列管换热器设计计算书资料讲解
列管式换热器的设计与计算
列管式换热器的设计与计算设计步骤如下:第一步:确定换热器的需求首先需要明确换热器的设计参数,包括流体的性质、流量、进出口温度、压力等。
这些参数将在后续的计算中使用。
第二步:选择合适的换热器型号根据设计参数和换热需求,选择合适的列管式换热器型号。
常见的型号包括固定管板式、弹性管板式、钢套铜管式等。
第三步:计算表面积根据流体的热传导计算表面积。
换热器的表面积是根据热传导定律计算得到的,公式为:Q=U×A×ΔT,其中Q为换热量,U为传热系数,A为表面积,ΔT为温差。
根据这个公式,可以计算出所需的表面积。
第四步:确定管子数量和尺寸根据所需的表面积和型号,确定换热器中管子的数量和尺寸。
根据流体的流速和换热需求,计算出每根管子的长度和直径。
第五步:确定管板和管夹的尺寸根据管子的尺寸,确定管板和管夹的尺寸。
管板和管夹是固定管子的重要部分,负责把管子固定在换热器中,保证流体的正常流动。
第六步:确定换热器的材质和厚度根据流体的性质和工作条件,确定换热器的材质和厚度。
常见的材质有不锈钢、碳钢、铜等。
通过计算流体的温度、压力和腐蚀性等参数,选择合适的材质和厚度。
第七步:校核换热器的强度对换热器的强度进行校核。
根据国家相关标准和规范,对换热器的强度进行计算和验证,确保其能够承受工作条件下的压力和温度。
第八步:制定施工方案和图纸根据设计结果,制定换热器的施工方案和详细图纸。
包括换热器的总体布置,管子的连接方式,焊接和安装步骤等。
上述是列管式换热器的设计步骤,下面将介绍列管式换热器的计算方法。
首先,需要计算流体的传热系数。
传热系数的计算包括对流传热系数和管内传热系数两部分。
对于对流传热系数,可以使用已有的经验公式或经验图表进行估算。
对于管内传热系数,可以使用流体的性质和流速等参数进行计算。
其次,根据传热系数和管子的尺寸,计算管子的传热面积。
管子的传热面积可以根据管子的长度和直径进行计算。
然后,根据热传导定律,计算换热器的传热量。
列管式换热器课程设计说明书
列管式换热器课程设计说明书1.工原理课程设计任务书一、设计题目:设计一煤油冷却器二、设计条件:1、处理能力160000吨/年2、设备型式列管式换热器3、操作条件流体名称入口温度/℃出口温度/℃物料煤油140 80 加热冷却介质自来水30 50允许压力降:0.02MPa 热损失:按传热量的10%计算每年按330天计,每天24小时连续运行三、设计内容4、前言5、确定设计方案(设备选型、冷却剂选择、换热器材质及载体流入空间的选择)6、确定物性参数7、工艺设计8、换热器计算(1)核算总传热系数(传热面积)(2)换热器内流体的流动阻力校核(计算压降)9、机械结构的选用(1)管板选用、管子在管板上的固定、管板与壳体连接结构(2)封头类型选用(3)温差补偿装置的选用(4)管法兰选用(5)管、壳程接管10、换热器主要结构尺寸和计算结果表11、结束语(包括对设计的自我评书及有关问题的分析讨论)12、换热器的结构和尺寸(4#图纸)13、参考资料目录2.流程图3.工艺流程图水(30℃)煤油(140℃)浮头式换热器水(50℃)可循环利用产品:煤油(80℃)4.设计计算4.1设计任务与条件某生产过程中,用自来水将煤油从140℃冷却至80℃。
已知换热器的处理能力为160000吨/年,冷却介质自来水的入口温度为30℃,出口温度为50℃,允许压力降为0.02MPa ,热损失按传热量的10%计算,每年按330天计,每天24小时连续运行,试设计一台列管式换热器,完成该生产任务。
4.2设计计算4.2.1确定设计方案(1) 选择换热器的类型 两流体温度变化情况:热流体进口温度1T 140℃,出口温度2T 80℃, 冷流体进口温度1t 30℃,出口温度2t 50℃。
进口温度差1T -1t =110℃>100℃,因此初步确定选用浮头式换热器。
(2) 管程安排 由于自来水较易结垢,若其流速太低,将会加快污垢增长速度,使换热器热流量下降,而且管程较壳程易于清洗,再加上热流体走壳程可以使热流体更易于散热,减小能耗,所以从总体考虑,应使自来水走管程,混合气体走壳程。
列管式换热器课程设计报告书
列管式换热器课程设计报告书设计报告书:列管式换热器引言:设计报告书旨在对列管式换热器进行综合性的设计分析,详细讨论设计过程及结果。
本文档包括换热器的设计背景、设计目标、设计计算、设计结果及讨论以及结论等主要内容。
一、设计背景:二、设计目标:本次设计的目标是设计一台列管式换热器,用于将一种流体的温度从80℃升高到120℃,另一种流体的温度从150℃降至100℃。
设计要求包括:换热器的热功率、设计压力、流体入口温度和出口温度、换热面积等参数。
三、设计计算:1.确定热负荷和流体流量:根据流体的温度变化和流量要求,确定热负荷和流体流量。
并结合换热器的传热特性,计算出换热面积。
2.选择换热器类型和材料:根据设计要求,选择适合的列管式换热器类型和材料,考虑到流体性质、压力和温度等因素。
3.计算传热过程中的压降:根据流体性质和流体流量,计算流体在换热器中的压降。
4.确定换热器的尺寸:根据计算得到的换热面积和流体流量,确定换热器的尺寸和结构。
四、设计结果及讨论:根据实际情况及设计计算,确定了列管式换热器的参数和结构。
设计结果展示了换热器的尺寸、换热面积、流量参数等,并进行了相关讨论。
同时,设计结果还包括选择的换热器材料、设计压力和温度等。
五、结论:本次设计报告书综合分析了列管式换热器的设计过程及结果。
根据设计目标和计算得出的结果,可得出以下结论:1.设计的列管式换热器满足了设计要求,能够实现流体的热交换。
2.使用合适的材料和尺寸,可以优化换热器的性能和效率。
3.设计过程中需要考虑流体的性质、温度、压力和流量等因素,以确保换热器的安全和稳定运行。
结语:本设计报告书详细介绍了列管式换热器的设计背景、设计目标、设计计算、设计结果及讨论,以及最终得出的结论。
通过本次设计,我们加深了对列管式换热器的理解,并提高了设计能力。
在实际工程中,将根据需求及具体情况进行设计,并综合考虑各种因素,以确保换热器的优化运行。
列管式换热器的设计计算
2.4 列管换热器设计示例某生产过程中,需将6000 kg/h的油从140℃冷却至40℃,压力为0.3MPa;冷却介质采用循环水,循环冷却水的压力为0.4MPa,循环水入口温度30℃,出口温度为40℃。
试设计一台列管式换热器,完成该生产任务。
1.确定设计方案(1)选择换热器的类型两流体温度变化情况:热流体进口温度140℃,出口温度40℃冷流体(循环水)进口温度30℃,出口温度40℃。
该换热器用循环冷却水冷却,冬季操作时进口温度会降低,考虑到这一因素,估计该换热器的管壁温和壳体壁温之差较大,因此初步确定选用带膨胀节的固定管板式式换热器。
(2)流动空间及流速的确定由于循环冷却水较易结垢,为便于水垢清洗,应使循环水走管程,油品走壳程。
选用ф25×2.5的碳钢管,管内流速取u i=0.5m/s。
2.确定物性数据定性温度:可取流体进口温度的平均值。
壳程油的定性温度为(℃)管程流体的定性温度为(℃)根据定性温度,分别查取壳程和管程流体的有关物性数据。
油在90℃下的有关物性数据如下:密度ρo=825 kg/m3定压比热容c po=2.22 kJ/(kg·℃)导热系数λo=0.140 W/(m·℃)粘度μo=0.000715 Pa·s循环冷却水在35℃下的物性数据:密度ρi=994 kg/m3定压比热容c pi=4.08 kJ/(kg·℃)导热系数λi=0.626 W/(m·℃)粘度μi=0.000725 Pa·s3.计算总传热系数(1)热流量Q o=W o c poΔt o=6000×2.22×(140-40)=1.32×106kJ/h=366.7(kW)(2)平均传热温差(℃)(3)冷却水用量(kg/h)(4)总传热系数K管程传热系数W/(m·℃)壳程传热系数假设壳程的传热系数αo=290 W/(m2·℃);污垢热阻R si=0.000344 m2·℃/W , R so=0.000172 m2·℃/W管壁的导热系数λ=45 W/(m·℃)=219.5 W/(m·℃)4.计算传热面积(m2)考虑15%的面积裕度,S=1.15×S′=1.15×42.8=49.2(m2)。
列管换热器设计计算书资料讲解
列管换热器设计计算书列管式换热器设计第一节推荐的设计程序一、工艺设计1、作出流程简图。
2、按生产任务计算换热器的换热量Q。
3、选定载热体,求出载热体的流量。
4、确定冷、热流体的流动途径。
5、计算定性温度,确定流体的物性数据(密度、比热、导热系数等)。
6、初算平均传热温度差。
7、按经验或现场数据选取或估算K值,初算出所需传热面积。
8、根据初算的换热面积进行换热器的尺寸初步设计。
包括管径、管长、管子数、管程数、管子排列方式、壳体内径(需进行圆整)等。
9、核算K。
10、校核平均温度差D。
11、校核传热量,要求有15-25%的裕度。
12、管程和壳程压力降的计算。
二、机械设计1、壳体直径的决定和壳体壁厚的计算。
2、换热器封头选择。
3、换热器法兰选择。
4、管板尺寸确定。
5、管子拉脱力计算。
6、折流板的选择与计算。
7、温差应力的计算。
8、接管、接管法兰选择及开孔补强等。
9、绘制主要零部件图。
三、编制计算结果汇总表四、绘制换热器装配图五、提出技术要求六、编写设计说明书第二节列管式换热器的工艺设计一、换热终温的确定换热终温对换热器的传热效率和传热强度有很大的影响。
在逆流换热时,当流体出口终温与热流体入口初温接近时,热利用率高,但传热强度最小,需要的传热面积最大。
为合理确定介质温度和换热终温,可参考以下数据:1、热端温差(大温差)不小于20℃。
2、冷端温差(小温差)不小于5℃。
3、在冷却器或冷凝器中,冷却剂的初温应高于被冷却流体的凝固点;对于含有不凝气体的冷凝,冷却剂的终温要求低于被冷凝气体的露点以下5℃。
二、平均温差的计算设计时初算平均温差Dtm,均将换热过程先看做逆流过程计算。
1、对于逆流或并流换热过程,其平均温差可按式(2-1)进行计算:(2—1)式中,、分别为大端温差与小端温差。
当时,可用算术平均值。
2、对于错流或折流的换热过程,若无相变化,则要进行温差校正,即用公式(2-2)进行计算。
(2-2)式中是按逆流计算的平均温差,校正系数可根据换热器不同情况由化工原理教材有关插图查出。
设计步骤及计算(列管式)
管壳(列管)式换热器设计步骤及计算一、列管式换热器设计步骤及计算1.工艺计算——列管式换热器的设计,首先要根据生产工艺条件的要求,通过化工工艺计算,确定换热的传热面积,同时选择管径、管长、决定管数、管程数和壳程数。
1.1换热器初步设计①传热量:Q=W.C p.(T1-T2)②有效传热温差:△T、对数平均温差△tm假定换热器的壳程数为1,管程数为NB,计算并查取其温差修正系数F t,则:△T=F t.△tm③根据换热剂性质和工艺条件,设总传热系数K′,所需的换热面积A1.2传热管——因为换热管的换热是依靠传热管构成传热面来进行.所以管子的尺寸、形状对传热有很大影响.同时,管子的大小,管子的排列对清洁污垢非常重要.①通常采用光管或低翅片管,规格为Φ19×2和Φ25×2.5.②传热管根数③确定管子排列方式和管间距a④管子材料由流体化学性质和工艺设计条件如压力、温度等确定1.2 换热器的机械设计1.2.1 壳体直径Di和厚度S的计算1.2.2 壳体材料可根据物料性质、操作压力、温度来确定.#1.2.3 换热器封头的选择采用标准封头,根据JB1154—73选择1.2.4 容器法兰选择根据JB1160—82标准选择1.2.5 管板尺寸由《钢制列管式固定管板换热器结构设计手册》计算、选定. 1.2.6 管子拉脱力的计算对于胀接接头,由于流体压力,及管壳壁温差应力的联合作用,使得在接头处产生使管子与管板有脱离倾向的拉脱力q.若管子与管板为焊接接头,则C不需校核拉脱力.1.2.7 温差应力的计算对于固定管板式换热器,因为温差应力较大,通常需要计算、校核温差应力,进而判断是否需要设置膨胀节.①温差轴向力②温差应力/ σt=F/Atσs=F/As1.2.8 折流板在换热器中设置折流板,可提高壳程内流体的流速和加强湍流强度,从而提高传热效率,是强化传热的一种结构. 常用圆缺形折流板.根据经验,折流板间的间隔不大于壳体内径,最小为壳内径的板间距太大湍流强度会不够,太小则增加了流动阻力.1.3 管、壳程压降的计算根据初定的换热器,计算管、壳程的压降、检验其结果是否合理,否则需要重新调整管程数和折流板间距.1.3.1 壳程压降△Po1.3.2 管程压降△Pi1.4 总传热系数在初步确定换热器的结构和尺寸后,要计算总传热系数K,比较初设的总传热系数K′,当K/K′=1.5~1.25,则初选的换热器合适,否则需要重复设计.①管程对流传热系数αi可根据管内流体的流型选择相应的计算公式αi=f(Re,Pr)②壳程对流传系数αo. Donohue法: \#③总传热系数对于间壁、污垢层热阻,可视它们对K的影响占5%,所以 2 实例设计2.1 欲用水将流量为60m3/h的苯液从80℃冷至35℃,水入口温度为25℃,若出口温度分别为30℃、35℃、40℃设计相应适宜的换热器.(壳程走苯,管程走水)物性:ρ(kg/m3) Cp(KJ/Kg℃) μ(mPa.s) λ(KJ/m2.℃) 苯:880 1.60 1.15 0.148 水:994 4.187 0.727 0.626设计结果均采用固定管扳式换热器(无需膨胀节)出口温度(℃) 30 35 40Dg(mm) 700 800900S(mm) 7 8 9A(m2)133.6 160 217.9'L(m) 6 6 6N(根) 284 340 463NB(块) 12 17 243 V$ n- d. _9 T) O板间距(m) 0.5 0.35 0.25! e) g7 ]a; z2 O$ ]# I管子(mm) Φ25×2.5 Φ25×2.5 Φ25×2.5; b0 u7 U1 j( u: V9 y& H* J+ C u# ]管子排列正三角正三角正三角管子中心矩(mm) 32 32 32总传热系数(w/m2.t 421 423 4040 k- A3M& ]( w3 }壳程压降(Pa) 4.43×103 2.07×103 1.2×1048 y; V# e+ q: n6 Z管程压降(Pa) 1.55×103 8.45×103 0.41×1033 |( U8 I6 e" ~$ R2.2 讨论从设计结果可看出,冷却水出口温度不同,若要保持总传热系数,温度越大、换热管数越多,折流板数越多、壳径越大,这主要是因为水出口温度增高,总的传热温差下降,所以换热面积要增大,才能保证Q和K.因此,换热器尺寸增大,金属材料消耗量相应增大.通过这个设计,我们可以知道,为提高传热效率,降低经济投入,设计参数的选择十分重要.3 结论本文提出的换热器的设计,在工艺设计上考虑了传热系数、管壳程压降等对换热器设计的影响,同时在机械设计上进行了部分筒化计算.虽然所列公式繁多,但运用计算机编程计算,将简便易行,能满足设计要求。
列管式换热器的设计计算
列管式换热器的设计计算1.流体流径的选择哪一种流体流经换热器的管程,哪一种流体流经壳程,下列各点可供选择时参考(以固定管板式换热器为例)(1) 不洁净和易结垢的流体宜走管内,以便于清洗管子。
(2) 腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。
(3) 压强高的流体宜走管内,以免壳体受压。
(4) 饱和蒸气宜走管间,以便于及时排除冷凝液,且蒸气较洁净,冷凝传热系数与流速关系不大。
(5) 被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。
(6) 需要提高流速以增大其对流传热系数的流体宜走管内,因管程流通面积常小于壳程,且可采用多管程以增大流速。
(7) 粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低Re(Re>100)下即可达到湍流,以提高对流传热系数。
在选择流体流径时,上述各点常不能同时兼顾,应视具体情况抓住主要矛盾,例如首先考虑流体的压强、防腐蚀及清洗等要求,然后再校核对流传热系数和压强降,以便作出较恰当的选择。
2. 流体流速的选择增加流体在换热器中的流速,将加大对流传热系数,减少污垢在管子表面上沉积的可能性,即降低了污垢热阻,使总传热系数增大,从而可减小换热器的传热面积。
但是流速增加,又使流体阻力增大,动力消耗就增多。
所以适宜的流速要通过经济衡算才能定出。
此外,在选择流速时,还需考虑结构上的要求。
例如,选择高的流速,使管子的数目减少,对一定的传热面积,不得不采用较长的管子或增加程数。
管子太长不易清洗,且一般管长都有一定的标准;单程变为多程使平均温度差下降。
这些也是选择流速时应予考虑的问题。
3. 流体两端温度的确定若换热器中冷、热流体的温度都由工艺条件所规定,就不存在确定流体两端温度的问题。
若其中一个流体仅已知进口温度,则出口温度应由设计者来确定。
例如用冷水冷却某热流体,冷水的进口温度可以根据当地的气温条件作出估计,而换热器出口的冷水温度,便需要根据经济衡算来决定。
列管式换热器的设计与计算
列管式换热器的设计与计算一、需求分析在进行列管式换热器设计与计算之前,首先要明确用户需求。
包括换热介质的种类、流量、进出口温度、压力等参数。
通过对用户需求的分析,可以确定换热器的基本工况。
二、换热面积计算换热面积是列管式换热器设计的重要参数之一、常用的换热面积计算方法有经验公式法、传热负荷法和数值计算法。
其中最常用的方法是经验公式法。
经验公式法是通过已有的实验数据和经验公式来计算换热面积。
常用的经验公式有Dittus-Boelter公式、Sieder-Tate公式和Petukhov公式等。
选择适当的公式并对其进行解析,可以计算出换热器的换热面积。
三、流体参数计算在进行列管式换热器设计与计算之前,需要准确地确定流体的物性参数。
包括流体的热传导系数、粘度、比热容等。
这些参数的计算可以通过查表或者使用流体模拟软件来实现。
四、管道布置管道布置是列管式换热器设计的重要环节。
合理的管道布置可以提高换热效率,减小流体的压降。
通常情况下,采用等分流或者逆流布置方式。
在进行管道布置时,需要考虑管道的长度、中心距、管程数等因素。
五、管壳选型根据用户需求和换热介质的特点,选择合适的管壳材质和型号。
常见的管壳材质有碳钢、不锈钢、铜合金等。
在选择管壳型号时,要考虑流体进出口大小、壳体结构和安装方式等因素。
六、压降计算在进行列管式换热器设计与计算时,需要考虑流体在管内和管外的压降。
通过压降计算可以确定管道的尺寸、长度和流速等参数。
压降计算一般有几种方法,包括经验公式法、流体力学模拟法和试验法等。
七、材料选用在列管式换热器的设计与计算中,材料的选用非常重要。
常见的材料有碳钢、不锈钢、铜合金等。
选择合适的材料,可以确保换热器的使用寿命和性能。
八、换热器结构设计换热器的结构设计包括换热管的排列方式、管道的长度和直径等。
这些参数的选择与具体的应用场景和换热介质有关。
换热器的结构设计要满足换热效率高、压降小和结构紧凑等要求。
总结:列管式换热器的设计与计算涉及多个方面,包括换热面积计算、流体参数计算、管道布置、管壳选型、压降计算、材料选用和换热器结构设计等。
列管式换热器设计举例
列管式换热器设计举例(一)一、设计任务书(一)已知条件 1. 气体工作压力: 管程:半水煤气 0.70MPa 壳程:变换气0.68MPa2. 壳、管壁温差 50℃,ta > ts 。
3. 由工艺计算求得换热面积为 130 2m 。
(二)设计任务1.列管热交换器结构及工艺尺寸;2.绘制列管热交换器结构图。
3.选用适合并满足换热任务的标准型换热器。
二、换热器设计计算1.确定管子数n选5.225⨯φ的无缝钢管,材质为20号钢,管长 3 m 因 n l d F 均π= 所以 6133022********=⨯⋅⨯⋅==L d A n 均π 根其中因安排拉杆需减少6 根,实际近数为607 根。
2.管子排列方式、管间距确定采用正三角形排列,由表 查得层数为 13 层,查表 ,取管间距 mm 32=α。
3.换热器壳体直径的确定壳体内径为: ()l b D i 21+-=α 式中 i D —— 换热器内径;mb —— 正三角形对角线上的管子数;查表 ,取27=b ; l —— 最外层管子的中心到壳壁边缘的距离;取02d l =。
因此 ()mm D i 932252212732=⨯⨯+-⨯=圆整后取壳体内径 mm D i 1000=4. 换热器壳体壁厚的计算 材料选用20R 钢,计算壁厚为 []PPD S ti-=φσ2式中 P —— 设计压力;取MPa P 01⋅=; mm D i 1000=850⋅=φ []MPa 101300=σ (设壳壁温度为300℃); 换热器壳体壁厚为: mm S 865018501012100001⋅=⋅-⋅⨯⨯⨯⋅=取mm C 212⋅=,由表 ,得mm C 801⋅=圆整后实取 mm S n 8=5.换热器封头选择上下封头均选用标准椭圆形封头,根据JB1154—73 标准,封头为81000⨯Dg ,曲面高度mm h 2501=,直边高度mm h 402=,如图7-48所示,材料选用20R 钢。
列管式换热器的设计计算
列管式换热器的设计计算
设计计算列管式换热器需要考虑多个因素,包括热负荷、传热系数、
综合热传导系数、管壁温度、传热面积等。
下面将介绍列管式换热器的设
计计算方法。
1.确定热负荷:首先需要确定需要换热的流体的温度差,以及流体的
流量。
根据热传导方程和换热面积乘以传热系数,可以计算出热负荷。
2.确定传热系数:传热系数是判断换热器传热效果的重要参数。
根据
换热器内外壁传热面积、内外壁综合热传导系数以及传热面积乘以壁面传
热系数,可以计算出传热系数。
3.确定综合热传导系数:综合热传导系数可以通过考虑换热器材料的
导热系数和传热面与环境之间的热传导路径来计算。
4.确定管壁温度:根据热传导方程和壁面传热系数,可以计算出管壁
温度。
5.确定传热面积:传热面积是换热器设计的重要参数之一、传热面积
的大小直接影响到换热器的传热效果。
传热面积可以通过测量换热器的长度、管道内径和管板数量来计算。
综上所述,列管式换热器的设计计算主要包括确定热负荷、传热系数、综合热传导系数、管壁温度和传热面积等参数。
根据这些参数可以得到换
热器的设计方案,以满足实际的换热需求。
列管式换热器的计算
列管式换热器的计算列管式换热器是一种常见的热交换设备,用于将热量从一个流体传递给另一个流体。
它由一组管子和外壳组成,热量通过管壁传递。
在设计或计算列管式换热器时,需要考虑各种参数和因素。
下面将详细介绍列管式换热器的计算方法。
首先,需要确定列管式换热器的传热面积。
传热面积影响热量传递的效率,可以通过以下公式计算:A=n×π×D×L其中:A表示传热面积(m2)n表示管子数量D表示管子外径(m)L表示管子长度(m)然后,需要计算每个管子的传热系数。
传热系数表示单位面积上的传热量,可以通过以下公式计算:U=(1/(1/h_i+δ_i/k_i+1/h_o))其中:U表示总传热系数(W/(m2·K))h_i表示内壁对流传热系数(W/(m2·K))δ_i表示管壁导热系数(W/(m·K))k_i表示管壁导热系数(W/(m·K))h_o表示外壁对流传热系数(W/(m2·K))对流传热系数可以通过经验公式、实验或计算获得。
管壁导热系数可以根据管材的材料及厚度获得。
接下来,需要计算传热器的热负荷。
热负荷表示单位时间内流体传递的热量,可以通过以下公式计算:Q=m×Cp×ΔT其中:Q表示热负荷(W)m 表示流体的质量流量(kg/s)Cp 表示流体的定压比热容(J / (kg·K))ΔT表示流体进出口温度的温差(K)最后,需要计算传热器的温度差。
温度差表示流体进出口温度之间的差距,可以通过以下公式计算:ΔT = (T_i - T_o) / ln(T_i / T_o)其中:ΔT表示温度差(K)T_i表示进口温度(K)T_o表示出口温度(K)根据以上公式,可以计算出列管式换热器的传热面积、传热系数、热负荷和温度差。
这些参数和结果对于合理设计和选择列管式换热器非常重要。
列管换热器的设计说明书
列管换热器的设计说明书设计说明书一、项目背景列管换热器是指通过管道将两种不同介质进行热交换的设备,广泛应用于化工、石油、能源等行业。
本设计说明书旨在为进行列管换热器的设计提供详细指导。
二、设计要求1、换热器需要能够保证高效的热交换效果;2、设计过程中要考虑介质流体的物性参数、压力等因素;3、设计要满足相关法律法规标准;4、设计材料应具有良好的耐腐蚀性能。
三、设计流程1、确定换热器的工况参数:包括介质流量、温度差、压力等;2、确定换热器的结构形式:选择适合的管束结构;3、计算传热面积:根据工况参数计算所需传热面积;4、确定管束布置:根据工况参数和传热面积计算结果确定管束布置;5、确定换热器外形尺寸:根据管束布置确定换热器外形尺寸;6、确定材料选择:根据介质性质和工艺要求选择合适的材料;7、绘制设计图纸:绘制换热器的总图、管束图和管板图等。
四、设计内容详细说明1、工况参数:a: A介质流量:__________b: B介质流量:__________c: A介质温度:__________d: B介质温度:__________e:压力:__________2、结构形式选择:经过综合考虑,本设计采用__________结构形式。
3、传热面积计算:根据工况参数,计算得出所需传热面积为__________。
4、管束布置:根据传热面积计算结果,确定管束布置方式为__________。
5、外形尺寸:经过计算,确定换热器的外形尺寸为__________。
6、材料选择:根据介质性质和工艺要求,选择适合的材料为__________。
7、设计图纸:设计完成后绘制换热器的总图、管束图和管板图等详细图纸。
附件:本设计说明书涉及的附件包括设计图纸、工况参数表、材料选择表等。
法律名词及注释:1、法律名词1:解释1;2、法律名词2:解释2;3、法律名词3:解释3:。
列管式换热器计算
列管式换热器计算列管式换热器(shell and tube heat exchanger)是广泛应用于工业生产过程中的一种热能传递设备。
它主要由壳体、管束和传热介质组成,通过将两个介质分别流经壳体和管束,实现热能传递的目的。
在进行列管式换热器的计算之前,需要了解一些基本的参数和公式。
1.热传导功率计算公式:热传导功率(Q)可以通过以下公式计算:Q=U×A×ΔTm其中,U为传热系数(W/(m²·K)),A为传热面积(m²),ΔTm为平均温差(K)。
2.传热系数的计算:传热系数的计算是列管式换热器计算中的关键步骤。
传热系数(U)可以通过以下公式计算:1/U = 1/hi + Σ(δ/ki) + 1/ho其中,hi为管内传热系数(W/(m²·K)),δ为管壁厚度(m),ki为管材的导热系数(W/(m·K)),ho为壳体侧传热系数(W/(m²·K))。
3.管内传热系数的计算:管内传热系数(hi)可以通过经验公式获得。
常用的经验公式有Dittus-Boelter公式和Sieder-Tate公式。
4.壳体侧传热系数的计算:壳体侧传热系数(ho)通常需要经验或试验数据来确定,也可以通过计算软件进行估算。
5.平均温差的计算:平均温差(ΔTm)可以通过以下公式计算:ΔTm = (Ts – Tf) / ln((Ts – Tf) / (Tg – Tf))其中,Ts为传出介质的温度(K),Tf为传入介质的温度(K),Tg为壳体侧介质的温度(K)。
通过以上的基本参数和公式,可以进行列管式换热器的计算。
首先,需要确定换热器的设计要求和工艺参数,例如需求的传热功率、传入介质和传出介质的温度、壳体侧介质的温度等。
其次,选择适当的管材和壳体材料,确定管径、管程数和管束类型。
根据设计要求,计算所需的传热面积,并选择管程数和管长。
然后,通过管内传热系数的计算公式,确定管内传热系数。
化工原理课程设计列管式换热器
可用旳场合:
1)管程走清洁流体;
2)管程压力尤其高;
3)管壳程金属温差很大,固定管板换热器连设置膨胀节都无法 满足要求旳场合.
2、流动空间旳选择
3、流速旳拟定
4、流动方式旳选择
除逆流和并流之外,在列管式换热器中冷、 热流体还能够作多种多管程多壳程旳复杂 流动。当流量一定时,管程或壳程越多, 表面传热系数越大,对传热过程越有利。 但是,采用多管程或多壳程必造成流体阻 力损失,即输送流体旳动力费用增长。所 以,在决定换热器旳程数时,需权衡传热 和流体输送两方面旳损失。
5、流体出口温度旳拟定
若换热器中冷、热流体旳温度都由工艺条件所要求,则不存在 拟定流体两端温度旳问题。若其中一流体仅已知进口温度,则 出口温度应由设计者来拟定。例如用冷水冷却一热流体,冷水 旳进口温度可根据本地旳气温条件作出估计,而其出口温度则 可根据经济核实来拟定:为了节省冷水量,可使出口温度提升 某些,但是传热面积就需要增长;为了减小传热面积,则需要 增长冷水量。两者是相互矛盾旳。一般来说,水源丰富旳地域 选用较小旳温差,缺水地域选用较大旳温差。但是,工业冷却 用水旳出口温度一般不宜高于45℃,因为工业用水中所含旳部 分盐类(如CaCO3、CaSO4、 MgCO3和MgSO4等)旳溶解度 随温度升高而减小,如出口温度过高,盐类析出,将形成传热 性能很差旳污垢,而使传热过程恶化。假如是用加热介质加热 冷流体,可按一样旳原则选择加热介质旳出口温度。
取管长应根据出厂旳钢管长度合理截用。 我国生产系列原则中管长有1.5m,2m, 3m,4.5m,6m和9m六种,其中以3m和 6m更为普遍。同步,管子旳长度又应与管 径相适应,一般管长与管径之比,即L/D约 为4~6
列管式换热器-换热面积计算
输入
(2)计算对数平均温差
对数平均温度差, ℃
△tlm 42.45093508
输出
(T1-T1)/(t2-t1)
R
1.166666667
输出
(t2-t1)/(T1-t1)
S
0.4
输出
传热量(1W=1J/s), J/s Q
1393333.333
输出
温差修正系数
Ft
0.9
按图15-14
总传热系数 W/(m2*K) K
1
0.93
0.019850627 0.147095986 0.6
输入 输入 输出 输入 输入 输入 输出 输出 输入
输入
输出
0.0004688 6594蒸汽导热系数
传热系数:1000-3400kcal/(m2*h*℃)
1kcal/m2*h*℃=1.163W/(m2*K)
冷介质(管程) 热介质(壳程)
3012.17
输入
平均温差
△tm 38.20584157
(3)计算蒸汽用量
水流量 水流量
kg/s t/h
11.11111111 W水
40
输出 输入
蒸汽流量 蒸汽流量
kg/s t/h
9.523809524 W气
34.28571429
输出 输出
(4)换热面积计算
换热面积,m2
A
12.107换热管外径
m Do
换热管壁厚
mδ
换热管内径
m di
管心距
m Pτ
三角形不管
m
挡板间距
m
换热管长度
mL
换热管根数
Nτ
换热管配置角度对换热器直径 影响系数
化工原理课程设计--列管式换热器设计说明书(完整版)
东莞理工学院《化工原理》课程设计说明书题目:列管式换热器的设计学院:班级:学号:姓名:指导教师:时间:目录一.化工原理课程设计任务书 (4)1.1 设计题目:列管式换热器的设计 (4)1.2 前言 (4)1.3 合成氨工业概述 (5)1.3.1 合成氨工业重要性 (5)1.3.2 合成氨的原料及原则流程 (5)1.4 世界合成氨生产技术及进展 (6)1.4.1 国外合成氨技术现状及发展 (6)1.4.2 我国合成氨技术的基本状况 (6)1.5 概述 (7)1.5.1 换热器概述 (7)1.5.2 固定管板式 (8)1.5.3 列管换热器主要部件 (8)1.5.4 设计背景及设计要求 (10)二.热量设计 (11)2.1 设计条件: (11)2.2 初选换热器的类型 (11)2.3 管程安排(流动空间的选择)及流速确定 (12)2.4 初算换热器的传热面积SO (12)三.机械结构设计 (14)3.1 管径和管内流速 (14)3.2 管程数和传热管数 (14)3.3 换热器筒体尺寸与接管尺寸确定 (16)3.4换热器封头选择 (17)3.4.1 封头选型及尺寸确定 (17)3.4.2 封头厚度选取 (18)3.5 管板的确定 (19)3.5.1 管板尺寸 (19)3.5.2 管板与壳体的连接 (19)3.5.3 管板厚度 (20)3.6换热器支座及法兰选定 (20)3.7 换热器核算 (21)3.7.1管、壳程压强降计及校验 (21)3.7.2 总传热系数计算及校验 (23)四.设计结果表汇 (25)五.参考文献 (26)附:化工原理课程设计之心得体会 (26)一.化工原理课程设计任务书1.1 设计题目:列管式换热器的设计系(院)、专业、年级:学生姓名:学号:指导老师姓名:任务起止日期:1.2 前言换热器是实现化工生产过程中热量交换和传递不可缺少的设备。
热量交换中常有一些腐蚀性、氧化性很强的物料,因此,要求制造在换热器的材料具有抗强腐蚀性能。
列管式换热器选型设计计算
列管式换热器选型设计计算首先,需要确定换热器的热负荷,即需要传热的热量。
一般可以根据物料的流量、进出口温度差和物料的比热容来计算。
例如,物料流量为1000 kg/h,进口温度为80°C,出口温度为60°C,比热容为3.8kJ/(kg·°C),则热负荷为:接下来,需要选择适当的传热面积。
传热面积与传热效果成正比。
可以根据传热系数和传热面积的关系来计算,公式如下:Q=U×A×ΔTm其中,U为换热系数,A为传热面积,ΔTm为物料的平均温差。
由于换热系数与流体特性、流体配管、管壁传热等因素有关,需要通过经验或参考书籍来确定一个合适的换热系数。
常见的换热系数范围为1000-4000W/(m2·°C)。
通过计算可以得到传热面积:A=Q/(U×ΔTm)然后,需要确定流体流速和压降。
流速的选择要考虑到换热效果和能耗的平衡。
一般情况下,流速应该在合适的范围内,避免过高或过低造成换热效果不佳或能耗过大。
压降则需要根据流体的压力和流速来计算。
一般通过经验公式或流体力学方法来计算。
最后,选择合适的材料和管子数量。
材料要能够满足工艺要求,耐腐蚀、耐高温等。
常见的材料有不锈钢、碳钢、铜等。
管子数量的选择要保证传热面积充分利用,同时要考虑到设备的尺寸和造价等因素。
总结起来,列管式换热器选型设计主要包括确定热负荷、选择传热面积、确定流体流速和压降、选择材料和管子数量等。
这些步骤需要考虑换热器的传热性能、流体特性、工艺要求和经济性等因素,通过计算和经验可以确定最合适的选型设计方案。
列管式换热器课程设计(含有CAD格式流程图和换热器图)
检查并调整图纸中的线条、颜色、字体等细节,确保图纸清晰易读, 符合规范要求。
关键节点参数设置与调整
设备参数设置
根据换热器、泵等设备的性能参 数,设置相应的CAD图纸中的属 性,如设备尺寸、处理能力、扬 程等。
管道参数调整
根据工艺流程需求和管道设计规 范,调整管道的直径、壁厚、材 质等参数,确保管道系统的安全 性和经济性。
阀门与控制点设置
在关键位置设置阀门以控制物料 流动,并根据控制需求设置相应 的控制点,如温度传感器、压力 传感器等。
流程图在课程设计中的作用
明确工艺流程
通过流程图可以清晰地展示物料在换热器中的流动过程, 帮助学生理解工艺流程和设备的相互关系。
指导设备布局与管道设计
流程图可以作为设备布局和管道设计的依据,有助于优化 设备布局和减少管道长度,提高系统的效率。
方式和换热器图纸中的局部结构。
建议措施
03
加强CAD制图技能的训练,提高图纸的准确性和规范
性。
经验教训分享与未来展望
经验教训
在课程设计过程中,应注重团队协作,合理分配任务,及时沟通交流,确保设计进度和 质量。
未来展望
随着CAD技术的不断发展,应积极探索新的设计理念和方法,提高课程设计的创新性 和实用性。同时,鼓励学生参与实际工程项目,将理论知识与实践相结合,提升综合素
流程图绘制步骤及规范
确定流程图的类型和范围
根据课程设计需求,明确要绘制的流程图类型(如工艺流程图、控制 流程图等)和所涵盖的范围。
绘制主要设备和管道
使用CAD软件中的绘图工具,按照比例和规范要求,绘制出换热器、 泵、阀门等主要设备以及连接它们的管道。
添加流向箭头和标注
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
列管换热器设计计算书列管式换热器设计第一节推荐的设计程序一、工艺设计1、作出流程简图。
2、按生产任务计算换热器的换热量Q。
3、选定载热体,求出载热体的流量。
4、确定冷、热流体的流动途径。
5、计算定性温度,确定流体的物性数据(密度、比热、导热系数等)。
6、初算平均传热温度差。
7、按经验或现场数据选取或估算K值,初算出所需传热面积。
8、根据初算的换热面积进行换热器的尺寸初步设计。
包括管径、管长、管子数、管程数、管子排列方式、壳体内径(需进行圆整)等。
9、核算K。
10、校核平均温度差D 。
11、校核传热量,要求有15-25%的裕度。
12、管程和壳程压力降的计算。
二、机械设计1、壳体直径的决定和壳体壁厚的计算。
2、换热器封头选择。
3、换热器法兰选择。
4、管板尺寸确定。
5、管子拉脱力计算。
6、折流板的选择与计算。
7、温差应力的计算。
8、接管、接管法兰选择及开孔补强等。
9、绘制主要零部件图。
三、编制计算结果汇总表四、绘制换热器装配图五、提出技术要求六、编写设计说明书第二节列管式换热器的工艺设计一、换热终温的确定换热终温对换热器的传热效率和传热强度有很大的影响。
在逆流换热时,当流体出口终温与热流体入口初温接近时,热利用率高,但传热强度最小,需要的传热面积最大。
为合理确定介质温度和换热终温,可参考以下数据:1、热端温差(大温差)不小于20℃。
2、冷端温差(小温差)不小于5℃。
3、在冷却器或冷凝器中,冷却剂的初温应高于被冷却流体的凝固点;对于含有不凝气体的冷凝,冷却剂的终温要求低于被冷凝气体的露点以下5℃。
二、平均温差的计算设计时初算平均温差Dtm,均将换热过程先看做逆流过程计算。
1、对于逆流或并流换热过程,其平均温差可按式(2-1)进行计算:(2—1)式中,、分别为大端温差与小端温差。
当时,可用算术平均值。
2、对于错流或折流的换热过程,若无相变化,则要进行温差校正,即用公式(2-2)进行计算。
(2-2)式中是按逆流计算的平均温差,校正系数可根据换热器不同情况由化工原理教材有关插图查出。
一般要求>0.8,否则应改用多壳程或者将多台换热器串联使用。
三、传热总系数K的确定计算K值的基准面积,习惯上常用管子的外表面积。
当设计对象的基准条件(设备型式、雷诺准数Re、流体物性等)与某已知K值的生产设备相同或相近时,则可采用已知设备K值的经验数据作为自己设计的K值。
表2-1为常见列管式换热器K值的大致范围。
由表2-1选取大致K值,表2-1列管式换热器中的总传热系数K的经验值冷流体热流体总传热系数W/m2.℃水水850-1700水气体17-280水有机溶剂280-850水轻油340-910水重油60-280有机溶剂有机溶剂115-340水水蒸汽冷凝1420-4250气体水蒸汽冷凝30-300水低沸点烃类冷凝455-1140水沸腾水蒸蒸汽冷凝2000-4250轻油沸腾水蒸汽455-1020用式(2-3)进行K值核算。
(2-3)式中:a-给热系数,W/m2.℃;R-污垢热阻,m2.℃/W;δ-管壁厚度,mm;λ-管壁导热系数,W/m.℃;下标i、o、m分别表示管内、管外和平均。
当时近似按平壁计算,即:在用式(2-3)计算K值时,污垢热阻、通常采用经验值,常用的污垢热阻大致范围可查《化工原理》相关内容。
式中的给热系数a,在列管式换热器设计中常采用有关的经验值公式计算给热系数a,工程上常用的一些计算a的经验关联式在《化工原理》已作了介绍,设计时从中选用。
四、传热面积A的确定工程上常将列管式换热器中管束所有管子的外表面积之和视为传热面积,由式(2-4)和式(2-5)进行计算。
(2-4)(2-5)式中:-基于外表面的传热系数,W/m2.℃-管子外径,m;L-每根管子的有效长度,m;n-管子的总数管子的有效长度是指管子的实际长度减去管板、挡板所占据的部分。
管子总数是指圆整后的管子数减去拉杆数。
五、主要工艺尺寸的确定当确定了传热面积后,设计工作进入换热器尺寸初步设计阶段,包括以下内容:1、管子的选用。
选用较小直径的管子,可以提高流体的对流给热系数,并使单位体积设备中的传热面积增大,设备较紧凑,单位传热面积的金属耗量少,但制造麻烦,小管子易结垢,不易清洗,可用于较清洁流体。
大管径的管子用于粘性较大或易结垢的流体。
我国列管式换热器常采用无缝钢管,规格为外径×壁厚,常用的换热管的规格:φ19×2,φ25×2.5,φ38×3。
管子的选择要考虑清洗工作的方便及合理使用管材,同时还应考虑管长与管径的配合。
国内管材生产规格,长度一般为:1.5,2,2.5,3,4.5,5,6,7.5,9,12m等。
换热器的换热管长度与壳径之比一般在6-10,对于立式换热器,其比值以4-6为宜。
壳程和壳程压力降,流体在换热器内的压降大小主要决定于系统的运行压力,而系统的运行压力是靠输送设备提供的。
换热器内流体阻力损失(压力降)越大,要求输送设备的功率就越大,能耗就越高。
对于无相变的换热,流体流速越高,换热强度越大,可使换热面积减小,设备紧凑,制作费低,而且有利于抑制污垢的生成,但流速过高,也有不利的一面,压力降增大,泵功率增加,对传热管的冲蚀加剧。
因此,在换热器的设计中有个适宜流速的选取和合理压力降的控制问题。
一般经验,对于液体,在压力降控制在0.01~0.1MPa之间,对于气体,控制在0.001~0.01MPa之间。
表2-2列出了换热器不同操作条件压力下合理压降的经验数据,供设计参考。
表2-2列管换热器合理压降的选取换热器操作情况负压运行低压运行中压运行(包括用泵输送液体)较高压运行P<0.17 P>0.17操作压力(MPa 绝压)P=0~0.1P=0.1~0.17P=0.17~1.1P=1.1~3.1 P=3.1~8.2合理压降(MPa)DP=P/10 DP=p/2 DP=0.035 △p=0.035~0.18 △=0.07~0.252、管子总数n的确定。
对于已定的传热面积,当选定管径和管长后便可求所需管子数n,由式(2-6)进行计算。
(2-6)式中-传热面积,;-管子外径,m;L-每根管子的有效长度,m;计算所得的管子n进行圆整3、管程数m的确定。
根据管子数n可算出流体在管内的流速,由式(2-7)计算。
(2-7)式中vs-管程流体体积流量,-管子内径,m;n-管子数。
若流速与要求的适宜流速相比甚小时,便需采用多管程,管程数m可按式(2-8)进行计算。
m=u/(2-8)式中—用管子数n求出的管内流速,m/s;u-要求的适宜流速,m/s;式(2-8)中的适宜流速u要根据列管换热器中常用的流速范围进行选定,参见《化工原理》相关内容,一般要求在湍流下工作(高粘度流体除外),与此相对应的Re值,对液体为5×103,气体则为-。
分程时,应使每程的管子数大致相等,生产中常用的管程数为1、2、4、6、四种。
4、管子的排列方式及管间距的确定。
管子在管板上排列的原则是:管子在整个换热器的截面上均匀分布,排列紧凑,结构设计合理,方便制造并适合流体的特性。
其排列方式通常为等边三角形与正方形两种,也有采用同心圆排列法和组合排列法。
在一些多程的列管换热器中,一般在程内为正三角形排列,但程与程之间常用正方形排列,这对于隔板的安装是很有利的,此时,整个管板上的排列称为组合排列。
对于多管程的换热器,分程的纵向隔板占据了管板上的一部分面积,实际排管数比理论要少,设计时实际的管数应通过管板布置图而得。
在排列管子时,应先决定好管间距。
决定管间距时应先考虑管板的强度和清理管子外表时所需的方法,其大小还与管子在管板上的固定方式有关。
大量的实践证明,最小管间距的经验值为:焊接法胀接法,一般取(1.3~1.5)管束最外层管子中心距壳体内表面距离不小于。
5、壳体的计算。
列管换热器壳体的内径应等于或稍大于(对于浮头式换热器)管板的直径,可由式(2-9)进行计算。
Di=a(b-1)+2L(2-9)式中Di-壳体内径,mm;a-管间距,mm;b-最外层六边形对角线上的管子数;L-最外层管子中心到壳体内壁的距离,一般取L=(1~1.5) ,mm;若对管子分程则Di=f+2Lf值的确定方法:可查表求取,也可用作图法。
当已知管子数n和管间距a后开始按正三角形排列,直至排好n根为止,再统计对角线上的管数。
计算出的壳径Di要圆整到容器的标准尺寸系列内。
第三节列管式换热器机械设计在化工企业中列管式换热器的类型很多,如板式,套管式,蜗壳式,列管式。
其中列管式换热器虽在热效率、紧凑性、金属消耗量等方面均不如板式换热器,但它却具有结构坚固、可靠程度高、适应性强、材料范围广等特点,因此成为石油、化工生产中,尤其是高温、高压和大型换热器的主要结构形式。
列管式换热器主要有固定管板式换热器、浮头式换热器、填函式换热器和U 型管式换热器,而其中固定管板式换热器由于结构简单,造价低,因此应用最普遍。
列管式换热器机械设计包括:1、壳体直径的决定和壳体壁厚的计算。
2、换热器封头选择。
3、压力容器法兰选择。
4、管板尺寸确定。
5、管子拉脱力的计算。
6、折流板的选择与计算。
7、温差应力的计算。
8、接管、接管法兰选择及开孔补强等。
9绘制主要零部件图和装配图。
下面分述如下:一、壳体直径的决定和壳体壁厚的计算。
1、已知条件:由工艺设计知管程和壳程介质种类、温度、压力、壳与壁温差、以及换热面积。
2、计算(1)管子数n:列管换热器常用无缝钢管,规格如下:管子材质的选择依据是介质种类,如果介质无腐蚀,可选碳钢,而介质有腐蚀则选择不绣钢。
管长规格有1500,2000,2500,3000,4500,5000,6000,7500,9000 ,12000mm。
n=A/(pdmL),其中A—换热面积(m2);L—换热管长度mm;dm—管子的平均直径mm。
由于在列管式换热器中要安装4根或6根拉杆。
所以实际换热管子数为{n- 4(6)}根。
(2)管子排列方式,管间距确定。