偏微分方程的L2理论3下
偏微分方程答案
第一章. 波动方程§1 方程的导出。
定解条件2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。
解:(1)杆的两端被固定在l x x ==,0两点则相应的边界条件为 .0),(,0),0(==t l u t u(2)若l x =为自由端,则杆在l x =的张力x ux E t l T ∂∂=)(),(|lx =等于零,因此相应的边界条件为x u∂∂|lx ==0 同理,若0=x 为自由端,则相应的边界条件为xu∂∂∣00==x (3)若l x =端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的偏移由函数)(t v 给出,则在l x =端支承的伸长为)(),(t v t l u -。
由虎克定律有x uE∂∂∣)](),([t v t l u k lx --== 其中k 为支承的刚度系数。
由此得边界条件)(u xuσ+∂∂∣)(t f l x == 其中E k =σ特别地,若支承固定于一定点上,则,0)(=t v 得边界条件)(u xuσ+∂∂∣0==l x 。
同理,若0=x 端固定在弹性支承上,则得边界条件x uE∂∂∣)](),0([0t v t u k x -== 即 )(u xuσ-∂∂∣).(0t f x -= 3. 试证:圆锥形枢轴的纵振动方程为 2222)1(])1[(t u h x x u h x x E ∂∂-=∂∂-∂∂ρ 其中h 为圆锥的高(如图1)证:如图,不妨设枢轴底面的半径为1,则x 点处截面的半径l 为:hx l -=1 所以截面积2)1()(hx x s -=π。
利用第1题,得])1([)1()(2222xuh x E x t u h x x ∂∂-∂∂=∂∂-ππρ 若E x E =)(为常量,则得2222)1(])1[(tuh x x u h x x E ∂∂-=∂∂-∂∂ρ §2 达朗贝尔公式、 波的传抪1. 证明方程()常数011122222 h t uh x a x u h x x ∂∂⎪⎭⎫ ⎝⎛-=⎥⎥⎦⎤⎢⎢⎣⎡∂∂⎪⎭⎫ ⎝⎛-∂∂ 的通解可以写成()()xh at x G at x F u -++-=其中F,G 为任意的单变量可微函数,并由此求解它的初值问题:()().,:0x tux u t ψ=∂∂==ϕ 解:令()v u x h =-则()()()⎪⎭⎫⎝⎛∂∂+-=∂∂-∂∂+=∂∂-x v u x h xu x h xv u xu x h 2,))(()()()()[(2222xv u x h x u x h x u x h x v u x u x h x ∂∂+-=∂∂-+∂∂-+∂∂+-=∂∂-∂∂又 ()2222tv t u x h ∂∂=∂∂-代入原方程,得()()222221tv x h a x v x h ∂∂-=∂∂-即 222221t v a x v ∂∂=∂∂ 由波动方程通解表达式得()()()at x G at x F t x v ++-=,所以 ()()()x h at x G at x F u -++-=为原方程的通解。
(整理)偏微分方程word电子讲义.
偏微分方程偏微分方程是一个非常广泛的课题,它包含分析的许多方面内容。
就我们现在的知识水平来说,我们只了解很少一点东西。
从十八世纪初开始,人们就开始结合物理、力学问题来研究偏微分方程,最早研究的几个方程是弦振动方程、热传导方程及调和方程,这部分理论已经被彻底地研究了,而且近乎完备,把它们称为偏微分方程的古典理论。
十八世纪后期在连续介质力学中研究流体的运动规律,在考虑流体的粘性时,描述运动规律的方程称为Navier-Stokes方程组,而在不计流体的粘性时,称为Euler方程组。
在此时期,描述弹性体运动规律的方程称为Saint Venant方程组。
到了十九、二十世纪,人们发现了描述电磁场运动规律的Maxwell方程组,描述微观粒子运动规律的Schrodinger方程及Dirac方程组,广义相对论中确定引力场的基本方程Einstein方程以及基本粒子规范场理论的基本方程Yang-Mills方程,在微分几何中研究极小曲面的极小曲面方程等等。
随着科学理论变得复杂,所提出的偏微分方程就愈多而且更加变化多端,可能出现的偏微分方程和方程组类型之多是出于想象的。
我们的目的是介绍现代偏微分方程理论中用到的一些技巧和方法。
众所周知,一本偏微分方程的书只能包括已有的基本材料的一小部分,因此我们必须作出选择,如何选择不是立足于逻辑基础上的,这种选择的主观性是相当明显的。
偏微分方程的内容是研究偏微分方程解的各种性质。
通常考虑以下问题1.对单个方程或方程组,应配以怎样的初值条件与边值条件使之具有解,这是解的存在性问题。
在研究解的存在性时,要明确解赖以存在的函数类。
2.解的唯一性或究竟有几个解,要明确使解为唯一的函数类。
3.解的正则性或光滑性。
是否为古典解、强解还是弱解?解具有几阶可微性?4.解的连续依赖性,必须明确是什么空间、什么范数实现的。
通常考虑的是解关于初、边值或关于方程系数,或在方程为线性时关于自由项的连续依赖性。
5.定解区域与影响区域。
偏微分方程ppt课件
.
21
1.2 热传导方程的导出
设物体在Ω内无热源。 在Ω中任取一封闭曲面S。 以函数u(x,y,z,t)表示物体在t时刻M=M(x,y,z)处的温度。
.
22
1.2 热传导方程的导出
.
23
1.2 热传导方程的导出
.
24
1.2 热传导方程的导出
.
25
1.2 热传导方程的导出
下面考虑物体内部有热源(例如物体中通有电流,或有化学反应等情况)。 设在单位时间内单位体积中所产生的热量为F(x,y,z,t),则
则有热源的热传导方程为
.
26
1.2 热传导方程的导出
无热源的情况下得到的热传导方程: 有热源的情况下得到的热传导方程:
即
其中E为电场强度矢量,
n为Ω上的单位外法线向量。
.
31
1.2 泊松方程的导出
又由库仑定律知,静电场是有势的。即存在静电位势u=u(x,y,z),使 E=-grad u
代入上式,得静电位势u满足以下的泊松方程
即
.
32
1.2 拉普拉斯方程和泊松方程的导出
.
33
1.3 定解条件与定解问题
一个偏微分方程与定解条件一起构成对于具体问题的完整描 述,称为定解问题。 定解问题中的偏微分方程称为泛定方程。
(1.1.1)
(1.1.2)
(1.1.3)
.
8
1.1 基本概念
.
9
1.1 基本概念
.
10
1.1 基本概念
.
11
1.1 基本概念
偏微分方程总复习和课后习题答案
一、基本概念
1. 偏微分方程的定义P1 2. 偏微分方程的阶数,线性、拟线性、完全非线性 偏微分方程的定义P10 3. 偏微分方程的适定性P23
二、方程的导出,分类与化简
三、公式的直接应用题
1. 2. 3. 4. 5. 达朗贝尔公式P36 公式P42 傅里叶(逆)变换P106 P110例 4.1.7结论 泊松公式P112
1 1 x at u ( x, t ) ( x at ) ( x at ) ( )d 2 2a x at x a ( t ) 1 t d f ( , )d x a ( t ) 2a 0
1 2 u ( x t ) 3t xt 2
1 1 xa t C f1 ( x at ) ( x at ) ( )d 2 2a x0 2 1 1 xa t C f 2 ( x at ) ( x at ) ( )d 2 2 a x0 2
1 1 xat u [ ( x at ) ( x at )] ( )d 2 2a x a t
1 u ( x t ) x (1 a )t cos x sin at a
2 2 2
1 ( 7)
解:
2
1 22 1 x at x at x u ( x t ) 5 x t a t 2 (e e 2e ) 3 2a
1 ( 6)
解:
2 2u u 2 1 a f ( x , t ), x R ,t 0 2 2 t x u ( x, 0) ( x), u ( x, 0) ( x), x R1. t
1 1 x at u ( x, t ) ( x at ) ( x at ) ( )d 2 2a x at x a ( t ) 1 t d f ( , )d x a ( t ) 2a 0
偏微分方程数值解 有限差分法的基本知识2
u( x j
,
tn
)
o(
),(向前差商)(1.2)
u( x j1 ,
tn) h
u( x j
,
tn )
x
u( x j
,
tn
)
o(h),(向前差商)(1.3)
u( x j
,
tn
)
u(xj1, h
tn
)
x
u(
xj
,
tn
)
o(h),(向后差商)(1.4)
u( x j1 ,
tn) u(xj1, 2h
(1.1)在D上积分,得 D( 到 ut cux)dxdt 0
t
H
L3
G
L4
L2
E
L1
F
o
x
利用 Gree公 n 式,得
(ucu)dxdt
D t x
( L unt cunx)ds0
(1.14)
其中 nx与nt分别L是 的外法向单位 n沿向 x方量 向
与沿 t方向的两个分量。
把(1.14)左端分成在L1,L2,L3,L4,上的四个积分,
得近似方程
~ u1h
cu2~
~ u3h
cu4~
0
既
u3
u1
c~
h~
(u2
u4 )
(1.15)
这里h~是L1与L3的长度,~是L2与L4的长度,
ui是可按不同方式确定u的在Li上的近似函数值。
在 网 格E中 ,F,G, ,H依 点次 (n为 1,j1), 22
(n1,j1)(,n1,j1)(,n1,j1), 22 22 22
写作风格过于简洁导致许多工作未获更高声誉。
2024年考研数学偏微分方程题目详解与答案
2024年考研数学偏微分方程题目详解与答案在2024年的考研数学试卷中,偏微分方程题目一直是考生们关注和备考的重点。
本文将详细解析2024年考研数学偏微分方程题目,并提供详细的解答和答案。
一、第一题题目描述:给定二阶常系数线性偏微分方程 $\frac{{\delta^2u}}{{\delta x^2}} + c\frac{{\delta u}}{{\delta t}} + ku = f(x, t)$,其中 $u = u(x, t)$ 为未知函数,$c, k$ 为常数,$f(x, t)$ 为已知连续函数。
要求求解此偏微分方程。
解析:根据题目所给的偏微分方程可知,我们需要求解二阶常系数线性偏微分方程。
此类方程的典型特点是对时间 $t$ 的导数项和对空间$x$ 的二阶导数项。
我们可以采用特征线法来求解此类方程。
首先,我们设方程的通解形式为 $u(x, t) = X(x)T(t)$,其中$X(x)$ 和 $T(t)$ 分别是 $x$ 和 $t$ 的函数。
将通解带入方程中得到:$\frac{{X''}}{{X}} + c\frac{{T'}}{{T}} + k = \frac{{f(x, t)}}{{XT}}$由于方程的左侧只与 $x$ 有关,右侧只与 $t$ 有关,故两侧等于某个常数 $-\lambda$。
得到两个常微分方程:$X'' + \lambda X = 0$ 和 $T' + \left(c -\lambda\right) T = 0$对于方程 $X'' + \lambda X = 0$,根据 $\lambda$ 的值分为三种情况讨论:1. 当 $\lambda > 0$ 时,方程的通解为 $X(x) = A\cos(\sqrt{\lambda}x) + B\sin(\sqrt{\lambda}x)$。
2. 当 $\lambda = 0$ 时,方程的通解为 $X(x) = Ax + B$。
偏微分方程数值解PPT课件
t
t
n j
tn j1
x x
EXCEL
0.01, x 0.1
t n1 j
t
n j
2(TW
t
n j
)
3
t
n j
t
n j1
x
t n1 j
0.02TW
0.68t
n j
0.3t
n j1
此微分方程,是在不考虑流体本身热传 导时的套管传热微分方程.由计算结果可 知,当计算的时间序列进行到72时,传 热过程已达到稳态,各点上的温度已不 随时间的增加而改变。如果改变套管长 度或传热系数,则达到稳态的时间亦会 改变。
b2 4ac 0 b2 4ac 0 b2 4ac 0
• 物理实际问题的归类:
• 波动方程(双曲型)一维弦振动模型:
2u t 2
2
2u x 2
• 热传导方程(抛物线型)一维线性热传导方程
u t
2u x 2
• 拉普拉斯方程(椭圆型ux22)稳态y2u2 静 电0 场或稳态温度分布场)
第4页/共32页
un i 1
b
un i1
uin
x
f (ix, nt)
ui0
(i x )
un m1
umn
x
0
u0n 1(nt )
(i 1,2, ,m) (n 0,1, 2, ) (n 0,1,2, )
第13页/共32页
一维流动热传导方程
将上式进行处理得到:
un1 i
t
f
(ix, nt )
(a2
t (x)2
1的)偏t )
微
分
采
用
向
后
欧
数理方程3热传导方程及偏微分化简
3/16
∂u Q1 = ∫ [ ∫∫ k ds ]dt t1 ∂n S
t2
其中:
通过曲面进入导热体的总热量:
Q1 = ∫ [ ∫∫∫ k[u xx + u yy + uzz ]dxdydz ]dt
t2 t1 V
温度升高所需热量:
热传导问题中,如果物体内部没有热源,物体外围温度 不随时间变化,经过相当长时间以后,物体内部的温度 将不再改变,趋于稳定状态。
ut = 0
记
uxx + uyy + uzz =0 (Laplace方程)
∂ 2u ∂ 2u ∂ 2u ∆u = + 2 + 2 2 ∂x ∂y ∂z
则有
∂ ∂ ∂ ∆= + 2 + 2 (Laplace算子) 2 ∂x ∂y ∂z
2 2 2
8/16
正方形区域上第一边值问题
⎧ u xx + u yy = 0, 0 < x , y < 1 1 ⎪ ⎨ u(0, y ) = u( x ,0) = u( x ,1) = 0 ⎪ u(1, y ) = sin πy ⎩
y
准确解:
shπx u( x , y ) = sin πy shπ
x y z S V
xx
+ u yy + uzz ]dxdydz
u x dydz + u y dzdx + uz dxdy ∂u ds = [u x cos α + u y cos β + uz cos γ ]ds = ∂n
∂u ∫∫ ∂n ds = ∫∫∫ [uxx + u yy + uzz ]dxdydz S V
经典偏微分方程课后习题答案
α4 =
1 p 1 . 试证明差分格式(2.5)的 2 i, j− h2 2
中国地质大学(北京)廉海荣编
第二章 偏微分方程的有限差分法
- 2 2
局部截断误差的阶为 O ( h ) 证明: 首先利用二元函数的 Taylor 展开式, 有 h1 1 ⎡ ∂ ⎛ ∂u ⎞ ⎤ 1 1 2 ⎡ ∂ 2 ⎛ ∂u ⎞ ⎤ ⎡ ∂u ⎤ ⎡ ∂u ⎤ ⎡ ∂u ⎤ 3 ⎢ p ∂x ⎥ 1 = ⎢ p ∂x ⎥ ( xi ± 2 , y j ) = ⎢ p ∂x ⎥ + (± 2 h1 ) ⎢ ∂x ⎜ p ∂x ⎟ ⎥ + 2! (± 2 h1 ) ⎢ ∂x 2 ⎜ p ∂x ⎟ ⎥ + O(h1 ) ⎣ ⎦i ± , j ⎣ ⎦ ⎣ ⎦i, j ⎠ ⎦i, j ⎝ ⎠ ⎦i, j ⎣ ⎝ ⎣
2 2 2 2 3
⎡∂ u ⎤ ⎡∂ u ⎤ h1 h1 1 ⎡ ∂u ⎤ 1 1 1 1 + (− h1 ) 2 ⎢ 2 ⎥ − , y j ) = [u ]i + 1 , j + (− h1 ) ⎢ ⎥ + (− h1 )3 ⎢ 3 ⎥ + O(h14 ) 1 2 2 2 2! 2 3! 2 x ∂ 1 1 x x ∂ ∂ 2 ⎣ ⎦i+ , j ⎣ ⎦i + , j ⎣ ⎦i + , j
1 1 1 1 1 1 1 1 1 1 1 u ( xi ) = u ( xi − h + h)=u ( xi − h) + hu '( xi − h)+ ( h) 2 u ''( xi − h) + ( h)3 u '''( xi − h) + O( h 4 ) 2 2 2 2 2 2! 2 2 3! 2 2 1 1 1 1 1 1 1 2 1 1 1 3 1 u ( xi − h) = u ( xi − h − h)=u ( xi − h) + (− h)u '( xi − h)+ (− h) u ''( xi − h) + (− h) u '''( xi − h) + O ( h 4 ) 2 2 2 2 2 2! 2 2 3! 2 2
偏微分方程资料
1 Fourier变换定义:若,则称为的Fourier变换,记作或。
相反,如果,则称为的傅里叶逆变换,记为.对于维函数,定义为的Fourier变换;其逆变换公式为:.例1 求的Fourier变换。
解由Fourier的定义得例2:求解波动方程的初值问题解:方法一:用Fourier变换法来求解。
对方程以及初始条件关于变量x取Fourier变换得,解之得:取Fourier逆变换得到:方法二:运用叠加原理及行波法来求解。
根据线形片未分方程的叠加原理,方程可以分解成下面的两个问题的求解:那么原方程的解可以写成:对于方程(1),依据齐次化原理,方程的求解可以转化成下面问题的求解:并且根据行波法,可以求得上述方程的解为:则对于方程(2),直接根据行波法可以求得:那么原方程的解为:2分离变量法2.1分离变量法的物理背景以及基本思想分离变量法又称为Fourier方法,而在讨论波动方程时也称为驻波法。
此方法源于物理事件中的如下事实:机械振动或电磁振动总可以分解为具有某种频率和振幅的简谐振动的叠加。
而每一个简谐振动具有形式:,这正是物理上的驻波。
从数学的角度看,驻波就是知含变量和只含变量的函数的乘积,即具有分离变量的形式。
由此启发我们在求解线性定解问题的时候,可尝试先求出满足齐次方程和齐次边界条件的具有变量分离形式的解然后将它们叠加起来,记为:然后再利用初始条件确定各项中的任意常数,使其成为问题的解。
2.2使用分离变量法解题得五个步骤:(1分离变量:将分离变量的形式代入方程以及边界条件中。
(2解常微分方程(3决定解的结构(4利用叠加原理得到级数形式的解(5利用初始条件和尚未利用的边界条件来确定叠加系数。
例1:试用分离变量法来求解下面定解问题解:①分离变量法:令代入上述方程中,方程变为令则加上边值条件有,原方程即化成下面的形式:②解方程,对参数进行分类讨论如下:(1当时,方程(2的解为:其中,由条件(4确定,又因为则有:得到故:即:显然零解是没有意义的,故舍去的情形。
偏微分课后习题答案终极版
E ( x) S ( x)u x ( x, t ); E ( x + Δx) S ( x + Δx)u x ( x + Δx, t ).
于是得运动方程
ρ ( x) s( x) ⋅ Δx ⋅ utt ( x, t ) = ESu x ( x + Δx) | x + Δx − ESu x ( x) | x ρ ( x) s( x)u tt =
解之得
dy = − cos x ± 2 dx ⎧ y = − sin x + 2 x + c1 ⎨ ⎩ y = − sin x − 2 x + c 2
因此引变换 有
⎧ y + sin x − 2 x = c1 ⎨ ⎩ y + sin x + 2 x = c 2
⎧ξ = 2 x + sin x + y ⎨ ⎩η = 2 x − sin x − y ∂u ∂u ∂u = (2 + cos x) + (2 − cos x) ∂x ∂ξ ∂η
有
∂u ∂u y ∂u = (− 2 ) + ∂x ∂ξ x ∂η ∂ 2u y y ∂ 2u y ∂ 2u ∂u 2 y ∂ 2 u ∂ 2u = + − + + − + ( ) ( ) ( ) ∂ξ∂η x 2 ∂ξ x 3 ∂ξ∂η x 2 ∂x 2 ∂ξ 2 x 4 ∂η 2 ∂u ∂u 1 = ∂y ∂ξ x ∂ 2u ∂ 2u 1 = ∂y 2 ∂ξ 2 x 2 y ∂ 2u ∂ 2u ∂ 2u 1 1 ∂u = 2 (− 3 ) + − x ∂x∂y ∂ξ ∂ξ∂η x x 2 ∂ξ
x sΔxΔt
−
偏微分方程及其求解实例ppt课件
(hn1-2.*h(k,n)+h(k,n-1))./dr.^2);
end plot(r(3:n)./ra,p(k,3:n).*theta.*2./rb)
h hi1 hi1 r i 2r
2h hi1 2hi hi1
r 2
r 2
i
P
1 rb 4
1
r
h r
2h r 2
偏微分方程的求解实例2:
2u A x2
2u B
xy
C
2u y 2
D u x
E u y
Fu
f
x,
y,u,
u x
,
u y
(1) 导热方程:
u 2u
t x2 (2) 拉普拉斯方程: 如稳态静电场和稳态温度分布模型
2u 2u 0
x2 y2
(3) 波动方程: 一维弦振动模型
2u 2 2u
t 2
x2
偏微分方程的边界条件
function PDE1Dd_CrankNicolson % 使用Crank-Nicolson有限差分方法求解一维动态传
热模型
c1 = 100; c2 = 0; a = 10; b = 8; alpha = 2; n = 6; m = 8; U = CrankNicolson(@ic,c1,c2,a,b,alpha,n,m)
h t 3 9c
9c
h3 h33
4h r 4
3
h5 4h4
6h3 4h2 r 4
h1
h t
n
V
r i 2r
2h hi1 2hi hi1
r 2
r 2
i
3h r 3
hi2
2hi1 2hi1 2r 3
经典偏微分方程课后习题答案
第四章 抛物型微分方程有限差分法1设已知初边值问题22, 01, 0<(,0)sin , 01(0,)(1,)0, 0 u ux t t x u x x x u t u t t T π⎧∂∂=<<⎪∂∂⎪⎪=≤≤⎨⎪==≤≤⎪⎪⎩T ≤, 试用最简显格式求上述问题的数值解。
取h=0.1,r=0.1.0 1/10 2/10 … 1 T 2τ τt解: 1.矩形网格剖分区域. 取空间步长1, 时间2510h =0.00τ=以及0.01τ=的矩形网格剖分区域, 用节点)表示坐标点(,j k (,)(,)j k x t jh k τ=, 0,1,...1/; 0,1,...,/j h k T τ==, 如图所示.显然, 我们需要求解这(1/1)(/1)h T τ+×+个点对应的函数值. 事实上由已知初边界条件蓝标附近的点可直接得到, 所以只要确定微分方程的解在其它点上的取值即可. 沿用记号[]k(,)j j k u x t =。
u 2. 建立差分格式, 对于11,...1; 0,1,...,1Tj k hτ=−=−, 用向前差商代替关于时间的一阶偏导数, 用二阶中心差商代替关于空间的二阶偏导数, 则可定义最简显格式:1122k k k k k1jj j j u u u u u h ++−+=. 变形j τ−−有:1112(12) (k k k kj j j j u ru r u ru r h τ+−+=+−+=(4.1)用向后差商代替关于时间的一阶偏导数, 用二阶中心差商代替关于空间的二阶偏导数, 则可定义最简显格式最简隐格式:111122k k k k k j jj j j u u u u u h τ++++−−+=11+−1kj +,变形有:1111(12) k k k j j j ru r u ru u ++−−−++−= (4.2)(4.1)*0.5+(4.2)*0.5得CN 格式为:111112222k k k k k k k k j jj j j j j j u u u u u u u u h τ+++−+−−++−+=111++−1kj +x x变形有:111111(22)(22) k k k k k j j j j j ru r u ru ru r u ru ++−−+−−++−=+−+ (4.3)3 初边界点差分格式处理.对于初始条件u x (,0)sin , 01=π≤≤h 离散为(4.4)0sin 0,1,...1/j u jh j π==对于边界条件离散为(0,)(1,)0, 0 u t u t t T ==≤≤00 0,1,.../k k N u u k T τ===(4.5)总结: 联立方程(4.1)(4.4)(4.5)得到已知问题的最简显格式差分方程组:11100(12)1 1,...1; 0,1,...,1sin 0,1,...1/0 0,1,.../k k k k j j j j jk k N u ru r u ru T j k h u jh j h u u k T τπτ+−+⎧=+−+⎪⎪=−=−⎪⎨⎪==⎪⎪===⎩ 联立方程(4.2)( 4.4)( 4.5)得到已知问题的最简隐格式差分方程组:1111100(12) 1 1,...1; 0,1,...,1sin 0,1,...1/0 0,1,.../k k k k j j j j jk k N ru r u ru u T j k h u jh j h u u k T τπτ++−−+⎧−++−=⎪⎪=−=−⎪⎨⎪==⎪⎪===⎩ 联立方程(4.3)( 4.4)( 4.5)得到已知问题的CN 格式差分方程组:11111100(22)(22) 1 1,...1; 0,1,...,1sin 0,1,...1/0 0,1,.../k k k k k j j j j j jk k N ru r u ru ru r u ru T j k h u jh j h u u k T τπτ++−−+−⎧−++−=+−+⎪⎪=−=−⎪⎨⎪==⎪⎪===⎩1k j + 4 求解并显示结果利用软件计算(Matlab)如上最简显格式差分方程组.h=1/10;tau=0.0025;T=0.5; r=tau/h^2;M=1/h+1;N=T/tau+1; u=zeros(M,N);for m=1:Mu(m,1)=sin((m-1)*h*pi); endu(1,1:N)=0;u(M,1:N)=0;for n=1:N-1for m=2:M-1u(m,n+1)=r*(u(m+1,n)+u(m-1,n))+(1-2*r)*u(m,n); end end u=u’ 这样我们就计算出不同时刻不同位置k t j x 对应的函数值(,)j k u x t 取tau=0.0025, 即r=0.25绘图, 取tau=0.01, r=1再绘图,如图()图4.2 习题1数值解图示(左r=0.25, 右r=1)2.试构造初边值问题 ()()()()(), 0.51, 0,,0, 0.51,0.5,0, 1,0.51,, 0u u x x x T t x x u x x x u ⎪∂u t t u t t T x ϕ⎧∂∂∂⎛⎞=<<<≤⎜⎟⎪∂∂∂⎝⎠⎪⎪=≤≤⎨⎪==−≤≤⎪∂⎩的显格式,并给出其按最大范数稳定的充分条件。
西工大偏微分方程数学物理方程讲义姜礼尚等人(第三版)课后习题解答
x x
ES u x
x
ESu x x
u xx 0
菜没油
3
4.解: 上端固定说明 u 0, t 0 ,下端悬有质量为 P 的重物可得
Eux l , t pg / s ,即有边界条件
u 0, t 0 p ux l , t E
30.边界条件:u 0, t u l , t 0 弦线两端固定
2.解: 由动量定理及已知条件
x2
x1
ut x, t2 ut x, t1 dx
t2 t1
x2
x1
f x, t dxdt T
t2
t1
u x , t u x, t dt
泛定方程: t a x 0 又有初始条件: x, 0 0 x 0 边界条件: t 0, t A 1 sin t t 0
11.解: 设 A a, , B b, ,连接 A 和 B 的短程线方程为 y f x 则 A, B 距离为 d f
问题2 问题3:
由 Gauss 公式得
菜没油
8
uv uv fv dx+ x uv g v ds u = v ds v udx uv fvdx x uv gv ds n
取 x 0 ,即得在点 x 处,相对伸长为 u x x, t . 由胡克定理,张力 T x, t Eu x x, t 此外容易得知圆锥在 x 点处的截面面积存在函数:
hx x S x r x R R 2 1 h h
第二章 三类典型的偏微分方程讲解
在 dt 时段内通过微元的两端流入的热量
dQ1
(Qx1
Qx2
)dt
k ( T
( x2 , t ) x
T
( x1, t ) )dt x
k
x2 x1
2T (x, x2
t
)dxdt
在任意时段 [t1,t2 ] 内,流入微元的热量
Q1
t2 t1
x2 x1
k
2T (x, x2
t2 t1
V
k 2TdV dt
流入的热量导致V 内的温度发生变化
S n
T (x, y, z,t1) T (x, y, z, t2 )
温度发生变化需要的热量为:
Q2 c T (x, y, z,t2) T (x, y, z,t1)dV
V
c
t2 T dtdV
t
p
p t
1 a2
p t
代入 u 得
t
x
u 1 p
x a2 t
对t求导,得
2u xt
1 a2
2 p t 2
利用
u 1 p
t x
得
2 p t 2
a2
2 p x2
一维声波方程。
第二章 三类典型的偏微分方程
第二章 三类典型的偏微分方程
三类典型的偏 微分方程
第二章 三类典型的偏微分方程
2.1 波动方程
☆ 一维波动方程 最典型的一维波动问题是均匀弦的横向振动问题。
一根紧拉着的均匀柔软弦,长为l,两端固定在X轴上O、 L两点,当它在平衡位置附近做垂直于OL方向的微小横向 振动时,求这根弦上各点的运动规律。
偏微分方程学习笔记
偏微分方程一.预备知识1.平面凸集定义:若E 是一个平面凸集,则对于E 中任意两点x ,y ,连接这两点的线段也在E 内。
即λ x + (1-λ) y ∈E ( 任意x , y ∈E ,任意0≤λ ≤ 1)2.空间凸集定义:设X 是线性空间,E 是X 中一个空间凸集,如果λ x + (1-λ) y ∈E ( 任意x , y ∈E ,任意0≤λ ≤ 1)3.设D 是E 的一个子集,为凸集,泛函 f : D → R ,称为在D 上是凸的 是指任意x ,y ∈D ,t ∈ [0,1]均有f (tx + (1-t ) y )≤t f ( x )+ (1-t ) f ( y ) 若只在x = y 时取等号,则称f 是严格凸的.4.Cauchy 不等式: 2222a b ab ≤+.(,)a b R ∈证明:由于()22202a b a b ab ≤-=+-,可得2222a b ab ≤+.5.带ε的Cauchy 不等式: 2222a b ab εε≤+.(0)ε>证明:在公式2222a b ab ≤+中,令a ,b ,则有2222a b ab εε=≤+6.Young 不等式:设0,0,1,1,a b p q >>>>且111.p q+=则有.p q a b ab p q ≤+证明: 泛函 f : x → x e ,是凸的,因此有(1)(1)tx t yx y e te t e +-≤+-从而有11ln ln ln ln ln ln 11.p q p q p qa b a ba b p qa b ab eee e p q p q++==≤+=+ 7. 带ε的Young 不等式: 设0,0,0,1,1,a b p q ε>>>>>且111.p q+=则有.qpqpqpq pab ab a b pqεεεε--≤+≤+证明:在不等式p qa b ab p q≤+中用1p a ε和1p b ε-代替,a b ,可得11.ppqpqpqpq pab ab a b a b pqεεεεεε---=⋅≤+≤+8.Holder 不等式:设1,1,p q >>且111.p q+=若(),(),p q u L v L ∈Ω∈Ω则1(),u v L ⋅∈Ω且()().p q L L uvdx uvΩΩΩ≤⋅⎰证明:设1()t x 与1()s x 是Ω中这样的可测函数11()1,()1,p qt x dx s x dx ΩΩ==⎰⎰(★)根据Young 不等式有 111111.(0,0)p q t s t s t s p q ≤+>>,111.p q+=对上述不等式两边在Ω上积分得1111p q t s t s dx dx dx p q ΩΩΩ≤+⎰⎰⎰111p q=+= 其次,若(),()p q u L v L ∈Ω∈Ω,则函数1111()()(),()(())(())pqpqu x v x t x s x u x dx v x dx ΩΩ==⎰⎰满足(★)式的条件,故有1111()()()()1(())(())pqpqu x v x t x s x dx dx u x dx v x dx ΩΩΩΩ=⋅≤⎰⎰⎰⎰即 11()()(())(())pqpqu x v x dx u x dx v x dx ΩΩΩ≤⎰⎰⎰也就是()()()()()().p q L L u x v x dx u x v x ΩΩΩ≤⎰推论:(1)若11(),()0,1,u x v x pq≥+=则有11()()(())(()).p q pqu x v x dx u x dx v x dx ΩΩΩ≤⎰⎰⎰(2)若121,,,,m p p p ≤≤∞且121111,mp p p +++= 设(),(1,2,,),kp k u L k m ∈Ω=则有211212()()().p p p m m mL L L u u u dx u u u ΩΩΩΩ≤⋅⋅⋅⎰9.Minkowski ’s 不等式:设1p ≤≤∞,且,().p u v L U ∈则有 ()()().pp p L U L U L U u v uv+≤+证明:()1()p L U ppp UUu vu v dx u vu v dx -+=+≤++⎰⎰而111()p p p UU Uu v u v dx u vu dx u vvdx ---++=+++⎰⎰⎰()()111111, 1.qpqp p pUU Uu vu dx u vdx u dxq p --⎛⎫+≤++= ⎪⎝⎭⎰⎰⎰ ()()111111, 1.qpqp p pUU Uu vvdx u vdx v dxq p--⎛⎫+≤++= ⎪⎝⎭⎰⎰⎰从而有,1pq p =-因此有 ()()11111p p pp p p pp UU Uu vu dx u vdx u dx ----⎛⎫+≤+ ⎪ ⎪⎝⎭⎰⎰⎰()()11111p p ppp p pp UU Uu vv dx u vdx v dx----⎛⎫+≤+ ⎪ ⎪⎝⎭⎰⎰⎰上面两式相加得()()()()111111p p pp pp p ppp UU UUu v u v dx u vdx u dx v dx----⎛⎫⎛⎫ ⎪++≤++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰()1111(()())p ppppppUUUu v dxu dx v dx -⎛⎫=++ ⎪ ⎪⎝⎭⎰⎰⎰=1()()()()pp p p L U L U L U u v uv -++即是: 1()()()()()pp p p p p L U L U L U L U u v u vuv-+≤++,因此()()()()().p p p p L U L U L U L U u vu v u v +≤++10.-norms p L 内插不等式:设1,s r t ≤≤≤≤∞且有()11,rstθθ-=+若()().s t u L U L U ∈则有(),r u L U ∈且有()()1().rs t L U L U L U uuuθθ-≤证明:我们计算(1)rrrU U u dx uudx θθ-=⎰⎰,因为()11,r s tθθ-=+即是()11,r rstθθ-+=利用赫尔德不等式有()()(1)(1)(1)(1)rr s t s tr rrr rrrUUU Uu dx uudx udx u dx θθθθθθθθ----⎛⎫⎛⎫=≤ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰两边同时1r次方得到:()()1().rs t L U L U L U uuuθθ-≤11.柯西-施瓦茨不等式:,(,).n x y x y x y R ≤∈证明:让0,ε>并注意到222202.x y x x y y εεε≤±=±+从而有下列结果221.22x y x y εε±≤+设,0xy yε=≠时取右边的最小值得到,(,).n x y x y x y R ≤∈ 12.Gronwall ’s 不等式(differential form).(i)Let ()η be a nonnegative, Absolutely continuous function on[0,],T which satisfies for a.e t theDifferential inequality(15) ()()()(),t t t t ηφηψ'≤+Where ()x φ and ()x ψ are nonnegative, summable functions on[0,].T Then(16) 0()0()(0)()tt s ds t es ds φηηψ⎰⎡⎤≤+⎢⎥⎣⎦⎰ For all 0.t T ≤≤(ii)In particular, if on[0,T]and (0)=0,ηφηη'≤then 0on[0,T].η≡ Proof. From (15) we see()000()()()()()()()()sssr dr r dr r dr d s e e s s s e s ds φφφηηφηψ---⎛⎫⎰⎰⎰'=-≤ ⎪⎝⎭For a.e 0.s T ≤≤因此对每一个0,t T ≤≤we have00()()()0()(0)()(0)().(1)ts st t r drr dr r drt e e s ds s ds e φφφηηψηψ---⎰⎰⎰≤+≤+≤⎰⎰This implies inequality(16).13.Gronwall ’s inequality ( integral form ).(i)Let ()t ζ be a nonnegative, summable function on [0,T] which satisfies for a.e. t the integral inequality (17) 120()()tt C s ds C ζζ≤+⎰ For constants 12,0.C C ≥ Then(18) 121()(1)C t t C C te ζ≤+for a.e. 0.t T ≤≤ (ii) In particular, if10()()tt C s ds ζζ≤⎰for a.e 0.t T ≤≤ then ()0..t a e ζ=Proof. Let 120():();()..[0,].tt s ds then t C C a e in T ηζηζη'==≤+⎰According to the differential form of Gronwall ’s inequality above1122()((0))C t C t t e C t C te ηη≤+=Then (17) implies11221()()(1).C t t C t C C C te ζη≤+≤+14.Poincare 不等式(也叫Friedrichs 不等式)符号说明:()(){()}122,,1,2,,n iuR H u L L i nx ∂Ω⊆Ω=∈Ω∈Ω=∂这个集合是线性的。
3. 二阶偏微分方程
§3 二阶偏微分方程一、 二阶偏微分方程的分类、标准形式与特征方程考虑二阶偏微分方程()0),,,,,,(111,2=∂∂∂∂+∂∂∂∑=n nnj i j i ij x u x u u x x F y x u x a (1) 式中a ij (x )=a ij (x 1,x 2,…,x n )为x 1,x 2,…,x n 的已知函数.[特征方程·特征方向·特征曲面·特征平面·特征锥面]代数方程()01,=∑=nj i jiijaa x a称为二阶方程(1)的特征方程;这里a 1,a 2,…,a n 是某些参数,且有012≠∑=ni ia.如果点x ︒=(x 1︒,x 2︒,…,x n ︒)满足特征方程,即()01,o =∑=nj i jiijaa x a则过x ︒的平面()01o=-∑=nk kk k x x a 的法线方向l :(a 1,a 2,…,a n )称为二阶方程的特征方向;如果一个(n 1-)维曲面,其每点的法线方向都是特征方向,则称此曲面为特征曲面;过一点的(n 1-)维平面,如其法线方向为特征方向,则称这个平面为特征平面,在一点由特征平面的包络组成的锥面称为特征锥面.[n 个自变量方程的分类与标准形式] 在点P (x 1︒,x 2︒,…,x n ︒),根据二次型()∑=nj i jinijaa x x x a 1,o o 2o 1,,, (a i 为参量)的特征根的符号,可将方程分为四类:(i) 特征根同号,都不为零,称方程在点P 为椭圆型.(ii) 特征根都不为零,有n 1-个具有同一种符号 ,余下一个符号相反,称方程在点P 为双曲型.(iii) 特征根都不为零,有m n -个具有同一种符号(n >m >1),其余m 个具有另一种符号,称方程在点P 为超双曲型.(iv) 特征根至少有一个是零,称方程在点P 为抛物型.若在区域D 内每一点方程为椭圆型,双曲型或抛物型,则分别称方程在区域D 内是椭圆型、双曲型或抛物型.在点P 作自变量的线性变换可将方程化为标准形式:椭圆型:∑==+∂∂ni ix u1220Φ双曲型:∑==+∂∂-∂∂n i ix ux u 22120Φ超双曲型:()10112222>>=+∂∂-∂∂∑∑=+=m n x ux u mi nm i ii Φ抛物型:()00122>=+∂∂∑-=m x umn i iΦ式中Φ为不包含二阶导数的项.[两个自变量方程的分类与标准形式] 方程的一般形式为0,,,,222222122211=⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂+∂∂∂+∂∂y u x u u y x F y u a y x u a x u a (2) a 11,a 12,a 22为x ,y 的二次连续可微函数,不同时为零. 方程a 11d y 22-a 12d x d y +a 22d x 2=0称为方程(2)的特征方程.特征方程的积分曲线称为二阶方程(2)的特征曲线. 在某点P (x 0,y 0)的邻域D 内,根据Δ=a 122-a 11a 12的符号将方程分类: 当Δ>0时,方程为双曲型; 当Δ=0时,方程为抛物型; 当Δ<0时,方程为椭圆型.在点P 的邻域D 内作变量替换,可将方程化为标准形式:(i ) 双曲型:因Δ>0,存在两族实特征曲线11),(c y x =ϕ,22),(c y x =ϕ,作变换),(1y x ϕξ=,),(2y x ϕη=和,,ηηξ-=+=s t s 方程化为标准形式),,,,(2222t us u u t s t u s u ∂∂∂∂=∂∂-∂∂Φ 或),,,,(12ηξηξΦηξ∂∂∂∂=∂∂∂uu u u (ii ) 抛物型: 因Δ=0,只存在一族实的特征曲线c y x =),(ϕ,取二次连续可微函数),(y x ψ,使0),(),(≠∂∂y x ψϕ,作变换),(y x ϕξ=,),(y x ψη=,方程化为标准形式),,,,(222ηξηξΦη∂∂∂∂=∂∂uu u u (iii ) 椭圆型:因Δ<0,不存在实特征曲线,设c y x i y x y x =+=),(),(),(21ϕϕϕ为11221121212d d a a a a a x y -+=的积分,y x ϕϕ,不同时为零,作变量替换),(1y x ϕξ=,),(2y x ϕη=,方程化为标准形式),,,,(32222ηξηξΦηξ∂∂∂∂=∂∂+∂∂uu u u u二、 极值原理·能量积分·定解问题的惟一性定理椭圆型方程、抛物型方程的极值原理及双曲型方程的能量守恒原理是相应方程的解所具有的最基本性质之一,在定解问题的研究中起着重要的作用. [椭圆型方程的极值原理与解的惟一性定理]1︒ 极值原理 设D 为n 维欧氏空间E n 的有界区域,S 是D 的边界,在D 内考虑椭圆型方程()()()()x x x x f u c x ub x x u a Lu ni i i n j i j i ij =+∂∂+∂∂∂≡∑∑==11,2式中a ij (x ),b i (x ),c (x ),f (x )在D 上连续,c (x )≤0且二次型()∑=nj i j i ij a a a 1,x 正定,即存在常数μ>0,i ()∑∑==≥ni i n j i j i ij a a a a 121,μx定理1 设u (x )为D 内椭圆型方程的解,它在D 内二次连续可微,在D 上连续,且不是常数,如f (x )≤0(或f (x )≥0),则u (x )不能在D 的内点取非正最小值(或非负最大值).如果过边界S 上的任一点P 都可作一球,使它在P 点与S 相切且完全包含在区域D 内,则有 定理2 设u (x )为椭圆型方程在D 内二次连续可微,在D 上连续可微的解,且不是常数,并设f (x )≤0(或f (x )≥0).若u (x )在边界S 上某点M 处取非正最小值(或非负最大值),只要外法向导数错误!未定义书签。
偏微分方程的几种经典解法
偏微分方程的几种经典解法经过一个学期偏微分方程课程的学习,我们掌握了几种求解三种典型方程的方法,如分离变量法、行波法、特征函数展开法、求解非齐次方程的Duhanmel 原理灯,此外,我们通过学习还掌握了求解波动方程的'D Alembert 公式,求解位势方程的Green 公式等等.这些经典方法的综合运用可以求解很多初等偏微分方程,故而是基本而重要的.本文着重总结了偏微分方程的几种经典解法,一次介绍了分离变量法、行波法、幂级数解法、Fourier 变换法以及Green 函数法,通过对典型方程的研究,深入理解集中经典方法.1.分离变量法分离变量法:基本思想是设法把偏微分方程的问题转化为解常微分方程的问题.1.1第一初边值问题例:利用分离变量法求解下述问题(非齐次0边值双曲方程)2222sin 2cos 2,u ux t t x ∂∂-=∂∂ 0,0x t π<<> (1.1) (0,)(,)0,u t u t π== 0t > (1.2) (,0)sin ,u x x =0x π<< (1.3)(,0)sin 2,ux x t∂=∂ 0x π<< (1.4) 解:用分离变量法求问题(1.1)—(1.4)的形式解.设该问题有如下形式的非零解(,)()()u x t X x T t = (1.5)方程(1.1)对应的齐次方程为22220,u ut x∂∂-=∂∂0,0x t π<<> (1.6) 将(1.5)式代入方程(1.6)得""()()()(),X x T t X x T t =0,0x t π<<>即""()()()()X x T t X x T t λ∆==- (1.7) 其中λ为固定常数,下面证明0λ>. 由(1.7)有"()()0,X x X x λ+=上式两端同乘()X x ,并在(0,)π上积分,得"20()()()0,X x X x dx X x dx ππλ+=⎰⎰注意到由(1.2)和(1.5)有(0)()0,X X π==所以有'220()()X x dx X x dx ππλ=⎰⎰易见0λ>.所以(1.2)—(1.6)可以化为如下形式的两个常微分问题,即()()"()()0,1(0)()0,2X x X x X X λπ⎧+=⎪⎨==⎪⎩ 以及由"()()0T t T t λ+=和适当的定解条件确定的关于()T t 的常微分问题. 求解问题(1).根据常微分方程的理论可知,问题(1)的通解为().X x A B =+将其带入(0)0,X =得0A =.再将()X x B =带入()0X π=,得2,1,2,3,n n n λ==特征值2n n λ=相应的特征函数为()sin ,1,2,n X x nx n == (1.8)注意到{}1()n n X x ∞=是一个直交系统,即0,,()(),,2m n m n X x X x dx m n ππ≠⎧⎪=⎨=⎪⎩⎰这表明{}1()n n X x ∞=正规化后是2((0,))L π的一个基底.将问题(1.1)—(1.4)中的非齐次项和初值按{}1()n n X x ∞=展开,得1sin 2cos 2()sin ,n n x t f t nx ∞==∑ 0,0x t π≤≤≥1sin sin ,n n x a nx ∞==∑ 0,x π≤≤1sin 2sin ,n n x b nx ∞==∑ 0,x π≤≤其中0,1()cos 2,20,0,3n n f t t n t n =⎧⎪==≥⎨⎪≥⎩ 1,10,2n n a n =⎧=⎨≥⎩,0,11,20,3n n b n n =⎧⎪==⎨⎪≥⎩设1(,)()()n n n u x t X x T t ∞==∑, 0,0x t π≤≤≥ (1.9)是问题(1.1)—(1.4)的形式解,将上式代入(1.1)—(1.4)可得,()n T t 是如下常微分方程初值问题的解,"'()()(),0(0),(0),n n n n n n n n T t T t f t t T a T b λ⎧+=>⎪=⎨⎪=⎩,其中1,2,n = . 求解问题(2).当1n =时,问题(2)转化为求常微分问题"11'11()()0,(0)0,(0)1,T t T t T T ⎧+=⎪=⎨⎪=⎩ (3) 有常微分方程理论可知,问题(3)的通解为112()cos sin T t c t c t =+.将其代入1(0)1T =,得11c =.将12()cos sin T t t c t =+代入'1(0)0T =得20c =.故1()cos T t t =. 当2n =时,问题(2)转化为常微分问题"22'22()4()cos 2,(0)1,(0)0,T t T t t T T ⎧+=⎪=⎨⎪=⎩ (4)对应其次方程的特征根为2i α=±,用常微分方程中的算子解法求特解.2(4)cos2,D x t +=故sin 24tx t =.所以问题(4)的通解为212()cos 2sin 2sin 2.4tT t c t c t t =++将其代入2(0)0T =得10c =,将22()sin 2sin 24t T t c t t =+代入'2(0)1T =得212c =,故22()sin 2.4t T t t +=当3n ≥时,问题(2)转化为常微分问题"2'()()0,(0)0,(0)0,n n n nT t n T t T T ⎧+=⎪=⎨⎪=⎩ (5) 由常微分理论可知,问题(5)的通解为12()cos sin ,3,4,n T t c nt c nt n =+= 将其代入(0)0,n T =得10c =.将2()sin n T t c nt =代入'(0)0,n T =得20c =.故()0n T t =. 综上有cos ,1,2()sin 2,2,040,3,n t n t T t t n t n =⎧⎪+⎪==≥⎨⎪≥⎪⎩(1.10)将(1.8)(1.10)代入(1.9)中,得问题(1.1)—(1.4)的形式解为2(,)sin cos sin 2sin 2,4t u x t x t x t +=+ 0,0x t π≤≤≥经检验,该形式解满足原问题及初边值条件,该形式解就是原问题的解. 例:利用分离变量法求解下述问题22220,u ut x ∂∂-=∂∂ 0,0x t π<<> (1.11) (0,)sin ,(,)0,u t t u t π== 0t >, (1.12) (,0)0,u x = 0x π<<, (1.13)(,0),u x x t ππ∂-=∂ 0x π<<, (1.14)解:将上述非零边值问题转化为零边值问题,用变量代换,设(,)u x t 是原问题的解,令(,)(,)sin ,xv x t u x t t ππ-=-0,0x t π≤≤≥. 则(,)v x t 是如下问题的解2222(,),v vf x t t x ∂∂-=∂∂ 0,0x t π<<> (1.15) (0,)(,)0,v t v t π== 0t >, (1.16) (,0)0v x =, 0x π<<, (1.17)(,0)0,vx t∂=∂ 0x π<<, (1.18) 其中(,)sin ,xf x t t ππ-=0,0x t π≤≤≥. 用分离变量法求问题(1.15)—(1.18)的形式解.设该问题有如下形式的形式解(,)()()v x t X x T t =, (1.19)方程(1.15)对应的齐次方程为22220,v vt x∂∂-=∂∂ 0,0x t π<<>, (1.20) 将(1.19)代入方程(1.20)得""()()()(),X x T t X x T t =0,0x t π<<>即""()()()()X x T t X x T t λ∆==- (1.21) 其中λ为固定常数,下面证明0λ>. 由(1.21)有"()()0,X x X x λ+=上式两端同乘()X x ,并在(0,)π上积分,得"20()()()0,X x X x dx X x dx ππλ+=⎰⎰注意到由(1.16)和(1.19)有(0)()0,X X π==所以有'220()()X x dx X x dx ππλ=⎰⎰易见0λ>.所以(1.16)—(1.18)(1.20)可以化为如下形式的两个常微分问题,即"()()0,(0)()0,X x X x X X λπ⎧+=⎨==⎩ (6) 以及由"()()0T t T t λ+=和适当的定解条件确定的关于()T t 的常微分问题.(7) 求解问题(6).根据常微分方程的理论可知,问题(6)的通解为().X x A B =+将其带入(0)0,X =得0A =.再将()X x B =带入()0X π=,得2,1,2,3,n n n λ==特征值2n n λ=相应的特征函数为()sin ,1,2,n X x nx n == (1.22)注意到{}1()n n X x ∞=是一个直交系统,即0,,()(),,2m n m n X x X x dx m n ππ≠⎧⎪=⎨=⎪⎩⎰这表明{}1()n n X x ∞=正规化后是2((0,))L π的一个基底. 将问题(1.15)—(1.18)的非齐次项按{}1()n n X x ∞=展开,得1sin ()sin ,n n xt f t nx ππ∞=-=∑0,0.x t π≤≤≥ 令sin n xc nx ππ-=,则在其两端同乘sin nx 再在(0,)π上积分,得 200sin sin 2nn x nxdx c nxdx c πππππ-==⎰⎰. 由分部积分,经计算可得2n c n π=.从而2()sin n f t t n π=,0t ≥,1,2,n = . 设1(,)()()n n n v x t X x T t ∞==∑,0,0.x t π≤≤≥是问题(1.15)—(1.18)的形式解,将其带入(1.15)—(1.18)可得,()n T t 是如下常微分问题的解"22()()sin ,n n T t n T t t n π+=0,t > (1.23) (0)0,n T = (1.24) '(0)0,n T = (1.25)其中1,2,n =(1.23)—(1.25)对应的齐次方程的特征根为ni α=±,则通解为()cos sin n n n T t A nt B nt =+.用算子算法求特解,222()()sin n D n T t t n π+=,解得 22sin ()(1)n tT t n n π=-.故该问题的通解为22sin ()cos sin (1)n n n tT t A nt B nt n n π=++-. (1.26)将上式代入(0)0,n T =得0n A =,将22sin ()sin (1)n n tT t B nt n n π=+-代入'(0)0,n T =得222(1)n B n n π-=-,1,2,n = . 故2222sin 2sin ()(1)(1)n nt tT t n n n n ππ-=+--,0,t >1,2,n = . 因此,问题(1.15)—(1.18)的形式解为22212sin 2sin (,)sin (1)(1)n nt t v x t nx n n n n ππ∞=⎛⎫-=+ ⎪--⎝⎭∑,0,0.x t π≤≤≥ (1.27) 考察(1.27)右端级数的收敛性.记2222sin 2sin sin (1)(1)n nt t a nx n n n n ππ⎛⎫-=+ ⎪--⎝⎭,0,0,x t π≤≤≥1,2,n = . 容易验证下列级数均在[0,][0,)π⨯+∞上一致收敛1n n a ∞=∑,1n n a x ∞=∂∂∑,1n n a t ∞=∂∂∑,221n n a x ∞=∂∂∑,221n n a t ∞=∂∂∑,21nn a x t ∞=∂∂∂∑. 经检验,(,)v x t 满足问题(1.15)—(1.18),就是 问题(1.15)—(1.18)解.将(1.27)代入(,)(,)sin xu x t v x t t ππ-=+,0,0,x t π≤≤≥ 得22212sin 2sin (,)sin sin (1)(1)n nt t xu x t nx t n n n n ππππ∞=⎛⎫--=++ ⎪--⎝⎭∑,0,0,x t π≤≤≥ 此即为原问题(1.11)—(1.14)的解.1.2第二初边值问题例:利用分离变量法求解下述问题(抛物型)220,u ut x ∂∂-=∂∂ 01,0x t <<> (1.28) (0,)(1,)0,u u t t x x ∂∂==∂∂ 0,t > (1.29) (,0)cos ,u x x π= 01,x << (1.30)解:用分离变量法求解问题(1.28)—(1.30)的形式解.设该问题有如下形式的非零解(,)()()u x t X x T t = (1.31)将其代入(1.28)有"'()()()()X x T t X x T t λ∆==-,01,0x t <<> (1.32) 其中λ为某一常数,且0λ≥. 由(1.32)有"()()0,X x X x λ+=上式两端同乘()X x ,并在(0,1)上积分,得11"20()()()0,X x X x dx X x dx λ+=⎰⎰注意到由(1.29)和(1.31)有''(0)(1)0,X X ==所以有11'220()()X x dx X x dx λ=⎰⎰易见0λ≥.故(1.28)—(1.30)可化为如下形式的两个常微分问题,即"''()()0,01,(0)(1)0,X x X x x X X λ⎧+=<<⎨==⎩ (8) 和'()()0,0T t T t t λ+=> (9)求解问题(8),当0λ=时,有"()0X x =,''(0)(1)0,X X ==由常微分方程的理论可知,问题(8)的通解为12()X x c c x =+,01x ≤≤.将其代入'(0)0X =,有20c =,故1()X x c =,其中1c 为任意常数. 当0λ>时,由常微分方程的理论可知,问题(8)的通解为12(),X x c c =+ 01x ≤≤将其代入'(0)0X =,则20c =,将1()X x c =代入'(1)0X =,得2()n n λπ=, 1,2,n =特征值n λ对应的特征函数为()cos n X x n x π=,1,2,n = ,01x ≤≤. 所以,对于0λ≥,有()cos n X x n x π=,01x ≤≤, 0,1,2,n =注意到{}1()n n X x ∞=是一个直交系统,即10,,()(),,2m n m n X x X x dx m n π≠⎧⎪=⎨=⎪⎩⎰ 这表明{}1()n n X x ∞=正规化后是2((0,1))L 的一个基底. 下面求解问题(9),将2()n n λπ=代入,可有'22()()0,n n T t n T t π+=0,1,2,n = ,0t ≥.有常微分方程理论可知其通解为223()n t n T t c e π-=, 0,1,2,n = , 0t ≥.此时,形式解为2230(,)()()cos n t n n n n u x t X x T t c n xe ππ∞∞-====∑∑, 01x ≤≤,0t ≥.将其代入(1.30)中,得30(,0)cos cos n u x c n x x ππ∞===∑,01,x <<由比较系数法,可得31,10,1n c n =⎧=⎨≠⎩故问题(1.28)—(1.30)的形式解为2(,)cos t u x t xe ππ-=,01x ≤≤,0t ≥.经检验,该形式解满足原问题(1.28)—(1.30),此即为原问题的解.1.3 Poisson 方程的边值问题分离变量法还适用于某些特殊形状区域上的二维Poisson 方程的各种边值问题,如果所考虑的定解区域是矩形域,那么可以完全仿照前面的方法来求解,只是此时x,y 之一要扮演t 的角色;如果定解区域是圆域或环形域,则应先做极坐标变换将定解问题化为矩形区域上的定解问题,然后利用分离变量法求解. 例:利用分离变量法求解下述问题22222212(),u u x y x y∂∂+=-∂∂ 12,<< (1.33)(,)0,u x y =1,= (1.34)(,)0,ux y υ∂=∂2,= (1.35)其中υ为2{(,)2}x y R ∂∈上的单位外法向量.解:用分离变量法求解问题(1.33)—(1.35)的形式解.首先,通过极坐标变换将环形域上的定解问题化为矩形域上的定解问题,做极 坐标变换cos ,sin ,x y ρθρθ=⎧⎨=⎩ 12,02ρθπ≤≤≤≤, 则(1.33)—(1.35)化为2222221112cos 2,v v vρθρρρρθ∂∂∂++=∂∂∂ 12,02ρθπ<<<<, (1.36) (1,)0,(2,)0,vv θθρ∂==∂ 02θπ<<, (1.37) 其中(,)(cos ,sin )v u ρθρθρθ=,12,02ρθπ≤≤≤≤.注意到在极坐标条件下(,0)ρ与(,2)ρπ表示同一点,故(,)v ρθ还满足如下周期性条件(,0)(,2),(,0)(,2),v v v v ρρπρρπθθ∂∂==∂∂ 12,ρ<< (1.38) 问题(1.36)—(1.38)是一个定解问题. 方程(1.36)对应的齐次方程为22222110,v v vρρρρθ∂∂∂++=∂∂∂ 12,02ρθπ<<<<, (1.39) 设问题对应的形式解为(,)()()v R ρθρθ=ψ,12,02ρθπ≤≤≤≤. (1.40)将(1.40)代入(1.37)中,得"'"211()()()()()()0,R R R ρθρθρθρρψ+ψ+ψ= 12,02ρθπ<<<<即"2"'()()(),()()R R R θρρρρλθρ∆ψ+=-=-ψ12,02ρθπ<<<<, (1.41) 其中λ为固定常数,下面证明0λ≥.由(1.41)有"()()0,θλθψ+ψ= 02θπ<<,在上式两端同乘()θψ,并在(0,2)π上积分,由(1.38)和(1.40)可知''(0)(2),(0)(2),ππψ=ψψ=ψ所以有22'220()(),d d ππθθλθθψ=ψ⎰⎰易见0λ≥.所以问题(1.37)(1.38)(1.40)可化为两个常微分问题,即"''()()0,(0)(2),(0)(2),θλθππ⎧ψ+ψ=⎪⎨ψ=ψψ=ψ⎪⎩ 02θπ<<, (10) 以及2"'()()()0R R R ρρρρλρ+-=和适当定解条件的常微分问题(11)求解问题(10).当0λ=时,有"''()0,(0)(2),(0)(2),θππψ=ψ=ψψ=ψ由常微分方程的理论可知,问题(10)的通解为()A B θθψ=+,02θπ≤≤,代入(0)(2)πψ=ψ得()A θψ=,其中A 为任意实数. 当0λ>时,通解为(),A B θψ=+02θπ≤≤, 将其代入''(0)(2),(0)(2)ππψ=ψψ=ψ有sin ,A A B =+=-+,故2,1,2,n n n λ==特征值n λ对应的特征函数为()cos sin ,02,1,2,n n n A n B n n θθθθπψ=+≤≤= .其中n A 和n B 是任意不同时为零的实数,综上可知()cos sin ,02,0,1,2,n n n A n B n n θθθθπψ=+≤≤= ,其中0A 是任意不为零的实数,n A 和n B 是任意不同时为零的实数. 注意到1{cos sin }n n n θθ∞=+是一个直交系统,即20()()0,,,0,1,2,m n m n m n πθθψψ=≠=⎰,这表明1{cos sin }n n n θθ∞=+正规化后是2((0,2))L π的一个基底.设1(,)()()()cos ()sin ,n n n n n n n v R A n B n ρθρθρθρθ∞∞∞====ψ=+∑∑∑12,02ρθπ≤≤≤≤,将非齐次项按1{cos sin }n n n θθ∞=+展开,有2n =时,2212A ρ=代入(1.4)—(1.6)有"'22222'2214()()()12,(1)(2)0,A A A A A ρρρρρρ⎧+-=⎪⎨⎪==⎩ 12,ρ<< 2"'2'1()()()0,12,(1)(2)0,n n n nn n A A A A A ρρρρρρ⎧+-=<<⎪⎨⎪==⎩ 0,1,3,4,n = ,和2"'2'1()()()0,12,(1)(2)0,n n n nn n B B B B B ρρρρρρ⎧+-=<<⎪⎨⎪==⎩ 1,2,3,n = .解得2242129112(),1717A ρρρρ-=-++ 12ρ≤≤, ()0n A ρ=, 12ρ≤≤,0,1,3,4,n = , ()0n B ρ=, 12ρ≤≤,1,2,3,n = .故224129112(,)()cos 21717v ρθρρρθ-=-++, 12,02ρθπ≤≤≤≤ 因此,原问题的形式解为2222222112(,)[12917()],17()x y u x y x y x y -=-++++12≤. 经检验,该形式解满足原问题,即为原问题的解.二.行波法行波法:求解一维波动方程的常用解法,利用这种方法得到波动方程的一个重要求解公式('d Alembert 公式)1.齐次波动方程cauchy 问题定理2.1('d Alembert 公式)设2C R ϕ∈(),1C R ψ∈(),则函数 ()()()()()x+atx-at11u x t =x-at +x+at +d 22a ϕϕψξζ⎰,,[)()2u C R 0+∈⨯∞, 是cauchy 问题22222u u-a=0t x ∂∂∂∂, x R t>0∈, ()(),0u x x ϕ=, x R ∈()(),0ux x tψ∂=∂, x R ∈的解.例:求解下述波动方程的cauchy 问题()()2222120,,0,0cos ,,0cos ,u u uu x R t t x t u x x x R ux e x x R t -⎧∂∂∂-++=∈>⎪∂∂∂⎪⎪=∈⎨⎪∂⎪=-∈⎪∂⎩解:首先将方程化为标准形式.设u 是原问题的解,令()(),,,,0t v x t e u x t x R t =∈≥则v 是如下问题的解()()222210,,0,cos ,,0,v vx R t t x v x t x x Rvx e x R t -⎧∂∂-=∈>⎪∂∂⎪⎪=∈⎨⎪∂⎪=∈∂⎪⎩由定理2.1可知()()()()1111,cos cos 22cos cos ,,0x t x tv x t x t x t e d x t te x R t ζ+---=-+++=+∈≥⎰ 因此()()()1,cos cos t u x t e x t t e -+=+, ,0x R t ∈≥为原问题的解.利用一维齐次波动方程cauchy 问题的通解表达式,还可以求解其他定解问题.在此不再赘述.2.非齐次波动方程的cauchy 问题定理2.2('d Alembert 公式)设2C R ϕ∈(),1C R ψ∈(),[)()10,f C R ∈⨯+∞, 则函数()()()()()()()()011,221,,,02x atx att x a t x a t u x t x at x at d a f d d x R t a ττϕϕψξζζτζτ+-+---=-++++∈≥⎰⎰⎰属于[)()20,C R ⨯+∞,是cauchy 问题()()()()()22222,,,0,0,,0,u u a f x t x R t t x u x x x R ux x x R t ϕψ⎧∂∂-=∈>⎪∂∂⎪⎪=∈⎨⎪∂⎪=∈∂⎪⎩的解,其中0a >.注2.1上述问题解得光滑程度本质上取决于初值和非齐次项的光滑程度. 注2.2 如果()(),x x ϕψ和(),f x t 都是x 的奇(偶,周期)函数,则上述问题的解也是x 的奇(偶,周期)函数. 例:求解下述波动方程的定解问题()()()()()()22222,,00,0,0,0,0,0,0u u a f x t x t x u t t u x x x ux x x tϕψ∂∂-=>∂∂=>=>∂=>∂其中0a >,[)()[)()[)[)()2110,,0,,0,0,C C f C ϕψ∈+∞∈+∞∈+∞⨯+∞,且满足相容性条件()()()()2''000,00,0a f ϕψϕ==-=解:注意到如果u 是x 的奇函数,则u 自然满足边值条件.因此,根据注2.2,我们可以采用奇延拓方法来求解上述问题.将()(),x x ϕψ和(),f x t 关于0x =做奇延拓,即令()()(),0,0x x x x x ϕϕ≥⎧⎪Φ=⎨-<⎪⎩ ()()(),,0x x x x x ψψ≥⎧⎪ψ=⎨-<⎪⎩ ()()(),,0,0,,,0,0f x t x t F x t f x t x t ≥≥⎧⎪=⎨-<≥⎪⎩考虑cauchy 问题()()()()()22222,,,0,0,,0,u u a F x t x R t t x u x x x R ux x x R t⎧∂∂-=∈>⎪∂∂⎪⎪=Φ∈⎨⎪∂⎪=ψ∈∂⎪⎩ 按'd Alembert 公式形式地写出其解()()()()()()()()011,221,,,02x atx at t x a t x a t u x t x at x at d F d d x R t aττξζζτζτ+-+---=Φ-+Φ++ψ+∈≥⎰⎰⎰回到原来的初值,ϕψ和非齐次项f ,就可以得到原问题的形式解如下:当0x at ≥≥时,()()()()()()()()011,221,2x atx at t x a t x a t u x t x at x at d af d d aττϕϕψξζζτζτ+-+---=-++++⎰⎰⎰ ()1而当0x at ≤≤时,()()()()()()()()()()())/0/11,221(,,2x at at x t x a x a t t x a t a t x t x a x a t u x t at x x at d af d d f d d aττττϕϕψξζζτζτζτζτ+--+-+------=--+++++⎰⎰⎰⎰⎰ ()2可以直接验证由()1和()2确定的形式解[)[)()20,0,u C ∈+∞⨯+∞就是定解问题的解.三.幂级数解法幂级数解法:是求解偏微分方程的经典解法之一,不仅可以求解一维问题,还可以求解高维问题.我们先来求解如下的常微分方程初值问题()()()()2''0,00,'00,u t a u t t u A u +=>== ()()()3.13.23.3其中0a >方程()3.1的通解是()12cos sin ,0u t C at C at t =+≥其中1C 和2C 是任意实数.由边值条件()3.2和()3.3,可得12,0C A C ==.于是,问题()()3.1 3.3-的解为()cos ,0u t A at t =≥注意到()()()201cos ,02!nnn at at t n ∞=-=≥∑因此,问题()()3.1 3.3-的解可写为如下的级数形式()()()()()()222001,02!2!nn nnn n at tu x A a A t n n ∞∞==-==-≥∑∑. ()3.4定理3.1 假设()C R ϕ∞∈,并且对任意的0R >,都存在非负数列{}0n n a ∞=,满足级数()202!nn n t a n ∞=∑在[)0,+∞上收敛,且()2,,0,1,2,n n D x a x R n ϕ≤≤=则函数()()()()()2222200,,,0,2!2!nn n nn n t t u x t x D x x R t n x n ϕϕ∞∞==⎛⎫∂==∈≥ ⎪∂⎝⎭∑∑ 就是波动方程Cauchy 问题()()()22220,,0,0,,0=0,u ux R t t x u x x x R u x x Rt ϕ⎧∂∂-=∈>⎪∂∂⎪⎪=∈⎨⎪∂⎪∈∂⎪⎩的级数形式的形式解.定理3.2 假设()C R ϕ∞∈,并且对任意的0R >,都存在非负数列{}0n n a ∞=,满足级数0!nn n t a n ∞=∑在[)0,+∞上收敛,且()2,,0,1,2,n n D x a x R n ϕ≤≤=则函数()()()22200,,,0,!!nn n nn n t t u x t x D x x R t n x n ϕϕ∞∞==⎛⎫∂==∈≥ ⎪∂⎝⎭∑∑就是热传导方程Cauchy 问题220,,0u u x R t t x ∂∂-=∈>∂∂()(),0,u x x x R ϕ=∈的级数形式地形式解.幂级数方法求解问题的一大优点就是空间维数不限,下面的例子是一个高维问题.例:求解三维波动方程的Cauchy 问题()()()()()()()()()232330,,,,0, 3.5,,,0,,,,,, 3.6,,,00,,,,3.7uu x y z R t t u x y z x y z x y z R ux y z x y z R tϕ∂-∆=∈>∂=∈∂=∈∂ 其中222222,x y z∂∂∂∆=++∂∂∂()()2223,,,,,x y z x y z x y z R ϕ=++∈解:令2,a A ϕ=-∆=,则由()3.4可得到问题()()3.5 3.7-的级数形式的形式解()()()()230,,,,,,,,,02!n nn t u x y z t x y z x y z R t n ϕ∞==∆∈≥∑ ()3.8将ϕ的表达式代入()3.8,得()()22223,,,3,,,,0u x y z t x y z t x y z R t =+++∈≥容易验证,这个形式解的确是定解问题的解.四.Fourier 变换方法1.()R ε,()D R 和()R ϕ空间(i )()R ε空间:对于{}()1n n u C R ∞∞=⊂和()u C R ∞∈,如果对任何a b <及任何非负整数k ,都有[]()()()(),0sup limk knn x a b u x u x →∞∈-= 则称()n u x 在()C R ∞中收敛于()u x ,赋予上述收敛性的函数空间()C R ∞,称为基本空间()R ε.(ii )()D R 空间:对于{}()01n n u C R ∞∞=⊂和()0u C R ∞∈,如果存在a b <,使得[],n u a b ⊂supp 且对任何非负整数k ,都有()()()()0sup limk knn x Ru x u x →∞∈-= 则称()n u x 在()0C R ∞中收敛于()u x ,赋予上述收敛性的函数空间()0C R ∞,称为基本空间()D R .(iii )()R ϕ空间:如果()u C R ∞∈,且对任何非负整数k 和m ,都有()()s u p k mx Rxu x ∈<+∞,则称()u R ϕ∈.()R ϕ中序列收敛的概念:对于{}()1n n u R ϕ∞=⊂和()u R ϕ∈,如果对任何非负整数m 和k ,都有()()()()()0sup limkkmnn x Rx u x u x →∞∈-= 则称()n u x 在()R ϕ中收敛于()u x .2.速降函数空间上的Fourier 变换(i )定义:设(),R ϕϕ∈称函数[]()(),ix Rx e dx R ξϕξϕξ-=∈⎰F为ϕ的Fourier 变换,也记为();ϕξ∧称函数[]()-11x (),2ix Re d x R ξϕϕξξπ=∈⎰F为ϕ的Fourier 逆变换,也记为()x ϕ∨. (ii )性质:a )设()R ϕϕ∈,对任意正整数m 有()()()[]()()()()[]()11,;m m m m i x ix x ϕξξϕξϕϕ--⎡⎤⎡⎤==-⎣⎦⎣⎦F F F F[]()()()()()[]()()()()()11,.m m mm ix x i x ϕξϕξϕξϕ--⎡⎤⎡⎤=-=⎣⎦⎣⎦F F F Fb) 设()R ϕϕ∈,对任意正整数0a R b R ∈≠∈和,有[]()[]()()()[]()11(),;ia iaxx a e a x e x ξϕξϕξϕξϕ----=-=⎡⎤⎣⎦F F FF[]()[]()()()[]()1111(),.x bx b x b b bbξϕξϕϕξϕ--==⎡⎤⎣⎦F F FFc) 设()12,R ϕϕϕ∈,则[][][][][][]11112121212,2ϕϕϕϕϕϕπϕϕ---*=*=;F F F FF F [][][][][][]111121212121,.2ϕϕϕϕϕϕϕϕπ---=*=*F F F F FF其中12ϕϕ*表示1ϕ与2ϕ的卷积,即()()()()1212,.R x x y y dy x R ϕϕϕϕ*=-∈⎰d )Fourier 变换与Fourier 逆变换都是()R ϕ上的连续线性变换.e )Fourier 变换与Fourier 逆变换互为逆变换. (iii)在速降函数空间中求解热传导方程 考虑热传导方程的Cauchy 问题()()()()()()220,,0,,4.1,0,,4.2u u x t R t xu x g x x R ∂∂-=∈⨯+∞∂∂=∈ 其中()g R ϕ∈.由于()g R ϕ∈,因此,我们猜想Cauchy 问题()()4.1, 4.2的解u 满足(),u t ∙∈()()0.R t ϕ≥将方程()4.1和初值问题()4.2关于x 作Fourier 变换,并利用Fourier 变换的微分性质,得()()20,0,,0,u u t tu g ξξξ∧∧∧∧⎧∂⎪+=>⎪∂⎨⎪=⎪⎩其中R ξ∈.求解这个常微分方程的初值问题,得()()2,,,0.t u t g e R t ξξξξ∧∧-=∈≥关于ξ作Fourier 逆变换,并利用()R ϕ上Fourier 逆变换的线性性质,得(),u x t ()212t ix Rg e e d ξξξξπ∧-=⎰()()22241()21()2().iy t ix R R t i x y R R x y tR g y e dye e d g y e d dy g y e dy ξξξξξξπξπ---+---===⎰⎰⎰⎰⎰ 即问题()()4.1,4.2的解u 具有如下表达式的形式解()()24,(),,0.x y tRu x t g y edy x R t --=∈>⎰特别地,若()22,xg x ex R -=∈,则问题()()4.1,4.2的解u 的形式解为()()()2222442,,,0.x x y y t tRu x t eedy x R t ----+==∈≥且容易验证这个形式解满足方程(4.1)和初值问题(4.2),从而是问题(4.1),(4.2)的解.(iv)在速降函数空间中求解弦振动方程考虑弦振动方程的Cauchy 问题()()()()()()()()()22220,,0,,4.3,0,, 4.4,0,,4.5u ux t R t xu x x x R ux x x R tϕψ∂∂-=∈⨯+∞∂∂=∈∂=∈∂其中()()(),x x R ϕψϕ∈.由于()()(),x x R ϕψϕ∈,因此,我们猜想Cauchy 问题()()4.3 4.5-的解u 满足(),u t ∙∈()()0.R t ϕ≥将方程()4.3和初值问题()()4.4,4.5关于x 作Fourier 变换,并利用Fourier 变换的微分性质,得()()()()()()()2220,0,4.6,0, 4.7,0, 4.8u u t t u ut ξξϕξξψξ∧∧∧∧∧∧⎧∂⎪+=>⎪∂⎪⎪=⎨⎪⎪∂=⎪∂⎪⎩其中R ξ∈.求解这个常微分方程,方程()4.6的通解为()()()12,.i t i t u t C e C e ξξξξξ∧-=+由()()4.7 4.8和,得()()()()()()12121==,.C C C C R i ξξϕξξξψξξξ∧∧+-∈,因此()()()()()()1211=,.22C C R i i ψξψξξϕξξϕξξξξ∧∧∧∧⎛⎫⎛⎫ ⎪ ⎪=+-∈ ⎪ ⎪⎝⎭⎝⎭,从而()()()()()11,22i t i t u t e e i i ξξψξψξξϕξϕξξξ∧∧∧∧∧-⎛⎫⎛⎫ ⎪ ⎪=++-⎪ ⎪⎝⎭⎝⎭()()()()1,,0.(4.9)22i t i t i t i t e e e e R t i ξξξξψξϕξξξ∧∧--=++-∈≥将()()i t i t e e i ξξξ--改写为()1,,0.t i t i t i t e e e d R t i ξξξττξξ---=∈≥⎰ 对()4.9两端同时关于ξ作Fourier 变换,结合上式可得(),u x t ()()()()11222i t i t i t i t ix R e e e e e d i ξξξξξψξϕξξπξ∧∧--⎡⎤⎢⎥=++-⎢⎥⎣⎦⎰ ()()()()()()()()()()()()()()()()()()()1144111222112211,,0.22t i x t i x t i i xR R t t i x t t R t tx tx te e d e d e d x t x t e d d x t x t x d x t x t d x R t ξξξτξξϕξξψξτξππϕϕψξξτπϕϕψττϕϕψξξ∧∧+--∧+--+-=++⎛⎫=++-+ ⎪⎝⎭=++-++=++-+∈≥⎰⎰⎰⎰⎰⎰⎰即问题()()4.3 4.5-的解u 具有如下表达式的形式解()()()()()11,,,0.22x tx tu x t x t x t d x R t ϕϕψξξ+-==++-+∈≥⎰3.广义函数(i )定义:(),D R ()R ε和()R ϕ上的连续线性泛函分别称为()',D R ()'R ε和()'R ϕ广义函数,它们统称为广义函数;(),D R ()R ε和()R ϕ上的全体连续线性泛函分别记为()',D R ()'R ε和()'.R ϕ(ii)判定:a )设F 为()D R 上的线性泛函,则()'F D R ∈的充分必要条件是对任何闭区间[],ab ,存在非负整数~k 和正实数,M 使得()[]()()()[]~,0,,.sup k x a b k kF u M u x u D R a b ∈≤≤≤∈⊂且supp ub )设F 为()R ε上的线性泛函,则()'F R ε∈的充分必要条件是存在闭区间[],a b以及非负整数~k 和正实数,M 使得()[]()()()~,0,.sup k x a b k kF u M u x u R ε∈≤≤≤∈c )设F 为()R ϕ上的线性泛函,则()'F R ϕ∈的充分必要条件是存在非负整数~~,m k 和正实数,M 使得()()()()~~0,0,.supk m x Rm m k kF u Mx u x u R ϕ∈≤≤≤≤≤∈4.广义函数空间上的Fourier 变换(i )定义:设()[]()',f R f Fourier f R ϕϕ∈定义的变换为如下的上的泛函F[][](),,,f f R ϕϕϕϕ=∈,FF也记为;f ∧[]()-1f Fourier f R ϕ定义的逆变换为如下的上的泛函F[][]()-1-1,,,f f R ϕϕϕϕ=∈,F F也记为f ∨. (ii )性质:a )设()'f R ϕ∈,有()[]()[]()'1'1,;f i f f x ix f x ξξ--⎡⎤⎡⎤==-⎣⎦⎣⎦F FFF[]()()()()[]()()()()'11,'.f ixf x f x i f x ξξξξ--=-=⎡⎤⎡⎤⎣⎦⎣⎦F FFF这里,导数指广义导数,乘积是指广义函数与其乘子的乘积.b )Fourier 变换与Fourier 逆变换都是()'R ϕ上的连续线性变换.c )Fourier 变换与Fourier 逆变换互为逆变换.(iii )()'R Fourier ϕ上的变换方法考虑热传导方程的Cauchy 问题()()()()()()220,,0,,4.10,0,,4.11u u x t R t x u x g x x R ∂∂-=∈⨯+∞∂∂=∈ 其中()'g R ϕ∈.由于()g R ϕ∈,因此,我们猜想Cauchy 问题()()4.10,4.11的解u 满足(),u t ∙∈()()'0.R t ϕ≥将方程()4.10和初值问题()4.11关于x 作Fourier 变换,并利用()'R ϕ上Fourier 变换的微分性质,得()()20,0,,0,u u t tu g ξξξ∧∧∧∧⎧∂⎪+=>⎪∂⎨⎪=⎪⎩其中R ξ∈.求解这个常微分方程的初值问题,得()()2,,,0.tu t g eR t ξξξξ∧∧-=∈≥()()()2'',0t g R e t R ξϕϕ∧-∈≥这里是的乘子.关于ξ作Fourier 逆变换,就可以得到问题()()4.10,4.11的形式解. 例:求解问题()()()()()()220,,0,,4.12,0,,4.13u u x t R t x u x x x R δ⎧∂∂-=∈⨯+∞⎪∂∂⎨⎪=∈⎩解:由于初值不是一个普通函数,所以问题()()4.12,4.13的解不可能在 0t =处连续,因此我们需要重新定义u 满足初值条件()4.13的含义.既然g 是一个不是普通函数的()'R ϕ广义函数,因此我们可以把初值条件()4.13定义为:作为()'R ϕ广义函数,(),u t ∙在0t =处等于g ,即()()'0lim ,.t u t g R ϕ+→∙=于下面我们来求解问题()()()4.12,4.13.1, 5.3g ∧=注意到于是由,得()()22,=,,0.ttu t g eeR t ξξξξξ∧∧--=∈≥0t >因此当时,有()()224-14,,.x t tu x t ex R ξ--⎡⎤==∈⎢⎥⎣⎦F()()4.12,4.13于是我们得到问题的形式解()()24,,0.xt u x t x R t -=∈>,()()()0, 5.1.u C R ∞∈⨯+∞容易验证这个形式解满足方程最后验证它还满足初值条件()5.2,即()()()0lim ,,,,.t u x t x R ϕδϕϕϕ+→=∈事实上,对任意的()R ϕϕ∈,有()()()()()()2244,,,xxt t Ru x t x x ex dx ϕϕϕ--==⎰(22,0.yRe dy t ϕ-=>由控制收敛定理可知()()(2lim ,,lim 2y Rt t u x t x e dyϕϕ++-→→=(()200,yRedy ϕϕϕ-===五.Laplace 方程的基本解和Green 函数place 方程的基本解求解全空间上的N (≥2)维Poisson 方程()(), 5.1Nu f x x R -∆=∈的解的表达式,先寻找其次Poisson 方程,即Laplace 方程()0, 5.2Nu x R -∆=∈的径向解,设()(||),N u x w x x R =∈是方程(5.2)的一个解,将u 的表达式代入方程(5.2),得1''(||)'()0,\{0}N N w x w r x R r---=∈也就是说,w 满足方程1''()'()0,0N w r w r r r-+=>即1('())'0,0N r w r r -=>因此1'(),0,N A w r r r -=>其中A 是任意实数.从而2ln ,2(),3N B r C N w r BC N r -+=⎧⎪⎨+≥⎪⎩当,当, 其中B 和C 是任意实数, 定义:称N R 上的函数211ln 22||()1,3(2)||N N N x x N N x πω-⎧=⎪⎪Γ=⎨⎪≥⎪-⎩,当当 为Laplace 方程(5.2)的基本解,也成为Newton 位势,其中N ω是N 维单位球的表面积,Laplace 方程的基本解具有的性质:(1) (\{0})N C R ∞Γ∈,且对任意的\{0}N x R ∈,有()0x ∆Γ=;(2) Γ,1()()Nloc x L R ∇Γ∈,且在广义函数意义下()(),N x x x R δ-∆Γ=∈,即对任意的0()N C R ϕ∞∈,有()()(0)NR x x dx ϕϕ∇Γ⋅∇=⎰或者()()(0)NR x x dx ϕϕΓ⋅∇=-⎰2.Green 函数考虑Poisson 方程的第一边值问题()(),, 5.3u f x x -∆=∈Ω()()(),,5.4u x g x x =∈∂Ω其中Ω是(2)N R N ≥中具有光滑边界的有界区域,设21()()u C C ∈Ω⋂Ω是为题(5.3),(5.4)的解,可以得到对任意的ξ∈Ω,()()()()()(()()),u x x x u x dx u x x u x dS v vξξξΩ∂Ω∂∂Γ-Γ-∆=-+Γ--∂∂⎰⎰ 即()()()()()()(()()), 5.5u x x u x x u x dx x u x dS v vξξξΩ∂Ω∂∂Γ-=Γ-∆+Γ--∂∂⎰⎰其中v 表示∂Ω的单位外法向量,因此,问题(5.3),(5.4)属于21()()C C Ω⋂Ω的解可用(5.5)右侧积分值表示出来,但第二个积分式子中含未知数u 沿外法向量的导数,这是我们所不知道的,注意到由Green 公式可以推出:对任意的21()()v C C ∈Ω⋂Ω,有()()(()()()())(()()),v x u x u x v x v x u x dx u x v x dS v vΩ∂Ω∂∂∆-∆=-∂∂⎰⎰ 即()()()(()()()())(()()). 5.6v x u x u x v x v x f x dx g x v x dS v vΩ∂Ω∂∂∆+=-∂∂⎰⎰由(5.5)和(5.6)得()()()()()[(()())()()()][(()())()()].5.7u u x v x x x v x f x u x v x dx x v x g x dS v v v ξξξξΩ∂Ω=∂∂∂Γ-Γ-++∆+Γ-+-+∂∂∂⎰⎰ 如果21(,)()()()v C C ξξ⋅∈Ω⋂Ω∈Ω是问题()(,)0,,5.8x v x x ξ-∆=∈Ω()(,)(), 5.9v x x x ξξ=-Γ-∈∂Ω的解,那么根据(5.7)有()()()(,)()(),, 5.10G x u G x f x dx g x dS vξξξΩ∂Ω∂=-∈Ω∂⎰⎰其中(,)()(,),(,),.G x x v x x x ξξξξξ=Γ-+∈Ω⨯Ω≠这样我们得到了问题(5.3),(5.4)一个解的表达式(5.10)定义:如果对任意固定的21(,)()()()v C C ξξ⋅∈Ω⋂Ω∈Ω满足方程(5.8)和边值条件(5.9),则我们称定义于{(,):}x x ξξ∈Ω⨯Ω≠上的函数(,)()(,)G x x v x ξξξ=Γ-+为Laplace 算子关于区域Ω的Green 函数,称()x ξΓ-为Green 函数(,)G x ξ的奇异部分,而称(,)v x ξ为Green 函数(,)G x ξ的正则部分,注:如果Green 函数(,)G x ξ的正则部分(,)v x ξ存在,则根据第一边值问题(5.8)(5.9)解的唯一性,可知(,)(,),(,).v x v x x ξξξ=∈Ω⨯Ω因此21()().v C C ∈Ω⨯Ω⋂Ω⨯ΩLaplace 算子关于区域Ω的Green 函数(,)G x ξ具有以下性质: (1) 对任意的(,)x ξ∈Ω⨯Ω,x ξ≠,都有(,)(,);G x G x ξξ=(2) 对任意的ξ∈Ω,有21(,)(\{})(\{}),(,)|0,G C C G ξξξξ∂Ω⋅∈Ω⋂Ω⋅=且对任意的\{}x ξ∈Ω,(,)0x G x ξ∆=;(3) 对任意的ξ∈Ω,有1(,),(,)(),x G G x L ξξ⋅∇∈Ω且在广义函数意义下(,)(),x G x x x ξδξ-∆=-∈Ω.。
线性偏微分方程理论
一、教学目标和要求:在本科生所学数学物理方程基础上,系统介绍一般线性偏微分方程多种定解问题经典解的存在唯一性及弱解的存在唯一性与正则性,特征理论,要求学生掌握线性偏微半一些基本理论,方法及先验估计的技巧二、教学大纲(含章节目录):第一章预备知识第二章极值原理及应用第三章L2理论第四章散度形式方程的解和Holder连续性第五章解的L p估计第六章Schauder估计第七章抛物型方程的极值原理和应用第八章抛物型方程第一边值问题第九章高维双曲型方程I. Teaching Goals and Requirements:on basis of Mathematical Physics equation, introduces systematically some kinds of solution problerms in linear partial differential equation,,the existation and uniqueness of classical solution and the existation and regularity properties of weak solution, eigen theory to stenents.Make the students to master some fundamental theory,methods,skills of prior estimate.II. Teaching Syllabus (chapters, including sections)chapter 1:prepared knowledgechapter 2: extremum theorem and its applicationchapter 3: L2 theorychapter 4:solution of dispersion equation and Holder continuationchapter 5: L p estimate of solutionchapter 6: Schauder estimatechapter 7: extremum theorem and its application of parabolic equation chapter 8:first boundary problem of parabolic equation。