高中数学复习数列求和裂项相消法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
裂项相消法求和
把数列的通项拆成两项之差、正负相消剩下首尾若干项。 1、 特别是对于⎭
⎬⎫
⎩⎨
⎧
+1n n a a c ,其中{}n a 是各项均不为0的等差数列,通常用裂项相消法,即利用1+n n a a c =⎪⎪⎭
⎫ ⎝⎛-+111n n a a d c ,其中()n n a a d -=+1 2、 常见拆项:
1
11)1(1+-=+n n n n
)1
21
121(21)12)(12(1+--=+-n n n n
])
2)(1(1
)1(1[21)2)(1(1++-+=++n n n n n n n
!)!1(!n n n n -+=⋅
)!
1(1
!1)!1(+-=+n n n n
例1 求数列1
{}(1)
n n +的前n 和n S .
例2 求数列1
{}(2)
n n +的前n 和n S .
例3 求数列1
{}(1)(2)
n n n ++的前n 和n S .
例4 求数列⋅⋅⋅++⋅⋅⋅++,1
1,
,3
21,
2
11n n 的前n 项和.
例5:求数列311⨯,421⨯,5
31
⨯,…,)2(1+n n ,…的前n 项和S
例6、 求和)
12)(12()2(5343122
22+-++⋅+⋅=n n n S n
一、累加法
1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。 2.若1()n n a a f n +-=(2)n ≥,
则
21321(1)
(2) ()
n n a a f a a f a a f n +-=-=-=
两边分别相加得 111
()n
n k a a f n +=-=
∑
例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则
11232211
2
()()()()[2(1)1][2(2)1](221)(211)1
2[(1)(2)21](1)1(1)2(1)1
2
(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-++
+⨯++⨯++=-+-++++-+-=+-+=-++=
所以数列{}n a 的通项公式为2
n a n =。
例2 已知数列{}n a 满足112313n
n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
解法一:由1231n n n a a +=+⨯+得1231n
n n a a +-=⨯+则
11232211122112211()()()()(231)(231)(231)(231)3
2(3333)(1)3
3(13)2(1)3
13
331331
n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-
所以3 1.n
n a n =+-
解法二:13231n n n a a +=+⨯+两边除以1
3n +,得
111
21
3333n n n n n a a +++=++
, 则
11121
3333
n n n n n a a +++-=+,故 11223211
2232
111122122()()()(
)33333
333
212121213
()()()()3333333332(1)11111()1
333333
n n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a n --------------=-+-+-++-+=+++++++++-=+++++++
因此1
1(13)
2(1)2113133133223n n n n n
a n n ---=++=+-
-⨯, 则211
33.322
n n n a n =
⨯⨯+⨯- 练习
1.已知数列{}n a 的首项为
1,且
*12()
n n a a n n N +=+∈写出数列
{}n a 的通项公式.
答案:12
+-n n
练习2.已知数列
}
{n a 满足31=a ,
)
2()1(1
1≥-+
=-n n n a a n n ,求此数列的通项公式.
答案:裂项求和
n a n 1
2-
=
评注:已知a a =1,)
(1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分
a