算求出OB 再由DF=BD-BF 得出DF 然后等腰直角三角形的性质求出OF 根解析:12【分析】连接OA 、OB 、OC 过点O 作OE ⊥AD 于E ,OF ⊥BC 于F ,根据圆周角定理得到∠BOC=90°,再根据等腰直角三角形的性质计算,求出OB ,再由DF=BD-BF 得出DF ,然后等腰直角三角形的性质求出OF ,根据勾股定理求出AE ,再根据AD=AE+OF 得到答案.【详解】解:∵BD=6,DC=4,∴BC=BD+DC=10∵∠BAC=45°,∴∠BOC=90°, ∴2522==OB BC 连接OA 、OB 、OC 过点O 作OE ⊥AD 于E ,OF ⊥BC 于F ,∴BF=FC=5,∴DF=BD-BF=1,∵∠BOC=90°,BF=FC∴OF=12BC=5, ∵AD ⊥BC ,OE ⊥AD ,OF ⊥BC ,∴四边形OFDE 为矩形,∴OE=DF=1,DE=OF=5,在Rt △AOE 中,227,=-=AE OA OE∴AD=AE+DE=12.【点睛】本题考查的是三角形的外接圆,掌握圆周角定理、垂径定理、等腰直角三角形的性质是解题的关键.18.【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数求出ab 的值然后相加计算即可得解【详解】∵点与点关于原点对称∴∴∴故答案为1【点睛】本题考查了关于原点对称的点的坐标关于原点的对称点横纵坐标都 解析:1【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数求出a 、b 的值,然后相加计算即可得解.【详解】∵点)A与点()2,5B b +-关于原点对称∴2=0b +∴1,2a b ==- ∴()()2 020 2 020211a b =++=- 故答案为1. 【点睛】本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数. 19.x=﹣1或﹣5【分析】根据题意该函数一定过点(04)可得两点的坐标进而求得对称轴根据解析式与方程的关系即可求得方程另一个根【详解】解:∵当x=0时=4∴m=0或m=﹣2∴二次函数经过或∴对称轴为直线解析:x=﹣1或﹣5【分析】根据题意该函数一定过点(0,4),可得(,4),(2,4)m m +两点的坐标,进而求得对称轴,根据解析式与方程的关系即可求得方程另一个根.【详解】解:∵当x=0时,4()()y ax b x b =++=4,∴m=0或m=﹣2,∴二次函数4()()y ax b x b =++经过(0,4),(2,4)或(2,4),(0,4)-,∴对称轴为直线x=1或x=﹣1,∵方程4()()0ax b x b++=的一个根为3x =,∴方程的另一个根为x=﹣1或﹣5,故答案为:x=﹣1或﹣5.【点睛】本题考查二次函数图象上的点的坐标特征、二次函数与一元二次方程的关系,熟练掌握二次函数的图象与性质,根据二次函数的对称性求解是解答的关键.20.10【分析】设共有x个队参加比赛根据每两队之间都进行两场比赛结合共比了90场即可得出关于x的一元二次方程解之即可得出结论【详解】解:设共有x个队参加比赛根据题意得:2×x(x-1)=90整理得:x2解析:10.【分析】设共有x个队参加比赛,根据每两队之间都进行两场比赛结合共比了90场即可得出关于x 的一元二次方程,解之即可得出结论.【详解】解:设共有x个队参加比赛,根据题意得:2×12x(x-1)=90,整理得:x2-x-90=0,解得:x=10或x=-9(舍去).故答案为:10.【点睛】本题考查了一元二次方程的应用,根据每两队之间都进行两场比赛结合共比了90场列出关于x的一元二次方程是解题的关键.三、解答题21.(1)23;(2)49【分析】(1)直接根据概率公式求解即可;(2)根据题意画出树状图得出所有等情况数,找出符合条件的情况数,然后根据概率公式即可得出答案.【详解】解:(1)共有三个通道,分别是红外热成像测温(A通道)和人工测温(B通道和C通道),∴从人工测温通道通过的概率是23;故答案为:23;(2)根据题意画树状图如下:共有9种等可能的结果,其中甲、乙两位同学从不同类型测温通道通过的有4种情况,则甲、乙两位同学从不同类型测温通道通过的概率是49.【点睛】此题考查的是用树状图法求概率.树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.(1)补图见解析;(2)10;(3)游戏不公平,理由见解析.【分析】(1)根据D等级有12人,所占百分比为30%,求得参加演讲比赛的学生总数,再用学生总数乘以B等级所占百分比得到B等级的人数,即可补全条形图;(2)用A等级的人数除以学生总数乘以100%得到m的值;(3)根据题意列出树状图,分别求出小明去和小刚去的概率即可判断.【详解】(1)参加演讲比赛的学生共有12÷30%=40(人),B等级的人数是40×20%=8(人).条形图补充:(2)4100%=10% 40故答案为:10.(3)列树状图得:从树状图可以看出所有可能的结果有12种,数字之和为奇数的有8种,则:P(小明)=812=23,P(小刚)=412=13,2 3≠13,故游戏规则不公平.【点睛】本题考查条形统计图和扇形统计图统计数据,概率的计算,熟练掌握统计图的对应关系以及画出树状图计算概率是解题的关键.23.(1)ACP PCD∆∆;(2)CP=3)6【分析】(1)根据已知条件证明△ACP∽△PCD即可求解;(2)根据等腰直角△ABC求出,设QD=x,得到DP=2x,QP=3x=CQ,利用勾股定理求出PC,CD,代入2=CP CD CA⋅求出x即可求解;(3)根据题意可知△APC的外接圆是以点Q为圆心,PQ为半径的圆,求出△AQQ’、△CQQ’均为等边三角形,再分别求出APQ的底和高,即可求解.【详解】(1)∵ABC和CPQ是等腰直角三角形∴∠A=∠CPQ=45°又∠ACP=∠PCD∴△ACP∽△PCD∴CP CDCA CP=∴2=CP CD CA⋅;(2)∵在等腰直角△ABC中,∠ACB=90°,AB=12∴AB2=AC2+BC2=2AC2∴设QD=x∵12 QD DP=∴DP=2x,QP=3x=CQ∴=,=∵2=CP CD CA⋅∴()2⋅解得∴CP==(3)∵∠CAB=45°,△PCQ是等腰直角三角形∴△APC的外接圆是以点Q为圆心,PQ为半径的圆∵Q关于直线AC的对称点为Q ,∴QC=QQ’=QP=QA=Q’A=CQ’∴△AQQ’、△CQQ’均为等边三角形,故△AQC为等腰三角形,设AC,QQ’交于H点,AQ’,PQ交于G点根据对称性可知QQ’⊥AC,AQ’⊥PQ,AH=12AC=32,∵∠QAC=12(180°-120°)=30°∴QH=12AQ,∴AQ2=QH2+AH2=14AQ2+AH2解得AQ=26∴PQ=AQ=26=AQ’∵AG=12AQ’=6∴APQ的面积为12QP×AG=12×26×6=6.故答案为:6.【点睛】此题主要考查圆的综合问题,解题的关键是熟知圆周角定理、相似三角形的判定与性质、等腰直角三角形的性质.24.(1)见解析;(2)见解析.【分析】(1)将三个顶点分别向下平移5个单位得到其对应点,再首尾顺次连接即可得;(2)将三个顶点分别绕原点O逆时针旋转90°后得到其对应点,再首尾顺次连接即可得.【详解】解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示.【点睛】本题主要考查作图-旋转变换与平移变换,解题的关键是掌握旋转变换和平移变换的定义与性质,并据此得到其变换后对应点.25.(1)101000x -+,210130030000x x -+-;(2)销售单价x 应定为50元或80元;(3)最大利润为8250元.【分析】(1)根据题意可直接进行列式求解即可;(2)由(1)可得210x 1300x 3000010000-+-=,然后求解即可;(3)由题意易得101000550x -+≥,然后可得4045x <≤,最后由二次函数的性质可进行求解.【详解】解:(1)由题意得:销售量()6001040101000y x x =--=-+;销售玩具获得利润()()23010100010130030000w x x x x =--+=-+-; 故答案为101000x -+,210130030000x x -+-;(2)由(1)及题意得:210x 1300x 3000010000-+-=,213040000x x -+=,解得:1250,80x x ==,∵40x >,∴1250,80x x ==;答:销售单价x 应定为50元或80元.(3)由题意得:101000550x -+≥,解得:45x ≤,∵40x >,∴4045x <≤,∵()2210130030000106512250w x x x =-+-=--+, ∴100a =-<,对称轴为直线65x =,∴当4045x <≤时,w 随x 的增大而增大,∴当x=45时,w 有最大值,即为()2104565122508250w =-⨯-+=; 答:销售该玩具所获最大利润为8250元.【点睛】本题主要考查二次函数的应用,会根据题意正确列式并明确二次函数的相关性质是解题的关键.26.(1)见解析;(2)-1或13 【分析】(1)根据方程kx 2﹣(3k ﹣1)x +2(k ﹣1)=0计算判别式的值得到△=(k +1)2≥0,即可证明结论;(2)利用根与系数的关系得到x 1+x 2=31k k -,x 1x 2=()21k k -,再根据x 12+x 22=8得出(31k k -)2﹣2•()21k k-=8,解此方程即可求解. 【详解】(1)证明:关于x 的方程kx 2﹣(3k ﹣1)x +2(k ﹣1)=0中,∵a =k ,b =﹣(3k ﹣1),c =2(k ﹣1),△()()231421k k k ⋅⋅=-﹣- 2296188k k k k ++=--221k k =++2(1)k =+,∴无论k 为任何实数,△0≥.∴无论k 为任何实数,方程总有实数根;(2)解:根据题意得x 1+x 2=31k k -,x 1x 2=()21k k -, ∵x 12+x 22=8,∴(x 1+x 2)2﹣2x 1x 2=8,∴(31k k -)2﹣2•()21k k-=8, 整理得3k 2+2k ﹣1=0,解得k 1=13,k 2=﹣1, 经检验k 1=13,k 2=﹣1为原方程的解, ∵k ≠0,∴k的值为﹣1或1.3【点睛】本题考查了根的判别式及根与系数关系,掌握一元二次方程根的判别式及根与系数的关系是解题的关键.。

华东师大版九年级数学上册期末复习综合测试题(含答案)

华东师大版九年级数学上册期末复习综合测试题(含答案)

华师大版九年级数学上册期末复习综合测试题(满分120分;时间:120分钟)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 代数式√a有意义的条件是( )A.a≠0B.a≥0C.a<0D.a≤02. 如果4x=5y(y≠0),那么下列比例式成立的是( )A.x4=5yB.x4=y5C.x5=y4D.xy=453. 下列二次根式中,可与√12进行合并的二次根式为( )A.√6B.√32C.√18D.√754. 下列计算正确的是()A.√82=√4 B.√(−3)2=3 C.√2+√3=√5 D.2+√2=2√25. 下列命题中,是真命题的是( )A.直角三角形都相似B.等腰三角形都相似C.矩形都相似D.正方形都相似6. 下列计算正确的是()A.√16=±4B.√27−√123=√9−√4=1C.(2−√5)(2+√5)=1D.√2√2=3√2−17. 一个三角形三边的长是6,8,10,同时平分这个三角形周长和面积的直线有()条.A.1B.2C.3D.48. 将一个边长为a的正方形硬纸板剪去四角,使它成为正八边形,求正八边形的面积()A.(2√2−2)a2B.79a2 C.√22a2 D.(3−2√2)a29. 如图,在△ABC中,点D在AB上,在下列四个条件中:①∠ACD=∠B;②∠ADC=∠ACB;③AC2=AD⋅AB;④AB⋅CD=AD⋅CB,能满足△ADC与△ACB相似的条件是()A.①、②、③B.①、③、④C.②、③、④D.①、②、④10. 如图,马航370失联后,“海巡31”船匀速在印度洋搜救,当它行驶到A处时,发现它的北偏东30∘方向有一灯塔B,海巡船继续向北航行4小时后到达C处,发现灯塔B在它的北偏东60∘方向.若海巡船继续向北航行,那么要再过多少时间海巡船离灯塔B最近?()A.1小时B.2小时C.√3小时D.2√3小时二、填空题(本题共计8 小题,每题3 分,共计24分,)11. 计算:tan60∘×cos30∘=________.12. 关于x的方程k2x2−(2k+1)x+1=0有两个不相等的实数根,则k的取值范围是________.13. 方程x2+4x+k=0的一个根是2,那么k的值是________;它的另一个根是________.14. 在△ABC中,AB=18,AC=12,点D、E分别是边AB、AC上一点,且AE=6,若△ADE与△ABC相似,则AD的长为________.15. 方程(2x−1)(x+3)=0的根是________.16. 如图,小明站在C处看甲、乙两楼楼顶的点A和E,A、E、C三点在同一直线上,甲乙两楼的底部D、B与C也在同一直线上,测得BC相距20米,DB相距20米,乙楼高BE为15米,则甲楼高(小明身高忽略不计)为________米.17. 如图,A、B两地间有一池塘阻隔,为测量A、B两地的距离,在地面上选一点C,连接CA、CB的中点D、E.若DE的长度为30m,则A、B两地的距离为________m.18. 林业工人为调查树木的生长情况,常用一种角卡为工具,可以很快测出大树的直径,其工作原理如图所示.现已知∠BAC=53∘8′,AB=0.5米,则这棵大树的直径约为________米.三、解答题(本题共计7 小题,共计66分,)=0.19. 解方程:2x2−3x+1220. 关于x的一元二次方程x2+(2m−3)x+m2+1=0.(1)当方程有两个不相等的实数根时,求m的取值范围;(2)若方程两实根x1,x2满足2x1+2x2=1,求m的值.21. 已知关于x的一元二次方程x2+(2k−1)x+k2=0有两个不等实根x1,x2.(1)求实数k的取值范围;(2)若方程两实根x1,x2满足x1+x2+x1x2−1=0,求k的值.22. 三角形ABC三个顶点的坐标分别为A(−2, −3),B(3, 2),C(2, −1),如果将这个三角形三个顶点的横坐标都加3,同时纵坐标都减1,分别得到点A1,B1,C1,依次用线段连接A1、B1、C1所得三角形A1B1C1.(1)分别写出点A1,B1,C1坐标;(2)三角形A1B1C1与三角形ABC的大小、形状和位置上有什么关系?23. 如图,爸爸和小莉在两处观测气球的仰角分别为α、β,两人的距离(BD)是200m,如果爸爸的眼睛离地面的距离(AB)为1.6m,小莉的眼睛离地面的距离(CD)为1.2m,那么气球的高度(PQ)是多少m?(用含α、β的式子表示)24. 服装柜在销售中发现某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六⋅一”儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现,如果每件童装每降价4元,那么平均每天就可多售出8件.要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少元?25. (1)如图一:小明想测量一棵树的高度AB,在阳光下,小明测得一根与地面垂直、长为1米的竹竿的影长为0.8米.同时另一名同学测量一棵树的高度时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),墙壁上的影长CD为1.5米,落在地面上的影长BC为3米,则树高AB为多少米.25.(2)如图二:在阳光下,小明在某一时刻测得与地面垂直、长为1m的杆子在地面上的影子长为2m,在斜坡上影长为1.5m,他想测量电线杆AB的高度,但其影子恰好落在土坡的坡面CD和地面BC上,量得CD=3m,BC=10m,求电线杆的高度.参考答案一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】B【解答】解:由题意得:a≥0.故选B.2.【答案】C【解答】解:4x=5y(y≠0),两边都除以20,得x5=y4.故选C.3.【答案】D【解答】解:化成最简二次根式后,如果被开方数相同才能合并.∵√12=2√3,√32=4√2,√18=3√2,√75=5√3,∴能与√12合并的二次根式是√75.故选D.4.【答案】B【解答】A、√82=√2,故此选项错误;B、√(−3)2=3,正确;C、√2+√3,无法计算,故此选项错误;D、2+√2,无法计算,故此选项错误.5.【答案】D【解答】解:A、直角三角形不一定相似,是假命题,故A选项错误;B、等腰三角形不一定相似,是假命题,故B选项错误;C、矩形不一定都相似,是假命题,故C选项错误;D、正方形一定都相似,是真命题,故D选项正确.故选D.6.【答案】D【解答】解:A、原式=4,所以A选项错误;B、原式=3√3−2√33=√33,所以B选项错误;C、原式=4−5=−1,所以C选项错误;D、原式=√2−√2√2=3√2−1,所以D选项正确.故选D.7.【答案】A【解答】(2)若直线交AB、BC于点M、N.如图,设BN=x,则BM=12−x,作MD⊥BC,由Rt△MBD∽Rt△ABC,可得MD=8(12−x)10(1)根据S△MBN=12MD⋅BN=12S△ABC,得BN=6+√6,BM=6−√6,即这样的直线存在,且只有一条,综上,同时平分这个三角形周长和面积的直线有1条.故选:A.8.【答案】A【解答】解:设剪去三角形的直角边长x,根据勾股定理可得,三角形的斜边长为√2x,即正八边形的边长为√2x,依题意得√2x+2x=a,则x=√2+2=(2−√2)a2,∴正八边形的面积=a2−4×12×(a√2+2)2=(2√2−2)a2.故选A.9.【答案】A【解答】解:∵∠A是公共角,∴当∠ACD=∠B时,△ADC∽△ACB(有两组角对应相等的两个三角形相似);当∠ADC=∠ACB时,△ADC∽△ACB(有两组角对应相等的两个三角形相似);当AC2=AD⋅AB时,即ACAB =ADAC,△ADC∽△ACB(两组对应边的比相等且夹角对应相等的两个三角形相似).当AB⋅CD=AD⋅CB,即CDAD =CBAB时,∠A不是夹角,则不能判定△ADC与△ACB相似;∴能够判定△ABC与△ACD相似的条件是:①②③.故选A.10.【答案】B【解答】解:作BD⊥AC于D,如下图所示:易知:∠DAB=30∘,∠DCB=60∘,则∠CBD=∠CBA=30∘.∴AC=BC,可得∠DBC=30∘,故CD=12BC,∵海巡船从A点继续向北航行4小时后到达C处,∴海巡船继续向北航行2小时到达D处.故选:B.二、填空题(本题共计8 小题,每题 3 分,共计24分)11.【答案】32【解答】解:原式=√3×√32=32.故答案为:32.12.【答案】k>−14且k≠0【解答】解:∵方程有两个不相等的实数根,∴k≠0且Δ=b2−4ac=(2k+1)2−4k2 =4k+1>0,∴k>−14且k≠0.故答案为:k>−14且k≠0.13.【答案】−12,−6【解答】解:设方程另一根为x1,∵方程x2+4x+x=0的一个根是2,∴4+4×2+x=0,解得x=−12,∵x1+2=−4,∴x1=−6.故答案为−12,−6.14.【答案】4或9【解答】解:∵∠xxx=∠xxx,∴当△xxx∽△xxx,则xxxx =xxxx,即xx18=612,解得xx=9;当△xxx∽△xxx,则xxxx =xxxx,即618=xx12,解得xx=4,综上所述,xx的长为4或9.故答案为4或9.15.【答案】x=12或x=−3【解答】解:∵(2x−1)(x+3)=0,∴2x−1=0或x+3=0,解得:x=12或x=−3,故答案为:x=12或x=−3.16.【答案】30【解答】解:∵xx // xx,∴△xxx∽△xxx.∴xxxx =xxxx,即2040=15xx.∴xx=40×1520=30(米).故答案为:30.17.【答案】60【解答】解:∵x、x分别是xx、xx的中点,xx=30x,∴xx=2xx=60x故答案为:60.18.【答案】0.5【解答】解:由题意可知∠xxx=12∠xxx=26∘34′,且xx=xx⋅tan∠xxx=0.5tan26∘34′≈0.25,∴树的直径为2xx=0.5,三、解答题(本题共计7 小题,每题10 分,共计70分)19.【答案】解:这里x=2,x=−3,x=12,∵△=9−4=5,∴x=3±√54.【解答】解:这里x=2,x=−3,x=12,∵△=9−4=5,∴x=3±√54.20.【答案】解:(1)根据题意得x=(2x−3)2−4(x2+1)>0,解得x<512.(2)根据题意得x1+x2=−2x+3,x1⋅x2=x2+1,∵2x1+2x2=1,∴ x 1⋅x 2=2(x 1+x 2),∴ x 2+1=−4x +6,解得x 1=−5,x 2=1,∵ x <512,∴ x =−5.【解答】解:(1)根据题意得x =(2x −3)2−4(x 2+1)>0,解得x <512.(2)根据题意得x 1+x 2=−2x +3,x 1⋅x 2=x 2+1,∵ 2x 1+2x 2=1,∴ x 1⋅x 2=2(x 1+x 2),∴ x 2+1=−4x +6,解得x 1=−5,x 2=1,∵ x <512, ∴ x =−5.21.【答案】解:(1)关于x 的一元二次方程x 2+(2x −1)x +x 2=0有两个不等实根x 1,x 2, ∴ x =(2x −1)2−4x 2=−4x +1>0,解得x <14,即实数x 的取值范围是x <14.(2)由根与系数的关系,得x 1+x 2=−(2x −1)=1−2x ,x 1x 2=x 2,∵ x 1+x 2+x 1x 2−1=0,∴ 1−2x +x 2−1=0,解得x =0或2,由(1)知x <14,∴ x =0.【解答】解:(1)关于x 的一元二次方程x 2+(2x −1)x +x 2=0有两个不等实根x 1,x 2, ∴ x =(2x −1)2−4x 2=−4x +1>0,解得x <14,即实数x 的取值范围是x <14. (2)由根与系数的关系,得x 1+x 2=−(2x −1)=1−2x ,x 1x 2=x 2,∵ x 1+x 2+x 1x 2−1=0,∴ 1−2x +x 2−1=0,解得x =0或2,由(1)知x <14, ∴ x =0.22.【答案】解:(1)∵ 三角形xxx 的顶点坐标分别是x (−2,−3),x (3,2),x (2,−1), ∴ 三个顶点的横坐标都加3,纵坐标都减1后,得x 1=(−2+3,−3−1)=(1,−4),x 1=(3+3,2−1)=(6,1),x 1=(2+3,−1−1)=(5,−2),即x 1(1, −4),x 1(6, 1),x 1(5, −2);(2)三角形x 1x 1x 1的大小、形状与三角形xxx 的大小、形状完全一样,仅是位置不同,三角形x 1x 1x 1是将三角形xxx 沿x 轴方向向右平移3个单位,再沿x 轴方向向下平移1个单位得到的.【解答】解:(1)∵ 三角形xxx 的顶点坐标分别是x (−2,−3),x (3,2),x (2,−1),∴ 三个顶点的横坐标都加3,纵坐标都减1后,得x 1=(−2+3,−3−1)=(1,−4),x 1=(3+3,2−1)=(6,1),x 1=(2+3,−1−1)=(5,−2),即x 1(1, −4),x 1(6, 1),x 1(5, −2);(2)三角形x 1x 1x 1的大小、形状与三角形xxx 的大小、形状完全一样,仅是位置不同,三角形x 1x 1x 1是将三角形xxx 沿x 轴方向向右平移3个单位,再沿x 轴方向向下平移1个单位得到的.23.【答案】气球的高度是200tan x tan x +1.2tan x +1.6tan xtan x +tan x x .【解答】过点x作xx⊥xx于点x,过点x作xx⊥xx于点x,设xx=xx,则xx=(x−1.6)x,xx=(x−1.2)x.在△xxx中,xxxx=90∘.则tan xxxx=xxxx.∴xx=x−1.6tan x.在△xxx中,xxxx=90∘.则tan xxxx=xxxx.∴xx=x−1.2tan x.∵xx+xx=xx.∴x−1.6tan x +x−1.2tan x=200.解,得x=200tan x tan x+1.2tan x+1.6tan xtan x+tan x.24.【答案】解:如果每件童装降价4元,那么平均每天就可多售出8件,则每降价1元,多售2件,设降价x元,则多售2x件.设每件童装应降价x元,依题意得(40−x)(20+2x)=1200,整理得x2−30x+200=0,解之得x1=10,x2=20,因要减少库存,故x=20.因此每件童装应降价20元.【解答】解:如果每件童装降价4元,那么平均每天就可多售出8件,则每降价1元,多售2件,设降价x元,则多售2x件.设每件童装应降价x元,依题意得(40−x)(20+2x)=1200,整理得x2−30x+200=0,解之得x1=10,x2=20,因要减少库存,故x=20.因此每件童装应降价20元.25.【答案】树高为5.25米.(2)作xx⊥xx于x.xx对应的旗杆的高度:根据同一时刻物高与影长成比例,得10÷2=5;xx对应的旗杆的高度:3÷1.5=2;故旗杆的高度是5+2=7x.【解答】解:(1)设从墙上的影子的顶端到树的顶端的垂直高度是x米.则解得10.8=x3,解得:x=3.75.∴树高是3.75+1.5=5.25(米),答:树高为5.25米.(2)作xx⊥xx于x.xx对应的旗杆的高度:根据同一时刻物高与影长成比例,得10÷2=5;xx对应的旗杆的高度:3÷1.5=2;故旗杆的高度是5+2=7x.。

【华东师大版】九年级数学上期末模拟试卷附答案

【华东师大版】九年级数学上期末模拟试卷附答案

一、选择题1.布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球之后不放回布袋,再摸第二个球,这时得到的两个球的颜色中有“一红一黄”的概率是( ) A .16B .29C .13D .232.下列说法:①“明天的降水概率为80%”是指明天有80%的时间在下雨;②连续抛一枚硬币50次,出现正面朝上的次数一定是25次( ) A .只有①正确B .只有②正确C .①②都正确D .①②都错误3.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( )个. A .20B .16C .12D .154.甲袋中装有3个白球和2个红球,乙袋中装有30个白球和20个红球,这些球除颜色外都相同.把两只袋子中的球搅匀,并分别从中任意摸出一个球,从甲袋中摸出红球记为事件A ,从乙袋中摸出红球记为事件B ,则 A .P (A )>P (B ) B .P (A )<P (B ) C .P (A )=P (B ) D .无法确定 5.若圆锥的底面半径为5cm ,侧面积为265cm π,则该圆锥的高是( )A .13cmB .12cmC .11cmD .10cm6.如图,⊙O 的半径为2,四边形ADBC 为⊙O 的内接四边形,AB =AC ,∠D =112.5°,则弦BC 的长为( )A .2B .2C .22D .237.如图,AB 为圆O 的直径,点C 在圆O 上,若∠OCA =50°,OB =2,则弧BC 的长为( )A .103π B .59πC .109π D .518π 8.如图,C 、D 是以AB 为直径的O 上的两个动点(点C 、D 不与A 、B 重合),在运动过程中弦CD 始终保持长度不变,M 是弦CD 的中点,过点C 作CP AB ⊥于点P .若3CD =,5AB =,PM x =,则x 的最大值是( )A .4B .5C .2.5D .239.下列图形中,是中心对称图形的是( )A .B .C .D .10.如图,在△ABC 中,以C 为中心,将△ABC 顺时针旋转34°得到△DEC ,边ED ,AC 相交于点F ,若∠A =30°,则∠EFC 的度数为( )A .60°B .64°C .66°D .68°11.点()13,P y 、Q ()24,y 是二次函数245y x x =-+的图象上两点,则1y 与2y 的大小关系为( ) A .12y y >B .12y y <C .12y y =D .无法确定12.《代数学》中记载,形如2833x x +=的方程,求正数解的几何方法是:“如图1,先构造一个面积为2x 的正方形,再以正方形的边长为一边向外构造四个面积为2x 的矩形,得到大正方形的面积为331649+=,则该方程的正数解为743-=.”小聪按此方法解关于x 的方程2100x x m ++=时,构造出如图2所示的图形,已知阴影部分的面积为50,则该方程的正数解为( ).A .6B .3532-C .532-D .535-二、填空题13.一个盒子中装有标号为1、2、3、4、5的五个小球,这些球除了标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于6的概率为______.14.新冠疫情期间,甲乙丙丁四人负责某小区门口的值岗,现在需要从4人中抽调2人进行流动执勤,请问抽中的两人恰好为甲乙的概率是_______.15.为了解某校九年级学生每周的零花钱情况,随机抽取了该校100名九年级学生,他们每周的零花钱x (元)统计如下: 组别(元) 40x <4060x ≤<6080x ≤<80100x ≤<人数6374017根据以上结果,随机抽查该校一名九年级学生,估计他每周的零花钱不低于80元的概率是_________.16.如图,AB 是半圆O 的直径,且4AB =,30BAC ︒∠=,则AC 的长为_________.17.如图,在平面直角坐标系中有一个等边OBA △,其中A 点坐标为()1,0,将OBA △绕顶点A 顺时针旋转120︒,得到11AO B ;将得到的11AO B 绕顶点B 顺时针旋转120︒,得到112B AO ;然后再将得到的112B AO 绕顶点2O 顺时针旋转120︒,得到222O B A …按照此规律,继续旋转下去,则2014A 点的坐标为________.18.在半径为4cm 的圆中,长为4cm 的弦所对的圆周角的度数为________19.已知二次函数2(0)y ax bx c a =++≠的对称轴为直线1x =-,与x 轴的一个交点B 的坐标为()1,0其图象如图所示,下列结论:①0abc <;②20a b -=;③当0y >时,1x >;④320b c +>;⑤当0x <时,y 随x 的增大而减小;其中正确的有____.(只填序号)20.若关于x 的一元二次方程240x x k ++=有两个相等的实数根,则k =______.三、解答题21.某中学为了解七年级学生对三大球类运动的喜爱情况,从七年级学生中随机抽取部分学生进行调查问卷,通过分析整理绘制了如下两幅统计图.请根据两幅统计图中的信息回答下列问题:(1)求参与调查的学生中,喜爱排球运动的学生人数,并补全条形图.(2)若该中学七年级共有400名学生,请你估计该中学七年级学生中喜爱篮球运动的学生有多少名?(3)若从喜爱足球运动的2名男生和2名女生中随机抽取2名学生,确定为该校足球运动员的重点培养对象,请用列表法或画树状图的方法求抽取的两名学生为一名男生和一名女生的概率.22.某种油菜籽在相同条件下的发芽实验结果如表:(1)a = ,b = ;(2)这种油菜籽发芽的概率估计值是多少?请简要说明理由;(3)如果该种油菜籽发芽后的成秧率为90%,则在相同条件下用10000粒该种油菜籽可得到油菜秧苗多少棵?参考答案23.如图,长方形ABCD 的长是a ,宽是b ,分别以A 、C 为圆心作扇形,用代数式表示阴影部分的周长L 和面积S (结果中保留π).24.在Rt ACB △中,90ACB ∠=︒,AC BC =,D 为AB 上一点,连结CD ,将CD 绕C 点逆时针旋转90°至CE ,连结DE ,过C 作CF DE ⊥交AB 于F ,连结BE .(1)求证:AD BE =.(2)试探索线段AD ,BF ,DF 之间满足的等量关系,并证明你的结论. (3)若15ACD =︒∠,31CD =+,求BF .(注:在直角三角形中,30°所对的直角边等于斜边的一半)25.已知抛物线23y ax bx =++经过点()3,0-,()2,5-.求此抛物线的解析式. 26.某地为刺激旅客来旅游及消费,讨论5月至9月推出全城推广活动.杭州某旅行社为吸引市民组团去旅游,推出了如下收费标准:某单位组织员工去旅游,共支付给该旅行社旅游费用54000元,请问该单位这次共有多少员工去旅游?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】解:画树状图如下:一共有6种情况,“一红一黄”的情况有2种,∴P(一红一黄)=26=13.故选C.2.D解析:D【分析】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能发生.【详解】①“明天的降水概率为80%”是指是指明天下雨的可能性是80%,不是有80%的时间在下雨,故①错误;②“连续抛一枚硬币50次,出现正面朝上的次数一定是25次”,这是一个随机事件,抛一枚硬币,出现正面朝上或者反面朝上都有可能,但事先无法预料,故②错误;①和②都是错误的.故选D.【点睛】本题考查概率的相关概念.不确定事件是可能发生也可能不发生的事件.正确理解随机事件、不确定事件的概念是解决本题的关键.3.C解析:C【分析】由摸到红球的频率稳定在25%附近,可以得出口袋中得到红色球的概率,进而求出白球个数即可得到答案.【详解】解:设白球个数为x 个,∵摸到红球的频率稳定在25%左右, ∴口袋中得到红色球的概率为25%, ∴4144x =+, 解得:12x =,经检验,12x =是原方程的解 故白球的个数为12个. 故选C 【点睛】本题主要考查了随机概率,利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键,应掌握概率与频率的关系,从而更好的解题.4.C解析:C 【分析】 根据P (A )=mn分别计算事件发生的概率,进行比较 . 【详解】 解:P (A )=22=3+25,P (B )=20230205=+ ∴P (A )=P (B ) 故选:C. 【点睛】掌握事件发生的概率的求法P (A )=mn是本题的解题关键. 5.B解析:B 【分析】先根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到12•2π•5•OA=65π,可求出OA=13,然后利用勾股定理计算圆锥的高. 【详解】 解:根据题意得12•2π•5•OA=65π,解得:OA=13,所以圆锥的高12.故选:B . 【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.6.C解析:C 【分析】如图:连接OB 、O C,先根据圆的内接四边形对角互补得到∠C=67.5°,再利用等腰三角形的性质和三角形内角和计算出∠BAC=45°,再根据圆周角定理可得∠BOC=90°,最后根据勾股定理求解即可. 【详解】解:∵四边形ADBC 为⊙O 的内接四边形,∠D =112.5° ∴∠C=180°-∠D =180°-112.5°=67.5° ∵AC=AB∴∠BAC=180°-2∠C=45° ∴∠BOC=90°∴BC=22222222OB OC +=+=. 故答案为C .【点睛】本题考查了圆内接四边形的性质、等腰直角三角形的性质和圆周角定理,掌握圆内接四边形的对角互补是解答本题的突破口.7.C解析:C 【分析】先根据等腰三角形的性质求出∠A ,再利用圆周角定理求得∠BOC ,最后根据弧长公式求求解即可. 【详解】解:∵∠OCA =50°,OA =OC , ∴∠A =50°, ∴∠BOC =100° ∵BO =2,∴1002101809BC l ππ⨯==. 故答案为C . 【点睛】本题主要考查了弧长公式应用以及圆周角定理,根据题意求得∠BOC 是解答本题的关键.8.C解析:C 【分析】 如图:延长CP 交O 于N ,连接DN ,易证12PM DN =,所以当DN 为直径时,PM 的值最大. 【详解】解:如图:延长CP 交O 于N ,连接DN .AB CN ⊥, CP PN ∴=, CM DM =, 12PM DN ∴=, ∴当DN 为直径时,PM 的值最大,最大值为52. 故选:C .【点睛】本题考查是圆的综合题,垂径定理,三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题.9.C解析:C 【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心可得答案. 【详解】解:A 、不是中心对称图形,故此选项不合题意; B 、不是中心对称图形,故此选项不符合题意; C 、是中心对称图形,故此选项符合题意; D 、不是中心对称图形,故此选项不合题意; 故选:C . 【点睛】此题主要考查了中心对称图形,关键是掌握中心对称图形的概念.10.B解析:B 【分析】由旋转性质得到∠D 和∠DCF 的度数,再由外角性质得到∠EFC 的度数即可. 【详解】解:由旋转的性质可得:∠D=∠A=30°,∠DCF=34°, ∴∠EFC=∠A+∠DCF=30°+34°=64°; 故选:B . 【点睛】本题考查旋转的性质以及三角形的外角性质,熟练掌握旋转的性质是解本题的关键.11.B解析:B 【分析】本题需先根据已知条件求出二次函数的图象的对称轴,再根据点A 、B 的横坐标的大小即可判断出y 1与y 2的大小关系. 【详解】解:∵二次函数y=x 2-4x+5的图象的对称轴是x=2, 在对称轴的右面y 随x 的增大而增大,∵点P (3,y 1)、Q (4,y 2)是二次函数y=x 2-4x+5的图象上两点, 2<3<4, ∴y 1<y 2. 故选:B . 【点睛】本题主要考查了二次函数图象上点的坐标特征,在解题时要能灵活应用二次函数的图象和性质以及点的坐标特征是本题的关键12.D解析:D 【分析】仿照题目中的做法可得空白部分小正方形的边长为52,先计算出大正方形的面积=阴影部分的面积+4个小正方形的面积,从而可得大正方形的边长,再用其减去两个空白正方形的边长即可. 【详解】解:如图2,先构造一个面积为2x 的正方形,再以正方形的边长为一边向外构造四个面积为52x 的矩形,得到大正方形的面积为255045025752⎛⎫+⨯=+= ⎪⎝⎭, ∴5252⨯=.故选:D . 【点睛】本题考查了一元二次方程的几何解法,读懂题意并数形结合是解题的关键.二、填空题13.【分析】首先根据题意画出树状图然后由树状图求得所有等可能的结果与两次摸出的小球的标号之和大于6的情况再利用概率公式即可求得答案【详解】解:画树状图如图所示:∵共有20种等可能的结果两次摸出的小球的标解析:2 5【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球的标号之和大于6的情况,再利用概率公式即可求得答案.【详解】解:画树状图如图所示:∵共有20种等可能的结果,两次摸出的小球的标号之和大于6的有8种结果,∴两次摸出的小球的标号之和大于6的概率为:82205;故答案为:25.【点睛】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.14.【分析】画树状图得出所有等可能的情况数找出甲乙两人被抽中的情况数即可确定所求的概率【详解】所有等可能的情况有12种其中甲乙两人被抽中的情况有2种则P(甲乙两人被抽中)=故答案为:【点睛】此题考查了列解析:1 6【分析】画树状图得出所有等可能的情况数,找出甲乙两人被抽中的情况数,即可确定所求的概率.【详解】所有等可能的情况有12种,其中甲乙两人被抽中的情况有2种,则P (甲乙两人被抽中)=21=126 故答案为:16 【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比. 15.【分析】先计算出样本中零花钱不低于80元的频率然后根据利用频率估计概率求解【详解】解:每周的零花钱不低于80元的概率是:故答案为:【点睛】本题考查了利用频率估计概率:大量重复实验时事件发生的频率在某 解析:17100【分析】先计算出样本中零花钱不低于80元的频率,然后根据利用频率估计概率求解.【详解】解:每周的零花钱不低于80元的概率是:17176374017100=+++, 故答案为:17100. 【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确. 16.【分析】先根据可求得进而可求得再利用弧长公式计算即可求得答案【详解】解:∵∴∴∵∴∴的长为故答案为:【点睛】本题考查了圆周角定理弧长公式的应用熟练掌握圆周角定理弧长公式是解决本题的关键 解析:43π 【分析】先根据30BAC ∠=︒可求得260BOC BAC ∠=∠=︒,进而可求得180120AOC BOC ∠=︒-∠=︒,再利用弧长公式计算即可求得答案.【详解】解:∵30BAC ∠=︒,∴260BOC BAC ∠=∠=︒,∴180120AOC BOC ∠=︒-∠=︒,∵4AB =, ∴122AO AB ==, ∴AC 的长为120241803ππ⋅⋅=, 故答案为:43π. 【点睛】 本题考查了圆周角定理,弧长公式的应用,熟练掌握圆周角定理,弧长公式是解决本题的关键.17.【分析】计算出的横坐标推出的横坐标再代入即可【详解】观察得知:;且当为偶数时的纵坐标为0;当为奇数时的纵坐标为归纳得出:;代入得;故答案为:【点睛】本题考查了图形的旋转变化正确归纳旋转的规律是解决本 解析:()3022,0【分析】计算出1234A A A A 、、、的横坐标,推出n A 的横坐标,再代入2014n =即可.【详解】 观察得知:152A =,2538222A =+=,38311222A =+=,411314222A =+=;且当n 为偶数时,n A 的纵坐标为0;当n 为奇数时,n A 归纳得出:()3112n n A +-=; 代入2014n =,得20143022A =;故答案为:()3022,0.【点睛】本题考查了图形的旋转变化,正确归纳旋转的规律是解决本题的关键.18.或【分析】首先根据题意画出图形然后在优弧上取点C 连接ACBC 在劣弧上取点D 连接ADBD 易得是等边三角形再利用圆周角定理即可得出答案【详解】解:如图在优弧上取点C 连接ACBC 在劣弧上取点D 连接ADBD解析:30或150︒【分析】首先根据题意画出图形,然后在优弧上取点C ,连接AC 、BC ,在劣弧上取点D ,连接AD 、BD ,易得OAB 是等边三角形,再利用圆周角定理,即可得出答案.【详解】解:如图,在优弧上取点C ,连接AC 、BC ,在劣弧上取点D ,连接AD 、BD ,4,4OA OB cm AB cm OA OB AB===∴== OAB ∴是等边三角形,601302180150AOB C AOB D C ∴∠=︒∴∠=∠=︒∴∠=︒-∠=︒∴所对的圆周角度数为:30或150︒故答案为:30或150︒.【点睛】本题考查圆周角定理及等边三角形的判定与性质,注意两种情况. 19.①②【分析】根据开口向上故;对称轴再y 轴的的左边根据同左异右故抛物线交y 轴的下方;对称轴为故有即抛物线与x 轴的交点有两个根据对称性可以得到交点为等信息利用这些信息进行答题【详解】解:根据开口向上故; 解析:①②【分析】根据开口向上,故0a > ;对称轴再y 轴的的左边,根据“同左异右”,故0b > ,抛物线交y 轴的下方;对称轴为1x =-,故有12b a-=- 即2b a =,抛物线与x 轴的交点有两个,根据对称性可以得到交点为121,3x x ==-等信息,利用这些信息进行答题.【详解】解:根据开口向上,故0a > ;对称轴再y 轴的的左边,根据“同左异右”,故0b > ,抛物线交y 轴的下方,故0c < ,因此0abc <①正确对称轴为1x =-,故有12b a-=- 即2b a = 故②20a b -=也正确 由抛物线知道,抛物线与x 轴的交点有两个,根据对称性可以得到交点为121,3x x ==-当当0y >时,图形上是在x 轴的上方,有1x >或者3x <- 故③错误当x=1是,由图可以知道0a b c ++= 即2220a b c ++= 由2b a =,便有320b c += 故④错误由图形可以知道当1x <-时,y 随x 的增大而减小,当1x ≥-时,y 随x 的增大而增大,故⑤错误故答案为①②【点睛】本题考查二次函数图像,从图像中获取信息是关键,20.4【分析】根据一元二次方程根的判别式可直接进行求解【详解】解:∵关于的一元二次方程有两个相等的实数根∴解得:;故答案为:4【点睛】本题主要考查一元二次方程根的判别式熟练掌握一元二次方程根的判别式是解 解析:4【分析】根据一元二次方程根的判别式可直接进行求解.【详解】解:∵关于x 的一元二次方程240x x k ++=有两个相等的实数根,∴224440b ac k ∆=-=-=,解得:4k =;故答案为:4.【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.三、解答题21.(1)学生人数21人,画图见解析;(2)180名;(3)23. 【分析】(1)首先求出总人数,进而可求出喜爱排球运动的学生人数,并补全条形图即可; (2)由总人数乘以喜爱篮球运动的学生的百分数即可;(3)画树状图展示12种等可能的结果数,再找出抽取的两人恰好是一名男生和一名女生结果数,然后根据概率公式求解.【详解】(1)由题意可知调查的总人数1220%60=÷=(人)所以喜爱排球运动的学生人数6035%21=⨯=(人)补全条形图如图所示:(2)∵该中学七年级共有400名学生,∴该中学七年级学生中喜爱篮球运动的学生有()400135%20%180⨯--=名. 答:该中学七年级学生中喜爱篮球运动的学生有180名.(3)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好是一名男生和一名女生结果数为8, 所以抽取的两人恰好是一名男生和一名女生概率82123==. 【点睛】此题考查条形统计图,列表法与树状图法,解题关键在于利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.22.(1)0.70,0.70;(2)0.70,理由见解析;(3)6300棵.【分析】(1)用发芽的粒数m ÷每批粒数n 即可得到发芽的频率m n; (2)6批次种子粒数从100粒逐渐增加到1000粒时,种子发芽的频率趋近于0.70,所以估计当n 很大时,频率将接近0.70,由此即可得出答案;(3)首先计算发芽的种子数,然后乘以90%即可得.【详解】(1)5600.70800a ==,7000.701000b == 故答案为:0.70,0.70;(2)这种油菜籽发芽的概率估计值是0.70理由:由表可知,这6批次种子粒数从100粒逐渐增加到1000粒时,种子发芽的频率趋近于0.70,则种子发芽的频率为0.70由频率估计概率可得:这种油菜籽发芽的概率估计值是0.70;(3)这种油菜籽发芽的种子数为100000.707000⨯=(粒)则700090%6300⨯=(棵)答:在相同条件下用10000粒该种油菜籽可得到油菜秧苗6300棵.【点睛】本题考查了频率的计算、利用频率估计概率等知识点,掌握频率的相关知识是解题关键. 23.22L b a b π=+-;212S ab b π=-.【分析】 由已知图知,阴影部分的周长是()12πb 22a b ⨯+-; 阴影部分的面积为,长方形的面积减去两个14圆的面积(半圆的面积). 【详解】 阴影部分的周长()122222L b a b b a b ππ=⨯+-=+-; 阴影部分的面积221=1242S ab b ab b ππ=-⨯-. 【点睛】此题考查的是列代数式,用到的知识点是半圆的周长和面积的计算方法.24.(1)证明见解析;(2)222AD BF DF +=,证明见解析;(3)BF =【分析】(1)将CD 绕C 点逆时针旋转90°至CE ,可得△DCE 是等腰直角三角形,再判定△ACD ≌△BCE (SAS ),即可得出AD =BE ;(2)连接FE ,根据CF 是DE 的垂直平分线,可得DF =EF ,再根据Rt △BEF 中,BE2+BF2=EF2,即可得出AD2+BF2=DF2;(3)根据∠BDE =15°=∠DEF ,可得∠BFE =30°,设BE =x,则BF =,2EF x DF ==,利用在Rt BDE △中,()2222x x +=,即可解得1x =,故可求出BF .【详解】(1)将CD 绕C 点逆时针旋转90°至CE ,可得DCE 是等腰直角三角形,90DCE ACB ∴∠=∠=︒,DC EC =,ACD BCE ∠∠∴=,在ACD △和BCE 中,AC BC ACD BCE DC EC =⎧⎪∠=∠⎨⎪=⎩,()SAS ACD BCE ∴△≌△,AD BE ∴=.(2)222AD BF DF +=.CF DE ⊥,DCE 是等腰直角三角形,连接FE ,如图所示,CF ∴是DE 的垂直平分线,DF EF ∴=,又ACD BCE ≌,45ABC ∠=︒,45CBF A ABC ∴∠=∠=︒=∠,90EBF ∴∠=︒,∴在Rt BEF △中,222BE BF EF +=,222AD BF DF ∴+=.(3)31CD =,DCE 是等腰直角三角形,62DE ∴= 15ACD ∠=︒,45A CDE ∠=∠=︒,15BDE DEF ∴∠=︒=∠,30BFE ∴∠=︒,设BE x =,则3BF x =,2EF x DF ==,∴在Rt BDE △中,()2222362x x x ++=,解得1x =, 3BF ∴=【点睛】本题主要考查了旋转的性质,勾股定理,等腰直角三角形的性质以及全等三角形的判定与性质的综合运用,解决问题的关键是作辅助线构造直角三角形,运用勾股定理进行计算求解.25.223y x x =--+【分析】将点3,0,2,5代入抛物线23y ax bx =++解方程组求出b 、c 的值即可得答案.【详解】由题意得,93304235a b a b -+=⎧⎨++=-⎩解得,12a b =-⎧⎨=-⎩, 则二次函数的解析式为223y x x =--+.【点睛】本题考查待定系数法求二次函数解析式,把抛物线上的点的坐标代入解析式确定字母的值是解题关键.26.30名【分析】首先根据共支付给旅行社旅游费用54000元,确定旅游的人数的范围,然后根据每人的旅游费用×人数=总费用,设该单位这次共有x名员工去旅游.即可由对话框,超过25人的人数为(x-25)人,每人降低20元,共降低了20(x-25)元.实际每人收了[1000-20(x-25)]元,列出方程求解.【详解】解:设该单位这次共有x名员工去旅游.因为2000×25=50000<54000,所以员工人数一定超过25人.根据题意列方程得:[2000-40(x-25)]x=54000.解得x1=45,x2=30.当x1=45时,2000-40(x-25)=1200<1700,故舍去;当x2=30时,2000-40(x-25)=1800>1700,符合题意.答:该单位这次共有30名员工去旅游.【点睛】本题考查了列一元二次方程解实际问题的应用,一元二次方程的解法的运用,有利于培养学生应用数学解决生活中实际问题的能力.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.本题应注意的地方有两点:1、确定人数的范围;2、用人均旅游费用不低于1700元来判断,得到满足题意的x的值.。

华东师大版数学九年级上册期末模拟试题50题含答案

华东师大版数学九年级上册期末模拟试题50题含答案

华东师大版数学九年级上册期末模拟试题50题含答案(填空题+解答题)一、填空题1_______.2.3.若方程2410x x --=的两个根为1x ,2x ,则12x x +的值为_____.4.如图,CD =3BD ,AF =FD ,则AE :AC =_____.5.经过两年的连续治理,三台县城市的大气环境有了明显改善,降尘量从50吨下降到40.5吨,则平均每年下降的百分率是_____________________. 【答案】10%【详解】设平均每年下降的百分率为x ,根据题意可得: 250(1)40.5x -=解此方程得:120.1 1.9x x ==,(不合题意,舍去), 即平均每年下降的百分率为10%.6.如图,ABC 中,CD AB ⊥于D ,E 是AC 的中点.若6AD =,DE =CD 的长等于______.7.计算:202120212)2)的结果是_______.8.Rt∵ABC中,∵C=90°,点D是斜边AB的中点,若CD=2,则AB=___.【答案】4【分析】根据直角三角形斜边的中线等于斜边的一半解题.【详解】解:在Rt∵ABC中,点D是斜边AB的中点,CD=2,∵AB=2CD=2×2=4,故答案为:4.【点睛】本题考查直角三角形斜边中线的性质,是重要考点,掌握相关知识是解题关键.9.“……日啖荔枝三百颗,不辞长作岭南人”.是荔枝在运输、储存中会有损坏,下表是销售人员随机抽取若干荔枝,进行荔枝损坏率的统计的一组数据.估计荔枝损坏的概率是 _______________ 【答案】0.1 答案不唯一【详解】由表格中的荔枝损坏的频率可得为0.1; 故答案是0.1;10.已知n n 的最小值为___.11.方程()()2222x x -=-的根是__. 【答案】2x =或4x =【分析】将方程右边整体移至左边,再将左边因式分解即可得. 【详解】解:移项,得:()()22220x x ---=, 将左边因式分解,得:()()2220x x ---=, 即()()240x x --=, ∵20x -=或40x -=, 解得:2x =或4x =, 故答案为:2x =或4x =.【点睛】本题主要考查用因式分解法解方程的能力,只有当方程的一边能够分解成两个一次因式,而另一边是0的时候,才能应用因式分解法解一元二次方程.分解因式时,要根据情况灵活运用学过的因式分解的几种方法.12.在比例尺为1:2000的地图上测得AB 两地间的图上距离为18cm ,则AB 两地间的实际距离为________m . 【答案】360【分析】首先设它的实际长度为x cm ,再根据比例尺的定义,列出比例式,解方程即可求得答案.注意单位换算.【详解】解:设它的实际长度为xcm ,由题意, 得:1:200018:x =, 解得:36000x =, ∵36000cm 360m.= 故答案为360.【点睛】比例尺=图上距离:实际距离,按照题目要求列出比例式进行计算即可. 13.在ABC 中,90C ∠=,6BC cm =,8CA cm =,动点P 从C 点出发沿C A B →→的路线以每秒2cm 的速度运动到点B ,则点P 出发________秒时,BCP 的面积是ABC 的面积的一半.S ABC ,此时面积的一半,此时【点睛】找出关键点是解题的关键14.若两个相似多边形的对应边的比是5∵4,则这两个多边形的周长比是______. 【答案】5∵4【分析】根据相似多角形性质:相似多角形对应边的比等于相似比,周长比等于相似比,面积比等于相似比的平方.【详解】根据相似多角形性质:若两个相似多边形的对应边的比是5∵4,则这两个多边形的周长比是5∵4, 故答案为:5∵4.15.如图,将矩形纸片ABCD 分别沿着AE ,CF 折叠,若B ,D 两点恰好都落在对角线的交点O 上,下列说法:①四边形AECF 为菱形;120AEC ∠=︒②;③若2AB =,则矩形ABCD ;AB ④:BC =:3,其中正确的说法是______.(填写序号)16.如图,在平面直角坐标系xOy 中,有一个等腰直角三角形AOB ,90OAB ∠=︒,直角边AO 在x 轴上,且1AO =.将Rt ∵AOB 绕原点O 顺时针旋转90°得到等腰直角三角形1A OB ,且12AO AO ,再将11Rt A OB △,绕原点O 顺时针旋转90°得到等腰直角三角形22A OB ,且212A O AO =……,依此规律,得到等腰直角三角形20212021A OB ,则点2022B 的坐标是______.【答案】()202220222,2--【分析】根据题意得出B 点坐标变化规律,进而得出点2022B 的坐标位置,进而得出答案.【详解】解:AOB ∆是等腰直角三角形,1OA =,1ABOA ,(1,1)B ,将Rt AOB ∆绕原点O 顺时针旋转90︒得到等腰直角三角形11AOB ,且12AO AO ,再将Rt △11AOB 绕原点O 顺时针旋转90︒得到等腰三角形22A OB ,且212A O AO ,依此规律,∴每4次循环一周,1(2,2)B -,2(4,4)B ,3(8,8)B ,4(16,16)B ,202245052÷=⋯⋯,∴点2022B 与2B 同在一个象限内,∴点20222022(2B -,20222)-.故答案为:2022(2-,20222)-.【点睛】此题主要考查了点的坐标变化规律及等腰直角三角形的性质,得出B 点坐标变化规律是解题关键.17=x 的取值范围是______.18.如图,点A ,B 分别在x 轴正半轴、y 轴正半轴上,点C ,D 为线段AB 的三等分点,点D 在等腰Rt OAE △的斜边OE 上,反比例函数ky x=过点C ,D ,交AE 于点F .若53DEF S =△,则k =______.19.计算2________.【答案】52x-.【分析】利用二次根式有意义的条件得到x≤2,再利用二次根式的性质化简得到原式=2﹣x+|x﹣3|,然后去绝对值后合并即可.20.如图,在ABC 中,90A ∠=︒,4AC =,5BC =.请用尺规作图法,求作ABD ∠,使得3tan 4ABD ∠=,且点D 在边AC 上.(保留作图痕迹,不写作法)21.在数1-、1、2中任取两个数(不重复)作为点的坐标,则该点刚好在一次函数2y x =-图象的概率是________________.所有等可能的情况有6种,其中该点刚好在一次函数y=x-2图象上的情况有:(1,-1)共1种,则16P =故答案为:16 【点睛】此题考查了列表法与树状图法,以及一次函数图象上点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.22.如果m 、n 是两个不相等的实数,且满足m 2-2m =1,n 2-2n =1,那么代数式2m 2+4n 2-4n +2015= ______ . 【答案】2029【详解】试题解析:,m n 满足2221,2 1.m m n n -=-= ,,m n ∴为方程2210x x --=的两个实数根,2212,12m m n n =+=+,2, 1.m n mn ∴+==-∵2224420152(12)4(12)42015m n n m n n +-+=+++-+,244842015,m n n =+++-+4420212029.m n =++=故答案为2029.点睛:一元二次方程20(0)ax bx c a ++=≠根与系数的关系满足:23______.24.如图,在∵ABC中,AB=AC=5,BC=8,点D是边BC上(不与B,C重合)一动点,∵ADE=∵B=α,DE交AC于点E,若∵DCE为直角三角形,则BD的值为_____.25.在平面直角坐标系中,(1,0),A B ,过点B 作直线BC∵x 轴,点P 是直线BC上的一个动点以AP 为边在AP 右侧作Rt APQ ,使90APQ ︒∠=,且:AP PQ =连结AB 、BQ ,则ABQ 周长的最小值为___________.ABQ C =OP =O 'P 得到答案.t R APQ 中,1:3PQ =2AQ AP =Rt OAB ∆中,~AOB APQ ∴OA AB AP AQ∴=,∵OAB OAP BAQ ∴∠=∠OAP BAQ ∴21BQ AQ OP AP ∴== 2BQ OP ∴=.∵OA =1.OB =3,ABQ C AB AQ ∴=+P 为直线作O 关于直线)min ABQ C 即ABQ 的最小值为故答案为:26=________.27.如图:正方形ABCD 、正方形BEFG 和正方形DMNK 的位置如图所示,点A 在线段NF 上,6AE =,则NFP △的面积为________.【答案】18【分析】先由条件可以证明△KNA ∽△EAF ,从而得出NK :EA =KA :EF ,设BE =x ,则AB =8﹣x ,NK =y ,KA =y ﹣(8﹣x )=x +y ﹣8,可以求出y 的值,进而证明△KNA ≌△EAF ,利用平行线等分线段定理就可以得出FP =PM ,得出S △MNP =S △NPF ,进而利用正方形DMNK 求出△NFP 的面积.【详解】解:∵四边形BEFG 、DMNK 、ABCD 是正方形,∴∠E =∠EFG =90°,AE ∥MC ,MC ∥NK ,∴AE ∥NK ,∴∠KNA =∠EAF ,∴△KNA ∽△EAF ,∴NK :EA =KA :EF ,设BE =x ,则AB =6﹣x ,NK =y ,KA =y ﹣(6﹣x )=x +y ﹣6,28.如图,在∵ABC 中,AB AC =,AD 平分BAC ∠,点E 在AB 上,连结CE 交AD 于点F ,且AE AF =.以下命题:∵4BCE BAC ∠=∠;∵AE DF CF EF ⋅=⋅;∵AE EF AB CF=;∵1()2AD AE AC =+;正确的序号为______.【答案】∵∵∵【分析】设BCE x ∠=,根据等腰三角形角平分线的性质可求出=90DFC x ∠︒-,根据对顶角的性质可表示出EFA ,即可表示出EAF ∠,从而判断出∵;作AM EF ⊥于M ,证明AFM CFD △∽△,根据相似的性质即可判断∵; 过E 作EG AD ⊥于G ,证明AEG ABD △∽△,EFG CFD △∽△,根据相似的性质即可判断出∵;AB AC=∴⊥AD BC∴△Rt DFCAE AF=∴∠=AEF在∵AEF中,∠=EAFBAC∴∠故∵对;又=AE AF2=EF FM∠=AMF∴△∽△AFMAF FM∴=CF DF∴⋅AF DF又2=EF FM⋅=AF DF∵错;过E作EG易证AEG△∽△AE EG=又BD CDAE EF=AB CF延长AD使易证ABD△≌△== CN AB又=AE AF AEF ∴∠=∠CN FN =12AD AN =∵对;29.如图,在矩形ABCD 中,AB =6,AD =10,点E 在边AD 上运动,将∵DEC 沿EC 翻折,使点D 落在点D '处,若∵DEC 有两条边存在2倍的数量关系,则点D '到AD 的距离是_______.Rt D HE '中可解得,由D HE CFD ''∽,得,则2D F x '=,2CF y =DE HE +,可得2623x y y x +⎧⎨+⎩==,可得60DED '∠=︒,Rt ED H '中,解得2Rt DCE 中,2262DE +=(23DE =,12DE CE =,DCE =30°,∵DEC 沿EC ∵∵D 'EC =∵∵∵D 'EH =180°-∵Rt D HE '中,3D H D E sin D EH '''=∠;当12DE DC =时,作,延长HD 'Rt DCE 中,13DE =,CE ∵DEC 沿EC ∵∵ED 'C =∵D ∵∵HD 'E =90°-∵且∵D 'HE =∵∵D HE CFD ''∽,HE D H D E D F CF CD =''''=,12DE DC =, 12DE DC =, HE D H D E ''===Rt DCE 中,1CE =12,DE 63DE =12CD CE =,∵∵DEC =30°∵DEC 沿EC DEC ∠=∠DED '∠=Rt ED H '中,综上所述,DEC 有两条边存在故答案为:3或125或9. 【点睛】本题考查矩形性质及应用,涉及翻折、相似三角形判定与性质、勾股定理、解直角三角形等知识,解题的关键是分类画出图形,综合应用相关知识解决问题.二、解答题30.计算:(1(2)0-1(3-2π31.计算:(π﹣1)2+(﹣13)﹣13tan60°.32.小明开着汽车在平坦的公路上行驶,前放出现两座建筑物A、B(如图),在(1)处小颖能看到B建筑物的一部分,(如图),此时,小明的视角为30°,已知A建筑物高25米.(1)请问汽车行驶到什么位置时,小明刚好看不到建筑物B?请在图中标出这点.(2)若小明刚好看不到B建筑物时,他的视线与公路的夹角为45°,请问他向前行驶了多少米?(精确到0.1)【答案】(1)汽车行驶到E点位置时,小明刚好看不到建筑物B;(2)他向前行驶了18.3米.【分析】1)连接FC并延长到BA上一点E,即为所求答案;(2)利用解Rt∵AEC求AE,解Rt∵ACM,求AM,利用ME=AM-AE求出他行驶的距离.33.如图,已知AB DC ∥,点E 、F 在线段BD 上,2AB DC =,2BE DF =,求证:A C ∠=∠.34.(1)153417311684⎛⎫⎛⎫⎛⎫-+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (2)2223113(2)32⎛⎫⎛⎫-⨯---÷- ⎪ ⎪⎝⎭⎝⎭(3(4)292)⎡⎤⨯+⎣⎦35.计算2(2)(3)(2√3−1)2−(√3+√2)(√3−√2)36.计算(1)tan30cos45sin 45sin60︒⋅︒+︒⋅︒(2)201()(2021)sin 3022cos302π----︒-+︒ (3)解方程:222(3)9x x -=-()()390x x --=∵123,9x x == 【点睛】本题考查了一元二次方程的解法,特殊角的三角函数值的运算,含零次幂、负整数指数幂的运算,掌握运算法则是解题的关键.37.如图,在平面直角坐标系中,已知点(),0A m ,(),0B n ,且m ,n 满足()2130m n ++-=,将线段AB 先向右平移1个单位长度,再向上平移3个单位长度,得到线段DC ,其中点D 与点A 对应,点C 与点B 对应,连接AD ,BC ,CD ,得到平行四边形ABCD ,连接BD .(1)补全图形,并写出平行四边形ABCD 各顶点坐标;(2)平行四边形ABCD 的面积是多少?(3)在x 轴上是否存在点M ,使∵MBD 的面积等于平行四边形ABCD 的面积?若存在,求出点M 坐标;若不存在,请说明理由. 解:()21m ++解:()1,0A -()31AB =--则平行四边形)解:如图,设点MBD 的面积等于平行四边形12OD BM ∴⋅解得11a =或所以存在这样的点形,熟练掌握平移作图是解题关键.38.如图,在平面直角坐标系中,ABC 如图所示,(1)写出ABC 的三个顶点坐标;(2)画出将ABC 向右平移6个单位长度,再向上平移3个单位长度后的111A B C △,并写出1B 的坐标. 【答案】(1)()5,1A --,()4,4B --,()1,3C --(2)图见解析,()12,1B -【分析】(1)根据图象即可求解;(2)根据平移的性质作图,再根据图象写出坐标即可.(1)由图得:()5,1A --,()4,4B --,()1,3C --;(2)111A B C △如图所示:由图得,()12,1B -.【点睛】本题考查了作图-平移作图,坐标与图形,熟练掌握知识点并运用数形结合的思想是解题的关键.39.解方程:(1)()2316x -=(2)2240x x +-=(3)()()21321x x x -=-40.已知关于x的方程x2﹣(m+2)x+2m=0.(1)若该方程的一个根为x=1,求m的值;(2)求证:不论m取何实数,该方程总有两个实数根.【答案】(1)1;(2)见解析【分析】(1)将x=1代入方程中即可求出答案.(2)根据根的判别式即可求出答案.【详解】(1)将x=1代入原方程可得1﹣(m+2)+2m=0,解得:m=1.(2)由题意可知:∵=(m+2)2﹣4×2m=(m﹣2)2≥0,不论m取何实数,该方程总有两个实数根.【点睛】本题考查了一元二次方程,解答本题的关键是熟练运用根的判别式,本题属于基础题型.41.已知1<x<45x-.【答案】2x﹣6.【详解】试题分析:先将原式化简为:|1-x|-(5-x),继而求得答案.试题解析:解:∵1<x<4,∵原式=|1﹣x|﹣(5﹣x)=x﹣1﹣5+x=2x﹣6.故答案为2x ﹣6.42.如图,△ABC和△ADE都是等腰直角三角形,∵BAC=∵DAE=90°,四边形ACDE是平行四边形,CE交AD于点F,交BD于点G.甲,乙两位同学对条件进行分折后,甲得到结论:“CE=BD”.乙得到结论:“CD•AE=EF•CG”请判断甲,乙两位同学的结论是否正确,并说明理由.【答案】甲,乙两位同学的结论正确.理由见解析.【分析】利用SAS证明∵BAD∵∵CAE,可得到CE=BD;利用已知得出∵GFD=∵AFE,以及∵GDF+∵GFD=90°,得出∵GCD=∵AEF,进而得出∵CGD∵∵EAF,得出比例式;即可得出结论.【详解】甲,乙两位同学的结论正确.理由:∵∵BAC=∵DAE=90°,∵∵BAC+∵DAC=∵DAE+∵DAC,即:∵BAD=∵CAE,∵∵ABC和△ADE都是等腰直角三角形,∵AB=AC,AE=AD,∵∵BAD∵∵CAE(SAS),∵CE=BD,故甲正确∵∵BAD∵∵CAE,△BAE∵∵BAD,∵∵CAE∵∵BAE,∵∵BEA=∵CEA=∵BDA,∵∵AEF+∵AFE=90°,∵∵AFE+∵BEA=90°,∵∵GFD=∵AFE,∵ADB=∵AEB,∵∵ADB+∵GFD=90°,∵∵CGD=90°,∵∵FAE=90°,∵GCD=∵AEF,∵∵CGD∵∵EAF,43.如图,在ABC 中,D 为AC 的中点,DE AB ⊥,DF BC ⊥,垂足分别为点E ,F ,且DE DF =.(1)求证:ADE CDF ≌.(2)若AB AC =,DE =AB 的长. 【答案】(1)见解析;(2)4【分析】(1)根据HL 即可证明;(2)先证明ABC 是等边三角形,60A ∠=︒,再解直角三角形即可求得AB 的长度.【详解】(1)证明:∵DE AB ⊥,DF BC ⊥∵90DEA DFC ∠=∠=︒∵D 为AC 的中点∵AD CD =在Rt ADE △和Rt CDF △中AD CD DE DF =⎧⎨=⎩∵Rt Rt ADE CDF ≌△△(HL )(2)解:∵Rt Rt ADE CDF ≌△△∵A C ∠=∠∵AB AC =∵A B C ∠=∠=∠∵ABC 是等边三角形即60A ∠=︒,AB AC =44.如图,在Rt ABC 中,90B ,BC =30C ∠=︒.点D 从点C 出发沿CA 方向以每秒2个单位长的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以每秒1个单位长的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D E ,运动的时间是t 秒()0t >.过点D 作DF BC ⊥于点F ,连接DE ,EF .(1)求AB AC ,的长;(2)求证:AE DF =;(3)当t 为何值时,DEF 为直角三角形?请说明理由. 秒时,DEF 为直角三角形,理由见解析)由直角三角形的性质和勾股定理得出方程,解方程即可;)利用已知用未知数表示出DF 90=︒时;90B ∠=2AC ∴=由勾股定理得,又AE t=,AE DF=;3)解:当52t=秒时,DEF为直角三角形,理由如下:分情况讨论:时,则DE BC∥=∵C=30°,2AE DF.AE=DF,四边形AEFDAD EF,ADE=∵DEFAED=30°,1 2AE=,秒时,DEF 为直角三角形.【点睛】本题是四边形综合题目,考查了平行四边形的判定、菱形的判定与性质、勾股定理、直角三角形的性质等知识.理解相关知识是解答关键.45.感知:数学课上,老师给出了一个模型:如图1,点A 在直线DE 上,且90BDA BAC AEC ∠=∠=∠=︒,像这种一条直线上的三个顶点含有三个相等的角的模型我们把它称为“一线三等角”模型.(1)如图2,Rt ABC △中,90ACB ∠=︒,CB CA =,直线ED 经过点C ,过A 作AD ED ⊥于点D ,过B 作BE ED ⊥于点E .求证:BEC CDA ≌;(2)如图3,在ABC 中,D 是BC 上一点,90CAD ∠=︒,AC AD =,DBA DAB ∠=∠,AB =C 到AB 边的距离;(3)如图4,在ABCD 中,E 为边BC 上的一点,F 为边AB 上的一点.若DEF B ∠=∠,10AB =,6BE =,求EF DE 的值. 证明BEC CDA ≌即可;,过C 作CE AB ⊥≌CAE ADF 即可求解;,故BFE MED ∽,由相似三角形的性质可求.90︒,BCE ACB ∠+∠90BCE +∠=︒,∵()BEC CDA AAS ≌(2)解:如图,过D1在CAE 和△===CEA AFD CAE AC AD ∠∠∠∠∵()CAE ADF AAS ≌3CE AF ==,即点(3)解:如图,过D∵BFE MED ∽,. 【点睛】本题考查了全等三角形的判定与性质,平行四边形的性质,相似三角形的判定与性质,熟练运用全等三角形的判定与性质、相似三角形的判定与性质是解题的关46.解方程:x 2-6x -7=0.【答案】1x =7 2x =-1.【详解】试题分析:首先将方程进行因式分解,然后进行求解.试题解析:方程可变形为:(x -7)(x+1)=0 解得:1x =7 2x =-1.考点:解一元二次方程.47.如图,已知Rt △ABC ,∵C =90°;求作:一个面积最大的等腰直角△CDE ,使等腰直角三角形的斜边CE 在边BC 上.【答案】作图见解析 【分析】当B 点与E 点重合时,等腰直角△CDE 面积最大.由此即可作线段BC 的垂直平分线与BC 交于点O ,再以O 为圆心,OC 长为半径作弧,与线段BC 的垂直平分线的交点即为点D (或D ),最后连接CD (或CD ')、BD (或BD ')即可.【详解】如图,ADE (或AD E ')即为所作.【点睛】本题考查作图—等腰直角三角形,线段垂直平分线的性质,等腰直角三角形的性质.掌握作线段垂直平分线的方法和等腰直角三角形的性质是解题关键.48.毕业晚会上有一个“砸蛋”节目,讲台桌上放了三枚形状、大小、颜色完全相同的彩蛋,其中两枚会砸出“金花四溅”.现从甲、乙、丙三位幸运同学中随机挑选一位砸蛋,且只能砸一次.求甲被选中且第一次能砸出“金花四溅”的概率.(用列表法或树状图法求解,能砸出“金花四溅”的彩蛋记为“金”,不能砸出“金花四溅”的彩蛋记为“空”)因此甲被选中且第一次能砸出“金花四溅”的概率为.49.“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.例如:图1有6个点,图2有12个点,图3有18个点,…,按此规律,求图8、图n 有多少个点?我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是616⨯=个;图2中黑点个数是6212⨯=个;图3中黑点个数是6318⨯=个;…,所以容易求出图8、图n 中黑点的个数分别是______、_________.请你参考以上“分块计数法”,先将下面的点阵进行分块(画在答题卡上),再完成以下问题:(1)第6个点阵中有______个圆圈;第n个点阵中有______个圆圈.(2)小圆圈的个数会等于331吗?请求出是第几个点阵.【答案】48;6n;(1)91;2-+;(2)会;第11个点阵n n331【分析】根据规律可求得图8中黑点个数和图n中黑点个数;(1)第2个图中2为一块,分为3块,余1,第3个图中3为一块,分为6块,余1;按此规律得:第6个点阵中6为一块,分为15块,余1,得第n个点阵中有:n×3(n-1)+1=3n2-3n+1;(2)令3n2-3n+1=331,方程有解则存在这样的点阵,据此解答.【详解】解:图8中黑点个数是6×8=48个;图n中黑点个数是6n个;(1)如图所示:第1个点阵中有:1个,第2个点阵中有:2×3+1=7个,第3个点阵中有:3×6+1=19个,第4个点阵中有:4×9+1=37个,第5个点阵中有:5×12+1=61个,第6个点阵中有:6×15+1=91个,…第n个点阵中有:n×3(n-1)+1=3n2-3n+1,故答案为:91,3n2-3n+1;(2)3n2-3n+1=331,n2-n-110=0,(n-11)(n+10)=0,n1=11,n2=-10(舍),∵小圆圈的个数会等于331,它是第11个点阵.【点睛】本题是图形类的规律题,采用“分块计数”的方法解决问题,仔细观察图形,根据图形中圆圈的个数恰当地分块是关键.。

华东师大版数学九年级上册期末模拟试题50题-含答案

华东师大版数学九年级上册期末模拟试题50题-含答案

华东师大版数学九年级上册期末模拟试题50题含答案(填空题+解答题)一、填空题1.方程220x x c -+=有一个根为1,则实数c 的值是________.2.在Rt △ABC 中,∠C =90°,AC =3,BC =4,则sin B 的值是_______. 3.用配方法解方程2610x x -+=,则方程可配方为__________.4m 的取值范围是___________.51=_______.6.如图,在一块边长为30cm 的正方形飞镖游戏板上,有一个半径为10cm 的圆形阴影区域,飞镖投向正方形任何位置的机会均等,则飞镖落在阴影区域内的概率为________(结果保留π).7.农机厂计划用两年时间把产量提高44%,如果每年比上一年提高的百分数相同,这个百分数为 ______.8.若ABC ∽DEF 的相似比为3:2,6AB =,则DE =______;若8EF =,则BC =______;若80A ∠=︒,=60B ∠︒,则F ∠=_____°.9.如图,点D 在ABC 的边AC 上,要判定ADB 与ABC 相似,则需要添加一个条件是_______.10.如图,在菱形ABCD 中,对角线AC 、BD 交于点O ,E 为AD 的中点,OE =3,∽ABC =60°,则BD =___.11.如图,将45︒的∽AOB 按图摆放在一把刻度尺上,顶点O 与尺下沿的端点重合,OA 与尺下沿重合,OB 与尺上沿的交点B 在尺上的读数为2cm ,若按相同的方式将37︒的∽AOC 放置在该尺上,则OC 与尺上沿的交点C 在尺上的读数约为____cm (结果精确到0.1 cm ,参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈)12.一只不透明袋子中有五个球面上分别标有数字1,2,3,4,5的小球,它们除所标数字不同外,其余全部相同,现搅匀后从中任意摸出两个小球,则两个小球上的数字和为偶数的概率为___________.13.sin60°的相反数是________.14.若0x >,0y >,50x y --=,则x y=__________. 15.总结:(1)可以通过多次试验,用一个事件发生的____来估计这一事件发生的_______. (2)当实验次数很大时,____比较稳定,稳定在相应的______附近.(3)(在一定合理性条件下)假设试验频率=理论概率,列出方程求解得要求的未知数值.16.在Rt ABC △中,90C ∠=︒,3sin 5A =,10AB =,,则AC 的长为_________. 17.如图,在ABC 中,D 、E 分别是AB 、AC 边上的点,且//DE BC ,若AD=5,DB=3,DE=4,则BC 等于____________.18.如图,ABC 中,6AB =,8BC =,点D ,E 分别是AB ,AC 的中点,点F 在DE 上,且90AFB ∠=︒,则EF =________.19.若关于x 的一元二次方程2(0)ax b ab =>的两个根分别是1m -和24m +,则b a=__________. 20.已知在平面直角坐标系中,点A 的坐标为(0,2),点B (m ,4-m )与点C 分别是直线l 及x 轴上的动点,则∽ABC 周长的最小值为________21.已知如图,DE 是ABC ∆的中位线,点P 是DE 的中点,CP 的延长线交AB 于点A Q ,那么:CPE ABC S S ∆∆=__________.22.如图,已知∽ABC ,∽DCE ,∽FEG ,∽HGI 是4个全等的等腰三角形,底边BC ,CE ,EG ,GI 在同一条直线上,且AB=2,BC=1,连接AI ,交FG 于点Q ,求QI 的长.23.有 6 张卡片,上面分别标有 0,1,2,3,4,5 这 6 个数字,将它们背面洗匀后,任意抽出一张,记卡片上的数字为 a ,若数 a 使关于 x 的分式方程2211a x x +=--的解为正数,且使关于 y 的不等式组2132y y y a +⎧->⎪⎨⎪≤⎩的解集为y < −2,则抽到符合条件的 a 的概率为_________;24是同类二次根式,则x =__________. 25.在实数范围内因式分解:22322x xy y --=________.26.一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同.现再将n 个白球放入布袋,搅匀后,使摸出1个红球的概率为29,则n 的值为_____.27.一元二次方程()3133x x x +=+的两个实数根中较大的根为________.28.已知两个相似三角形的相似比为2:3,其中较小三角形的面积是36,那么较大三角形的面积为_______.29.如图,ACB 90∠=︒,AC 2=,AB 4=,点P 为AB 上一点,连接PC ,则12PC PB +的最小值为________.二、解答题30.如图,ABC 三个顶点的坐标分别为()1,1A ,()4,2B ,()3,4C .(1)若111A B C △与ABC 关于y 轴成轴对称,请画出图形并写出顶点1A ,1B ,1C 的坐标;(2)已知点()3,0P ,判断PAB 的形状,并说明理由.31.如图,在∽ABC 中,AB =8cm ,BC =16cm ,点P 从点A 开始沿AB 向点B 以2m/s 的速度运动,点Q 从点B 开始沿BC 边向点C 以4cm/s 的速度运动,如果P 、Q 分别从A 、B 同时出发,4秒后停止运动.则在开始运动后第几秒,∽BPQ 与∽BAC 相似?32.如图,在ABC 中,90ACB ∠=︒,30A ∠=︒,CD AB ⊥于D ,点E 在AB 的延长线上,45E ∠=︒,8AB =,求:(1)BD 的长.(2)BE 的长.33.某校举行了自贡市创建全国文明城市知识竞赛活动,初一年级全体同学参加了知识竞赛.收集数据:现随机抽取了初一年级30名同学的“创文知识竞赛”成绩,分数如下(单位:分):整理分析数据:(1)请将图表中空缺的部分补充完整;(2)学校决定表彰“创文知识竞赛”成绩在90分及其以上的同学.根据上面统计结果估计该校初一年级360人中,约有多少人将获得表彰;(3)“创文知识竞赛”中,受到表彰的小红同学得到了印有龚扇、剪纸、彩灯、恐龙图案的四枚纪念章,她从中选取两枚送给弟弟,则小红送给弟弟的两枚纪念章中,恰好有恐龙图案的概率是______________.34.如图,某河的两岸PQ、MN互相平行,河岸PQ上的点A处和点B处各有一棵大树,AB=30米,某人在河岸MN上选一点C,AC∽MN,在直线MN上从点C前进一段路程到达点D,测得∽ADC=30°,∽BDC=60°,求这条河的宽度.(3≈1.732,结果保留三个有效数字).35.如图在Rt∽ABC中, ∽ACB=90°,CD∽AB于D.(1)请直接写出图中所有的相似三角形(2)你能得出CD2=AD·DB吗?为什么?36.今年5月份,十八中九年级学生参加了中考体育模拟考试,为了了解该校九年级(1)班同学的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制以下不完整的频数分布表和扇形统计图,根据图表中的信息解答下列问题:(1)求全班学生人数和m 的值.(2)求扇形统计图中的E 对应的扇形圆心角的度数;(3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.37.已知1<x <5-|x -5|.38.先化简,再求值:22(2)(2)a a b a b +-+,其中1a =-,b =39.若一个三位数的百位上的数字减去十位上的数字等于其个位上的数字,则称这个三位数为“差数”,同时,如果百位上的数字为a 、十位上的数字为b ,三位数t 是“差数”,我们就记:()()F t b a b =⨯-,其中,19a ≤≤,09b ≤≤.例如三位数514.∽514-=,∽514是“差数”,∽()()5141514F =⨯-=.(1)已知一个三位数m 的百位上的数字是6,若m 是“差数”,()9F m =,求m 的值; (2)求出小于300的所有“差数”的和,若这个和为n ,请判断n 是不是“差数”,若是,请求出()F n ;若不是,请说明理由.40.计算:(1(2).41.已知:如图,∽ABC 中,AB =4,D 是AB 边上的一个动点,DE∽BC ,连结DC ,设∽ABC 的面积为S ,∽DCE 的面积为S′.(1)当D 为AB 边的中点时,求S′∽S 的值;(2)若设,,S AD x y S'==试求y 与x 之间的函数关系式及x 的取值范围.42.如图,在ABC 中,点D 在BC 上,,AD AE BAD CAE AB AC∠∠==. (1)求证:BAC DAE △△;(2)当∽B =40°时,求∽ACE 的大小.43.(1)如图1,已知△ABC 是等边三角形,D ,E 分别为边AB ,AC 的中点,连接BE ,CD ,BE 与CD 交于点P .试判断:∽∽BPD 的度数为______;∽线段PB ,PD ,PE 之间的数量关系:PB ______PD +PE .(填写“>”或“<”或“=”)(2)若点E 是边AC 所在射线AC 上一动点(102CE AC <<). 按下列步骤画图: (∽)连接BE ,作点A 关于BE 所在直线的对称点D ,连接BD ;(∽)作射线DC ,交BE 所在直线于点P .小明所做的图形如图2所示,他猜想:PB PD PC =+.下面是小明的思考过程:如图2,延长PD 到F ,使得DF PC =,连接BF .发现BPC BFD △△≌,从而得到BP BF =,又因为60ABC ∠=︒所以可得60PBF ∠=︒,进而得到PBF △为等边三角形,从而得到线段PB ,PC ,PD 之间关系是PB PD PC =+.小华同学画图时,把点E 标在了边AC 的延长线上,请就图3按要求画出图形,猜想线段PB ,PC ,PD 之间的数量关系,并说明理由.(3)如图4,在ABC 中,若90ABC ∠=︒,AB BC =,点E 是射线AC 上一动点(102CE AC <<),连接BE ,作点A 关于直线BE 的对称点D ,连接DC ,射线DC 与射线BE 交于点P ,若PC m =,PB n =,请直接用m ,n 表示PD 的长.44.已知关于x 的一元二次方程()22210k x x -++=有两个实数根.(1)求k 的取值范围;(2)k 取最大整数时求方程的根.45.已知x 1,x 2是一元二次方程(a ﹣6)x 2+2ax +a =0的两个实数根.(1)是否存在实数a ,使﹣x 1+x 1x 2=4+x 2成立?若存在,求出a 的值;若不存在,请你说明理由;(2)求使(x 1+1)(x 2+1)为正整数的实数a 的整数值.46.设a ,b ,c 是∽ABC 的三条边,关于x 的方程12x 212a=0有两个相等的实数根,方程3cx+2b=2a 的根为x=0.(1)试判断∽ABC 的形状;(2)若a ,b 为方程x 2+mx-3m=0的两个根,求m 的值.47.在菱形ABCD 中,∽DCB =120°,E 为CD 上一点.图1 图2 图3(1)如图1,若∽DAE =30°,求证:BC =2CE .(2)F 为CB 上一点,∽EAF =30°.∽ 如图2,连接EF ,求证:EA 平分∽DEF .∽ 如图3,若BF =2FC ,求DE CE的值.48.一副直角三角板由一块含30°的直角三角板与一块等腰直角三角板组成,且含30°角的三角板的较长直角边与另一三角板的斜边相等(如图1)(1)如图1,这副三角板中,已知AB=2,AC=,A′D=(2)这副三角板如图1放置,将∽A′DC′固定不动,将∽ABC通过旋转或者平移变换可使∽ABC的斜边BC经过∽A′DC′′的直角顶点D.方法一:如图2,将∽ABC绕点C按顺时针方向旋转角度α(0°<α<180°)方法二:如图3,将∽ABC沿射线A′C′方向平移m个单位长度方法三:如图4,将∽ABC绕点A按逆时针方向旋转角度β(0°<β<180°)请你解决下列问题:∽根据方法一,直接写出α的值为:;∽根据方法二,计算m的值;∽根据方法三,求β的值.(3)若将∽ABC从图1位置开始沿射线A′C′平移,设AA′=x,两三角形重叠部分的面积为y,请直接写出y与x之间的函数关系式和相应的自变量x的取值范围.参考答案:1.1【分析】将1x =代入方程,求解即可.【详解】解:∽方程220x x c -+=有一个根为1,∽21210c -⨯+=,解得:1c =;故答案为:1.【点睛】本题考查一元二次方程的解.熟练掌握方程的解,是使等式成立的未知数的值,是解题的关键.2.35##0.6 【分析】先根据勾股定理求出AB 的长,再运用锐角三角函数的定义解答.【详解】解:∽在∽ABC 中,∽C =90°,AC =3,BC =4,∽AB ==5, ∽sin B =35AC AB =. 故答案为:35. 【点睛】本题考查了锐角三角函数的定义,勾股定理.正确记忆定义是解题关键. 3.(x -3)2=8【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可得出答案.【详解】解:∽x 2-6x +1=0,∽x 2-6x =-1,则x 2-6x +9=-1+9,即(x -3)2=8,故答案为:(x -3)2=8.【点睛】本题主要考查解一元二次方程的配方法,熟练掌握配方法的形式是解题的关键. 4.3m >【分析】利用二次根式有意义的条件得到m -3>0,然后解不等式即可.【详解】解:根据题意得m -3>0,解得m >3,即m 的取值范围为m >3.故答案为:m >3.【点睛】本题考查了分式及二次根式有意义的条件,解决本题的关键是熟练掌握二次根式有意义的条件.5.7【分析】先计算算术平方根,然后再计算减法运算,即可得到答案.1817=-=;故答案为:7.【点睛】本题考查了二次根式的加减运算,以及有理数的加减运算,解题的关键是掌握运算法则进行解题.6.9π##1π9 【分析】根据概率的公式,利用圆的面积除以正方形的面积,即可求解 【详解】解:根据题意得:飞镖落在阴影区域内的概率为2210309ππ⨯= 故答案为:9π 【点睛】本题考查了概率公式:熟练掌握随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数;P (必然事件)=1;P (不可能事件)=0是解题的关键.7.20%【分析】设每年比上一年提高的百分数为x ,根据农机厂计划用两年时间把产量提高44%,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设每年比上一年提高的百分数为x ,依题意得:(1+x )2=1+44%,解得:x 1=0.2=20%,x 2=﹣2.2(不合题意).故答案为:20%.【点睛】此题考查了一元二次方程的实际应用—增长率问题,熟记增长率问题的计算公式是解题的关键.8. 4 12 40【分析】根据相似三角形的对应角相等,对应边的比等于相似比,即可得到答案.【详解】解:∽ABC ∽DEF 的相似比为3:2,∽32AB BC DE EF ==,C F ∠=∠, ∽AB=6,EF=8, ∽6382BC DE ==, ∽4DE =,12BC =;∽180A B C ∠+∠+∠=︒,∽180806040C ∠=︒-︒-︒=︒,∽40F ∠=︒.故答案为:4;12;40.【点睛】本题考查了相似三角形的性质,熟练掌握相似三角形的性质是解题的关键. 9.ABD ACB ∠=∠(答案不唯一)【分析】根据相似三角形的判定定理,已知BAD BAC ∠=∠,进而再找一对相等的角即可 【详解】BAD BAC ∠=∠,ABD ACB ∠=∠ADB ABC ∴∽故答案为:ABD ACB ∠=∠(答案不唯一)【点睛】本题考查了相似三角形的判定,掌握相似三角形的判定定理解题的关键.10.【分析】先求出菱形的边长为6,利用三角函数可求出BO ,易得BD .【详解】解:O 为AC 的中点,E 为AD 的中点,OE =3,∽CD =6,∽∽ABC =60°,∽∽OBC =30°,∽BD ∽AC ,∽BO =BC =∽BD =【点睛】本题考查了菱形的性质以及解直角三角形,解题关键是求出菱形的边长为6. 11.2.7.【详解】解直角三角形的应用,等腰直角三角形的性质,矩形的性质,锐角三角函数定义,特殊角的三角函数值.过点B 作BD∽OA 于D ,过点C 作CE∽OA 于E .在∽BOD 中,∽BDO=90°,∽DOB=45°,∽BD=OD=2cm .∽CE=BD=2cm .在∽COE 中,∽CEO=90°,∽COE=37°, ∽tan 370.75CE OE︒=≈,∽OE≈2.7cm . ∽OC 与尺上沿的交点C 在尺上的读数约为2.7cm .12.25【分析】分别算出从5个小球中任意取出2个小球的可能性和两个小球上的数字和为偶数的可能性,然后根据概率的定义即可得到解答.【详解】解:从5个小球中任意取出2个小球有10种可能性:1和2、1和3、1和4、1和5、2和3、2和4、2和5、3和4、3和5、4和5,其中和为偶数的情况有4种:1和3、1和5、2和4、3和5,∽两个小球上的数字和为偶数的概率为42105=, 故答案为25 . 【点睛】本题考查概率的应用,算出总的可能性和某特殊情况的可能性是解题关键.13.【详解】∽sin60的相反数是故答案为 14.25【分析】根据题意原方程可变形为2250-=,再利用因式分解法解答,即可求解.【详解】解:∽0x >,0y >,50x y --=,∽2250-=,∽0=,∽0x >,0y >0≠,05=, ∽25x y =. 故答案为:25【点睛】本题主要考查了解一元二次方程,二次根式的性质,熟练掌握一元二次方程的解法是解题的关键.15. 频率 概率 频率 概率【解析】略16.8.【分析】根据题意,利用锐角三角函数可以求得BC 的长,然后根据勾股定理即可求得AC 的长. 【详解】解:在Rt ABC ∆中,90C ∠=︒,3sin 5A =, sin BCA AB ∴=,10AB =,6BC ∴=,8AC ∴=,故答案是:8.【点睛】本题考查解直角三角形,解答本题的关键是明确题意,利用锐角三角函数和勾股定理解答.17.325【详解】试题分析:由题意知AB=AD+DB=8,根据相似三角形的平行判定可得∽ADE∽∽ABC ,根据相似三角形的性质得AD DE AB BC=,即548BC =,因此可得BC=325. 考点:相似三角形的判定与性质18.1 【分析】首先根据三角形中位线的定理,得出DE 的长,再根据直角三角形斜边的中线等于斜边的一半,得出DF 的长,最后根据EF DE DF =-,即可算出答案.【详解】∽点D ,F 分别是AB ,AC 的中点∽DE 为ABC 的中位线 ∽12DE BC = 又∽8BC =∽4DE =又∽90AFB ∠=︒∽在Rt ABF点D 是AB 的中点 ∽12DF AB = 又∽6AB =∽3DF =又∽EF DE DF =-∽431EF =-=故答案为:1.【点睛】本题考查三角形中位线定理即应用,直角三角形的性质,本题解题的关键在熟练掌握直角三角形斜边的中线等于斜边的一半.19.4【分析】利用直接开平方法得到x =1240m m -++=,解得1m =-,则方程的两个根分别是2-与22=,然后两边平方得到b a=4.【详解】由2(0)ax b ab =>得2b x a =,解得x = ∽一元二次方程()20ax b ab =>的两个根分别是1m -和24m +,∽1240m m -++=,解得1m =-,∽一元二次方程()20ax b ab =>的两个根分别是2-与2,2=, ∽b a=4. 【点睛】本题考查直接开方法解一元二次方程方程,正数的平方根互为相反数等知识,掌握正数的平方根互为相反数是解题的关键.20.【分析】作点A 关于x 轴的对称点A ',关于直线l 的对称点A '',连接A A ''',交直线l 于点B ,交x 轴于点C .则AC A C '=,AB A B ''=,所以ABC ∆周长的最小值为A A '''的长.根据(,4)B m m -,可知点B 在直线4y x =-+上运动,据此解答即可.【详解】解:作点A 关于x 轴的对称点A ',关于直线l 的对称点A '',连接A A ''',交直线l 于点B ,交x 轴于点C .则AC A C '=,AB A B ''=,ABC ∴∆周长的最小值为A A '''的长.(,4)B m m -,∴点B 在直线4y x =-+上运动,∴直线l 与x 、y 轴的交点坐标分别为()()4,0,0,4E D ,∽45ADB ∠=︒,连接A D '',则根据轴对称图形的性质可知,90A DO ''∴∠=︒, A 的坐标为(0,2),(0,2)A '∴-,(2,4)A '',2A D ''∴=,6A D '=,A A '''∴=故答案为:【点睛】本题考查点、直线关于直线对称知识的应用,三角形的周长的最小值,点到直线的距离公式的应用,考查转化思想以及计算能力.21.1:8【分析】连结AP并延长交BC于点F,则S△CPE=S△AEP,可得S△CPE:S△ADE=1:2,由DE//BC可得∽ADE∽∽ABC,可得S△ADE:S△ABC=1:4,则S△CPE:S△ABC=1:8.【详解】解:连结AP并延长交BC于点F,∽DE∽ABC的中位线,∽E是AC的中点,∽S△CPE=S△AEP,∽点P是DE的中点,∽S△AEP=S△ADP,∽S△CPE:S△ADE=1:2,∽DE是∽ABC的中位线,∽DE∽BC,DE:BC=1:2,∽∽ADE∽∽ABC,∽S△ADE:S△ABC=1:4,∽S△CPE:S△ABC=1:8.故答案为1:8.【点睛】本题考查三角形的中位线定理,相似三角形的判定和性质,三角形的面积等知识,解题的关键是熟练掌握基本知识.22.43【分析】由题意得出BC=1,BI=4,则AB BC BI AB=,再由∽ABI=∽ABC ,得∽ABI∽∽CBA ,根据相似三角形的性质得∽BAI=∽ACB ,从而∽ABC=∽BAI ,求出AI ,根据全等三角形性质得到∽ACB=∽FGE ,于是得到AC∽FG ,得到比例式QI GI AI CI ==13,即可得到结果. 【详解】解:∽∽ABC 、∽DCE 、∽FEG 是三个全等的等腰三角形,∽HI=AB=2,GI=BC=1,BI=4BC=4,∽ABC=∽ACB , ∽AB BI =12,12BC AB =, ∽AB BC BI AB=, ∽∽ABI=∽ABC ,∽∽ABI∽∽CBA ,∽∽BAI=∽ACB ,∽∽ABC=∽BAI ,∽AB=AC ,∽AI=BI=4;∽∽ACB=∽FGE ,∽AC∽FG , ∽AC AB AI BI=, ∽QI=13AI=43. 故答案为:43. 【点睛】本题主要考查了平行线分线段成比例定理,全等三角形的性质,等腰三角形的性质,平行线的判定,以及三角形相似的判定与性质,正确理解AB∽CD∽EF ,AC∽DE∽FG 是解题的关键.23.23【分析】根据分式方程和不等式组解的情况求出a 的取值范围是24a -≤<,再确定符合条件的a 的值即可求出概率.【详解】解:关于 x 的分式方程2211a x x +=--的解为:122x a =-∽1202x a =->,解得:4a <, 又∽不等式组2132y y y a +⎧->⎪⎨⎪≤⎩的解集为:∽ < −2, 不等式2132y y +->的解集为:∽ < −2, ∽2a ≥-,∽24a -≤<∽0,1,2,3,4,5中符合条件的a 的值有0,1,2,3,∽抽到符合条件的 a 的概率为4263=, 故答案为:23.【点睛】本题考查了根据分式方程、不等式组解的情况求参数的取值范围,以及概率的求解,解题的关键是根据分式方程、不等式组解的情况求出a 的取值范围.24.7-【分析】由同类二次根式的定义,得到2521x x x +=+,解方程,然后结合最简二次根式的定义,即可得到答案.【详解】解:∽∽2521x x x +=+,整理得:24210x x +-=,∽(7)(3)0x x +-=,∽17x =-,23x =;当23x =∽7x =-;故答案为:7-.【点睛】本题考查了同类二次根式的定义和最简二次根式的定义,以及解一元二次方程,解题的关键是熟练掌握定义,正确求出一元二次方程的解.25.3x y x y ⎛⎫⎛⎫ ⎪⎪ ⎪⎪⎝⎭⎝⎭ 【分析】首先求出22322x xy y --=0的根,进而分解因式得出即可.【详解】当22322x xy y --=0,解得:x 1y ,x 2y ,∽22322x xy y --=3x y x y ⎛⎫⎛⎫ ⎪⎪ ⎪⎪⎝⎭⎝⎭.故答案为:3x y x y ⎛⎫⎛⎫ ⎪⎪ ⎪⎪⎝⎭⎝⎭.【点睛】此题主要考查了实属范围内分解因式,求出方程的根是解题关键.26.6【分析】根据概率的意义列方程求解即可.【详解】解:由题意得,221n ++=29, 解得,n =6,经检验,n =6是原方程的解,所以原方程的解为n =6,故答案为:6.【点睛】考查概率的意义,用频率估计概率,利用概率的意义列方程是正确解答的关键. 27.x =1.【分析】因式分解法解方程即可得.【详解】∽3x (x +1)−3(x +1)=0,∽3(x +1)(x −1)=0,则x +1=0或x −1=0,解得:x =−1或x =1,即两个实数根中较大的根为1,故答案为x =1.【点睛】考查一元二次方程的解法—因式分解法,熟练掌握提取公因式法是解题的关键. 28.81【分析】由相似三角形的面积比等于相似比的平方,得出两个三角形的面积比,即可得出较大三角形的面积. 【详解】相似三角形的面积比等于相似比的平方,∴:4:936:81S S ==较小三角形较大三角形,∴较大三角形的面积是81.故答案为:81.【点睛】本题主要考查相似三角形的面积比与相似比的关系,熟记相似三角形面积比是相似比的平方是解题关键.29.3【分析】过P 点作PM ∽BC 于点M ,将∽ACB 沿AB 向上翻折得到∽ADB ,过P 点作PN ∽BD 于点N ,先证得PM =12PB ,即有PC +12PB =PC +PM ,根据翻折的性质可知PN =PM ,即PC +12PB =PC +PM =PC +PN ,当P 、N 、C 三点共线时根据垂线段最短的原理即可求解.【详解】过P 点作PM ∽BC 于点M ,将∽ACB 沿AB 向上翻折得到∽ADB ,且∽ACB ∽∽ADB ,过P 点作PN ∽BD 于点N ,如图,∽在Rt ∽ACB 中,AC =2,AB =4,∽∽ABC =30°,∽BC=∽PM ∽BC ,∽在Rt ∽PMB 中,有PM =12PB , ∽PC +12PB =PC +PM , ∽∽ACB ∽∽ADB ,∽∽ABD =∽ABC =30°,∽PN ∽BD ,PB =PB ,∽∽PMB =∽PNB =90°,∽Rt ∽PNB ∽Rt ∽PMB ,∽PN =PM ,∽PC +12PB =PC +PM =PC +PN , ∽要求PN +PC 的最小值,∽可知当P 、N 、C 三点共线,根据垂线段最短可知,当CN ∽BD 时,CN 最小, 如图,∽CN ∽BD ,∽CBD =∽ABC +∽ABD =60°,BC =∽在Rt ∽ABN 中,CN =3, 则PC +12PB =PC +PM =PC +PN 的最小值是3, 即PC +12PB 最小为3, 故答案为:3.【点睛】本题考查了翻折的性质、接含特殊角的直角三角形、全等三角形的判定与性质以及垂线段最短的知识,构造出PC +12PB =PC +PM =PC +PN 是解答本题的关键. 30.(1)画图见解析;()11,1A -,()14,2B -,()13,4C -(2)PAB 是等腰直角三角形,理由见解析【分析】(1)根据111A B C △与ABC 关于y 轴成轴对称,可得()11,1A -,()14,2B -,()13,4C -,再顺次连接,即可求解;(2)利用勾股定理分别求出AP 、BP 、AB ,再根据勾股定理的逆定理,即可求解. (1)解:∽111A B C △与ABC 关于y 轴成轴对称,∽()11,1A -,()14,2B -,()13,4C -,如图所示,111A B C △即为所求;(2)解:PAB 是等腰直角三角形,理由如下:∽AP BP AB ===∽AP BP =,且222AP BP AB +=,∽PAB 是等腰直角三角形.【点睛】本题主要考查了图形的变换——轴对称,勾股定理及其逆定理,熟练掌握轴对称图形的性质,勾股定理及其逆定理是解题的关键.31.当x =0.8秒或2秒时,∽BPQ 与∽BAC 相似.【分析】设在开始运动后第x 秒,∽BPQ 与∽BAC 相似,由题意表示出AP ,PB ,BQ ,分两种情况考虑:当∽BPQ =∽C ,∽B =∽B 时,∽PBQ ∽∽CBA ;当∽BPQ =∽A ,∽B =∽B 时,∽BPQ ∽∽BAC ,分别由相似得比例,列出关于x 的方程,求出方程的解得到x 的值,即可得到结果.【详解】解:设在开始运动后第x 秒,∽BPQ 与∽BAC 相似,由题意得:AP =2x cm ,PB =(8-2x )cm ,BQ =4x ,分两种情况考虑:当∽BPQ=∽C,∽B=∽B时,∽PBQ∽∽CBA,∽BP BQBC AB=,即824168x x-=,解得:x=0.8,当x=0.8秒时,∽BPQ与∽BAC相似;当∽BPQ=∽A,∽B=∽B时,∽BPQ∽∽BAC,∽BP BQBA BC=,即824816x x-=,解得:x=2,当x=2秒时,∽BPQ与∽BAC相似.综上,当x=0.8秒或2秒时,∽BPQ与∽BAC相似.【点睛】此题考查了相似三角形的性质与判定,熟练掌握相似三角形的判定方法是解本题的关键.32.(1)2;(2)2【分析】(1)根据直角三角形30°角所对的直角边等于斜边的一半求出BC,再根据同角的余角相等求出∽BCD=30°,即可求出BD的长;(2)根据勾股定理列式求出CD的长,根据等角对等边求出DE=CD,再根据BE=DE-BD 进行计算即可得解.【详解】解:(1)∽∽ACB=90°,∽A=30°,AB=8,∽118422BC AB==⨯=,∽CD∽AB,∽∽BCD+∽ABC=90°,又∽∽A+∽ABC=90°,∽∽BCD=∽A=30°,∽114222BD BC==⨯=,(2)在Rt∽BCD中,∽CDB=90°,∽CD=∽∽E=45°,∽∽DCE=90°-45°=45°,∽∽DCE=∽E,∽DE CD==∽2BE DE BD=-=【点睛】本题考查了直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理的应用,同角的余角相等的性质,等角对等边的性质,熟记各性质是解题的关键.33.(1)见解析;(2)120人;(3)12.【分析】(1)根据频数分布表中的数据补全图形即可;(2)根据样本90分以上的百分率估计总体即可;(3)根据题意先画出树状图,得出共有12种等可能的结果数,再利用概率公式求解可得.【详解】(1)补全图表如下:(2)估计该校初一年级360人中,获得表彰的人数约为1036012030⨯=(人);(3)将印有龚扇、剪纸、彩灯、恐龙图案分别记为A、B、C、D,画树状图如下:则共有12种等可能的结果数,其中小红送给弟弟的两枚纪念章中,恰好有恐龙图案的结果数为6,所以小红送给弟弟的两枚纪念章中,恰好有恐龙图案的概率为12,故答案为:12.【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率,也考查了条形统计图与样本估计总体.34.26.0米【分析】过点B 作BE∽MN 于点E ,则CE=AB=30米,CD=CE+ED ,AC=BE ,在Rt∽ACD 中,由锐角三角函数的定义可知,AC CE DE +=tan∽ADC ,在Rt∽BED 中,BE ED =tan∽BDC ,两式联立即可得出AC 的值,即这条河的宽度.【详解】解:过点B 作BE∽MN 于点E ,则CE=AB=30米,CD=CE+ED ,AC=BE .设河的宽度为x ,在Rt∽ACD 中,∽AC∽MN ,CE=AB=30米,∽ADC=30°,∽AC CE DE +=tan∽ADC ,即x 30DE +,即30-.在Rt∽BED 中,BE ED =tan∽BDC ,即x ED .-,解得26.0≈. 答:这条河的宽度为26.0米.35.详见解析.【详解】试题分析:(1)由已知条件易证:∽ADC=∽BDC=∽ACB=90°,∽B=∽ACD ,∽A=∽BCD ,因此可得:∽ABC∽∽ACD , ∽ABC∽∽CBD ,∽ACD∽∽CBD ;(2)由∽ACD∽∽CBD 可得:AD:CD=CD:BD ,即CD 2=AD ⋅BD.试题解析:(1)∽Rt∽ABC 中, ∽ACB =90°,CD∽AB 于D ,∽∽ADC=∽BDC=∽ACB=90°,∽∽ACD+∽A=90°,∽A+∽B=90°,∽ACD+∽BCD=90°,∽∽ACD=∽B ,∽A=∽BCD ,∽∽ABC∽∽ACD , ∽ABC∽∽CBD ,∽ACD∽∽CBD ;(2)能得出CD 2=AD·DB ,理由如下:∽∽ACD∽∽CBD ,∽AD:CD=CD:BD,∽CD2=AD⋅BD.点睛:(1)由直角三角形斜边上的高把这个直角三角形分成的两个小直角三角形都和原直角三角形相似;(2)直角三角形斜边上的高是高把斜边分成的两条线段的比例中项. 36.(1)50,m=18;(2)72°;(3)23.【分析】(1)利用C分数段所占比例以及其频数求出总数即可,进而得出m的值;(2)用360°乘以E所占的百分比即可得出答案;(3)利用列表或画树状图列举出所有的可能,再根据概率公式计算即可得解.【详解】(1)由题意可得:全班学生人数:15÷30%=50(人);m=50﹣2﹣5﹣15﹣10=18(人);(2)扇形统计图中的E对应的扇形圆心角的度数是:360°×1050=72°;(3)画树状图:,共有6种结果,其中一男一女的结果有4种,所以P(一男一女)=42 63 =.【点睛】此题主要考查了频数分布,扇形图表和概率的求法.关键是掌握概率=所求情况数与总情况数之比,能正确从统计图中得到信息.37.2x-6【分析】直接利用x的取值范围,进而化简二次根式以及去绝对值进而得出答案.【详解】∽1<x<5,∽原式=|x﹣1|﹣|x﹣5|=(x﹣1)﹣(5﹣x)=x﹣1﹣5+x=2x﹣6.【点睛】本题考查了二次根式的性质与化简,正确化简二次根式是解题的关键.38.2a-42b;-11.【详解】试题分析:原式第一项利用单项式乘以多项式法则计算,第二项利用完全平方公式化简,去括号合并得到最简结果,把a与b的值代入计算即可求出值.试题解析:原式=2222444a ab a ab b+---=224a b-,当1a=-,b==1﹣12=﹣11.考点:整式的混合运算—化简求值.39.(1)633m =;(2)小于300的“差数”有101,110,202,211,220,n 是“差数”,()16F n =【分析】(1)设三位数m 的十位上的数字是x ,根据()=(6)F m x x -进行求解; (2)根据“差数”的定义列出小于300的所有“差数”,进而求解.【详解】解:(1)设三位数m 的十位上的数字是x ,∽()=(6)9F m x x -=,解得,3x =,∽个位上的数字为:633-=,∽633m =;(2)小于300的“差数”有101,110,202,211,220,∽101110202211220844n =++++=,显然n 是“差数”,()()8444(84)16F n F ==⨯-=.【点睛】本题是新定义问题,考查了解一元二次方程,理解新的定义是解题的关键.40.(1)(2)6.【分析】(1)将二次根式化简,再合并计算即可;(2)利用平方差公式计算即可.【详解】(15352555 35255=(2)623622236 126=-6=【点睛】本题考查了二次根式的混合运算和平方差公式,熟练运用相关性质是解题的关键.。

华东师大版数学九年级上册期末模拟试题50题(含答案)

华东师大版数学九年级上册期末模拟试题50题(含答案)

华东师大版数学九年级上册期末模拟试题50题含答案(填空题+解答题)一、填空题1.如图,梯形ABCD 中,AD∥BC ,∥A =90°,它恰好能按图示方式被分割成四个全等的直角梯形,则AB :BC =_____.2.某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启17秒,按此规律选一下去.如果不考虑其他因素,一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是__.3.已知1<a <2_____. 4.在Rt ABC 中,190,cos 2C A ︒∠==,那么A ∠的度数是___________. 5.如果一个三角形的三边长为5、12、13,与其相似的三角形的最长边的长为52,那么此三角形的周长为___,面积为___.6.计算的结果是_____.7=___________. 8.若两个三角形是相似形,其中一个三角形的两个角分别是60°、50°.则另一个三角形的最小的内角为_________. 9.已知654a b c==,且26a b c +-=,则a 的值为__________. 10.如图是用计算机模拟抛掷一枚啤酒瓶盖试验的结果,由此可以推断,抛掷该啤酒瓶盖一次,“凸面向上”的概率是___________. (精确到 0.001).11.下列事件是必然事件的是________.∥射击一次,中靶;∥100件某种产品中有2件次品,从中任取1件恰好是次品; ∥太阳从东方升起;∥一只不透明的袋子中有10个红球,从中任意摸出一个球是红球.12.计算:13.书架上有2本英语书,3本数学书,4本语文书,从中任意取出一本是数学书的概率是________.14.已知x m =是方程²230x x --=的一个解,则代数式22m m -的值为______. 15.已知1x ,2x 是方程230x x +-=的二根,则2112239x x x +++=________. 16.设α、β是方程220220x x +-=的两个实数根,则22a αβ++的值为 ___________.17.如图,已知矩形ABCD 与矩形EFGO 是位似图形,点P 是位似中心,若点B 、F 的坐标分别为()4,3、()2,1-,则点P 的坐标为______.18.若357a b c ==,且3249a b c +-=,则a b c ++=_________. 19.如图,在ABC 在,//DE BC ,23AD DB =,8ADE S =△,则四边形BDEC 的面积为_____.20.关于x 的方程kx 2+3x +1=0有实数根,则实数k 的取值范围是_____. 21.方程x 3-9x =0的解是_____.22.如图,四边形ABCD 是矩形,对角线相交于点O ,点E 为线段AO 上一点(不含端点),点F 是点E 关于AD 的对称点,连接CF 与BD 相交于点G .若2OG =,4OE =,则BD 的长________.23.若a 是方程2310x x -+=的解,计算:22331aa a a -++=______. 24.班里有18名男生,15名女生,从中任意抽取a 人打扫卫生,若女生被抽到是必然事件,则a 的取值范围是_____.25.如果关于x 的方程x 2+kx+9=0(k 为常数)有两个相等的实数根,则k=_____. 26.如图,在ABCD 中,ABC ∠的平分线BE 与AD 交于点,E BED ∠的平分线EF与DC 交于点F ,若8,2,2AB DE DF FC ===,则BE =______.27.如图,在直角坐标系中,点 E (-4, 2), F (-2, -2 ),以 O 为位似中心,按 2:1 的相似比把∆EFO 缩小为∆E 'F 'O ,则点 E 的对应点 E ' 的坐标为______________.28.设a 、b 为x 2+x ﹣2011=0的两个实根,则a 3+a 2+3a+2014b=________ . 29.如图,在平面直角坐标系中,已知点A 、B 、C 的坐标分别为()1,0-,()5,0,()0,2.若点P 从A 点出发,沿x 轴正方向以每秒1个单位长度的速度向B 点移动,连接PC 并延长到点E ,使CE PC =,将线段PE 绕点P 顺时针旋转90︒得到线段PF ,连接FB .若点P 在移动的过程中,使PBF ∆成为直角三角形,则点F 的坐标是__________.二、解答题30.∥ABC 在平面直角坐标系中的位置如图所示.将∥ABC 向右平移5个单位长度,再向下平移4个单位长度得到∥111A B C , ∥ABC 内部有一点D (m ,n )平移后的对应点为1D .(图中每个小方格边长均为1个单位长度) .(1)在图中画出平移后的∥111A B C ;(2)直接写出下列各点的坐标: 1C ___________,1D _____________; (3)求出∥A 1B 1C 1的面积.31.先化简,再求值:224431(1)1a a a a a a a++÷--+++,其中a 是方程228=0x x --的根.32.如图,平行四边形ABCD ,对角线,AC BD 交于点O ,点,E F 分别是,AB BC 的中点,连接EF 交BD 于G ,连接OE(1)证明:四边形COEF 是平行四边形(2)点G 是哪些线段的中点,写出结论,并选择一组给出证明. 33.计算:(1(2)32(1)(3)⎤--⎦34.在四边形ABCD 中,对角线AC ,BD 交于点O ,AC 平分∥BAD ,∥BAC =∥CBD ,AC =AD .(1)求证:∥ABC AOD ≌△△; ∥2DO OC AC =⋅; (2)当∥BAD =90°时,求ABAD的值. 35.如图,甲、乙为两座建筑物,它们之间的水平距离BC 为30m ,在A 点测得D 点的仰角∥EAD 为45°,在B 点测得D 点的仰角∥CBD 为60°,则乙建筑物的高度为多少米?36.如图,海中有一个小岛B ,它的周围14海里内有暗礁,在小岛正西方有一点A 测得在北偏东60°方向上有一灯塔C ,灯塔C 在小岛B 北偏东15°方向上20海里处,渔船跟踪鱼群沿AC 方向航行,每小时航行(1)如果渔船不改变航向继续航行,有没有触礁危险?请说明理由. (2)求渔船从A 点处航行到灯塔C ,需要多少小时?37.(1)解方程:23720x x ++=;(2)计算:2cos45sin30cos60︒+︒⋅︒+︒.38.(1)计算:2102331)2sin 30---⨯++︒(2)先化简,再求值:211()2x x x x x++÷-,其中.39.如图,在ABC 中,30B ∠=︒,6AB AD BC =⊥,于点D 且2tan 3CAD ∠=,求BC 的长.40.如图,已知ABC .(1)画出ABC 关于y 轴对称的图形111A B C △; (2)求111A B C △的面积.41.计算:()103.146012cos π-⎛⎫+⎭- ⎪⎝︒.42.在平面直角坐标系xOy 中,对于点P(x ,y),若点Q 的坐标为(ax+y ,x+ay),其中a 为常数,则称点Q 是点P 的“a 级关联点”例如,点P(1,4)的“3级美联点”为Q(31x +4,1+34x ),即Q(7,13).(1)已知点A(一2,6)的“12级关联点”是点1A ,求点1A 的坐标.(2)已知点M(m 一1,2m)的“一3级关联点”M’位于y 轴上.求点M’的坐标. 43.解方程:(1)2x 3x 10+-= (2) ()()x x 37x 3+=+ (3)2631x 1x 1-=-- 44.如图,有四张背面完全相同的卡片A B C D ,,,,小伟将这四张卡片背面朝上洗匀后摸出一张,放回洗匀后再摸一张.()1用树状图(或列表法)表示两次摸出卡片所有可能出现的结果(卡片可用A B C D ,,,表示);()2求摸出两张卡片所表示的几何图形是轴对称图形而不是中心对称图形的概率.45.某商场根据第二季度某品牌运动服装的S 号、M 号、L 号、XL 号、XXL 号销售情况绘制了如图所示的不完整的两幅统计图.根据图中信息解答下列问题:(1)第二季度该品牌运动服装的销售总量是 件,扇形统计图中XXL 号服装销量占总量的百分比是 ,XL 号所对应的圆心角度数是 ; (2)请补全条形统计图;(3)从M 号、XL 号运动服装中按照M 号,XL 号运动服装的销量比,分别取出一定数量的运动服,再取3件XXL 号运动服装,将它们放在一起,现从这些运动服装中,随机取出1件,取得M号运动服装的概率为35,求取出了M号、XL号运动服装各多少件?46.2021年秋学期泰兴市某初中举办“请党放心,强国有我”主题运动会,张同学报名参加运动会,有以下4个项目可供选择:田赛项目:铅球,跳远;径赛项目:100m,800m.(1)张同学从4个项目中任选一个,恰好是田赛项目的概率为______;(2)张同学从4个项目中任选两个,利用树状图或表格列举出所有可能的结果,并求恰好选的是一个田赛项目和一个径赛项目的概率.47.在▱ABCD中,∥C=45°,AD=BD,点P为射线CD上的动点(点P不与点D重合),连接AP,过点P作EP∥AP交直线BD于点E.(1)如图∥,当点P为线段CD的中点时,请直接写出P A,PE的数量关系;(2)如图∥,当点P在线段CD上时,求证:DA=DE;(3)点P在射线CD上运动,若AD=,AP=5,请直接写出线段BE的长.48.如图,四边形ABCD是矩形,点E在AD边上,点F在AD的延长线上,且BE=CF.(1)求证:四边形EBCF是平行四边形.(2)若∠BEC=90°,∠ABE=30°,ED的长.49.阅读下面材料:有公共顶点A的正方形ABCD与正方形AEGF按如图1所示放置,点E,F分别在边AB和AD上,连接BF,DE,M是BF的中点,连接AM交DE 于点N.(1)【猜想】线段DE 与AM 之间的数量关系是___________,位置关系是__________; (2)【探究】将图1中的正方形AEGF 绕点A 顺时针旋转,使点G 恰好落在边AB 上,如图2,其他条件不变,线段DE 与AM 之间的关系是否仍然成立?请说明理由. (3)【应用】在(2)的条件下,若4AE =,15MAB ∠=︒,请直接写出线段AM 的长.答案第1页,共32页参考答案:1【分析】如图连接EC ,设AB =a ,BC =b 则CD =2b .只要证明∥D =60°,根据sin 60CECD,即可解决问题. 【详解】解:如图连接EC ,设AB =a ,BC =b 则CD =2b .由题意四边形ABCE 是矩形,∥CE =AB =a ,∥A =∥AEC =∥CED =90°, ∥∥BCF =∥DCF =∥D , 又∥∥BCF+∥DCF+∥D =180°, ∥∥D =60°, ∥3sin 2CE D CD, ∥322a b , ∥3AB aBCb, ∥:3:1ABBC.【点睛】本题考查直角梯形的性质,锐角三角函数等知识,解题的关键是理解题意,利用角相等这个信息解决问题,发现特殊角是解题的突破口,属于中考常考题型.2.35##0.6【分析】直接根据概率公式计算即可.【详解】解:红灯亮30秒,黄灯亮3秒,绿灯亮17秒,P ∴(红灯亮)303303175==++,故答案为:35【点睛】此题考查了概率的计算方法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率()mP An=.3.2a﹣2【分析】直接利用二次根式的性质分别化简得出答案.【详解】解:∥1<a<2,(2)22a a a--=-故答案为:2a﹣2.【点睛】本题主要考查二次根式的性质,掌握二次根式的性质是解题的关键. 4.60【分析】直接利用特殊角的三角函数值得出答案.【详解】∥∥C=90°,cos A12=,∥∥A=60°.故答案为:60°.【点睛】本题考查了特殊角的三角函数值,正确记忆相关数据是解题的关键.5.120,480.【分析】由相似三角形的对应边比相等,可设其他两边长为a,b,求出a和b,进而可求周长和面积.【详解】设较大三角形的其他两边长为a,b.∥由相似三角形的对应边比相等,∥52 51213a b==,解得:a=20,b=48,又∥202+482=522,∥三角形为直角三角形,∥三角形的周长为:20+48+52=120,三角形的面积为:12×20×48=480.故此三角形的周长为120,面积为:480.【点睛】相似三角形的对应边比相等是本题的考点,根据题意求出其他两边并证明三角形是直角三角形是解题的关键.6【分析】化简成最简二次根式,后合同类二次根式即可.【详解】解:原式=4×2﹣=【点睛】本题考查了二次根式的化简,同类二次根式,熟练进行化简,灵活进行合并同类二次根式是解题的关键.7.2x >##2x <【分析】根据分式和二次根式有意义的条件进行求解即可.【详解】解:∥∥102020x x x -≥⎧⎪-≥⎨⎪-≠⎩,∥2x >,故答案为:2x >.【点睛】本题主要考查了二次根式和分式有意义的条件,熟知二次根式有意义的条件是被开方数大于等于零,分式有意义的条件是分母不为零是解题的关键.8.50°【分析】先求出三角形的另一个角,比较后得出三角形的最小的内角为50°.再根据相似三角形的性质得出结论.【详解】解:∥一个三角形的两个角分别为60°、50°,∥另一个角为180°-(60°+50°)=70°,∥三角形的最小的内角为50°.∥两个三角形相似,∥相似的另一个三角形的最小的内角为50°.故答案为:50°.【点睛】本题主要考查了相似三角形的性质,解题的关键是掌握三角形的内角和定理及相似三角形的性质.9.12【分析】直接利用已知比例式假设出a ,b ,c 的值,进而利用a +b -2c =6,得出答案.【详解】解:∥654a b c ==, ∥设a =6x ,b =5x ,c =4x ,∥a +b -2c =6,∥6x +5x -8x =6,解得:x =2,故a =12.故答案为12.【点睛】此题主要考查了比例的性质,正确表示出各数是解题关键.10.0.440【分析】根据大量反复试验下,频率的稳定值即为概率值求解即可.【详解】解:∥大量反复试验下,频率的稳定值即为概率值,∥抛掷该啤酒瓶盖一次,“凸面向上”的概率是0.440,故答案为:0.440.【点睛】本题主要考查了用频率值估计概率,解题的关键在于熟知大量反复试验下,频率的稳定值即为概率值.11.∥∥##∥∥【分析】根据必然事件与随机事件的定义,即可一一判定【详解】解:∥射击一次,中靶,属于随机事件;∥100件某种产品中有2件次品,从中任取1件恰好是次品,属于随机事件;∥太阳从东方升起,属于必然事件;∥一只不透明的袋子中有10个红球,从中任意摸出一个球是红球,属于必然事件. 故答案为:∥∥.【点睛】本题考查了必然事件与随机事件的定义,熟练掌握和运用必然事件与随机事件的定义是解决本题的关键.12.【分析】运用二次根式加减法则进行运算即可.【详解】解:【点睛】本题考查了二次根式的加减法则,即二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.13.13【分析】直接根据概率公式,计算即可得出答案. 【详解】解:从中任意取出一本是数学书的概率31==2+3+43. 故答案为:13 【点睛】本题考查了概率公式,熟练掌握概率公式是解本题的关键.概率公式=所求情况数与总情况数之比.14.3.【分析】把x 的值代入方程中,变形即可.【详解】把x m =代入原方程²230x x --=,可得223m m --=0,即22m m -=3. 【点睛】本题考查了一元二次方程的解,求代数式的值,利用整体思想求值较简. 15.11【分析】把x =x 1 代入方程求得x 1 2 +x 1 =3,利用根与系数的关系得到x 1 +x 2 =-1,所以将其整体代入整理后的代数式进行求值.【详解】∥x 1 ,x 2 是方程x 2 +x -3=0的二根,∥x 1 2 +x 1 -3=0,x 1 +x 2 =-1,∥x 1 2 +x 1 =3,∥2x 1 2 +3x 1 +x 2 +9=2(x 1 2 +x 1 )+(x 1 +x 2 )+9=3-1+9=11.故答案为11.【点睛】本题考查了根与系数的关系,一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.16.2021【分析】利用一元二次方程的解的定义得到220220αα+-=,再根据根与系数的关系得到1αβ+=-,然后利用整体代入的方法计算.【详解】解:∥α是方程220220x x +-=的根,∥220220αα+-=,即22022αα+=∥α、β是方程220220x x +-=的两个实数根,∥1αβ+=-,∥()222202212021a a αβααβ++=++-=+=+.故答案为:2021.【点睛】本题主要考查一元二次方程的解和一元二次方程根与系数关系,解决本题的关键是要熟练掌握一元二次方程根与系数关系.17.(0,53) 【分析】根据题意求出EF 、AB 、AE ,根据位似图形的概念得到EF ∥AB ,证明△EPF ∥∥APB ,根据相似三角形的性质计算即可.【详解】解:∥点B 、F 的坐标分别为(4,3)、(-2,1),∥EF =2,AB =4,AE =3-1=2,∥矩形ABCD 与矩形EFGO 是位似图形,∥EF ∥AB ,∥∥EPF ∥∥APB , ∥EP EF AP AB =,即224EP EP =-, 解得,EP =23,∥OP =1+23=53, 则点P 的坐标为(0,53), 故答案为:(0,53). 【点睛】本题考查的是位似变换的概念和性质、相似三角形的性质,掌握位似图形的概念是解题的关键.18.-15【分析】先设比例系数为k ,代入3a+2b-4c=9,转化为关于k 的一元一次方程解答. 【详解】解:设357a b c k ===,则a=3k ,b=5k ,c=7k ,代入3a+2b-4c=9,得9k+10k-28k=9,解得:k=-1,∥a=-3,b=-5,c=-7,于是a+b+c=-3-5-7=-15.故答案为:-15.【点睛】本题主要考查比例的性质,解答此类题关键是灵活运用设“k”法求解代数式的值. 19.42.【详解】∥23AD DB =,∥22325AD AB ==+,∥DE∥BC ,∥∥ADE∥∥ABC , ∥2()ADEABC S AD S AB ∆∆=,即8425ABC S ∆=,∥S △ABC =50, ∥四边形BDEC 的面积=S △ABC -S △ADE =50-8=42.考点:相似三角形的判定与性质.20.k 94≤ 【分析】分类讨论,当k ≠0时与当k =0时即可.【详解】解:当k ≠0时,∥=9﹣4k ≥0,∥k 94≤, ∥k 94≤且k ≠0, 当k =0时,此时方程为3x +1=0,满足题意,故答案为:k 94≤. 【点睛】本题考查方程有根的情况,关键在于分类讨论.21.x 1=0,x 2=3,x 3=-3.【分析】根据x 3-9x =0将原式分解为x (x +3)(x -3)=0,即可得出答案.【详解】解:∥x 3-9x =0,∥x (x +3)(x -3)=0,∥x 1=0,x 2=3,x 3=-3,故答案为:x 1=0,x 2=3,x 3=-3.【点睛】此题主要考查了因式分解法解一元二次方程,将方程分解为两式相乘等于0的形式是解决问题的关键.22.16【分析】根据矩形的性质和翻折的性质得到AF BD ∥,根据O 是AC 的中点,利用中位线性质求出AF ,再求出OA 即可.【详解】解:∥点F 是点E 关于AD 的对称点,∥∥EAD =∥F AD ,AE =AF ,∥四边形ABCD 是矩形,∥∥OAD =∥ODA ,∥∥F AD =∥ODA ,∥AF BD ∥,∥O 是矩形ABCD 的对角线的交点,∥O 是AC 的中点,∥O 、G 两点在线段BD 上,且AF BD ∥,AF OG ∴∥,由平行线分线段成比例定理可知,“A 字形”中有CG CO GF OA =, 前面已证明O 是AC 的中点, ∴1CG CO GF OA==,即CG GF =, ∥G 为CF 的中点,∥OG 是∥CAF 的中位线,∥AF =2OG =2×2=4,∥AE =4,∥OE =4,∥OA =AE +EO =8,∥AC =2OA =16,∥BD =AC =16,故答案为:16.【点睛】本题考查矩形的性质、翻折的性质以及三角形中位线的性质,关键是利用中位线性质得出AF 的长.23.0【分析】根据一元二次方程的解的定义得a 2﹣3a +1=0,即a 2﹣3a =﹣1,再代入22331a a a a -++,然后利用整体思想进行计算即可. 【详解】∥a 是方程x 2﹣3x +1=0的一根,∥a 2﹣3a +1=0,即a 2﹣3a =﹣1,a 2+1=3a ∥2233=11=01-+-++a a a a 故答案为0.【点睛】本题考查了一元二次方程的解:使一元二次方程两边成立的未知数的值叫一元二次方程的解.也考查了整体思想的运用.24.18<a≤33【分析】利用随机事件的定义进而得出答案.【详解】∥班里有18个男生15个女生,从中任意抽取a 人打扫卫生,女生被抽到的是必然事件,∥18<a≤33.【点睛】本题考查的知识点是随机事件的定义,解题关键是正确把握定义.25.±6【分析】先根据关于x 的方程x2+kx+9=0(k 为常数)有两个相等的实数根可得出△=0,据此求出k 的值即可.【详解】∥关于x 的方程x2+kx+9=0(k 为常数)有两个相等的实数根,∥∥=k2-4×9=k2-36=0,解得k=±6.故答案为:±6.【点睛】本题考查的是根的判别式,根据题意得出关于k 的一元二次方程是解答此题的关键.26.11【分析】先延长EF 和BC ,交于点G ,再根据条件可以判断三角形ABE 为等腰三角形,并求AE 的长,然后根据条件判断三角形BEG 为等腰三角形,最后根据∥EFD ∥∥GFC 得出CG 与DE 的倍数关系,并根据BE =BG =BC +CG 进行计算即可.【详解】解:如图,延长EF 和BC ,交于点G ,∥在ABCD 中,∥B 的角平分线BE 与AD 交于点E ,∥∥ABE=∥CBE,∥BEG=∥DEG,∥AD∥BC,∥∥AEB=∥CBE,∥∥AEB=∥ABE,∥AB=AE,∥ AB=AE=8,又∥BED∠的平分线EF与DC交于点F,∥∥BEG=∥DEG,∥AD∥BC,∥∥DEG=∥G,∥∥BEG=∥G,∥BE=BG=BC+CG,∥AD//BC,∥∥DEF=∥G,∥EFD=∥GFC,∥∥EFD∥∥GFC,∥122 CG CF CFDE DF CF===,∥1 22 CG=,∥1CG=,∥四边形ABCD为平行四边形,∥BC=AD=AE+ED=8+2=10,∥BE=BG=BC+CG=10+1=11.故答案为:11.【点睛】本题主要考查了平行四边形性质、相似三角形判断与性质,以及等腰三角形判断与性质,解决问题的关键是掌握平行四边形性质、相似三角形判断与性质,以及等腰三角形判断与性质,解题时注意:有两个角对应相等的两个三角形相似.27.(2,-1)或(-2,1).【分析】由在直角坐标系中,点E (-4,2),F (-2,-2),以O 为位似中心,按2:1的相似比把△EFO 缩小为△E′F′O ,利用位似图形的性质,即可求得点E 的对应点E′的坐标.【详解】解:∥点E (-4,2),以O 为位似中心,按2:1的相似比把△EFO 缩小为△E′F′O ,∥点E 的对应点E′的坐标为:(2,-1)或(-2,1).故答案为(2,-1)或(-2,1).【点睛】此题考查了位似图形的性质.此题比较简单,注意熟记位似图形的性质是解此题的关键.28.﹣2014【详解】试题分析:∥a 为x 2+x -2011=0的根,∥a 2+a -2011=0,∥a 2+a =2011,∥a 3+a 2+3a +2014b =a (a 2+a )+3a +2014b=2011a +3a +2014b=2014(a +b ),∥a 、b 为x 2+x -2011=0的两个实根,∥a +b =-1,∥a 3+a 2+3a +2014b=2014(a +b )=-2014.故答案为:-2014.点睛:本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=b a -,x 1x 2=c a.也考查了一元二次方程的解的定义.29.(5,2),) 【分析】当P 位于线段OA 上时,显然∥PFB 不可能是直角三角形;由于∥BPF <∥CPF=90°,所以P 不可能是直角顶点,可分两种情况进行讨论:∥F 为直角顶点,过F 作FD∥x 轴于D ,BP=6-t ,DP=2OC=4,在Rt∥OCP 中,OP=t-1,由勾股定理易求得CP=t 2-2t+5,那么PF 2=(2CP )2=4(t 2-2t+5);在Rt∥PFB 中,FD∥PB ,由射影定理可求得PB=PF2÷PD=t2-2t+5,而PB的另一个表达式为:PB=6-t,联立两式可得t2-2t+5=6-t,即;2∥B为直角顶点,得到∥PFB∥∥CPO,且相似比为2,那么BP=2OC=4,即OP=OB-BP=1,此时t=2.【详解】解:能;∥若F为直角顶点,过F作FD∥x轴于D,则BP=6-t,DP=2OC=4,在Rt∥OCP中,OP=t-1,由勾股定理易求得CP2=t2-2t+5,那么PF2=(2CP)2=4(t2-2t+5);在Rt∥PFB中,FD∥PB,由射影定理可求得PB=PF2÷PD=t2-2t+5,而PB的另一个表达式为:PB=6-t,联立两式可得t2-2t+5=6-t,即2P0),−1);则F点坐标为:∥B为直角顶点,得到∥PFB∥∥CPO,且相似比为2,那么BP=2OC=4,即OP=OB-BP=1,此时t=2,P点坐标为(1,0).FD=2(t-1)=2,则F点坐标为(5,2).).故答案是:(5,2),【点睛】此题考查直角三角形的判定、相似三角形的判定和性质,解题关键在于求有关动点问题时要注意分析题意分情况讨论结果.30.(1)见解析(2)(5,-3),(m +5,n -4)(3)4【分析】(1)根据图形平移的性质画出图形即可;(2)根据各点在坐标系中的位置写出各点坐标;(3)利用正方形的面积减去三个顶点上三角形的面积即可.(1)解:如图所示;(2)解:1C (5,-3),1D (m +5,n -4)(3) 解:11111133131322222A B C S =⨯-⨯⨯-⨯⨯-⨯⨯△=4 所以111A B C △的面积为4.【点睛】本题考查作图-平移变换,熟知图形平移不变性的性质是解题的关键. 31.1.【详解】试题分析:先将分式的分子和分母分别分解因式,约分化简,再解一元二次方程,然后将a 的值代入化简后的代数式即可求值.试题解析:原式=22(2)131(1)1a a a a a a+--÷+++22(2)(2)a a a a a a +-=+-- 2=2a - ∥a 是方程228=0x x --的根∥a =4或a =-2∥a +2≠0∥a =4∥原式=2142=- 考点: 1.分式的化简求值;2.一元二次方程的解法.32.(1)见解析;(2)G 是线段OB 的中点,也是EF 的中点,证明见解析【分析】(1)根据三角形的中位线定理可得EF 与AC 的数量关系和位置关系,再由平行四边形的性质即可证得EF 与CO 的关系,进一步即可证得结论;(2)根据三角形中位线定理即可得出结论.【详解】(1)证明:∥,E F 分别是,AB BC 中点,∥EF ∥AC 且12EF AC =, ∥四边形ABCD 是平行四边形,∥AO CO =,∥CO EF =,∥四边形COEF 是平行四边形.(2)解:G 是线段OB 的中点,也是EF 的中点.证明:∥EF ∥AC ,E 为AB 中点,∥G 为OB 中点.∥FG 、GE 分别是∥BCO 、∥BAO 的中位线, ∥11,22FG CO GE AO ==, ∥AO =CO ,∥FG GE =,即G 为EF 的中点.【点睛】本题考查了平行四边形的判定和三角形的中位线定理,熟练掌握平行四边形的判定方法和三角形的中位线定理是解题的关键.33.(1)(2)13【分析】(1)先利用二次根式的除法法则计算,再把各二次根式化为最简二次根式,然后合并即可.(2)先算乘方和开方,再算括号内的,然后计算乘法,最后计算加减.【详解】解:(1=4==(2)32(1)(3)⎤--⎦=()1229--⨯-=114-+=13【点睛】本题考查了二次根式的混合运算,实数的混合运算,先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.34.(1)∥见解析;∥见解析(2)1AB AD【分析】(1)∥根据ASA 证明ABC AOD ≌△△即可;∥证明BCO ACB ∽△△,得BC CO AC BC=,由∥得OD =BC ,从而可得结论; (2)分别证明AOD BOC ∽和AOB DOC ∽△△,可证明BCD △是等腰直角三角形,得BD =,知1BO OD=,最后证明1AB BO AF OD ==即可得到结论. (1)∥∥AC 平分∥BAD ,∥∥BAC =∥DAC ,又∥∥BAC =∥CBD ,∥∥CBD =∥DAC ,又∥∥AOD =∥BOC ,∥∥ADO =∥ACB ,又∥AC =AD ,∥ABC AOD ≌△△;∥∥BAC =∥CBD ,∥BCA =∥AC B .∥BCO ACB ∽△△, ∥BC CO AC BC=, ∥2BC OC AC =由∥知ABC AOD ≌△△, ∥OD =BC ,∥2DO OC AC =⋅.(2)当∥BAD =90°时,AC 平分∥BAD ,∥∥BAC =∥DAC =45°,∥∥BAC =∥CB D ,∥CBD =∥DAC =45°,∥AOD =∥BO C .∥AOD BOC ∽, ∥OA OD OB OC =, ∥OA OB OD OC=, ∥∥AOB =∥COD .∥AOB DOC ∽△△,∥∥BAC =∥CDO =45°∥BCD △是等腰直角三角形, ∥BD =,∥BD =,∥1BO BD OD OD OD-==, 过点D 作DF AC ∥交BA 的延长线与F ,∥AC 平分∥BAD ,∥,,F BAC ADF DAC ∠=∠∠=∠∥,BAC DAC ∠=∠∥AF =AD ,1AB BO AF OD ==.∥1AB AD=. 【点睛】本题主要考查了全等三角形的判定与性质,相似三角形的判定与性质,等腰直角三角形的判定与性质以及勾股定理等知识,正确作出辅助线是解答本题的关键.35.30【分析】在Rt∥BCD 中可求得CD 的长,即求得甲的高度,过A 作AF∥CD 于点F,在Rt∥ADF 中可求得DF,则可求得CF 的长,即可求得乙的高度.【详解】过A 点向CD 做垂线,垂足为F ,在Rt∥BCD 中:∥∥DBC=60°,BC=30mtan 60CD BC ︒=⋅==由图可知,AF=BC,在Rt∥ADF 中F tan 45tan 4530D AF BC BC ︒︒=⋅=⋅==m30)AB CD DE ∴=-=m所以乙的高度为(30)m.【点睛】本题考查了解直角三角形的应用,解决本题的关键是做出辅助线,构建直角三角形,熟练掌握直角三角形中边角关系.36.(1)渔船不改变航向继续航行,没有触礁危险,理由见解析;(2)渔船从A 点处航行到灯塔C ,需要(1小时.【分析】(1)作BH∥AC 于H ,根据余弦的概念求出BH ,比较即可判断;(2)根据正切的概念求出AH ,求出AC 的长,根据渔船的速度计算即可.【详解】解:(1)渔船不改变航向继续航行,没有触礁危险.作BH∥AC 于H ,由题意得,∥CAB=30°,∥ABC=105°,则∥ABH=60°,∥HBC=45°,cos BH BC HBC ∴=⨯∠= 10214>,∥渔船不改变航向继续航行,没有触礁危险;(2)HC BH ==tan BH AH CAB==∠AC AH HC ∴=+=则渔船从A 点处航行到灯塔C ,需要的时间为:1÷=+答:渔船从A 点处航行到灯塔C ,需要(1小时.【点睛】本题考查的是解直角三角形的应用-方向角问题.正确标注方向角、熟记锐角三角函数的定义是解题的关键.37.(1)12x =-,213x =-;(274【分析】(1)根据因式分解法解一元二次方程即可求解;(2)根据特殊角的三角函数值进行计算即可求解.【详解】解:(1)解:23720x x ++=,()()2310x x ++=,20x +=或310x +=,12x =-,213x =-;(2)原式11222=⨯1342+ 74. 【点睛】本题考查了解一元二次方程,特殊角的三角函数值的混合运算,掌握一元二次方程的解法以及特殊角的三角函数值是解题的关键.38.(1)-3;(2) 21x - 【分析】(1)根据有理数的乘方运算、负指数幂的性质、0指数幂的性质以及特殊角的锐角三角函数值依次进行计算后,再合并即可;(2)首先根据分式的四则混合运算顺序进行计算化简,然后代值计算.【详解】(1)原式=﹣4﹣1+1+2×12=﹣3;(2)原式=221212x x x x x +--÷ =2112x x x x+-÷ =12(1)(1)x x x x x +⋅+- =21x -,当x +1时,【点睛】本题考查了幂运算的性质、特殊角的锐角三角函数值、分式的混合运算.在求分式的值时,要把分式化到最简,然后代值计算.39.2【分析】先在Rt ABC 中根据30︒角的三角函数值求出AD 和BD 的长,再在Rt ADC △中根据2tan 3DC CAD AD ∠==求出DC 的长,即可得到BC 的长. 【详解】解:∥AD BC ⊥于点D ,∥90ADB ADC ∠=∠=︒,ABD ∴,ADC △为直角三角形,∥Rt ADB 中,30B ∠=︒,6AB =,∥3AD =,tan AD B BD ==,∥BD =∥Rt ADC △中,2tan 33CD CAD AD AD ∠===,, ∥2CD =,∥2BC =.【点睛】本题主要考查了解直角三角形,掌握特殊角的三角函数值是解题的关键. 40.(1)见解析(2)5【分析】(1)先确定()()()3,4,1,2,5,1A B C ,再确定对称点坐标,画图即可.(2) 111A B C △的面积就是ABC 的面积.【详解】(1)∥()()()3,4,1,2,5,1A B C ,∥关于y 轴对称的对称点坐标为()()()1113,4,1,2,5,1A B C ---,画图如下:则111A B C △即为所求.(2)∥111A B C △的面积就是ABC 的面积,()()()3,4,1,2,5,1A B C ,∥111A B C △的面积为:111343222415222.【点睛】本题考查了坐标的对称,三角形面积的计算,熟练掌握对称点坐标计算方法是解题的关键.41.12- 【分析】根据负整数指数幂、二次根式的乘法、零指数幂和特殊角的三角函数值即可求解.【详解】解:原式12412=-++12=- 【点睛】此题主要考查负整数指数幂、二次根式的乘法、零指数幂和特殊角的三角函数值,熟练掌握法则是解题关键.42.(1) 1A (5,1); (2)M '(0,-16).【分析】(1)根据关联点的定义,结合点的坐标即可得出结论.(2)根据关联点的定义和点M (m-1,2m )的“-3级关联点”M′位于y 轴上,即可求出M′的坐标.【详解】解(1)因为点A (-2,6)的“12级关联点”是点1A ,所以∥A 1(-2×12+6,-2+12×6),即1A 为1A (5,1);(2)因为点M (m- 1,2m )的“一3级关联点”为M’(-3m (m-1)+2m·m-1+(-3)·2m ).又因为点M’位于y 轴上,所以-3(m-1)+2m=0, 解得m=3. 所以m-1+(-3)·2m=-16,所以M’(0,-16)【点睛】本题考查一次函数图象上的坐标的特征,“关联点”的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题.43.(1)1x =,2x =;(2)1x 3=-,2x 7=;(3)x 4=-. 【分析】()1先求出2b 4ac -的值,再代入公式求出即可;()2移项后分解因式,即可得出两个一元一次方程,求出方程的解即可;()3先把分式方程变成整式方程,求出方程的解,再进行检验即可.【详解】()21x 3x 10+-=,()22b 4ac 341113-=-⨯⨯-=,x =1x =,2x =; ()()()2x x 37x 3+=+,()()x x 37x 30+-+=,()()x 3x 70+-=,x 30+=,x 70-=,1x 3=-,2x 7=;()26331x 1x 1-=--, 方程两边都乘以()()x 1x 1+-得:()()()63x 1x 1x 1-+=+-,解得:1x 4=-,2x 1=,经检验:x 1=是增根,x 4=-是原方程的解,。

河南省南阳市2023-2024学年华东师大版九年级上学期数学期末模拟试卷(含答案)

河南省南阳市2023-2024学年华东师大版九年级上学期数学期末模拟试卷(含答案)

河南省南阳市2023-2024学年华东师大版九年级上学期数学期末模拟试卷一.选择题(共10小题,30分)1.下列二次根式中,最简二次根式的是( )A.B.C.D.2.下列说法正确的是( )A.“山川异域,风月同天”是随机事件B.买中奖率为1%的奖券100张,一定会中奖C.“同旁内角互补”是必然事件D.一枚硬币连抛100次,可能50次正面朝上3.如果关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是( )A.k>B.k>且k≠0C.k<D.k≥且k≠04.在平面直角坐标系中,将二次函数y=(x﹣1)2+1的图象向左平移1个单位长度,再向下平移2个单位长度,所得函数的解析式为( )A.y=(x﹣2)2﹣1 B.y=(x﹣2)2+3C.y=x2+1 D.y=x2﹣15.二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=ax+b的图象大致是( )A.B.C.D.6.在大力发展现代化农业的形势下,现有A、B两种新玉米种子,为了了解它们的出芽情况,在推广前做了五次出芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:种子数量10030050010003000 A出芽率0.990.940.960.980.97B出芽率0.990.950.940.970.96下面有三个推断:①当实验种子数量为100时,两种种子的出芽率均为0.99,所以A、B两种新玉米种子出芽的概率一样;②随着实验种子数量的增加,A种子出芽率在0.97附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.97;③在同样的地质环境下播种,A种子的出芽率可能会高于B种子.其中合理的是( )A.①②③B.①②C.①③D.②③7.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为( )A.B.C.D.8.如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h=20t﹣5t2,下列对方程20t﹣5t2=15的两根t1=1与t2=3的解释正确的是( )A.小球的飞行高度为15m时,小球飞行的时间是1sB.小球飞行3s时飞行高度为15m,并将继续上升C.小球从飞出到落地要用4sD.小球的飞行高度可以达到25m9.西周数学家商高总结了用“矩”(如图1)测量物高的方法:把矩的两边放置成如图2的位置,从矩的一端A(人眼)望点E,使视线通过点C,记人站立的位置为点B,量出BG长,即可算得物高EG.令BG=x(m),EG=y(m),若a=30cm,b=60cm,AB=1.6m,则y关于x的函数表达式为( )A.y=x B.y=x+1. C.y=2x+1.6D.y=+1.610.某小区有一块绿地如图中等腰直角△ABC所示,计划在绿地上建造一个矩形的休闲书吧PMBN,其中点P,M,N分别在边AC,BC,AB上,记PM=x,PN=y,图中阴影部分的面积为S,当x在一定范围内变化时,y和S都随x的变化而变化,则y与x,S与x满足的函数关系分别是( )A.正比例函数关系,一次函数关系B.一次函数关系,二次函数关系C.一次函数关系,一次函数关系D.正比例函数关系,二次函数关系二.填空题(共5小题,15分)11.使有意义的x的取值范围是 .12.已知=,那么的值是 .13.如图是二次函数y=a(x+1)2+2图象的一部分,该图在y轴右侧与x轴交点的坐标是 .14.如图,在△ABC中,点F、G在BC上,点E、H分别在AB、AC上,四边形EFGH是矩形,EH=2EF,AD是△ABC的高,BC=8,AD=6,那么EH的长为 .15.如图,在Rt△ABC中,∠C=90°,AC=BC=2,点M为边BC的中点,点D为边BC上一动点,连接AD,将边AC沿直线AD翻折得到线段AE,连接ME,则ME长度的取值范围为 .三.解答题(共8小题,75分)16.解方程:(x+2)(x﹣5)=1.(5分)17.《小猪佩奇》这部动画片,估计同学们都非常喜欢.周末,小猪佩奇一家4口人(小猪佩奇,小猪乔治,小猪妈妈,小猪爸爸)来到一家餐厅就餐,包厢有一圆桌,旁边有四个座位(A,B,C,D).(8分)(1)小猪佩奇随机到A座位的概率是 ;(2分)(2)若现在由小猪佩奇,小猪乔治两人先后选座位,用树状图或列表的方法计算出小猪佩奇和小猪乔治坐对面的概率.(6分)18.如图,在△ABC中,AB=AC=5,BC=4,BD⊥AC于点D.(9分)(1)求tan∠ABC的值;(5分)(2)求BD的长.(4分)19.在体育考试中,一名男生掷实心球,已知实心球出手时离地面2米,当实心球行进的水平距离为4米时实心球被掷得最高,此时实心球离地面3.6米,设实心球行进的路线是如图所示的一段抛物线.(10分)(1)求实心球行进的高度y(米)与行进的水平距离x(米)之间的函数关系式;(6分)(2)如果实心球考试优秀成绩为9.6米,那么这名男生在这次考试中成绩是否能达到优秀?请说明理由.(4分)20.【材料阅读】2020年5月27日,2020珠峰高程测量登山队成功登顶珠穆朗玛峰,将用中国科技“定义”世界新高度,其基本原理之一是三角高程测量法,在山顶上立一个标杆,找到2个以上测量点,分段测量山的高度,再进行累加.因为地球面并不是水平的,光线在空气中会发生折射,所以当两个测量点的水平距离大于300m时,还要考虑球气差,球气差计算公式为(其中d为两点间的水平距离,R为地球的半径,R取m),即:山的海拔高度=测量点测得山的高度+测量点的海拔高度+球气差.【问题解决】某校科技小组的同学参加了一项野外测量某座山的海拔高度活动.如图,点A,B的水平距离d=800m,测量仪AC=1.5m,觇标DE=2m,点E,D,B在垂直于地面的一条直线上,在测量点A处用测量仪测得山顶标杆顶端E的仰角为37°,测量点A处的海拔高度为1800m.(10分)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)请你计算该山的海拔高度(要计算球气差,结果精确到0.01m).21.戴口罩是阻断呼吸道病毒传播的重要措施之一,某商家对一款成本价为每盒50元的医用口罩进行销售,如果按每盒70元销售,每天可卖出20盒.通过市场调查发现,每盒口罩售价每降低1元,则日销售量增加2盒.(10分)(1)若商家要使日利润达400元,又想尽快销售完该款口罩,问每盒售价应定为多少元?(5分)(2)当每盒售价定为多少元时,商家可以获得最大日利润?并求出最大日利润.(5分)22.阅读与思考(11分)下面是小宇同学的数学小论文,请仔细阅读并完成相应的任务.用函数观点认识一元二次方程根的情况我们知道,一元二次方程ax2+bx+c=0(a≠0)的根就是相应的二次函数y=ax2+bx+c(a≠0)的图象(称为抛物线)与x轴交点的横坐标.抛物线与x轴的交点有三种情况:有两个交点、有一个交点、无交点.与此相对应,一元二次方程的根也有三种情况:有两个不相等的实数根、有两个相等的实数根、无实数根.因此可用抛物线与x轴的交点个数确定一元二次方程根的情况.下面根据抛物线的顶点坐标(﹣,)和一元二次方程根的判别式Δ=b2﹣4ac,分别分a>0和a<0两种情况进行分析:(1)a>0时,抛物线开口向上.①当Δ=b2﹣4ac>0时,有4ac﹣b2<0.∵a>0,∴顶点纵坐标<0.∴顶点在x轴的下方,抛物线与x轴有两个交点(如图1).②当Δ=b2﹣4ac=0时,有4ac﹣b2=0.∵a>0,∴顶点纵坐标=0.∴顶点在x轴上,抛物线与x轴有一个交点(如图2).∴一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根.③当Δ=b2﹣4ac<0时,……(2)a<0时,抛物线开口向下.……任务:(1)上面小论文中的分析过程,主要运用的数学思想是 (从下面选项中选出两个即可);(2分)A.数形结合B.统计思想C.分类讨论D.转化思想(2)请参照小论文中当a>0时①②的分析过程,写出③中当a>0,Δ<0时,一元二次方程根的情况的分析过程,并画出相应的示意图;(6分)(3)实际上,除一元二次方程外,初中数学还有一些知识也可以用函数观点来认识.例如:可用函数观点来认识一元一次方程的解.请你再举出一例为 .(3分)23.【综合与实践】数学综合实践课上,同学们以“等腰三角形的旋转”为主题,开展如下探究活动:(12分)(1)【操作探究】如图1,△ABC为等边三角形,将△ABC绕点A旋转180°,得到△ADE,连接BE,则∠EBC= °.若F是BE的中点,连接AF,则AF与DE的数量关系是 .(2分)(2)【迁移探究】如图2,将(1)中的△ABC绕点A逆时针旋转30°,得到△ADE,其他条件不变,求出此时∠EBC的度数及AF与DE的数量关系.(6分)(3)【拓展应用】如图3,在Rt△ABC中,AB=AC=2,∠BAC=90°,将△ABC绕点A旋转,得到△ADE,连接BE,F是BE的中点,连接AF.在旋转过程中,当∠EBC=15°时,直接写出线段AF的长.(4分)九年级数学模拟答案一.选择题(共10小题)1. C.2. D.3. B.4.D.5.A.6.D.7.B.8.C.9.B.10.B.二.填空题(共5小题)11. x≤2 12. 13 (1,0) 14. 15. ﹣2≤EM≤ 三.解答题(共8小题)16.解:原方程可化为x2﹣3x﹣11=0.∵a=1,b=﹣3,c=﹣11,且△=(﹣3)2﹣4×1×(﹣11)=53>0,∴,∴,.17.解:(1)小猪佩奇随机到A座位的概率=;故答案为;(2)画树状图为:共有12种等可能的结果数,其中小猪佩奇和小猪乔治坐对面的结果数为4,所以小猪佩奇和小猪乔治坐对面的概率==.18.解:(1)如图,过点A作AE⊥BC交BC于点E,∵AB=AC,AE⊥BC,∴,∠AEB=90°,∵BC=4,∴,在Rt△AEB中,∵∠AEB=90°,∴AE2=AB2﹣BE2,∵AB=AC=5,BE=2,∴AE2=52﹣22=21,∴.在Rt△AEB中,∵∠AEB=90°,,BE=2,∴.(2)如图,同(1),过点A作AE⊥BC交BC于点E,∵AE⊥BC,∴,又∵BD⊥AC,∴,∴,∵AC=5,BC=4,又∵由(1)求得,∴.19.解:(1)由抛物线顶点是(4,3.6),设抛物线解析式为:y=a(x﹣4)2+3.6,把点(0,2)代入得a=﹣,∴抛物线解析式为:y=﹣(x﹣4)2+3.6;(2)当y=0时,0=﹣(x﹣4)2+3.6,解得,x1=﹣2(舍去),x2=10,即这名男生在这次考试中成绩是10米,能达到优秀.20.解:如图,过点C作CH⊥BE于点H,由题意,得AB=CH=800m,AC=BH=1.5m,在Rt△ECH中,EH=CH⋅tan37°≈600(m),又DE=2,∴DB=EH﹣DE+BH=599.5(m),由题意,得,∴599.5+0.043+1800≈2399.54(m),故山的海拔高度为2399.54m.21.解:(1)设每盒售价降低x元,根据题意可知:(20+2x)(20﹣x)=400,解得:x1=0(舍去),x2=10,∴售价应定为70﹣10=60(元),答:若日利润保持不变,商家想尽快销售完该款口罩,每盒售价应定为60元;(2)设当每盒售价降低x元时,商家获得的利润为W元,由题意可知:W=(20+2x)(20﹣x)=﹣2x2+20x+400,∵a=﹣2<0,∴抛物线开口向下,当x=﹣=5时,W有最大值,即W=450元,∴售价应定为70﹣5=65(元),答:当每盒售价定为65元时,商家可以获得最大日利润,最大日利润为450元.22.解:(1)上面小论文中的分析过程,主要运用的数学思想是AC;故AC;(2)a>0时,抛物线开口向上,当Δ=b2﹣4ac<0时,有4ac﹣b2>0.∵a>0,∴顶点纵坐标>0∴顶点在x轴的上方,抛物线与x轴无交点,如图,∴一元二次方程ax2+bx+c=0(a≠0)无实数根;(3)可用函数观点认识二元一次方程组的解;故可用函数观点认识二元一次方程组的解(答案不唯一).23.解:(1)90,AF=DE;(2)∵等边三角形△ABC绕点A逆时针旋转30°,得到△ADE,∴AB=AD=AE,∠CAE=30°,∴∠BAE=∠BAC+∠CAE=90°,∴△ABE是等腰直角三角形,∴∠ABE=45°,∴∠EBC=∠ABC﹣∠ABE=60°﹣45°=15°;∵F是BE的中点,∴∠AFB=90°,∴△AFB是等腰直角三角形,∴AF=AB,∵AB=BC=DE,∴AF=DE;答:∠EBC的度数为15°,AF与DE的数量关系为AF=DE;(3)AF的长为1或.。

【华东师大版】九年级数学上期末模拟试卷带答案(1)

【华东师大版】九年级数学上期末模拟试卷带答案(1)

一、选择题1.如图,转盘中8个扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,估计下列4个事件发生的可能性大小,其中事件发生的可能性最大的是()A.指针落在标有5的区域内B.指针落在标有10的区域内C.指针落在标有偶数或奇数的区域内D.指针落在标有奇数的区域内2.书架上放着三本小说和两本散文,小明从中随机抽取两本,两本都是小说的概率是()A.310B.925C.425D.1103.小王掷一枚质地均匀的硬币,连续抛3次,硬币均正面朝上落地,如果他再抛第4次,那么硬币正面朝上的概率为()A.1 B.12C.14D.154.某校学生小明每天上学时都要经过一个十字路口,该十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为13,遇到黄灯的概率为19,那么他遇到绿灯的概率为()A.13B.23C.49D.595.已知AB是经过圆心O的直线,P为O上的任意一点,则点P关于直线AB的对称点P'与O的位置关系是()A.点P'在⊙○内B.点P'在O外C.点P'在O上D.无法确定6.如图,⊙O 是四边形 ABCD 的内切圆,连接 OA、OB、OC、OD.若∠AOB=110°,则∠COD 的度数是()A .60°B .70°C .80°D .45° 7.下列说法中,正确的是( ) A .三点确定一个圆B .在同圆或等圆中,相等的弦所对的圆周角相等 C .平分弦的直径垂直于弦D .在同圆或等圆中,相等的圆心角所对的弦相等8.在扇形中,∠AOB =90°,面积为4πcm 2,用这个扇形围成一个圆锥的侧面,这个圆锥的底面半径为 ( )A .1cmB .2cmC .3n cmD .4cm 9.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 10.下列命题的逆命题是真命题的是( )A .等边三角形是等腰三角形B .若22ac bc >,则a b >C .成中心对称的两个图形全等D .有两边相等的三角形是等腰三角形11.抛物线y=2(x -1)2-3向左平移3个单位长度,此时抛物线的对称轴是直线( ) A .x =-3 B .x =-1 C .x =-2 D .x =412.方程2240x x --=经过配方后,其结果正确的是( ) A .()215x -= B .()217x -= C .()214x -= D .()215x += 二、填空题13.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.14.在一个不透明的袋子中装有红球和黑球一共12个,每个球除颜色不同外其余都一样,任意摸出一个球是黑球的概率为14,那么袋中的红球有_________个. 15.在一个不透明的盒子里装有3个分别写有数字﹣2,0,1的小球,它们除了数字不同以外其余完全相同,先从盒子里随机抽取1个小球,再从剩下的小球中抽取1个,将这两个小球上的数字依次记为a ,b ,则满足关于x 的方程x 2+ax +b =0有实数根的概率为_____.16.如图所示,已知矩形ABCD 的边3AB cm =,4AD cm =.以点A 为圆心作圆,使B ,C ,D 三点中至少有一点在圆外,且至少有一点在圆内,此圆半径R 的取值范围是______.17.如图,ABC 内接于半径为10的半圆,AB 为直径,点M 是弧AC 的中点,连结BM 交AC 于点E ,AD 平分∠CAB 交BM 于点D ,∠ADB =_____°,当点D 恰好为BM 的中点时,BM 的长为____.18.如图,在△ABC 中,∠C =90°,BC =3,AC =5,点D 为线段AC 上一动点,将线段BD 绕点D 逆时针旋转90°,点B 的对应点为E ,连接AE ,则AE 长的最小值为_____.19.已知二次函数2(,,y ax bx c a b c =++为常数,0,0a c ≠>)上有五点()()1,01,(),p t n -、、()()2,3,0t 、;有下列结论:①0b >;②关于x 的方程20ax bx c ++=的两个根是1-和3;③20p t +<;④()(4m am b a c m +≤--为任意实数).其中正确的结论_______________(填序号即可).20.一元二次方程(x +2)(x ﹣3)=0的解是:_____.三、解答题21.为了解某校落实新课改精神的情况,现以该校某班的同学参加课外活动的情况为样本,对其参加“球类”,“绘画类”,“舞蹈类”,“音乐类”,“棋类”活动的情况进行调查统计,并绘制了如图所示的统计图.(1)参加音乐类活动的学生人数为________人,参加球类活动的人数的百分比为________;(2)请把条形统计图补充完整;(3)若该校学生共1600人,那么参棋类活动的大约有多少人?(4)该班参加舞蹈类活动4位同学中,有1位男生(用E 表示)和3位女生(分别F ,G ,H 表示),现准备从中选取两名同学组成舞伴,请用列表或画树状的方法求恰好选中一男一女的概率.22.先后两次抛掷一枚质地均匀的骰子,第一次抛掷正面朝上的点数记为a ,第二次掷正面朝上的点数记为b .(1)求先后两次抛掷的点数之和为6的概率;(2)求以(a ,b )为点在直线y =-x +5上的概率;23.如图,在平面直角坐标系中有一矩形ABCD (每一小格为一个单位长度),将矩形ABCD 绕着点A 逆时针旋转90°后得到新的图形.(1)请画出旋转后的图形,旋转后C 点对应点的坐标为______.(2)请计算点C 在旋转过程中的路径长.24.(1)问题发现:如图1,ACB △和DCE 均为等边三角形,当DCE 旋转至点A ,D ,E 在同一直线上,连接BE .①填空:AEB ∠的度数为______.②线段AD 、BE 之间的数量关系是_______.(2)拓展研究:如图2,ACB △和DCE 均为等腰三角形,且90ACB DCE ∠∠==,点A 、D 、E 在同一直线上,若15AE =,7DE =,求AB 的长度.(3)探究发现:图1中的ACB △和DCE ,在DCE 旋转过程中当点A ,D ,E 不在同一直线上时,设直线AD 与BE 相交于点O ,试在备用图中探索AOE ∠的度数,直接写出结果,并说明理由.25.如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB 为x 米,面积为y 平方米.(1)求y 与x 的函数关系式及自变量x 的取值范围;(2)若墙的最大可用长度为9米,求此时当AB 为多少米时长方形花圃的面积最大,最大面积是多少?26.(1()21332273-. (2)解一元二次方程:x 2﹣4x ﹣5=0.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据可能性等于所求情况数与总情况数之比分别求出每种情况的可能性,再按发生的可能性从小到大的顺序排列即可,从而确定正确的选项即可. 【详解】解:A 、指针落在标有5的区域内的概率是18; B 、指针落在标有10的区域内的概率是0; C 、指针落在标有偶数或奇数的区域内的概率是1;D 、指针落在标有奇数的区域内的概率是12; 故选:C .【点睛】此题考查了可能性大小,用到的知识点是可能性等于所求情况数与总情况数之比,关键是求出每种情况的可能性. 2.A解析:A【分析】画树状图(用A、B、C表示三本小说,a、b表示两本散文)展示所有20种等可能的结果数,找出从中随机抽取2本都是小说的结果数,然后根据概率公式求解.【详解】画树状图为:(用A、B、C表示三本小说,a、b表示两本散文)共有20种等可能的结果数,其中从中随机抽取2本都是小说的结果数为6,∴从中随机抽取2本都是小说的概率=620=3 10.故选:A.【点睛】本题主要考查等可能事件的概率,掌握画树状图以及概率公式,是解题的关键.3.B解析:B【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果,可得答案.【详解】因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是12,故选:B.【点睛】本题考查利用频率估计概率.大量反复试验下频率稳定值即概率.注意随机事件发生的概率在0和1之间.4.D解析:D【分析】根据在路口遇到红灯、黄灯、绿灯的概率之和是1,再根据在路口遇到红灯的概率为13,遇到黄灯的概率为19,即可求出他遇到绿灯的概率.【详解】∵经过一个十字路口,共有红、黄、绿三色交通信号灯,∴在路口遇到红灯、黄灯、绿灯的概率之和是1,∵在路口遇到红灯的概率为13,遇到黄灯的概率为19, ∴遇到绿灯的概率为1﹣13﹣19=59; 故选:D .【点睛】 此题考查了概率的意义,用到的知识点是概率公式,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率A m P n=(). 5.C解析:C【分析】圆是轴对称图形,直径所在的直线就是对称轴,从而得到圆上的点关于对称轴对称的点都在圆上求解.【详解】解:∵圆是轴对称图形,直径所在的直线就是对称轴,∴点P 关于AB 的对称点P′与⊙O 的位置为:在⊙O 上,故选:C .【点睛】本题考查了点与圆的位置关系,利用了圆的对称性求解.6.B解析:B【分析】设四个切点分别为E 、F 、G 、H ,分别连接切点和圆心,利用切线性质和HL 定理可以得到4对全等三角形,进而可得∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8,根据8个角之和为360°即可求解.【详解】解:设四个切点分别为E 、F 、G 、H ,分别连接切点和圆心,则OE ⊥AB ,OF ⊥BC ,OG ⊥CD ,OH ⊥AD ,OE=OF=OG=OH ,在Rt △BEO 和△BFO 中,OE OF OB OB =⎧⎨=⎩, ∴Rt △BEO ≌△BFO (HL )∴∠1=∠2,同理可得:∠3=∠4,∠5=∠6,∠7=∠8,∴∠1+∠8=∠2+∠7,∠4+∠5=∠3+∠6,∵∠1+∠2+∠3+∠4+∠5+∠6+∠7+∠8=360°,∴∠1+∠8+∠4+∠5=180°,即∠AOB+∠COD=180°,∵∠AOB=110°,∴∠COD=180°﹣∠AOB=180°﹣110°=70°,故选:B.【点睛】本题考查了圆的切线性质、全等三角形的判定与性质,利用圆的的切线性质,添加辅助线构造全等三角形是解答的关键.7.D解析:D【分析】根据确定圆的条件、垂径定理、圆周角定理一一判断即可.【详解】解:A、任意三点确定一个圆;错误,应该的不在同一直线上的三点可以确定一个圆,不符合题意;B、在同圆或等圆中,相等的弦所对的圆周角相等或互补,错误,不符合题意;C、平分弦的直径垂直于弦,错误,此弦不是直径,不符合题意;D、在同圆或等圆中,相等的圆心角所对的弦相等,正确,符合题意;故选:D.【点睛】本题考查确定圆的条件、垂径定理、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.A解析:A【分析】圆锥的底面周长等于侧面展开图的扇形弧长,因而要先求扇形的弧长,根据扇形的面积公式2360n RSπ=,可以求出扇形的半径,就可以求出弧长.【详解】解:根据扇形的面积公式2360n RSπ=得到:2904360Rππ=;∴R=4,则弧长9042180cmππ⋅==,设圆锥的底面半径为r,则2π=2πr;∴r=1cm.故选:A.【点睛】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.9.C解析:C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,也是中心对称图形,故此选项符合题意;D、不是轴对称图形,是中心对称图形,故此选项不合题意;故选:C.【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图形重合.10.D解析:D【分析】先根据逆命题的定义分别写出各命题的逆命题,然后根据等腰三角形的性质、不等式的性质、中心对称的性质等进行判断.【详解】A、逆命题为:等腰三角形是等边三角形,是假命题,故本选项错误;B、逆命题是:如果a>b,则ac2>bc2,是假命题,故本选项错误;C、逆命题为:全等的两个图形成中心对称,是假命题,故本选项错误;D、逆命题为:等腰三角形是有两边相等的三角形,故本选项正确;故选:D【点睛】本题考查了命题与定理的知识,解题的关键是能够正确的写出一个命题的逆命题,并熟悉课本中的性质定理.11.C解析:C【分析】根据二次函数图象的平移规律得出平移后的抛物线的解析式,由此即可得出答案.【详解】由题意,平移后的抛物线的解析式为2213()3y x =-+-,即22(2)3y x =+-, 则此时抛物线的对称轴是直线2x =-,故选:C .【点睛】本题考查了二次函数图象的平移、二次函数的对称轴,熟练掌握二次函数图象的平移规律是解题关键. 12.A解析:A【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【详解】解:∵x 2﹣2x ﹣4=0,∴x 2﹣2x =4,∴x 2﹣2x +1=4+1,∴(x ﹣1)2=5.故选:A .【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.二、填空题13.20【分析】利用频率估计概率设原来红球个数为x 个根据摸取30次有10次摸到白色小球结合概率公式可得关于x 的方程解方程即可得【详解】设原来红球个数为x 个则有=解得x=20经检验x=20是原方程的根故答解析:20【分析】利用频率估计概率,设原来红球个数为x 个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x 的方程,解方程即可得.【详解】设原来红球个数为x 个, 则有1010x +=1030, 解得,x =20, 经检验x =20是原方程的根.故答案为20.【点睛】本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.14.9【分析】首先设袋中的黑球有x个根据题意得:解此分式方程即可求得答案【详解】解:设袋中的黑球有x个根据题意得:解得:x=3即袋中的黑球有3个所以红球个数:12-3=9(个)故答案为9【点睛】此题考查解析:9【分析】首先设袋中的黑球有x个,根据题意得:1124x=,解此分式方程即可求得答案.【详解】解:设袋中的黑球有x个,根据题意得:1 124x=,解得:x=3,即袋中的黑球有3个.所以红球个数:12-3=9(个)故答案为9.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.15.【分析】根据题意列表得出所有等可能的结果数再找出满足△=a2﹣4b≥0的结果数然后根据概率公式求解即可【详解】解:列表如下﹣2 0 1 ﹣2 (0﹣2)(1﹣2)0 (﹣20)(10解析:5 6【分析】根据题意列表得出所有等可能的结果数,再找出满足△=a2﹣4b≥0的结果数,然后根据概率公式求解即可.【详解】解:列表如下2,1)、(0,﹣2)、(1,﹣2)、(1,0)这5种结果,∴满足关于x 的方程x 2+ax+b =0有实数根的概率为56, 故答案为:56. 【点睛】 本题考查了概率的计算,列出所有可能的情况是解题关键.16.【分析】使BCD 三点至少有一个在圆内且至少有一个在圆外也就是说圆的半径不能小于AB 不能大于AC 可求得AC=5所以3<r<5【详解】如图连接AC ∵ 在矩形ABCD 中AB=3cmAD=4cm ∠ABC=9解析:35R <<【分析】使B 、C 、D 三点至少有一个在圆内,且至少有一个在圆外,也就是说圆的半径不能小于AB,不能大于AC ,可求得AC=5,所以3<r<5.【详解】如图,连接AC ,∵ 在矩形ABCD 中,AB=3cm ,AD=4cm ,∠ABC=90°,BD=AC ,∴AC=BD=2222345AB AD cm +=+=,∴AB<AD<AC ,∵B ,C ,D 三点中至少有一点在⊙A 内,且至少有一点⊙A 在外,∴点B 一定在⊙A 内,点C 一定在⊙A 外,∴⊙A 半径R 的取值范围应大于AB 的长,小于对角线AC 的长,即3<R<5.故答案为:3<R<5.【点睛】本题考查确定点与圆的位置关系,解题的关键是掌握确定点到圆心的距离与半径的大小关系,设点与圆心的距离d ,圆的半径为r ,则d >r 时,点在圆外;当d =r 时,点在圆上;当d <r 时,点在圆内.17.【分析】(1)根据直径所对的圆周角是可得到再根据弧的中点定义同弧所对的圆周角相等角平分线定义可推导出最后有三角形的内角和定理即可求得答案;(2)在(1)的基础上结合已知条件添加辅助线连接从而构造出等 解析:13542【分析】(1)根据直径所对的圆周角是90︒可得到90CAB CBA ∠+∠=︒,再根据弧的中点定义、同弧所对的圆周角相等、角平分线定义可推导出45DAB DBA ∠+∠=︒,最后有三角形的内角和定理即可求得答案;(2)在(1)的基础上,结合已知条件添加辅助线“连接AM ”,从而构造出等腰Rt ADM △,利用勾股定理解Rt ABM 即可求得答案.【详解】解:(1)∵AB 是直径∴90ACB ∠=︒∴90CAB CBA ∠+∠=︒∵点M 是弧AC 的中点∴AM CM =∴CBM ABM ∠=∠∵AD 平分CAB ∠∴CAD BAD ∠=∠∴()1452DAB DBA CAB CBA ∠+∠=∠+∠=︒ ∴()180135ADB DAB DBA ∠=︒-∠+∠=︒.(2)连接AM ,如图:∵AB 是直径∴90AMB ∠=︒∵18045ADM ADB ∠=︒-∠=︒∴AM DM =∵点D 为BM 的中点∴DM DB =∴2BM AM =∴设AM x =,则2BM x =∵10∴210AB = ∵在Rt ABM 中,222AM BM AB +=∴22440x x +=∴122x =,222x =-(不合题意舍去)∴22AM =∴42BM =.【点睛】本题考查了直径所对的圆周角是90︒、弧的中点定义、同弧所对的圆周角相等、角平分线定义、三角形的内角和定理、线段的中点定义、利用勾股定理解直角三角形、解一元二次方程等知识点,通过添加辅助线构造直角三角形解决问题的关键,难度中等,属于中考常考题型.18.【分析】由旋转的性质可知BD =DE ∠C =90°则容易想到构造一个直角三角形与Rt △BCD 全等即过E 点作EH ⊥AD 于点H 设CD =x 则可用x 表示AE 的长从而判断什么时候AE 取得最小值【详解】设CD =x 则解析:2【分析】由旋转的性质可知BD =DE ,∠C =90°,则容易想到构造一个直角三角形与Rt △BCD 全等,即过E 点作EH ⊥AD 于点H ,设CD =x ,则可用x 表示AE 的长,从而判断什么时候AE 取得最小值.【详解】设CD =x ,则AD =5﹣x ,过点E 作EH ⊥AD 于点H ,如图:由旋转的性质可知BD =DE ,∵∠ADE +∠BDC =90°,∠BDC +∠CBD =90°,∴∠ADE =∠CBD ,又∵∠EHD =∠C ,∴△BCD ≌△DHE ,∴EH =CD =x ,DH =BC =3.∵AD =5﹣x ,∴AH =AD ﹣DH =5﹣x ﹣3=2﹣x ,∵在Rt △AEH 中,AE 2=AH 2+EH 2=(2﹣x )2+x 2=2x 2+4x +4=2(x ﹣1)2+2,所以当x =1时,AE 2取得最小值2,即AE 2.【点睛】考查了全等三角形的性质和判定,解此题的关键灵活其相关的知识点进行推理证明. 19.【分析】由抛物线的对称性可知对称轴为可得即是方程的两个根再根据题目当中给出的条件代入解析式判断求解即可;【详解】当和时∴对称轴为∴当时y 的值相等∴∴是方程的两个根故②正确;∵当时且c >0∴>0∴>0 解析:①②④【分析】 由抛物线的对称性可知对称轴为0212x +==,可得0p =,即1x =-,3x =是方程20ax bx c ++=的两个根,再根据题目当中给出的条件,代入解析式判断求解即可;【详解】当0x =和2x =时,y t =,∴对称轴为0212x +==, ∴当1x =-,3x =时,y 的值相等,∴0p =,∴1x =-,3x =是方程20ax bx c ++=的两个根,故②正确;∵当0x =时,y t =,且c >0,∴t c =>0,∴202p t t +=+>0,故③错误;∵2x =,y t =>0,3x =,0y =,∴在对称轴的右边,y 随x 的增大而减小,∴a <0, ∵12b x a=-=, ∴2b a =->0,故①正确;∵当3x =时,0y =, ∴930a b c ++=,∴30a c +=,∴3c a =-,∴443a c a a a --=-+=-,∵顶点坐标为()1,n ,a <0,∴2am bm c a b c ++≤++, ∴2am bm a b +≤+,∴2am bm a +≤-, ∴24am bm a c +≤--,故④正确;综上所述:结论正确的是①②④;故答案是:①②④.【点睛】本题主要考查了二次函数图象性质,熟练掌握二次函数图像上点的特征是解题的关键.20.x1=﹣2x2=3【分析】利用因式分解法把原方程化为x+2=0或x﹣3=0然后解两个一次方程即可【详解】(x+2)(x﹣3)=0x+2=0或x﹣3=0所以x1=﹣2x2=3故答案为x1=﹣2x2=3解析:x1=﹣2,x2=3【分析】利用因式分解法把原方程化为x+2=0或x﹣3=0,然后解两个一次方程即可.【详解】(x+2)(x﹣3)=0,x+2=0或x﹣3=0,所以x1=﹣2,x2=3.故答案为x1=﹣2,x2=3.【点睛】本题考查了解一元二次方程−因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).三、解答题21.(1)7,30%;(2)见解析;(3)280;(4)1 2【分析】(1)先由绘画类人数及其所占百分比求出总人数,总人数乘以音乐类对应百分比求出其人数,用球类人数除以总人数可得其所占百分比(2)根据以上所求结果可补全图形(3)总人数乘以参棋类活动的人数所占比例即可得(4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.【详解】(1)总人数为1025%40÷=(人),音乐类人数为4017.5%7⨯=(人),参加球类活动的人数为4010747----=12(人),∴参加球类活动的人数的百分比为12100%30%40⨯=,故答案为:7,30%;(2)补全图形:;(3)该校学生共1600人,则参棋类活动的大约有7160028040⨯=(人);(4)列树状图如下:共有12种等可能的情况,其中恰好选中一男一女的有6种,∴P(恰好选中一男一女)=61122=.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(1)536;(2)19.【分析】(1)根据列举法列出所有的可能性,求出概率即可.(2)根据(1)中的可能性求出概率即可.【详解】解:当a=1时,b=1,2,3,4,5,6;当a=2时b=1,2,3,4,5,6;当a=3时b=1,2,3,4,5,6;当a=4时b=1,2,3,4,5,6;当a=5时b=1,2,3,4,5,6;当a=6时b=1,2,3,4,5,6;共36种等可能结果,其中符合题意的有5种所以两次抛掷点数之和为6的概率为5 36.(2)点在y=-x+5上记作B事件,共36种等可能结果,其中符合题意的有4种则()41 369p B==.【点睛】此题考查列举法求概率,涉及到一次函数,难度一般.23.(1)图见解析,(2,3)-;(2)52π. 【分析】(1)先根据旋转的性质分别画出点,,B C D 旋转后的对应点,,B C D ''',再顺次连接点,,,A B C D '''可得旋转后的图形,然后根据旋转的性质可得四边形AB C D '''是矩形,,AD AD C D CD '''==,由此即可得;(2)先利用矩形的性质、勾股定理求出AC 的长,再利用弧长公式即可得.【详解】(1)先根据旋转的性质分别画出点,,B C D 旋转后的对应点,,B C D ''',再顺次连接点,,,A B C D '''可得旋转后的图形,如图所示:由题意得:(2,0),(5,0),(5,4),(2,4)A B C D ,2,3,4OA AB CD BC AD ∴=====,由旋转的性质得:4,3AD AD C D CD '''====,四边形AB C D '''是矩形,2,OD AD OA C D AD '''''∴=-=⊥,∴点C '的坐标为(2,3)C '-,即旋转后C 点对应点的坐标为(2,3)-;(2)由题意得:点C 在旋转过程中的路径长为CC '的长,如图所示:四边形ABCD 是矩形,3,4AB BC ==,∴对角线225AC AB +BC ,由旋转的性质得:90CAC '∠=︒,则CC '的长为90551802ππ⨯=, 即点C 在旋转过程中的路径长为52π. 【点睛】本题考查了画旋转图形、旋转的性质、弧长公式等知识点,熟练掌握旋转的性质是解题关键.24.(1)①60°;②AD BE =;(2)AB 的长度为17;(3)60°或120°,证明见解析.【分析】(1)由条件易证△ACD ≌△BCE ,从而得到:AD=BE ,∠ADC=∠BEC .由点A ,D ,E 在同一直线上可求出∠ADC ,从而可以求出∠AEB 的度数.(2)仿照(1)中的解法可求出∠AEB 的度数,证出AD=BE ;由△DCE 为等腰直角三角形及CM 为△DCE 中DE 边上的高可得CM=DM=ME ,从而证到AE=2CH+BE .(3)由(1)知△ACD ≌△BCE ,得∠CAD=∠CBE ,由∠CAB=∠ABC=60°,可知∠EAB+∠ABE=120°,根据三角形的内角和定理可知∠AOE=60°.【详解】(1)①如图1,∵ACB △和DCE 均为等边三角形,∴CA CB =,CD CE =,60ACB BCE ∠=∠=,∴ACD BCE ∠=∠,在ACD △和BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴()?ACD BCE SAS ≌, ∴ADC BEC ∠∠=, ∵DCE 为等边三角形,∴60CDE CED ∠=∠=,∵点A ,D ,E 在同一直线上,∴120ADC ∠=,∴120BEC ∠=,∴60AEB BEC CED ∠=∠-∠=.故答案为:60°.②∵≌ACD BCE ,∴AD BE =,故答案为:AD BE =.(2)∵ACB △和DCE 均为等腰直角三角形, ∴CA CB =,CD CE =,90ACB DCE ∠∠==,∴ACD BCE ∠=∠,在ACD △和BCE 中,CA CB ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴()ACD BCE SAS △≌△,∴8AD BE AE DE ==-=,ADC BEC ∠∠=, ∵DCE 为等腰直角三角形,∴45CDE CED ∠=∠=,∵点A ,D ,E 在同一直线上,∴135ADC ∠=,∴135BEC ∠=,∴90AEB BEC CED ∠=∠-∠=, ∴2217AB AE BE =+=.(3)如图3,由(1)知≌ACD BCE ,∴CAD CBE ∠=∠,∵60CAB CBA ∠=∠=,∴120OAB OBA ∠+∠=,∴18012060AOE ∠=-=, 如图4,同理求得60AOB ∠=,∴120AOE ∠=,∵AOE ∠的度数是60°或120°.【点睛】此题是几何变换综合题,主要考查了等边三角形的性质、等腰三角形的性质、直角三角形斜边上的中线等于斜边的一半、三角形全等的判定与性质等知识,得出△ACD ≌△BCE (SAS )是解本题的关键.25.(1)()232408y x x x =-+<<;(2)当5x = 时,45max y =平方米.【分析】(1)花圃的面积=AB×(篱笆长-3AB ),根据边长为正数可得自变量的取值范围;(2)先结合(1)及AD 不大于9可得自变量的取值范围,再根据二次函数图像性质,在自变量范围内变化取最值.【详解】解:(1)∵(2)·43S BC AB x x ==-, ∴2324y x x =-+,由题意00AB BC >>,,即02430x x >>,-,解得08x << ;(2)∵墙的最大可用长度为9米,即02439x <≤- ,解得,58x ≤<,∴()232458y x x x -+=≤<, 二次函数图像开口向下,对称轴为()24423x =-=⨯-, 58x ≤<在对称轴右侧,y 随着x 的增大而减小,∴当5x =时,长方形花圃的面积最大,235448=45y =+⨯-(-),∴当AB 为5米时,长方形花圃的面积最大,最大面积是45平方米.【点睛】本题主要考查实际问题与二次函数图形问题、二次函数的最值、一元一次不等式等.得到BC 边长的关系式和熟练掌握二次函数图像的性质是解答本题关键;得到自变量的取值是解本题的易错点.26.(1)2;(2)125, 1.x x ==-【分析】(1)根据二次根式的混合运算法则计算即可;(2)根据因式分解的方法解方程即可.【详解】解:(1|2|3+23=2 (2)x 2﹣4x ﹣5=0,(x ﹣5)(x +1)=0,∴x ﹣5=0或x +1=0,∴x 1=5,x 2=﹣1.【点睛】本题考查二次根式的混合运算以及解一元二次方程的方法,属于基础题 。

华东师大版九年级数学上册期末测试卷(含答案)

华东师大版九年级数学上册期末测试卷(含答案)

期末检测题(二)(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分) 1.下列说法中,正确的是( )A .当x <1时,x -1有意义B .方程x 2+x -2=0的根是x 1=-1,x 2=2 C.12的化简结果是 2 D.(-2)2=22.下列各组中的四条线段成比例的是( )A .4 cm ,2 cm ,1 cm ,3 cmB .1 cm ,2 cm ,3 cm ,5 cmC .3 cm ,4 cm ,5 cm ,6 cmD .1 cm ,2 cm ,2 cm ,4 cm3.(2019·武汉模拟)若关于x 的一元二次方程(k +2)x 2-3x +1=0有实数根,则k 的取值范围是( )A .k <14且k≠-2B .k ≤14C .k ≤14且k≠-2D .k ≥144.a ,b ,c 是△ABC 的∠A,∠B ,∠C 的对边,且a∶b∶c=1∶2∶3,则cos B 的值为( )A.63B.33C.22D.245.在盒子里放有三张分别写有整式a +1,a +2,2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是( )A.13B.23C.16D.346.如图,在正方形网格上,与△ABC 相似的三角形是( ) A .△AFD B .△AED C .△FED D .不能确定,第6题图) ,第7题图),第8题图)7.如图,将Rt △ABC 形状的楔子从木桩的底端点P 处沿水平方向打入木桩底下,使木桩向上运动,已知楔子斜面的倾斜角为20°,若楔子沿水平面方向前移8 cm (如箭头所示),则木桩上升了( )A .8tan20° cm B.8tan20°cm C .8sin20° cm D .8cos20° cm8.如图,点D 是△ABC 内一点,BD ⊥CD ,AD =11,BD =8,CD =6,点E ,F ,G ,H 分别是AB ,AC ,CD ,BD 的中点,则四边形EFGH 的周长是( )A .14B .18C .21D .249.如图,港口A 在观测站O 的正东方向,OA =4 km ,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达B 处,此时从观测站O 处测得该船位于北偏东60°的方向,则该船航行的距离(即AB 的长)为( )A .4 kmB .2 3 kmC .2 2 kmD .(3+1) km,第9题图) ,第10题图)10.如图,正方形ABCD 的边长为25,内部有6个全等的小正方形,小正方形的顶点E ,F ,G ,H 分别落在边AD ,AB ,BC ,CD 上,则每个小正方形的边长为( )A .6B .5C .27 D.34二、填空题(每小题3分,共24分) 11.化简:2(8-2)=( ).12.已知关于x 的一元二次方程x 2+px -6=0的一个根为2,则p =( ),另一根是( ).13.一个不透明的盒子里装有除颜色外无其他差别的白珠子6颗和黑珠子若干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过多次试验发现摸到白珠子的频率稳定在0.3左右,则盒子中黑珠子可能有( )颗.14.如图,在△ABC 中,点D ,E 分别在AB ,AC 上,DE ∥BC.若AD =4,DB =2,则DEBC的值为( ).,第14题图) ,第17题图),第18题图)15.在△ABC 中,若|sin A -12|+(cos B -12)2=0,则∠C 的度数是( ).16.某服装店经销一种品牌服装,平均每天可销售20件,每件赢利44元,经市场调查发现:在每件降价不超过10元的情况下,若每件降价1元,则每天可多销售5件,若该专卖店要使该品牌服装每天的赢利为1600元,则每件应降价( )元.17.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上.若光源到幻灯片的距离为20 cm ,到屏幕的距离为60 cm ,且幻灯片中图形的高度为6 cm ,则屏幕上图形的高度为( ).18.如图,点M 是△ABC 内一点,过点M 分别作直线平行于△ABC 的各边,所形成的三个小三角形▲1,▲2,▲3(图中阴影部分)的面积分别是1,4,9,则△ABC 的面积是( ).三、解答题(共66分)19.(8分)(1)解方程:(x +1)(x -3)=5; (2)计算:13+1-sin 60°+32×18+cos 245°.20.(8分)如图,△ABC 的顶点坐标分别为A(1,3),B(4,2),C(2,1).(1)作出与△ABC关于y轴对称的△A1B1C1,并直接写出点C1的坐标;(2)以原点O为位似中心在原点的另一侧画出△A2B2C2,使ABA2B2=12,并直接写出点C2的坐标.21.(9分)已知x1、x2是关于x的方程x2+2x+2k-4=0两个实数根,并且x1≠x2.(1)求实数k的取值范围;(2)若k为正整数,且该方程的根都是整数,求k的值;(3)若|x1-x2|=6,求(x1-x2)2+3x1x2-5的值.22.(9分)(2018·绍兴)如图1,窗框和窗扇用“滑块铰链”连接,图3是图2中“滑块铰链”的平面示意图,滑轨MN安装在窗框上,托悬臂DE安装在窗扇上,交点A处装有滑块,滑块可以左右滑动,支点B,C,D始终在一直线上,延长DE交MN于点F.已知AC=DE =20 cm,AE=CD=10 cm,BD=40 cm.(1)窗扇完全打开,张角∠CAB=85°,求此时窗扇与窗框的夹角∠DFB的度数;(2)窗扇部分打开,张角∠CAB=60°,求此时点A,B之间的距离(精确到0.1 cm,参考数据:3≈1.732,6≈2.449)23.(10分)九月石榴全面上市,其中新品种突尼斯软籽石榴因其个大多汁,其籽可直接吞食而深受大家喜爱,但突尼斯软籽石榴一直因技术问题产量不多,今年终于突破研究大量上市,某超市准备大量进货,已知去年同期普通石榴进价3元/斤,突尼斯软籽石榴进价10元/斤,去年九月共进货900斤.(1)若去年九月两种石榴进货总价不超过6200元,则突尼斯软籽石榴最多能购进多少斤?(2)若超市今年九月上半月共购进1000斤的石榴,其中普通石榴进价与去年相同,突尼斯软籽石榴进价降4元,结果普通石榴按8元/斤,突尼斯软籽石榴16元/斤的价格卖出后共获利8000元,下半月因临近中秋和国庆双节,两种石榴进价在上半月基础上保持不变,售价一路上涨,超市调整计划,普通石榴进货量与上半月持平,售价下降a%吸引顾客;突尼斯软籽石榴进货量上涨43a%,售价上涨2a%,最后截至九月底,下半月获利比上半月的2倍少400元,求a 的值.24.(10分)(2018·本溪)某校在宣传“民族团结”活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.请结合图中所给信息,解答下列问题: (1)本次调查的学生共有( )人; (2)补全条形统计图;(3)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?(4)七年级一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.25.(12分)(2018·宁波)若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.(1)已知△ABC 是比例三角形,AB =2,BC =3,请直接写出所有满足条件的AC 的长; (2)如图1,在四边形ABCD 中,AD ∥BC ,对角线BD 平分∠ABC,∠BAC =∠ADC.求证:△ABC 是比例三角形.(3)如图2,在(2)的条件下,当∠ADC=90°时,求BDAC的值.期末检测题(二)(答案版)(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分) 1.下列说法中,正确的是( D )A .当x <1时,x -1有意义B .方程x 2+x -2=0的根是x 1=-1,x 2=2 C.12的化简结果是 2 D.(-2)2=22.下列各组中的四条线段成比例的是( D )A .4 cm ,2 cm ,1 cm ,3 cmB .1 cm ,2 cm ,3 cm ,5 cmC .3 cm ,4 cm ,5 cm ,6 cmD .1 cm ,2 cm ,2 cm ,4 cm3.(2019·武汉模拟)若关于x 的一元二次方程(k +2)x 2-3x +1=0有实数根,则k 的取值范围是(C)A .k <14且k≠-2B .k ≤14C .k ≤14且k≠-2D .k ≥144.a ,b ,c 是△ABC 的∠A,∠B ,∠C 的对边,且a∶b∶c=1∶2∶3,则cos B 的值为( B )A.63B.33C.22D.245.在盒子里放有三张分别写有整式a +1,a +2,2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是( B )A.13B.23C.16D.346.如图,在正方形网格上,与△ABC 相似的三角形是( A ) A .△AFD B .△AED C .△FED D .不能确定,第6题图) ,第7题图),第8题图)7.如图,将Rt △ABC 形状的楔子从木桩的底端点P 处沿水平方向打入木桩底下,使木桩向上运动,已知楔子斜面的倾斜角为20°,若楔子沿水平面方向前移8 cm (如箭头所示),则木桩上升了( A )A .8tan20° cm B.8tan20°cm C .8sin20° cm D .8cos20° cm8.如图,点D 是△ABC 内一点,BD ⊥CD ,AD =11,BD =8,CD =6,点E ,F ,G ,H 分别是AB ,AC ,CD ,BD 的中点,则四边形EFGH 的周长是(C)A .14B .18C .21D .249.如图,港口A 在观测站O 的正东方向,OA =4 km ,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达B 处,此时从观测站O 处测得该船位于北偏东60°的方向,则该船航行的距离(即AB 的长)为( C )A .4 kmB .2 3 kmC .2 2 kmD .(3+1) km,第9题图) ,第10题图)10.如图,正方形ABCD 的边长为25,内部有6个全等的小正方形,小正方形的顶点E ,F ,G ,H 分别落在边AD ,AB ,BC ,CD 上,则每个小正方形的边长为( D )A .6B .5C .27 D.34二、填空题(每小题3分,共24分) 11.化简:2(8-2)=__2__.12.已知关于x 的一元二次方程x 2+px -6=0的一个根为2,则p =__1__,另一根是__-3__.13.一个不透明的盒子里装有除颜色外无其他差别的白珠子6颗和黑珠子若干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过多次试验发现摸到白珠子的频率稳定在0.3左右,则盒子中黑珠子可能有__14__颗.14.如图,在△ABC 中,点D ,E 分别在AB ,AC 上,DE ∥BC.若AD =4,DB =2,则DEBC 的值为__23__.,第14题图) ,第17题图),第18题图)15.在△ABC 中,若|sin A -12|+(cos B -12)2=0,则∠C 的度数是__90°__.16.某服装店经销一种品牌服装,平均每天可销售20件,每件赢利44元,经市场调查发现:在每件降价不超过10元的情况下,若每件降价1元,则每天可多销售5件,若该专卖店要使该品牌服装每天的赢利为1600元,则每件应降价__4__元.17.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上.若光源到幻灯片的距离为20 cm ,到屏幕的距离为60 cm ,且幻灯片中图形的高度为6 cm ,则屏幕上图形的高度为__18_cm __.18.如图,点M 是△ABC 内一点,过点M 分别作直线平行于△ABC 的各边,所形成的三个小三角形▲1,▲2,▲3(图中阴影部分)的面积分别是1,4,9,则△ABC 的面积是__36__.三、解答题(共66分)19.(8分)(1)解方程:(x +1)(x -3)=5; (2)计算:13+1-sin 60°+32×18+cos 245°.解:(1)x 1=4,x 2=-2 (2)220.(8分)如图,△ABC 的顶点坐标分别为A(1,3),B(4,2),C(2,1).(1)作出与△ABC 关于y 轴对称的△A 1B 1C 1,并直接写出点C 1的坐标;(2)以原点O 为位似中心在原点的另一侧画出△A 2B 2C 2,使AB A 2B 2=12,并直接写出点C 2的坐标.解:(1)作图如图,C 1的坐标为(-2,1) (2)作图如图,C 2的坐标为(-4,-2)21.(9分)已知x 1、x 2是关于x 的方程x 2+2x +2k -4=0两个实数根,并且x 1≠x 2. (1)求实数k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值;(3)若|x 1-x 2|=6,求(x 1-x 2)2+3x 1x 2-5的值.解:(1)依题意得Δ=22-4(2k -4)>0,解得k <52.(2)因为k <52且k 为正整数,所以k =1或2,当k =1时,方程化为x 2+2x -2=0,Δ=12,此方程无整数根;当k =2时,方程化为x 2+2x =0,解得x 1=0,x 2=-2,故所求k 的值为2.(3)∵x 1,x 2是关于x 的方程x 2+2x +2k -4=0两个实数根,∴x 1+x 2=-2,x 1·x 2=2k-4,∴(x 1-x 2)2=(x 1+x 2)2-4x 1·x 2=4-4(2k -4)=20-8k.∵|x 1-x 2|=6,∴20-8k =36,∴k =-2,∴x 1·x 2=2×(-2)-4=-8,∴(x 1-x 2)2+3x 1x 2-5=36+3×(-8)-5=7.22.(9分)(2018·绍兴)如图1,窗框和窗扇用“滑块铰链”连接,图3是图2中“滑块铰链”的平面示意图,滑轨MN 安装在窗框上,托悬臂DE 安装在窗扇上,交点A 处装有滑块,滑块可以左右滑动,支点B ,C ,D 始终在一直线上,延长DE 交MN 于点F.已知AC =DE =20 cm ,AE =CD =10 cm ,BD =40 cm .(1)窗扇完全打开,张角∠CAB=85°,求此时窗扇与窗框的夹角∠DFB 的度数; (2)窗扇部分打开,张角∠CAB=60°,求此时点A ,B 之间的距离(精确到0.1 cm ,参考数据:3≈1.732,6≈2.449)解:(1)∵AC =DE =20 cm ,AE =CD =10 cm ,∴四边形ACDE 是平行四边形,∴AC ∥DE ,∴∠DFB =∠CAB.∵∠CAB=85°,∴∠DFB =85°.(2)作CG⊥AB 于点G ,∵AC =20,∠CGA =90°,∠CAB =60°,∴CG =103,AG =10,∵BD =40,CD =10.∴CB=30,∴BG =302-(103)2=106,∴AB =AG +BG =10+106≈10+10×2.449=34.49≈34.5 cm ,即A 、B 之间的距离为34.5 cm .23.(10分)九月石榴全面上市,其中新品种突尼斯软籽石榴因其个大多汁,其籽可直接吞食而深受大家喜爱,但突尼斯软籽石榴一直因技术问题产量不多,今年终于突破研究大量上市,某超市准备大量进货,已知去年同期普通石榴进价3元/斤,突尼斯软籽石榴进价10元/斤,去年九月共进货900斤.(1)若去年九月两种石榴进货总价不超过6200元,则突尼斯软籽石榴最多能购进多少斤?(2)若超市今年九月上半月共购进1000斤的石榴,其中普通石榴进价与去年相同,突尼斯软籽石榴进价降4元,结果普通石榴按8元/斤,突尼斯软籽石榴16元/斤的价格卖出后共获利8000元,下半月因临近中秋和国庆双节,两种石榴进价在上半月基础上保持不变,售价一路上涨,超市调整计划,普通石榴进货量与上半月持平,售价下降a%吸引顾客;突尼斯软籽石榴进货量上涨43a%,售价上涨2a%,最后截至九月底,下半月获利比上半月的2倍少400元,求a 的值.解:(1)设购进突尼斯软籽石榴x 斤,则购进普通石榴(900-x)斤,根据题意得:10x +3(900-x )≤6200,解得x≤500.答:突尼斯软籽石榴最多能购进500斤.(2)设该超市今年九月上半月购进普通石榴y 斤,则购进突尼斯软籽石榴(1000-y)斤, 根据题意得:(8-3)y +(16-10+4)(1000-y)=8000, 解得y =400,∴1000-y =600.∵下半月获利比上半月的2倍少400元,∴[8(1-a%)-3]×400+[16(1+2a%)-10+4]×600(1+43a%)=8000×2-400,整理,得4a 2+375a -11875=0,解得a 1=25,a 2=-4754(舍去).答:a 的值为25. 24.(10分)(2018·本溪)某校在宣传“民族团结”活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.请结合图中所给信息,解答下列问题: (1)本次调查的学生共有__100__人; (2)补全条形统计图;(3)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?(4)七年级一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.解:(1)本次调查的学生共有:30÷30%=100(人);(2)喜欢B 类项目的人数有:100-30-10-40=20(人),补图如下:(3)选择“唱歌”的学生有:1200×40100=480(人).(4)根据题意画树形图:共有12种等可能情况,被选取的两人恰好是甲和乙有2种情况,则被选取的两人恰好是甲和乙的概率是212=16.25.(12分)(2018·宁波)若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.(1)已知△ABC 是比例三角形,AB =2,BC =3,请直接写出所有满足条件的AC 的长; (2)如图1,在四边形ABCD 中,AD ∥BC ,对角线BD 平分∠ABC,∠BAC =∠ADC.求证:△ABC 是比例三角形.(3)如图2,在(2)的条件下,当∠ADC=90°时,求BDAC的值.解:(1)∵△ABC 是比例三角形,且AB =2,BC =3,①当AB 2=BC·AC 时,得:4=3AC ,解得:AC =43;②当BC 2=AB·AC 时,得:9=2AC ,解得:AC =92;③当AC 2=AB·BC 时,得:AC 2=6,解得:AC =6(负值舍去).所以当AC =43或92或6时,△ABC 是比例三角形.(2)证明:∵AD∥BC,∴∠ACB =∠CAD.又∵∠BAC=∠ADC,∴△ABC ∽△DCA.∴BC CA =CAAD,即CA 2=BC·AD.∵AD∥BC,∴∠ADB =∠CBD.∵BD 平分∠ABC,∴∠ABD =∠CBD.∴∠ADB=∠ABD,∴AB =AD.∴CA 2=BC·AB,∴△ABC 是比例三角形.(3)如图,过点A 作AH⊥BD 于点H ,∵AB =AD ,∴BH =12BD.∵AD∥BC,∠ADC =90°,∴∠BCD =90°,∴∠BHA =∠BCD=90°.又∵∠ABH=∠DBC,∴△A BH∽△DBC,∴AB DB =BH BC ,即AB·BC=BH·DB,∴AB ·BC =12BD 2.又∵AB·BC=AC 2,∴12BD 2=AC 2,∴BD AC= 2.。

【华东师大版】九年级数学上期末模拟试卷带答案

【华东师大版】九年级数学上期末模拟试卷带答案

一、选择题1.由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色,下列说法正确的是( )A .两个转盘转出蓝色的概率一样大B .如果A 转盘转出了蓝色,那么B 转盘转出蓝色的可能性变小了C .游戏者配成紫色的概率为16D .先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率不同 2.“明天的降水概率为90%”的含义解释正确的是( ) A .明天90%的地区会下雨 B .90%的人认为明天会下雨C .明天90%的时间会下雨D .在100次类似于明天的天气条件下,大约有90次会下雨3.从2,3,4,5中任意选两个数,记作a 和b ,那么点()a b ,在函数2611y x x =-+图象上的概率是( ) A .12B .13C .14D .164.在智力竞答节目中,某参赛选手答对最后两题单选题就能利通关,两题均有四个选项,此选手只能排除第1题的一个错误选项,第2题完全不会,他还有两次“求助”机会(使用可去掉一个错误选项),为提高通关概率,他的求助使用策略为( ) A .两次求助都用在第1题 B .两次求助都用在第2题 C .在第1第2题各用一次求助 D .无论如何使用通关概率都相同5.下列事件属于确定事件的为( ) A .氧化物中一定含有氧元素 B .弦相等,则所对的圆周角也相等 C .戴了口罩一定不会感染新冠肺炎D .物体不受任何力的时候保持静止状态 6.如图,ABC 的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将ABC 绕点B 顺时针旋转到A B C '''的位置,且点A '、C '仍落在格点上,则线段AB 扫过的图形的面积是( )平方单位(结果保留)A .254πB .134π C .132π D .136π7.如图,在⊙O 中,OA BC ⊥,35ADB ∠=︒.则AOC ∠的度数为( )A .40︒B .55︒C .70︒D .65︒8.如图,线段AB 是⊙O 的直径,弦CD 丄AB ,∠CAB =20°,则∠BOD 等于( )A .20°B .40°C .50°D .60°9.已知点(2,3)A ,O 是坐标原点,将线段OA 绕点O 逆时针旋转90︒,点A 旋转后的对应点1A ,则点1A 的坐标是( ) A .(2,3)--B .(2,3)-C .(3,2)-D .(3,2)-10.如图,以点A 为中心,把△ABC 逆时针旋转120°,得到△AB'C′(点B 、C 的对应点分别为点B′、C′),连接BB',若AC'∥BB',则∠CAB'的度数为( )A .45°B .60°C .70°D .90°11.已知二次函数2y ax bx c =++,当2x =时,该函数取最大值9.设该函数图象与 x 轴的一个交点的横坐标为1x ,若15x >则a 的取值范围是( ) A .3a 1-<<-B .2a 1-<<C .1a 0-<<D .2a 4<<12.若关于x 的一元二次方程2(1)210m x x +--=有实数根,则m 的取值范围是( )A .2m >-B .2m ≥-C .2m >-且1m ≠-D .2m ≥-且1m ≠-二、填空题13.小明、小虎、小红三人排成一排拍照片,小明站在中间的概率是____________. 14.在一个不透明的口袋中有3个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在15%左右,则口袋中的白球大约有________个.15.如图,AD 平分∠BAC ,BD ⊥AD ,垂足为D ,连接CD ,若三角形△ABC 内有一点P ,则点P 落在△ADC 内(包括边界的阴影部分)的概率为__________.16.如图,四边形ABCD 是O 的内接四边形,对角线AC 是O 的直径,2AB =,45ADB ∠=︒,则O 的半径长为_______.17.如图,AB AC 、分别为O 的内接正方形、内接正三角形的边,BC 是圆内接正n 边形的一边,则n 的值为_______________________.18.如图,把ABC ∆绕点A 旋转,点B 旋转至BC 边的点D 位置,EAC α∠=︒,则ADE ∠的度数为_____.19.已知点A (4,y 1),B (2,y 2),C (-2,y 3)都在二次函数()22y x m =--的图象上,则y1,y2,y3的大小关系是_______.20.已知1x,2x是关于x的一元二次方程260x x a-+=的两个实数根,且22 1212x x-=,则a=________.三、解答题21.为响应垃圾分类处理,改善生态环境,某小区将生活垃圾分成三类:厨余垃圾、可回收垃圾和其他垃圾,分别记为a,b,c,并且设置了相应的垃圾箱,“厨余垃圾”箱,“可回收垃圾”箱和“其他垃圾”箱,分别记为A,B,C(1)小明将垃圾分装在三个袋中,任意投放,用画树状图或列表的方法求把三个袋子都放错位置的概率是多少?(2)某学习小组为了了解居民生活垃圾分类投放的情况,现随机抽取了某天三类垃圾箱中总共100吨的生活垃圾,数据统计如表(单位:吨):A B Ca401010b3243c226调查发现,在“可回收垃圾”中塑料类垃圾占10%,每回收1吨塑料类垃圾可获得0.7吨二级原料,某城市每天大约产生200吨生活垃圾假设该城市每天处理投放正确的垃圾,每天大概可回收多少吨塑料类垃圾的二级原料?22.已知:如图,ABC中,BC AC=,以BC为直径的O交AB于点O,过点D作DE AC⊥于点E,交BC的延长线于点F.求证:(1)AD BD=,(2)DF是O的切线.23.一个不透明的口袋中装有4个分别标有数1,2,3,4的小球,它们的形状、大小完全相同,小红先从口袋里随机摸出一个小球记下数为x,小颖在剩下的3个球中随机摸出一个小球记下数为y,这样确定了点P的坐标(,)x y.(1)小红摸出标有数3的小球的概率是_______;(2)请你用列表法或画树状图法表示出由x,y确定的点(,)P x y所有可能的结果.并求点(,)P x y在函数4yx=图象上的概率.24.如图,ABC ∆和ECD ∆都是等边三角形,直线AE ,BD 交于点F .(1)如图1,当A ,C ,D 三点在同一直线上时,AFB ∠的度数为_____,线段AE 与BD 的数量关系为_____.(2)如图2,当ECD ∆绕点C 顺时针旋转α()0360α︒≤<︒时,(1)中的结论是否还成立?若不成立,请说明理由:若成立,请就图2给予证明.(3)若4AC =,3CD =,当ECD ∆绕点C 顺时针旋转一周时,请直接写出BD 长的取值范围.25.某水果店批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售将减少20千克.(1)现要保证每天盈利5520元,同时又要让顾客得到实惠,那么每千克应涨价多少元? (2)要使每天获利不少于6000元,求涨价x 的范围. 26.解下列方程(1)2210x x ++= (2)233x x【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据古典概率模型的定义和列树状图求概率分别对每个选项逐一判断可得. 【详解】解:A 、A 盘转出蓝色的概率为12、B 盘转出蓝色的概率为13,此选项错误; B 、如果A 转盘转出了蓝色,那么B 转盘转出蓝色的可能性不变,此选项错误; C 、画树状图如下:由于共有6种等可能结果,而出现红色和蓝色的只有1种, 所以游戏者配成紫色的概率为16, D 、由于A 、B 两个转盘是相互独立的,先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率相同,此选项错误; 故选:C . 【点睛】此题考查了列表法或树状图法求概率.注意用到的知识点为:概率=所求情况数与总情况数之比.2.D解析:D 【分析】根据概率表示某事情发生的可能性的大小,依次分析选项可得答案. 【详解】解:根据概率表示某事情发生的可能性的大小,分析可得,在100次类似于明天的天气条件下,大约有90次会下雨,正确; 故选:D . 【点睛】随机事件是指在一定条件下,可能发生也可能不发生的事件.概率表示随机事件发生的可能性的大小.3.C解析:C 【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与点()a b ,在函数2611y x x =-+图象上的情况,再利用概率公式即可求得答案;【详解】 解:画树状图得:∵共有12种等可能的结果,点()a b ,在函数2611y x x =-+图象上的点为:(2,3)、(3,2)、(4,3)共3种,∴点()a b ,在函数2611y x x =-+图象上的概率31124P , 故答案为:C. 【点睛】本题主要考查了列表法与树状图法,概率公式,掌握列表法与树状图法,概率公式是解题的关键.4.A解析:A【分析】根据题意,分类讨论,然后分别画出树状图,根据概率公式求出每一种情况下的概率,即可判断.【详解】解:①若两次求助都用在第1题,根据题意可知,第1题肯定能答对,第2题答对的概率为1 4故此时该选手通关的概率为:14;②若在第1第2题各用一次求助,画树状图如下:上层A、B表示第一题剩下的两个选项,下层A、B、C表示第二题剩下的三个选项,共有6种等可能的结果,其中该选手通关的可能只有1种,故此时该选手通关的概率为:16;③两次求助都用在第2题画树状图如下:上层A、B、C表示第一题剩下的三个选项,下层A、B表示第二题剩下的二个选项,共有6种等可能的结果,其中该选手通关的可能只有1种,故此时该选手通关的概率为:16.∵14>16∴两次求助都用在第1题,该选手通关的概率大,故选A.【点睛】此题考查的是求概率问题,掌握画树状图的方法、概率公式和分类讨论的数学思想是解决此题的关键.5.A解析:A 【分析】根据确定事件的概念,可知需找出必然事件或不可能事件即可. 【详解】A 、氧化物是含有两种元素其中一种是氧元素的化合物,必然事件;B 、在同圆或等圆中,弦相等所对的圆周角相等或互补,不确定事件;C 、戴了口罩一定不会感染新冠肺炎,不确定事件;D 、物体不受任何力的时候保持静止状态或匀速运动,不确定事件. 故选A. 【点睛】本题考查事件的划分,必然事件和不可能事件统称为确定事件,确定事件中,必然出现的事情称为必然事件;不可能出现的事情称为不可能事件.6.B解析:B 【分析】在Rt △ABC 中,由勾股定理求AB ,观察图形可知,线段AB 扫过的图形为扇形,旋转角为90°,根据扇形面积公式求解. 【详解】解:在Rt △ABC 中,由勾股定理,得==由图形可知,线段AB 扫过的图形为扇形ABA′,旋转角为90°,∴线段AB 扫过的图形面积=2290n 13=3603604AB ⨯=πππ.故选:B . 【点睛】本题考查了旋转的性质,扇形面积公式的运用,关键是理解题意,明确线段AB 扫过的图形是90°的扇形,难度一般.7.C解析:C 【分析】根据圆周角定理可得270AOB ADB ∠=∠=︒,再利用垂径定理即可求解. 【详解】 解:连接OB ,∵35ADB ∠=︒, ∴270AOB ADB ∠=∠=︒, ∵OA BC ⊥, ∴AB AC =, ∴70AOC AOB ∠=∠=︒, 故选:C . 【点睛】本题考查圆周角定理、垂径定理、同弧所对的圆心角相等,掌握圆的基本性质定理是解题的关键.8.B解析:B 【分析】由线段AB 是⊙O 的直径,弦CD 丄AB ,根据垂径定理的即可求得=BC BD ,然后由圆周角定理,即可求得答案. 【详解】解:∵线段AB 是⊙O 的直径,弦CD 丄AB , ∴=BC BD , ∵∠CAB =20°,∴∠BOD=2∠CAB=2×20°=40°. 故选:B . 【点睛】此题考查了圆周角定理以及垂径定理.此题难度不大,注意掌握数形结合思想的应用.9.D解析:D 【分析】根据点(,)x y 绕原点逆时针旋转90°得到的坐标为(,)y x -解答即可. 【详解】 解:A 、1A 两点是绕原点逆时针旋转90︒得到的,1A ∴的坐标为(3,2)-.故选:D .【点睛】考查由旋转得到的两点的坐标的变换;用到的知识点为:点(,)x y 绕原点逆时针旋转90︒得到的坐标为(,)y x -.10.D解析:D 【分析】先根据旋转的性质得到∠BAB′=∠CAC′=120°,AB=AB′,根据等腰三角形的性质易得∠AB′B=30°,再根据平行线的性质由AC′∥BB′得∠C′AB′=∠AB ′B=30°,然后利用∠CAB′=∠CAC′-∠C′AB′进行计算. 【详解】∵以点A 为中心,把△ABC 逆时针旋转120°,得到△AB'C′, ∴∠BAB′=∠CAC′=120°,AB=AB′, ∴∠AB′B=12(180°-120°)=30°, ∵AC′∥BB′,∴∠C′AB′=∠AB′B=30°,∴∠CAB′=∠CAC′-∠C′AB′=120°-30°=90°. 故选:D . 【点睛】此题考查旋转的性质,等腰三角形的性质,三角形内角和定理,平行线的性质,解题关键在于掌握旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段的夹角等于旋转角.11.C解析:C 【分析】根据二次函数2y ax bx c =++,当2x =时,该函数取最大值9,可以写出该函数的顶点式,得到0a <,再根据该函数图象与x 轴的一个交点的横坐标为1x ,15x >,可知,当5x =时,0y >,即可得到a 的取值范围,本题得以解决.【详解】 解:二次函数2y ax bx c =++,当2x =时,该函数取最大值9,0a ∴<,该函数解析式可以写成2(2)9y a x =-+,设该函数图象与x 轴的一个交点的横坐标为1x ,15x >,∴当5x =时,0y >,即2(52)90a -+>,解得,1a >-,a ∴的取值范围时10a -<<,故选:C . 【点睛】本题考查二次函数图象与系数的关系、二次函数的最值、抛物线与x 轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.12.D解析:D【分析】根据一元二次方程的定义和判别式的意义得到10m +≠且240b ac =-≥,然后求写出两不等式的公共部分即可.【详解】根据题意得10m +≠且()()224(2)4110b ac m =-=--+⨯-≥, 解得1m ≠-且2m ≥-.故选:D .【点睛】本题考查了根的判别式:一元二次方程20ax bx c ++=(0a ≠)的根与24b ac =-有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.二、填空题13.【分析】列举出所有情况让小明站在中间的情况数除以总情况数即为所求的概率【详解】解:根据题意得:设三名同学为ABC 小明为A ;则可能的情况有:ABCACBBACBCACABCBA ∴共6种情况小明在中间的 解析:13【分析】列举出所有情况,让小明站在中间的情况数除以总情况数即为所求的概率.【详解】解:根据题意得:设三名同学为A 、B 、C ,小明为A ;则可能的情况有:ABC ,ACB ,BAC ,BCA ,CAB ,CBA ,∴共6种情况,小明在中间的有BAC ,CAB 这两种情况;∴小明站在中间的概率是13. 故答案为:13. 【点睛】本题考查列表法与树状图法. 14.17【解析】试题分析:当试验次数很大时实验频率趋于理论概率所以设口袋中白球数为个则红球概率=红球数除以总球数即考点:实验概率定义 解析:17【解析】试题分析:当试验次数很大时,实验频率趋于理论概率.所以设口袋中白球数为x个,则红球概率=红球数除以总球数.即315 3100x=+320,17.x x∴+=∴=考点:实验概率定义.15.【分析】据已知条件证得△ABD≌△AED根据全等三角形的性质得到BD=ED得出S△ABD=S△AEDS△BCD=S△DCE推出S△ACD=S△ABC根据概率公式可得的答案【详解】延长BD交AC于E∵解析:12【分析】据已知条件证得△ABD≌△AED,根据全等三角形的性质得到BD=ED,得出S△ABD=S△AED,S△BCD=S△DCE,推出S△ACD=12S△ABC,根据概率公式可得的答案.【详解】延长BD交AC于E,∵AD平分∠BAC,∴∠BAD=∠EAD,∵BD⊥AD,∴∠ADB=∠ADE=90°,在△ABD和△AED中,ADB ADEAD ADBAD EAD∠=∠⎧⎪=⎨⎪∠∠⎩=,∴△ABD≌△AED(ASA),∴BD=ED,∴S△ABD=S△AED,S△BCD=S△DCE,,∴S△ACD=12S△ABC,则点P落在△ADC内(包括边界)的概率为:12ACDABCSS=.故答案为12.【点睛】本题考查了概率公式的应用与全等三角形的性质和判定,三角形的面积的应用,注意:等底等高的三角形的面积相等.16.【分析】先根据圆周角定理可得再根据等腰直角三角形的判定与性质勾股定理可得由此即可得【详解】是的直径是等腰直角三角形则的半径长为故答案为:【点睛】本题考查了圆周角定理等腰直角三角形的判定与性质勾股定理【分析】先根据圆周角定理可得90,45ABC ACB ADB ∠=︒∠=∠=︒,再根据等腰直角三角形的判定与性质、勾股定理可得AC =【详解】 AC 是O 的直径,90ABC ∴∠=︒,45ADB ∠=︒,45ACB ADB ∴∠=∠=︒,Rt ABC ∴是等腰直角三角形,2BC AB ==,AC ∴==则O 的半径长为12AC =【点睛】本题考查了圆周角定理、等腰直角三角形的判定与性质、勾股定理,熟练掌握圆周角定理是解题关键.17.【分析】根据正方形以及正三边形的性质得出进而得出即可得出n 的值【详解】解:如图所示连接AOBOCO ∵ABAC 分别为⊙O 的内接正方形内接正三边形的一边∴∴∴故答案为:12【点睛】此题主要考查了正多边形解析:12【分析】 根据正方形以及正三边形的性质得出360904AOB ︒∠==︒,3603120AOC ==︒∠︒,进而得出30BOC ∠=︒,即可得出n 的值.【详解】解:如图所示,连接AO ,BO ,CO .∵AB 、AC 分别为⊙O 的内接正方形、内接正三边形的一边, ∴360904AOB ︒∠==︒,3603120AOC ==︒∠︒, ∴30BOC ∠=︒, ∴3601230n ︒==︒, 故答案为:12.【点睛】此题主要考查了正多边形和圆的性质,根据已知得出30BOC ∠=︒是解题关键. 18.【分析】根据旋转的性质可得AB=AD ∠BAD=∠EAC=α°∠ADE=∠ABC 再根据三角形内角和定理即可求得结论【详解】解:由旋转的性质得AB=AD ∠BAD=∠EAC=α°∠ADE=∠ABC ∴∠AB 解析:1902α︒︒- 【分析】根据旋转的性质可得AB=AD ,∠BAD=∠EAC=α°,∠ADE=∠ABC ,再根据三角形内角和定理即可求得结论.【详解】解:由旋转的性质得,AB=AD ,∠BAD=∠EAC=α°,∠ADE=∠ABC ,∴∠ABD=∠ADB∴∠ABD=18019022BAD α︒-∠=︒-︒ ∴∠ADE=1902α︒-︒. 故答案为:1902α︒-︒.【点睛】此题主要考查了运用旋转的性质求解,熟练掌握旋转的性质是解答此题的关键. 19.y2<y1<y3【分析】根据二次函数的对称性增减性可以得解【详解】解:由二次函数的解析式可得x=2时y 取得最小值∴最小又由二次函数图象的对称性质可知x=0与x=4的函数值相等∴令x=0时函数值为y 则解析:y 2<y 1<y 3【分析】根据二次函数的对称性、增减性可以得解.【详解】解:由二次函数的解析式可得x=2时y 取得最小值,∴2y 最小,又由二次函数图象的对称性质可知x=0与x=4的函数值相等,∴令x=0时函数值为y ,则1y y =,再由二次函数的增减性质可知x<2时,y 随着x 的增大反而减小,所以由于0>-2,因此x=0时的函数值小于x=-2时的函数值,即3y y <,∴13y y <,∴213y y y <<,故答案为213y y y <<.【点睛】本题考查二次函数的应用,熟练掌握二次函数图象的对称性、增减性及最大最小值的求法是解题关键.20.8【分析】由一元二次方程根与系数的关系得:解方程可得进一步可得结论【详解】解:由一元二次方程根与系数的关系得:又∴∴∴解得故答案为:8【点睛】本题考查了根与系数的关系牢记两根之和等于-两根之积等于是 解析:8【分析】由一元二次方程根与系数的关系得:126x x +=,12x x a =,解方程221212x x -=可得122x x -=,进一步可得结论.【详解】解:由一元二次方程根与系数的关系得:126x x +=,12x x a =,又221212x x -=,∴1212()()12x x x x +-=∴122x x -=,∴22121212()()43644x x x x x x a -=+-=-=解得,8a =,故答案为:8.【点睛】本题考查了根与系数的关系,牢记“两根之和等于-b a ,两根之积等于c a”是解题的关键. 三、解答题21.(1)13;(2)每天大概可回收3.36吨塑料类垃圾的二级原料. 【分析】(1)画树状图得出所有等可能结果,从中找到把三个袋子都放错位置的结果数,再根据概率公式计算可得;(2)根据样本,首先求得可回收垃圾量,然后再求塑料类垃圾中投放正确的,再根据每回收1吨塑料类垃圾可获得0.7吨二级原料计算即可.【详解】解:(1)画树状图如下:由树状图知,共有6种等可能结果,其中把三个袋子都放错位置的有2种结果, 所以把三个袋子都放错位置的概率是26=13; (2)200×3243100++×0.1×2430×0.7=3.36(吨), 答:每天大概可回收3.36吨塑料类垃圾的二级原料.【点睛】此题考查了列表法与树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.22.(1)证明见解析;(2)证明见解析.【分析】(1)如图(见解析),先根据圆周角定理可得90BDC ∠=︒,再根据等腰三角形的三线合一即可得证;(2)先根据等腰三角形的三线合一可得ACD BCD ∠=∠,再根据等腰三角形的性质可得ODC BCD ∠=∠,从而可得ACD ODC ∠=∠,然后根据平行线的判定与性质可得OD DF ⊥,最后根据圆的切线的判定即可得证.【详解】(1)如图,连接CD ,BC 是O 的直径,90BDC ∴∠=︒,即CD AB ⊥,又BC AC =,CD∴是AB边上的中线(等腰三角形的三线合一),AD BD∴=;(2)如图,连接OD,,BC AC CD AB=⊥,ACD BCD∴∠=∠,OC OD=,ODC BCD∴∠=∠,ACD ODC∴=∠∠,//OD AC∴,DE AC⊥,即DF AC⊥,OD DF∴⊥,又OD是O的半径,DF∴是O的切线.【点睛】本题考查了等腰三角形的三线合一、圆周角定理、圆的切线的判定等知识点,较难的是题(2),熟练掌握圆的切线的判定定理是解题关键.23.(1)14;(2)16【分析】(1)由题意直接根据概率公式求解即可得到小红摸出标有数3的小球的概率;(2)根据题意首先利用树状图展示所有12种等可能的结果数,再利用反比例函数图象上点的坐标特征得到在函数4yx=的图象上的结果数,然后根据概率公式求解.【详解】解:(1)小红摸出标有数3的小球的概率是14;故答案为:1 4 ;(2)画树状图为:由列表或画树状图可知,P点的坐标可能是(1,2)(1,3)(1,4)(2,1)(2,3),(2,4)(3,1)(3,2)(3,4)(4,1)(4,2)(4,3)共12种情况,其中在函数4y x=的图象上的有2种,即(1,4),(4,1), 所以点P (x ,y )在函数4y x=图象上的概率是212=16. 【点睛】 本题考查列表法与树状图法,注意掌握通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.同时也考查反比例函数图象上点的坐标特征.24.(1)60︒,AE BD =;(2)(1)中结论仍成立;证明见解析;(3)17BD ≤≤.【分析】(1)利用等边三角形的性质证明△ACE ≌△BCD ,结合三角形的外角就可以得出结论; (2)同(1)中方法证明△ACE ≌△BCD ,得出AE BD =,23∠∠=,再根据三角形的内角和得出60AFB ∠=︒(3)当B 、C 、D 三点共线时得出BD 的最大和最小值,即可得出结论【详解】解:(1)ABC ∆是等边三角形,AC BC ∴=,60ACB ∠=︒,ECD ∆是等边三角形,CE CD ∴=,60DCE ∠=︒,60ACB DCE ∴∠=∠=︒∴∠+∠=∠+∠ACB BCE DCE BCE ,即ACE BCD ∠=∠,在ACE ∆和BCD ∆中,AC BC ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩ACE BCD ∴∆≅∆,AE BD ∴=,CAE CBD ∠=∠,∠=∠+∠AFB CAE BDC ,且60ACB ∠=︒60∴∠=∠+∠=∠=AFB CBD BDC ACB(2)(1)中结论仍成立证明:ABC ∆是等边三角形,AC BC ∴=,60ACB ∠=︒,ECD ∆是等边三角形,CE CD ∴=,60DCE ∠=︒,60ACB DCE ∴∠=∠=︒11ACB DCE ∴∠+∠=∠+∠,即ACE BCD ∠=∠,在ACE ∆和BCD ∆中,AC BC ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩ACE BCD ∴∆≅∆,AE BD ∴=,23∠∠=,32AFB ACB ∠+∠=∠+∠,且60ACB ∠=︒60AFB ∴∠=︒(3)ABC ∆是等边三角形,4AC BC ∴==,当旋转α=60︒时,B 、C 、D 三点共线,此时BD=BC+CD=7当旋转α=240︒时,B 、C 、D 三点共线,此时BD=BC-CD=1∴17BD ≤≤.【点睛】本题考查了等边三角形性质的运用,全等三角形的判定及性质的运用,以及旋转的性质,解答时证明三角形全等是关键.25.(1)每千克水果应涨价2元;(2)510x ≤≤【分析】(1)设每千克应涨价x 元,由题意列出方程,解方程即可求解;(2)根据题意表示出每天的利润,然后利用每天的获利等于6000元,解出两个x 的值,然后根据二次函数的性质即可得出答案.【详解】(1)设每千克应涨价x 元,由题意列方程得:(10+x )(500﹣20x )=5520,解得:x =2或x =13,为了使顾客得到实惠,那么每千克应涨价2元;答:每千克水果应涨价2元.(2)根据题意得,每天的获利为()()21050020203005000w x x x x =+-=-++ 令6000w =,即22030050006000x x -++=,解得125,10x x ==,20a =-<,∴要使每天获利不少于6000元,涨价x 的范围为510x ≤≤,答:每千克水果涨价x 的范围是510x ≤≤.【点睛】本题主要考查一元二次方程及二次函数的应用,根据题意列出方程及二次函数是解题的关键.26.(1)121x x ==-;(2)123,4x x ==.【分析】(1)利用配方法解一元二次方程即可得;(2)利用因式分解法解一元二次方程即可得.【详解】(1)2210x x ++=,2(1)0x +=,解得121x x ==-;(2)233x x ,2330x x , 3310x x ,即()()340x x --=,30x -=或40x -=,3x =或4x =,即123,4x x ==.【点睛】本题考查了解一元二次方程,主要解法包括:直接开平方法、配方法、因式分解法、公式法、换元法等,熟练掌握各解法是解题关键.。

华东师大版2024届九年级上学期期末综合培优检测数学试卷(含答案)

华东师大版2024届九年级上学期期末综合培优检测数学试卷(含答案)

2023-2024学年华东师大版数学九年级上册期末综合培优检测试题一、选择题:本题共12小题,每小题3分,共36分。

在每小题给出的选项中,选出符合题目要求的一项。

1.下列二次根式是最简二次根式的是( )A. B. C. D.2.计算的结果是( )A. B. C. D.3.用配方法解方程时,下列配方错误的是( )A. 化为B. 化为C. 化为D. 化为4.关于的方程有实数根,则的取值范围是( )A. B. C. 且 D. 且5.如图,在等腰三角形中,,图中所有三角形均相似,其中最小的三角形面积为,的面积为,则四边形的面积是( )A. B. C. D.6.如图,四边形中.,,为的平分线,,,分别是,的中点,则的长为( )A. B. C. D.7.如图,点,,在正方形网格的格点上,则等于( )A. B.C. D.8.若和两点关于轴对称,则的值是( )A. B. C. D.9.如图,我市在建高铁的某段路基横断面为梯形,长米,坡度为:,的坡度为:,则长为米.( )A. B. C. D.10.用如图所示的两个转盘分别进行四等分和三等分,设计一个“配紫色“的游戏,任意转动两个指针,当指针停止,分别指向红色和蓝色时称为配紫色成功则能配紫色成功的概率为( )A. B. C. D.11.如图所示,有一天桥高为米,是通向天桥的斜坡,,市政部门启动“陡改缓”工程,决定将斜坡的底端延伸到处,使,则的长度约为参考数据:,( )A. 米B. 米C. 米D. 米12.如图,矩形的顶点,,,将矩形以原点为旋转中心,顺时针旋转之后,点的坐标为( )A. B.C. D.二、填空题:本题共5小题,每小题3分,共15分。

13.若、为实数,且,则______.14.设、为关于的方程的两个实数根,则______ .15.如图,于点,于点,,当时,∽.16.如图,已知点,,以点为位似中心,按:的比例把缩小,则点的对应点的坐标为___________17.如图,在一笔直的海岸线上有相距的,两个观测站,站在站的正东方向上,从站测得船在北偏东的方向上,从站测得船在北偏东的方向上,则船到海岸线的距离是.三、计算题:本大题共2小题,共16分。

华东师大版九年级数学上册期末试卷及答案【完整版】

华东师大版九年级数学上册期末试卷及答案【完整版】

华东师大版九年级数学上册期末试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣15的绝对值是( ) A .﹣15 B .15 C .﹣5 D .52.已知抛物线24y x bx =-++经过(2,)n -和(4, )n 两点,则n 的值为( )A .﹣2B .﹣4C .2D .43.如果a 与1互为相反数,则|a+2|等于( )A .2B .-2C .1D .-14.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( )A .2.147×102B .0.2147×103C .2.147×1010D .0.2147×10115.下列说法正确的是( )A .负数没有倒数B .﹣1的倒数是﹣1C .任何有理数都有倒数D .正数的倒数比自身小6.正十边形的外角和为( )A .180°B .360°C .720°D .1440° 7.如图,点B 、F 、C 、E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF 的是( )A .AB =DE B .AC =DF C .∠A =∠D D .BF =EC8.如图,A ,B 是反比例函数y=4x在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则△OAB 的面积是( )A .4B .3C .2D .19.如图,在矩形ABCD 中,点E 是边BC 的中点,AE ⊥BD ,垂足为F ,则tan ∠BDE 的值是( )A .24B .14C .13D .23 10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)1.计算:2131|32|2218-⎛⎫--+= ⎪⎝⎭____________. 2.分解因式:2ab a -=_______.3.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____.4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD的周长为_____________.5.如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解为__________.6.如图,菱形ABCD顶点A在例函数y=3x(x>0)的图象上,函数y=kx(k>3,x>0)的图象关于直线AC对称,且经过点B、D两点,若AB=2,∠DAB=30°,则k 的值为______.三、解答题(本大题共6小题,共72分)1.(1)解方程:31122xx x--=-+(2)解不等式组:()3241213x xxx⎧--<⎪⎨+≥-⎪⎩2.先化简,再求值:822224x xxx x+⎛⎫-+÷⎪--⎝⎭,其中12x=-.3.如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c 上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.4.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?5.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)求出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、C4、C5、B6、B7、C8、B9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、22、a(b+1)(b﹣1).3、24、10.5、x≤1.6、三、解答题(本大题共6小题,共72分)1、(1)x=0;(2)1<x≤42、3.3、(1)抛物线的解析式为y=﹣13x2+23x+1;(2)点P的坐标为(1,43)或(2,1);(3)存在,理由略.4、(1)略;(2)4.95、(1)30;(2)①补图见解析;②120;③70人.6、(1)y=﹣2x+80(20≤x≤28);(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B
初中九年级12月月考试题
数 学
(120分钟完卷,满分120分)
友情提示:亲爱的同学,你好!今天是你展示才能的时候了,只要你仔细审题,认真答题,把你正常的水平发挥出来,你就有出色的表现。

放松一点,请相信自己的实力!
一、选择题:本大题共12个小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一个是正确的。

1、下列各式中,是最简二次根式的是( ) A 、12+a B 、a 4 C 、5
1
D 、4a 2、函数y=1+x +
2
1
-x 的自变量x 的取值范围是( ) A 、x≥-1 B 、x≤-1 C 、x≠2 D 、x≥-1且x≠2
3、若关于x 的方程 x 2-m=2x 有两个不相等的实数根,则m 的取值范围是( ) A 、m >-1 B 、m <-2 C 、m≥0 D 、m <0
4、已知实数x 满足x 2+
2
1x +x+x 1 =0,如果设 x+x 1
=y ,则原方程可变形为( )
A 、y 2 +y-2=0
B 、y 2 +y+2=0
C 、y 2 +y=0
D 、y 2 +2y=0 5、太阳光照射下的某一时刻,1.5m 高的竹竿影长2.5m,那么影长为30m 的旗杆的高是( ).
A 、20m
B 、18m
C 、16m
D 、15m 6、如图,△ABC 中,∠ACB=90°,CD ⊥AB 么S △ABC ∶S △BCD =( )
A 、2∶1
B 、3∶1
C 、3∶1
D 、4∶1 7、sin58°、cos58°、cos28°的大小关系是( )
A 、cos28°< cos58° < sin58°
B 、sin58° < cos28°<cos58°
2013.12
A

C′
C、cos58°<sin58°<cos28°
D、sin58°<cos58°<cos28°
8、为了绿化校园,某校计划经过两年时间,绿地面积增加21%.设平均每
年绿地面积增长率为x,则方程可列为().
A 、(1+x)2=21% B、(1+x)+(1+x)2=21%
C、(1+x)2 =1+21%
D、(1+x)+(1+x)2=1+21%
9、在我校读书月活动中,小玲在书城买了一套科普读物,有上、中、下
三册,要整齐的摆放在书架上,恰好摆成“上、中、下”顺序的概率是()
A、
9
1
B、
3
1
C、
6
1
D、
2
1
10、如图,△ABC是等边三角形,被一平行于BC矩形
所截,AB被截成三等分,则图中阴影部分的面积是△ABC的
面积的()
A、
2
1
B、
3
1
C、
9
2
D、
9
4
11、直角三角形纸片的两直角边长分别为6和8,现将△ABC如图那样折叠,使点A与点B重合,折痕为DE
tan∠CBE的值是()
A、
3
1
B、
24
7
C、
7
24
D、
3
7
12、如图,已知正方形ABCD的边长为1,若将边
BC绕点B旋转90°后,得到正方形BC′D′C,连接AC、
AD′,设∠BAC=α ∠C′AD′=β,那么sinα+sinβ等于()
A、
2
3
B、2+5
C、
10
5
2+
D、
10
5
2
2
5+
二、填空题:本大题共6个小题,每小题3分,共18分。

13、在直角△ABC中,∠C=90°已知sinA =
5
3
,则cosB =.
14、将方程5
6
2-
=
-x
x配方,可得方程___ _______.
15、等腰梯形ABCD 各边的中点分别是E 、F 、G 、H ,四边形EFGH 是 .
16、关于x 的一元二次方程(a -1)x 2+x +a 2-1=0的一个根是0,则另一个根是 .
17、小明从家到学校要经过3个路口(都有红绿灯),我们知道“红灯停,绿灯行”,则小明从家到学校一路畅通无阻的概率是 .
18、一束光线从y 轴上点A(0,1)出发,经过x 轴上点C 后经过点B(3,3),则光线从A 点到B 点经过的路线长是 。

三、本大题共2个小题,每小题6分,共12分。

19、计算 : 2cos30°-3
1
27-|23-|
20、解方程:1-x x -12+x =1
42-x
四、本大题共3个小题,每小题8分,共24分。

21、化简、求值。

(2
22222y x y xy y xy x y x -+-+--)·1-y xy ,其中x=321-,y=3
21
+
22、如图,有甲、乙两座楼房,它们的高AB=CD=20米,该地区冬天的阳光与水平面的夹角为30°。

(1)若两楼相距20米,则甲楼的影子落在乙楼上有多高?
(2)要使甲楼的影子不会落在乙楼上,建筑时,两楼之间的距离至少是多少米?
D
甲乙
23、A箱中有三张质地相同的卡片,它们分别写有数字-1,-2,3,B箱中装有三张质地相同的卡片,它们分别写有数字1,-1,2.现从A箱,B箱中,各随机地取出一张卡片,请你用画树状图或列表的方法求:
(1)两张卡片上的数字恰好相同的概率;
(2)两张卡片上的数字之积为正数的概率.
五、本大题共2个小题,每个小题9分,共18分。

24、如图,在等腰梯形ABCD中,
AD∥BC,CD⊥BD,CE⊥BC,交BD的延长线于点
E,FE⊥AB,交BA的延长线于点F.
(1)求证:AB2=AC·DE
(2)求证:点A是BF的中点。

25、某租车公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出。

当每辆车的月租金增加50元时,未租出的车将会增加1辆。

租出的车每月需维护费150元,未租出的车每月需维护费50元。

(1)当每辆车的月租金为3600元时,能租出辆车。

(直接填写答案)(2)设每辆车的月租金为x(x≥3000)元,用含x的代数式填空。

(3)每辆车的月租金定为多少元时,租车公司的月收益最大?最大月收益是多少元?
六、本大题共1个小题,12分。

26、如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB=90°,点A 、C 的坐标分别为A(-3,0) 、C(1,0),tan ∠BAC=
4
3。

(1)求过点A 、B 的直线的函数表达式。

(2)在x 轴上找一点D ,连结DB ,使得△ADB 与△ABC 相似(不包括全等),并求出点D 的坐标。

(3)在(2)的条件下,如P 、Q 分别是AB 和AD 上的动点,连结PQ ,设AP=DQ=m ,问是否存在这样的m 使得△APQ 与△ADB 相似?若存在,请求出m 的值;若不存在,请说明理由。

相关文档
最新文档