高中数学复习数列求和裂项相消法
高三理科数学数列求和裂项相消法.ppt
1 1 1 1 1 1 1 1 1 1
12 2334
n 1 n n n 1
1 1 n 1
1 11 1
2.
an
n(n 2)
( 2n
) n 2
Sn a1 a2 a3 a 1 1 1 1 1 )
21 3 2 4 3 5
2n 2n b 2n1 b
1 1 2n b 2n1 b
Sn
1 2
b
1 22 b
1 22
b
1 23 b
1 2n b
1 2n1 b
2
1
b
1 2n1
b
类型一
an
1 n(n
k)
1 k
(1 n
n
1
) k
例
1.数列{an}中,
an
1 n2
n
,
则{an}的前 n 项和
Sn=
.
变式:数列{an}中,a n
数列求和
解题方法指导—裂项相消法
课前热身:
1.数列{an}的前 n 项和为 Sn,若 an=nn1+1,则 S5 等于(
)
A.1 解析:
5
1
1
B.6
C.6
D.30
an=nn1+1=nn+n1+-1n =n1-n+1 1
∴S5=a1+a2+a3+a4+a5
=1-12+12-13+…+15-16=56.
(1)求 an 和 Sn.
1
(2)设 bn
log a2 n1
,数列
{ bn
bn2
}
的前
n
项
3
和为 Tn,求证:Tn< 4 .
【解析】(1)因为 a1,a2,a3 为某等差数列的第一、第二、 第四项,所以 a3-a2=2(a2-a1),所以 a1q2-a1q=2(a1q-a1),因为 a1=1,所以 q2-3q+2=0, 因为 q≠1,所以 q=2,所以
高考数学解答题(新高考)数列求和(裂项相消法)(典型例题+题型归类练)(解析版)
专题06 数列求和(裂项相消法)(典型例题+题型归类练)一、必备秘籍常见的裂项技巧 类型一:等差型类型二:无理型类型三:指数型①11(1)11()()n n n n n a a a k a k a k a k++-=-++++如:11211(2)(2)22n n n n n k k k k++=-++++类型四:通项裂项为“+”型如:①()()()21111111nn n n n n n +⎛⎫-⋅=-+ ⎪++⎝⎭ ②()()131222(1)(11)1n nn n nn n n n n +⎛⎫++⋅-=+- ⎝+⎪⎭本类模型典型标志在通项中含有(1)n -乘以一个分式.二、典型例题类型一:等差型例题1.(2022·辽宁·鞍山一中模拟预测)已知n S 是等差数列{}n a 的前n 项和,0n a >,315S =,公差1d >,且___________.从①21a -为11a -与31a +等比中项,②等比数列{}n b 的公比为3q =,1124,b a b a ==这两个条件中,选择一个补充在上面问题的横线上,使得符合条件的数列{}n a 存在并作答. (1)求数列{}n a 的通项公式;(2)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:16nT <. 【答案】(1)选择条件见解析,21n a n =+(2)证明见解析 (1)若选①,21a -为11a -与31a +的等比中项,则()()()2132111a a a -+=-,由{}n a 为等差数列,315S =,得2315a =,∴25a =,把25a =代入上式,可得()()4616d d -+=,解得2d =或4d =-(舍) ∴13a =,21n a n =+;若选②,3q =为等比数列{}n b 的公比,且1124,b a b a ==, 可得213b b =,即413a a =,即有113)3a d a +=(,即123a d =; 又315S =,可得11332152a d +⨯⨯=,即15a d +=,解得12,3d a ==, 此时21n a n =+;第(2)问解题思路点拨:由(1)知:,设,则,典型的裂项相消的特征,可将通项裂项为:解答过程:由题意知:;(2)∵()()111111212322123n n a a n n n n +⎛⎫==- ⎪++++⎝⎭, ∴11111111112355721232323n T n n n ⎛⎫⎛⎫=-+-+⋅⋅⋅+-=- ⎪ ⎪+++⎝⎭⎝⎭; ∴16n T <,得证 例题2.(2022·广东佛山·模拟预测)已知数列{}n a 的前n 项和为n S ,111a =-,29a =-,且()11222n n n S S S n +-+=+≥. (1)求数列{}n a 的通项公式; (2)已知11n n n b a a +=,求数列{}n b 的前n 项和n T . 【答案】(1)213n a n =- (2)122212nn -(1)解:由题意得:由题意知()()112n n n n S S S S +----=,则()122n n a a n +-=≥又212a a -=,所以{}n a 是公差为2的等差数列,则()11213n a a n d n =+-=-;感悟升华(核心秘籍)本例是裂项相消法的等差型,注意裂项,是裂通项,裂项的过程中注意前面的系数不要忽略了.第(2)问解题思路点拨:由(1)知:,,则,典型的裂项相消的特征,可将通项裂项为:解答过程:由题意知:;(2)由题知()()11112132112213211n b n n n n ⎛⎫==- ⎪----⎝⎭则1111111111211997213211211211n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-++-+++-=-- ⎪ ⎪ ⎪ ⎪⎢⎥---⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 122212n n-=类型二:无理型例题3.(2022·重庆八中模拟预测)已知各项均为正数的等差数列{}n a 满足11a =,22112()n n n n a a a a ++=++.(1)求{}n a 的通项公式; (2)记11n n n b a a +=+,求数列{}n b 的前n 项和n S .【答案】(1)21n a n =-(2)1(211)2n +-(1)解:各项均为正数的等差数列{}n a 满足11a =,22112()n n n n a a a a ++=++,整理得()()()1112n n n n n n a a a a a a ++++-=+,由于10n n a a ++≠, 所以12n n a a +-=, 故数列{}n a 是以1为首项,2为公差的等差数列.所以21n a n =-.(2)解:由(1)可得111212122121n n n n n b a a n n ++--===+-++,所以11(3153...2121)(211)22n S n n n =⨯-+-+++--=+-.例题4.(2022·福建龙岩·模拟预测)已知等差数列{}n a 的前n 项和为n S ,3518a a +=,648S =.第(2)问解题思路点拨:由(1)知:,,则,典型的裂项相消的无理型特征,可将通项分母有理化为:解答过程:由题意知:;(1)求{}n a 的通项公式; (2)设112n n n b a a +-=+,求数列{}n b 的前n 项和为n T .【答案】(1)21n a n =+;(2)证明见解析﹒(1)由题可知,11261861548a d a d +=⎧⎨+=⎩,解得132a d =⎧⎨=⎩,∴21n a n =+;(2)1122232122321n n n n n b a a n n +-+--===+++-,()()()()()1517395212323212n T n n n n ⎡⎤=-+-+-+++--++--⎣⎦12123132n T n n ⎡⎤=+++--⎣⎦感悟升华(核心秘籍)本例是裂项相消法的无理型,具有明显的特征,其技巧在于分母有理化,注意裂项相消的过程中,是连续相消,还是隔项相消,计算注意细节.类型三:指数型第(2)问解题思路点拨:由(1)知:,,则,典型的裂项相消的无理型特征,可将通项分母有理化为:解答过程:由题意知:;例题5.(2022·全国·模拟预测)已知等差数列{}n a 满足()*10n n a a n +->∈N ,且141015a a a ++=,2a ,4a ,8a 成等比数列.(1)求数列{}n a 的通项公式;(2)若122n a n n n n a b a a ++⋅=⋅,求数列{}n b 的前n 项和n S .【答案】(1)n a n =(2)n S 1212n n +=-++(1)解:设等差数列{}n a 的公差为d ,因为2a ,4a ,8a 成等比数列,所以()()()211137a d a d a d +=++,整理得()10d a d -=,又因为10n n a a +->,所以0d >,1a d =,又1410131215a a a a d ++=+=,即15d =15, 所以11a d ==,所以n a n =;感悟升华(核心秘籍)第(2)问解题思路点拨:由(1)知:,,则,具有明显的裂项相消法的特征,但是裂项是难点,在裂项时要把握住“型”,再结合待定系数法解答过程:用待定系数法裂通项:与对比,得通分,逆向求裂项求和.(2)解:由(1)知,n a n =, 所以()()12221221n n nn n b n n n n +⋅==-++++,2324312112222222222223243541121n n n n n n n S n n n n n n ---+⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1212n n +=-++.例题6.(2022·江西·临川一中模拟预测(理))已知数列{}n a 的前n 项和为n S ,且21,*=-∈n n S a n N .(1)求数列{}n a 的通项公式; (2)若数列{}n b 满足22,(1)*++=∈⋅⋅+n n n b n N a n n ,求数列{}n b 的前n 项和n T .【答案】(1)12n na ;(2)1112(1)2n n T n +=-+⋅. (1)因为21n n S a =-,当1n =时,1121S a =-,解得11a =,当2n ≥时,1121n n S a --=-,所以()()111212122n n n n n n n a S S a a a a ---=-=---=-,即12(2)n n a a n -=≥,所以数列{}n a 是首项为1,公比为2的等比数列.故11122n n n a --=⨯=.(2),1122211(1)(1)22(1)2n n n n n n n b a n n n n n n +++++===-⋅⋅++⋅+⋅于是12231111111111122222322(1)22(1)2n n n n T n n n ++=-+-++-=-⋅⋅⋅⋅⋅+⋅+⋅类型四:通项裂项为“+”型第(2)问解题思路点拨:由(1)知:,,则,具有明显的裂项相消法的特征,但是裂项是难点,在裂项时要把握住“型”,再结合待定系数法解答过程:用待定系数法裂通项:与对比,得通分,逆向求裂项求和例题7.(2022·吉林辽源·高二期末)已知等差数列{}n a 的前n 项和21,3n S n an b a =++=,数列{}n b 的前n 项和23n n n T b +=,12b =. (1)求数列{}n a 和{}n b 的通项公式; (2)令(1)nnn na cb =-,求数列{}nc 的前n 项和n P .【答案】(1)21n a n =+,()1n b n n =+ (2)2,?1,?1n n n n P n n n +⎧-⎪⎪+=⎨⎪-⎪+⎩为奇数为偶数感悟升华(核心秘籍)第(2)问解题思路点拨:由(1)知:,,则,注意通项中含有明显的裂项的两个特征,①含有分式②含有(注意通项中含有是裂项为“”型的重要标志),但是裂项是难点,在裂项时要把握住“型”,再结合待定系数法解答过程:用待定系数法裂通项:与对比,得则:,注意到通项中含有,需分奇偶讨论通分,逆向求当为偶数(为正),(注意此时为偶数,代入偶数的结论中)当为奇数(为偶数)综上:(1)设等差数列{}n a 的公差为d ,则22113222n n n n d d S na d n n n a b -⎛⎫=+=+-=++ ⎪⎝⎭, 所以1,23,20,dd a b ⎧=⎪⎪⎪-=⎨⎪=⎪⎪⎩所以2,2,0,d a b =⎧⎪=⎨⎪=⎩,所以数列{}n a 的通项公式为()32121n a n n =+-=+. 因为23n n n T b +=,当2n ≥时,1113n n n T b --+=, 所以112133n n n n n n n b T T b b --++=-=-, 所以11133n n n n b b --+=,即111n n b n b n -+=-. 所以1232112321n n n n n n n b b b b b b b b b b b b -----=⨯⨯⨯⋅⋅⋅⨯⨯⨯()11432112321n n n n n n n n +-=⨯⨯⨯⋅⋅⋅⨯⨯⨯=+---. (2)()()()()()11111111nn n n n n n n a c b n n n n ++⎛⎫=-=-⋅=-+ ⎪++⎝⎭, 当n 为奇数时,11111111223341n P n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+++-++⋅⋅⋅-+ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭12111n n n +=--=-++. 当n 为偶数时,11111111223341n P n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+++-++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭1111n n n =-+=-++. 综上所述,数列{}n c 的前n 项和2,1,1n n n n P n n n +⎧-⎪⎪+=⎨⎪-⎪+⎩为奇数为偶数.例题8.(2022·陕西·长安一中高二期中(文))已知等差数列{}n a 的公差为2,前n 项和为n S ,且124,,S S S成等比数列.(1)求数列{}n a 的通项公式; (2)令()1141n n n n nb a a -+=-,求数列{}n b 的前n 项和n T .【答案】(1)21n a n =-;(2)2,2122,21n nn n T n n n ⎧⎪⎪+=⎨+⎪⎪+⎩为偶数为奇数 第(2)问解题思路点拨:由(1)知:,,则,注意通项中含有明显的裂项的两个特征,①含有分式②含有(注意通项中含有是裂项为“”型的重要标志),但是裂项是难点,在裂项时要把握住“型”,再结合待定系数法解答过程:用待定系数法裂通项:与对比,得,通分,逆向求当为奇数(为正),(注意此时为奇数,代入奇数的结论中)当为偶数(为奇数)综上:(1)∴等差数列{an }的公差为2,前n 项和为S n ,且S 1、S 2、S 4成等比数列. ∴S n =na 1+n (n ﹣1)(2a 1+2)2=a 1(4a 1+12),a 1=1,∴an =2n ﹣1; (2)∴由(1)可得()()111411112121n n n n n n b a a n n --+⎛⎫=-=-+ ⎪-+⎝⎭, 当n 为偶数时,T n =11111111113355723212121n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+-+++-++-+ ⎪ ⎪ ⎪ ⎪ ⎪---+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1212121nn n =-=++. 当n 为奇数时,11111111113355723212121n T n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+++-⋯-+++ ⎪ ⎪ ⎪ ⎪ ⎪---+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭12212121n n n +=+=++ . 2,2122,21n nn n T n n n ⎧⎪⎪+∴=⎨+⎪⎪+⎩为偶数为奇数. 三、题型归类练1.(2022·内蒙古·满洲里市教研培训中心模拟预测(理))已知在等差数列{}n a 中,25a =,1033a a =. (1)求数列{}n a 的通项公式; (2)设()21n n b n a =+,求数列{}n b 的前n 项和n S .【答案】(1)21n a n =+(2)1n n + (1)设等差数列{}n a 的公差为d , 由210353a a a =⎧⎨=⎩,可得()1115932a d a d a d ⎧+=⎪⎨+=+⎪⎩解得13,2a d==,所以()13122n a n n -⨯=++= (2)由(1)可得2111(1)(22)(1)12n n b n a n n n n n n ====-++++所以111111 (22311)n n S n n n ⎛⎫⎛⎫⎛⎫=-+-++-= ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭ 2.(2022·山西运城·模拟预测(理))已知单调递增的等差数列{}n a 的前n 项和为n S ,512340,,1,S a a a =-成等比数列,正项等比数列{}n b 满足11631,23b a S b =+=+. (1)求{}n a 与{}n b 的通项公式; (2)设()3123log n n n c a b =+,求数列{}n c 的前n 项和n T .【答案】(1)31n a n =-,3nn b =(2)64n nT n =+ (1)设数列{}n a 的公差为d ,则0d >, 由540S =得1545402a d ⨯+=,即128a d +=①, 又123,1,a a a -成等比数列,所以()22131a a a -=,所以()()211112a d a a d +-=+,所以21(1)2d a -=②,联立①②及0d >解得12,3a d ==. 所以2(1)331n a n n =+-⨯=-. 所以161653,6572b S a d ⨯==+=, 所以35723b =+,解得327b =,又231,0b b q q =>,所以3q =,所以3nn b =.(2)由(1)得()311111(31)23log (31)(32)33132n n c n b n n n n ⎛⎫===- ⎪-+-+-+⎝⎭,所以121111111111325583132323264n n n T c c c n n n n ⎛⎫⎛⎫=+++=-+-+⋅⋅⋅+-=-= ⎪ ⎪-+++⎝⎭⎝⎭. 3.(2022·河南·模拟预测(理))已知正项数列{}n a 的前n 项和为n S ,且()()222220n n S n n S n n -+--+=.(1)求1a 的值和数列{}n a 的通项公式; (2)设21n n n b a a +=,求数列{}n b 的前n 项和n T . 【答案】(1)12a =;2n a n =;(2)()()32316812n n T n n +=-++. (1)由()()222220n n S n n S n n -+--+=得:()()()220n n S S n n +-+=;{}n a 为正项数列,0n S ∴>,2n S n n ∴=+;当1n =时,112a S ==;当2n ≥时,()()221112n n n a S S n n n n n -=-=+----=;经检验:12a =满足2n a n =;()2n a n n N *∴=∈.(2)由(1)得:()()111112224282n b n n n n n n ⎛⎫===- ⎪⋅+++⎝⎭,11111111111832435112n T n n n n ⎛⎫∴=⨯-+-+-+⋅⋅⋅+-+- ⎪-++⎝⎭()()()()1111132332318212821216812n n n n n n n n ⎛⎫++⎛⎫=⨯+--=⨯-=- ⎪ ⎪ ⎪++++++⎝⎭⎝⎭. 4.(2022·河北保定·一模)已知数列{}n a 的前n 项和为n S ,且1332n n S +-=. (1)求数列{}n a 的通项公式; (2)设3314log log n n n b a a +=⋅,求{}n b 的前n 项和n T .【答案】(1)3nn a =;(2)41n nT n =+. (1)因为1332n n S +-=,故当1n =时,13a =,当2n ≥时,1332n n S --=,则()132nn n n a S S n -=-=≥,当1n =时,13a =满足上式,所以3nn a =.(2)由(1)得()33144114log log 11n n n b a a n n n n +⎛⎫===- ⎪⋅++⎝⎭,所以12311111144141223111n n n T b b b b n n n n ⎛⎫⎛⎫=++++=⨯-+-++-=-= ⎪ ⎪+++⎝⎭⎝⎭. 故数列{}n b 的前n 项和41n nT n =+. 5.(2022·安徽·北大培文蚌埠实验学校高三开学考试(文))已知数列{}n a 的前n 项和为n S ,11a =,525S =,且()*1232n n n n S a S S n ++-=+∈N .(1)求数列{}n a 的通项公式; (2)设n b =,求数列{}n b 的前n 项和n T .【答案】(1)21n a n =-(2)n T )112=(1)由1232n n n n S a S S ++-=+得:121211223222n n n n n n n n n n a S S S S S S S a a +++++++-=-+=-+-=-+即122n n n a a a ++=+, 所以数列{}n a 为等差数列, 由53525S a ==得35a =,设公差为d ,315212a a d d ==+=+,得2d =, 所以()11221n a n n =+-⨯=-, 故数列{}n a 的通项公式为21n a n =-.(2)12n b =,所以1122n Tn =++)112=.6.(2022·江苏盐城·三模)已知正项等比数列{}n a 满足1330a a +=,请在①4120S =,②481a =,③2211120n n n n a a a a --+-=,2n ≥,*n N ∈中选择一个填在横线上并完成下面问题:(1)求{}n a 的通项公式;(2)设()()12311n n n n b a a +⋅=++,{}n b 的前n 和为n S ,求证:14n S <.【答案】(1)选择见解析;3nn a =(2)证明见解析(1)设正项等比数列{}n a 公比为q ,又1330a a +=,选①,()()41234131120S a a a a a a q =+++=++=,所以3q =;选②,13431130a a a q q ⎛⎫+=+= ⎪⎝⎭,所以()()2310390,3q q q q -++==;选③,()()22111112340n n n n n n n n a a a a a a a a ----+-=-+=,所以13n n a a -=,∴3q =;又1311191030a a a a a +=+==,∴13a =,则3nn a =.(2)因为()()()()1112323111131313131n n n n n n n n n b a a +++⋅⋅===-++++++,所以122231111111313131313131n n n n S b b b +⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭11114314n +=-<+. 7.(2022·浙江金华·模拟预测)已知数列{}{},n n a b ,其中{}n a 为等差数列,且满足11211,,32a b b ===,21141,2n n n n nn a b a b n N *++-=+∈. (1)求数列{}{},n n a b 的通项公式; (2)设212n n nn n a c a a ++=,数列{}n c 的前n 项和为n T ,求证:1n T <【答案】(1)21n a n =-,131(21)22n n b n -⎛⎫=-- ⎪⎝⎭(2)证明见解析(1)解:由数列{}n a 为等差数列,{}n b 且满足11211,,32a b b ===,211412n n n n nn a b a b ++-=+,当1n =时,可得122132a b a b =+,即213322a =⨯+,解得23a =; 因为{}n a 是等差数列,所以21n a n =-,所以2141(21)(21)2n n nn n b n b +--=++,所以1121212n n n b b n n +-=+-, 所以12132121131532123n n n b b b b b b b b n n n -⎛⎫⎛⎫⎛⎫=+-+-++- ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭11211112211111311222222212n n n ---⎛⎫⎛⎫- ⎪ ⎪⎪⎝⎭⎛⎫⎝⎭=++++=+=- ⎪⎝⎭-所以131(21)22n n b n -⎛⎫=-- ⎪⎝⎭.(2)解:由(1)得12311(21)(21)22(21)2(21)n n n n n c n n n n -+==--+-+,所以12n n T c c c =+++211111112323252(21)2(21)n n n n -=-+-++-⋅⋅⋅-+ 1112(21)n n =-<+.8.(2022·湖北·二模)已知正项等差数列{}n a 满足:()33n n a a n *=∈N ,且1382,1,a a a +成等比数列.(1)求{}n a 的通项公式;(2)设()()1121212n n n a n a a c ++=++,n R 是数列{}n c 的前n 项和,若对任意n *∈N 均有n R λ<恒成立,求λ的最小值. 【答案】(1)n a n =(2)最小值为23(1)解:设等差数列的公差为d ,由33n n a a =得[]11(31)3(1)a n d a n d +-=+-,则1a d =, 所以1(1)n a a n d nd =+-=.因为12a 、31a +、8a 成等比数列,所以()231812a a a +=⋅,即2(31)28d d d +=⋅, 所以27610d d --=,解得1d =或17d =-,因为{}n a 为正项数列,所以0d >,所以1d =,所以n a n =.(2)解:由(1)可得()()()()1111122112121212121212n n n a n n nn a a n n c +++++⎛⎫===- ⎪++++++⎝⎭, 所以1223111111111122121212121212312n n n n R ++⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪⎪ ⎪⎢⎥+++++++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 因为对任意n *∈N 均有23n R <,所以23λ≥,所以实数λ的最小值为239.(2022·江西·临川一中高二期末(理))已知数列{}n a ,0n a >,11a =,n S 为其前n 项和,且满足()()()1112n n n n S S S S n --+-=≥.(1)求数列{}n a 的通项公式; (2)设()11nnn a b =-⋅,求数列{}n b 的前n 项和n T .【答案】(1)=n a ()1nn T =-(1)由题可知()22112n n S S n --=≥⇒数列是{}2n S 等差数列,所以()2211n S S n n =+-=,)12n n n n S a S S n -=-=≥,又因为11a ==,所以n a(2)()()11nnnnnb a -===-.所以()()311nnn T =-=+-故答案为:n a ()1n- .10.(2022·重庆八中模拟预测)已知n S 是公差不为零的等差数列{}n a 的前n 项和,36S =,2319a a a =⋅.(1)求数列{}n a 的通项公式; (2)设数列()()24141nn n a b n n +=-∈-N ,数列化{}n b 的前2n 项和为2n T ,若2112022n T +<,求正整数n 的最小值. 【答案】(1)*,N na n n =∈(2)505(1)公差d 不为零的等差数列{}n a ,由2319a a a =⋅, ()()211182a a d a d +=+,解得1a d =.又31336S a d =+=,可得11a d ==,所以数列{}n a 是以1为首项和公差的等差数列, 所以*,N na n n =∈.(2)解:由(1)可知()()241111412121nn n n b n n n ⎛⎫=-=-+ ⎪--+⎝⎭, 211111111113355743414141n T n n n n ∴=--++--+--++---+1141n =-++,2111412020n T n +=<+,20194n ∴>所以n 的最小值为505.11.(2022·天津市武清区杨村第一中学二模)已知{}n a 是等差数列,{}n b 是等比数列,且114342131,2,2,a b a b b b a a ====+.(1)求数列{}{},n n a b 的通项公式;(2)记{}n b 的前n 项和为n S ,证明:()n n n S a b n *≤⋅∈N ;(3)记()311(1)*++⋅=-∈⋅n n n nnn a b c n a a N ,求数列{}n c 的前2n 项和. 【答案】(1)(),2nn n a n b n *=∈=N ;(2)证明见解析;(3)2212221n n T n +=-+(1)设等差数列公差为d ,等比数列公比为q ,所以()2311111132132222222d q d a d b q b q q d q b q a d⎧+==+=⎧⎧⇒⇒⎨⎨⎨=+==+⎩⎩⎩,所以,2n n na b n ==, (2){}n b 的前n 项和为 248222222n n n n n n n n n S n a b =++++≤++++=⋅=⋅,(当1n =时,取等号)命题得证.(3)由(1)得,()()131131222(1)(1)(1)11n nn n n n nn n n n n n a b c a n n a n +++⎛⎫+ ⎪+⋅⋅=-=-=-+⎝+⎭⋅, 所以数列{}n c 的前2n 项和2212244881616122()3222241334522nn n n T n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+++-++++++ ⎪ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭-⎝⎭,2212221n n T n +=-+12.(2022·黑龙江实验中学模拟预测(理))已知数列{}n a 满足11a =,11n n n n a a a a --=-,且0n a ≠. (1)求数列{}n a 的通项公式; (2)若()()11121n n n n b n a a ++=-+,数列{}n b 前n 项和为nT,求2022T .【答案】(1)1n a n =;(2)20222023. (1)由11n n n n a a a a --=-,0n a ≠得:1111n n a a --=,又111a ,∴数列1n a ⎧⎫⎨⎬⎩⎭是以1为首项,1为公差的等差数列,1n n a ∴=,1n a n ∴=;(2)由(1)知:()()()()1121111111n n n n b n n n n +++=-=-+++;20221111111111223342021202220222023T ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴=++--+++⋅⋅⋅+++-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭12022120232023=-=.13.(2022·湖北·蕲春县第一高级中学模拟预测)已知数列{}n a 的前n 项和为n S ,其中1215a S ==,,当2n ≥时,1124n n n a S S +-,,成等差数列. (1)求数列{}n a 的通项公式.(2)记数列()()2123211n n n a a ++⎧⎫⋅⎪⎪⎨⎬++⎪⎪⎩⎭的前n 项和n T ,求证:121855n T ≤<.【答案】(1)14n n a -=;(2)证明见解析.(1)依题意,当2n ≥时,1144n n n a S S +-+=, 故11444n n n n a S S a +-=-=, 由1215a S ==,得22144a a a ==,,故数列{}n a 是以1为首项,4为公比的等比数列,则14n n a -=;(2)依题意,()()()()2211123232111141414141n n n n n n n n a a ++++⋅⋅==-++++++,故12231111111111414141414141541n n n n T ++⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪ ⎪+++++++⎝⎭⎝⎭⎝⎭, ∴n *∈N ,∴1112111855415n T +=≤-<+,即121855n T ≤<.。
裂项相消法公式大全
裂项相消法公式大全
裂项相消法是一种数学方法,用于解决等差数列、等比数列以及无理数列的求和问题。
该方法的基本思想是将等差数列、等比数列以及无理数列的每一项分别裂项,然后将裂项相消,从而得到等差数列、等比数列以及无理数列的和。
以下是裂项相消法的一些公式:
1. 等差数列求和公式:
Sn = n * (a1 + an) / 2
其中,n 是数列的长度,a1 是数列的首项,an 是数列的最后一项。
2. 等比数列求和公式:
Sn = (n/2) * (a1 * an) / (an + a1)
其中,n 是数列的长度,a1 是数列的首项,an 是数列的最后一项。
3. 无理数列求和公式:
对于无理数列,可以将每一项裂项,然后相消。
例如,对于无理数列π*(n+1)/n,可以将π*(n+1)/n 裂项为π/n 和 (n+1)*π/n,然后将两项相消。
4. 等差数列裂项公式:
a[n+1] - a[n] = (n+1-n)*a1
其中,a[n+1] 是数列的第 n+1 项,a[n] 是数列的第 n 项,n 是数列的长度。
5. 等比数列裂项公式:
a[n+1]/a[n] = (a[n]/a[n-1])*(a[n-1]/a[n])
其中,a[n+1] 是数列的第 n+1 项,a[n] 是数列的第 n 项,n 是数列的长度。
6. 无理数列裂项公式:
π*(n+1)/n - π/n = (n+1-n)*π
其中,π*(n+1)/n 是数列的第 n+1 项,π/n 是数列的第 n 项,n 是数列的长度。
以上是裂项相消法的一些公式,可以根据实际需要选择合适的公式进行求解。
高考数学数列求和错位相减裂项相消(解析版)全
数列求和-错位相减、裂项相消◆错位相减法错位相减法是求解由等差数列a n 和等比数列b n 对应项之积组成的数列c n (即c n =a n b n )的前n 项和的方法.这种方法运算量较大,要重视解题过程的训练.在讲等比数列的时候, 我们推导过等比数列的求和公式,其过程正是利用错位相减的原理, 等比数列的通项b n 其实可以看成等差数列通项a n a n =1 与等比数列通项b n 的积.公式秒杀:S n =(A ⋅n +B )q n -B (错位相减都可化简为这种形式,对于求解参数A 与B ,可以采用将前1项和与前2项和代入式中,建立二元一次方程求解.此方法可以快速求解出结果或者作为检验对错的依据.)【经典例题1】设数列a n 的前n 项和为S n ,若a 1=1,S n =a n +1-1.(1)求数列a n 的通项公式;(2)设b n =na n +1,求数列b n 的前n 项和T n .【答案】(1)a n =2n -1n ∈N ∗ ; (2)T n =2-n +22n.【解析】(1)因为a 1=1,S n =a n +1-1.所以S 1=a 2-1,解得a 2=2.当n ≥2时,S n -1=a n -1,所以a n =S n -S n -1=a n +1-a n ,所以2a n =a n +1,即a n +1a n=2.因为a 2a 1=2也满足上式,所以a n 是首项为1,公比为2的等比数列,所以a n =2n -1n ∈N ∗ .(2)由(1)知a n +1=2n ,所以b n =n2n ,所以T n =1×12+2×12 2+3×12 3+⋯+n ×12 n⋯①12T n =1×12 2+2×12 3+⋯+(n -1)×12 n +n ×12n +1⋯②①-②得12T n =12+12 2+12 3+⋯+12 n -n ×12 n +1=121-12 n1-12-n ×12 n +1=1-1+n 2 12 n ,所以T n =2-n +22n.【经典例题2】已知等差数列a n 的前n 项和为S n ,数列b n 为等比数列,且a 1=b 1=1,S 3=3b 2=12.(1)求数列a n ,b n 的通项公式;(2)若c n =a n b n +1,求数列c n 的前n 项和T n .【答案】(1)a n =3n -2,b n =4n -1(2)T n =4+n -1 4n +1【解析】(1)设等差数列a n 的公差为d ,等比数列b n 的公比为q ,由题意得:3a 1+3d =12,解得:d =3,所以a n =1+3n -1 =3n -2,由3b 2=12得:b 2=4,所以q =a2a 1=4,所以b n =4n -1(2)c n =a n b n +1=3n -2 ⋅4n ,则T n =4+4×42+7×43+⋯+3n -2 4n ①,4T n =42+4×43+7×44+⋯+3n -2 4n +1②,两式相减得:-3T n =4+3×42+3×43+3×44+⋯+3×4n -3n -2 4n +1=4+3×16-4n +11-4-3n -2 4n +1=-12+3-3n 4n +1,所以T n =4+n -1 4n +1【经典例题3】已知各项均为正数的等比数列a n 的前n 项和为S n ,且S 2=6,S 3=14.(1)求数列a n 的通项公式;(2)若b n =2n -1a n,求数列b n 的前n 项和T n .【答案】(1)a n =2n n ∈N * (2)T n =3-2n +32n 【解析】(1)设等比数列a n 的公比为q ,当q =1时,S n =na 1,所以S 2=2a 1=6,S 3=3a 1=14,无解.当q ≠1时,S n =a 11-q n 1-q ,所以S 2=a 11-q 21-q =6,S 3=a 11-q 31-q=14.解得a 1=2,q =2或a 1=18,q =-23(舍).所以a n =2×2n -1=2n n ∈N * .(2)b n =2n -1a n =2n -12n .所以T n =12+322+523+⋯+2n -32n -1+2n -12n ①,则12T n=122+323+524+⋯+2n -32n+2n -12n +1②,①-②得,12T n =12+222+223+224+⋯+22n -2n -12n +1=12+2122+123+124+⋯+12n -2n -12n +1=12+2×141-12n -1 1-12-2n -12n +1=32-2n +32n +1.所以T n =3-2n +32n.【练习1】已知数列a n 满足a 1=1,a n +1=2a n +1n ∈N ∗ .(1)求数列a n 的通项公式;(2)求数列n a n +1 的前n 项和S n .【答案】(1)a n =2n -1(2)S n =n -1 ⋅2n +1+2【解析】(1)由a n +1=2a n +1得:a n +1+1=2a n +1 ,又a 1+1=2,∴数列a n +1 是以2为首项,2为公比的等比数列,∴a n +1=2n ,∴a n =2n -1.(2)由(1)得:n a n +1 =n ⋅2n ;∴S n =1×21+2×22+3×23+⋅⋅⋅+n -1 ⋅2n -1+n ⋅2n ,2S n =1×22+2×23+3×24+⋅⋅⋅+n -1 ⋅2n +n ⋅2n +1,∴-S n =2+22+23++2n-n ⋅2n +1=21-2n1-2-n ⋅2n +1=1-n ⋅2n +1-2,∴S n =n -1 ⋅2n +1+2.【练习2】已知数列a n 的前n 项和为S n ,且S n =2a n -1.(1)求a n 的通项公式;(2)设b n =na n ,求数列b n 的前n 项和T n .【答案】(1)a n =2n -1(2)T n =(n -1)⋅2n +1【解析】(1)令n =1得S 1=a 1=2a 1-1,∴a 1=1,当n ≥2时,S n -1=2a n -1-1,则a n =S n -S n -1=2a n -2a n -1,整理得a n =2a n -1,∴an a n -1=2,∴数列a n 是首项为1,公比为2的等比数列,∴a n =2n -1;(2)由(1)得b n =na n =n ⋅2n -1,则T n =1⋅20+2⋅21+3⋅22+⋅⋅⋅+n ⋅2n -1,2T n =1⋅21+2⋅22+3⋅23+⋅⋅⋅+n ⋅2n ,两式相减得-T n =20+21+22+23+⋅⋅⋅+2n -1-n ⋅2n =1-2n1-2-n ⋅2n ,化简得T n =1-2n +n ⋅2n =(n -1)⋅2n +1.【练习3】已知数列a n 的前n 项和为S n ,且3S n =4a n -2.(1)求a n 的通项公式;(2)设b n =a n +1⋅log 2a n ,求数列b n 的前n 项和T n .【答案】(1)a n =22n -1(2)T n =409+6n -59×22n +3【解析】(1)当n =1时,3S 1=4a 1-2=3a 1,解得a 1=2.当n ≥2时,3a n =3S n -3S n -1=4a n -2-4a n -1-2 ,整理得a n =4a n -1,所以a n 是以2为首项,4为公比的等比数列,故a n =2×4n -1=22n -1.(2)由(1)可知,b n =a n +1⋅log 2a n =2n -1 ×22n +1,则T n =1×23+3×25+⋯+2n -1 ×22n +1,4T n =1×25+3×27+⋯+2n -1 ×22n +3,则-3T n =23+26+28+⋯+22n +2-2n -1 ×22n +3=23+26-22n +41-4-2n -1 ×22n +3=-403-6n -53×22n +3.故T n =409+6n -59×22n +3.【练习4】已知数列a n 满足a 1=1,a n +1=2n +1a na n +2n(n ∈N +).(1)求证数列2n a n 为等差数列;(2)设b n =n n +1 a n ,求数列b n 的前n 项和S n .【答案】(1)证明见解析 (2)S n =n -1 ⋅2n +1+2【解析】(1)由已知可得a n +12n +1=a n a n +2n ,即2n +1a n +1=2n a n +1,即2n +1a n +1-2n a n =1,∴2n a n 是等差数列.(2)由(1)知,2n a n =2a 1+n -1 ×1=n +1,∴a n =2nn +1,∴b n =n ⋅2nS n =1⋅2+2⋅22+3⋅23+⋅⋅⋅+n ⋅2n2S n =1⋅22+2⋅23+⋅⋅⋅+n -1 ⋅2n +n ⋅2n +1相减得,-S n=2+22+23+⋅⋅⋅+2n-n⋅2n+1=21-2n1-2-n⋅2n+1=2n+1-2-n⋅2n+1∴S n=n-1⋅2n+1+2◆裂项相消法把数列的通项拆成相邻两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.在消项时要注意前面保留第几项,最后也要保留相对应的倒数几项.例如消项时保留第一项和第3项,相应的也要保留最后一项和倒数第三项.常见的裂项形式:(1)1n(n+k)=1k1n-1n+k;(2)1(2n-1)(2n+1)=1212n-1-12n+1;(3)1n+k+n=1k(n+k-n);(4)2n+1n2(n+1)2=1n2-1(n+1)2;(5)2n2n-12n+1-1=12n-1-12n+1-1;(6)2n(4n-1)n(n+1)=2n+1n+1-2nn;(7)n+1(2n-1)(2n+1)2n =1(2n-1)2n+1-1(2n+1)2n+2;(8)(-1)n(n+1)(2n+1)(2n+3)=14(-1)n2n+1-(-1)n+12n+3(9)(-1)nn-n-1=(-1)n(n+n-1)=(-1)n n-(-1)n-1n-1(10)1n(n+1)(n+2)=121n(n+1)-1(n+1)(n+2).(11)n⋅n!=n+1!-n!(12)kk+1!=1k!-1k+1!【经典例题1】已知正项数列a n中,a1=1,a2n+1-a2n=1,则数列1a n+1+a n的前99项和为( )A.4950B.10C.9D.14950【答案】C【解析】因为a2n+1-a2n=1且a21=1,所以,数列a2n是以1为首项,1为公差的等差数列,所以,a2n=1+n-1=n,因为数列a n为正项数列,则a n=n,则1a n+1+a n=1n+1+n=n+1-nn+1+nn+1-n=-n+n+1,所以,数列1a n+1+a n的前99项和为-1+2-2+3-⋯-99+100=10-1=9.故选:C.【经典例题2】数列a n 的通项公式为a n =2n +1n 2n +12n ∈N *,该数列的前8项和为__________.【答案】8081【解析】因为a n =2n +1n 2n +12=1n 2-1(n +1)2,所以S 8=1-122+122-132 +⋯+182-192 =1-181=8081.故答案为:8081.【经典例题3】已知数列a n 的前n 项和为S n =n 2,若b n =1a n a n +1,则数列{b n }的前n 项和为________.【答案】n 2n +1【解析】当n =1时,a 1=S 1=12=1,当n ≥2时,a n =S n -S n -1=n 2-n -1 2=2n -1,且当n =1时,2n -1=1=a 1,故数列a n 的通项公式为a n =2n -1,b n =1a n a n +1=1(2n -1)(2n +1)=1212n -1-12n +1 ,则数列{b n }的前n 项和为:121-13 +13-15 +15-17 +⋯+12n -1-12n +1 =121-12n +1 =n 2n +1.故答案为:n2n +1【练习1】数列12n +1+2n -1的前2022项和为( )A.4043-12B.4045-12C.4043-1D.4045-1【答案】B 【解析】解:12n +1+2n -1=2n +1-2n -12n +1+2n -1 2n +1-2n -1=2n +1-2n -12记12n +1+2n -1 的前n 项和为T n ,则T 2022=123-1+5-3+7-5+⋯+4045-4043=124045-1 ;故选:B 【练习2】数列a n 的各项均为正数,S n 为其前n 项和,对于任意的n ∈N *,总有a n ,S n ,a 2n 成等差数列,又记b n =1a 2n +1⋅a 2n +3,数列b n 的前n 项和T n =______.【答案】n6n +9【解析】由对于任意的n ∈N *,总有a n ,S n ,a 2n 成等差数列可得:2S n =a 2n +a n ,当n ≥2时可得2S n -1=a 2n -1+a n -1,所以2a n =2S n -2S n -1=a 2n +a n -a 2n -1-a n -1,所以a 2n -a n -a 2n -1-a n -1=0,所以(a n +a n -1)(a n -a n -1-1)=0,由数列a n 的各项均为正数,所以a n -a n -1=1,又n =1时a 2n -a n =0,所以a 1=1,所以a n =n ,b n =1a 2n +1⋅a 2n +3=1(2n +1)(2n +3)=1212n +1-12n +3 ,T n =1213-15+15-17+⋯12n +1-12n +3 =1213-12n +3 =n 6n +9.故答案为:n6n +9.【练习3】12!+23!+34!+⋅⋅⋅+nn +1 !=_______.【答案】1-1n +1 !【解析】∵k k +1 !=k +1-1k +1 !=1k !-1k +1 !,∴12!+23!+34!+⋅⋅⋅+n n +1 !=1-12!+12!-13!+13!-14!+⋅⋅⋅+1n -1 !-1n !+1n !-1n +1 !=1-1n +1 !.故答案为:1-1n +1 !.【练习4】设数列a n 满足a 1+4a 2+⋯+(3n -2)a n =3n .(1)求a n 的通项公式;(2)求数列a n3n +1 的前n 项和T n .【答案】(1)a n =33n -2(2)T n =3n3n +1【解析】(1)解:数列a n 满足a 1+4a 2+⋯+(3n -2)a n =3n ,当n =1时,得a 1=3,n ≥2时,a 1+4a 2+⋯+(3n -5)a n -1=3(n -1),两式相减得:(3n -2)a n =3,∴a n =33n -2,当n =1时,a 1=3,上式也成立.∴a n =33n -2;(2)因为a n 3n +1=3(3n -2)(3n +1),=13n -2-13n +1,∴T n =11-14+14-17+⋯+13n -2-13n +1,=1-13n +1=3n3n +1.【练习5】已知数列a n 的前n 项和为S n ,且2S n =1-a n n ∈N ∗ .(1)求数列a n 的通项公式;(2)设b n =log 13a n ,C n =n +1-nb n b n +1,求数列C n 的前n 项和T n【答案】(1)a n =13n (2)T n =1-1n +1【解析】(1)当n =1时,2a 1=2S 1=1-a 1,解得:a 1=13;当n ≥2时,2a n =2S n -2S n -1=1-a n -1+a n -1,即a n =13a n -1,∴数列a n 是以13为首项,13为公比的等比数列,∴a n =13 n =13n .(2)由(1)得:b n =log 1313 n =n ,∴C n =n +1-n n n +1=1n -1n +1,∴T n =1-12+12-13+13-14+⋅⋅⋅+1n -1-1n +1n -1n +1=1-1n +1.【练习6】已知数列a n 中,2n a 1+2n -1a 2+⋯+2a n =n ⋅2n .(1)证明:a n 为等比数列,并求a n 的通项公式;(2)设b n =(n -1)a nn (n +1),求数列b n 的前n 项和S n .【答案】(1)证明见解析;a n =2n -1n ∈N *(2)2n n +1-1【解析】(1)解:2n a 1+2n -1a 2+⋯+2a n =n ⋅2n ,即为a 1+a 22+⋯+a n2n -1=n ·······①,又a 1+a 22+⋯+a n -12n -2=n -1,········②,①-②得a n2n -1=1,即a n =2n -1(n ≥2),又当n =1时,a 1=1=21-1,故a n =2n -1n ∈N * ;从而a n +1a n =2n2n -1=2n ∈N * ,所以a n 是首项为1,公比为2的等比数列;(2)由(1)得b n =(n -1)2n -1n (n +1)=2n n +1-2n -1n ,所以S n =212-201 +223-212 +⋯+2n n +1-2n -1n =2nn +1-1.【练习7】记S n 是公差不为零的等差数列a n 的前n 项和,若S 3=6,a 3是a 1和a 9的等比中项.(1)求数列a n 的通项公式;(2)记b n =1a n ⋅a n +1⋅a n +2,求数列b n 的前20项和.【答案】(1)a n =n ,n ∈N *(2)115462【解析】(1)由题意知a 23=a 1⋅a 9,设等差数列a n 的公差为d ,则a 1a 1+8d =a 1+2d 2,因为d ≠0,解得a 1=d又S 3=3a 1+3d =6,可得a 1=d =1,所以数列a n 是以1为首项和公差为1的等差数列,所以a n =a 1+n -1 d =n ,n ∈N *(2)由(1)可知b n =1n n +1 n +2 =121n n +1 -1n +1 n +2,设数列b n 的前n 和为T n ,则T n =1211×2-12×3+12×3-13×4+⋅⋅⋅+1n n +1 -1n +1 n +2=1212-1n +1 n +2,所以T 20=12×12-121×22 =115462所以数列b n 的前20和为115462【练习8】已知等差数列a n 满足a 3=7,a 5+a 7=26,b n =1a 2n -1(n ∈N +).(1)求数列a n ,b n 的通项公式;(2)数列b n 的前n 项和为S n ,求S n .【答案】(1)a n =2n +1,b n =14n n +1(2)S n =n 4n +1【解析】(1)由题意,可设等差数列a n 的公差为d ,则a 1+2d =72a 1+10d =26,解得a 1=3,d =2,∴a n =3+2n -1 =2n +1;∴b n =1a 2n -1=12n +1 2-1=14n 2+4n =14n n +1 ;(2)∵b n =14n n +1=141n -1n +1 ,S n =141-12+12-13+⋯+1n -1n +1 =141-1n +1 =n 4n +1.【练习9】已知正项数列a n 的前n 项和为S n ,且4、a n +1、S n 成等比数列,其中n ∈N ∗.(1)求数列a n 的通项公式;(2)设b n =4S na n a n +1,求数列b n 的前n 项和T n .【答案】(1)a n =2n -1(2)T n =n +n2n +1【解析】(1)解:对任意的n ∈N ∗,a n >0,由题意可得4S n =a n +1 2=a 2n +2a n +1.当n =1时,则4a 1=4S 1=a 21+2a 1+1,解得a 1=1,当n ≥2时,由4S n =a 2n +2a n +1可得4S n -1=a 2n -1+2a n -1+1,上述两个等式作差得4a n =a 2n -a 2n -1+2a n -2a n -1,即a n +a n -1 a n -a n -1-2 =0,因为a n +a n -1>0,所以,a n -a n -1=2,所以,数列a n 为等差数列,且首项为1,公差为2,则a n =1+2n -1 =2n -1.(2)解:S n =n 1+2n -12=n 2,则b n =4S n a n a n +1=4n 22n -1 2n +1 =4n 2-1+12n -1 2n +1 =1+12n -1 2n +1=1+1212n -1-12n +1,因此,T n =n +121-13+13-15+⋯+12n -1-12n +1 =n +n2n +1.【练习10】已知S n 是数列a n 的前n 项和,a 1=1,___________.①∀n ∈N ∗,a n +a n +1=4n ;②数列S n n 为等差数列,且S nn 的前3项和为6.从以上两个条件中任选一个补充在横线处,并求解:(1)求a n ;(2)设b n =a n +a n +1a n ⋅a n +1 2,求数列b n 的前n 项和T n .【答案】(1)条件选择见解析,a n =2n -1(2)T n =2n n +12n +12【解析】(1)解:选条件①:∀n ∈N ∗,a n +a n +1=4n ,得a n +1+a n +2=4n +1 ,所以,a n +2-a n =4n +1 -4n =4,即数列a 2k -1 、a 2k k ∈N ∗ 均为公差为4的等差数列,于是a 2k -1=a 1+4k -1 =4k -3=22k -1 -1,又a 1+a 2=4,a 2=3,a 2k =a 2+4k -1 =4k -1=2⋅2k -1,所以a n =2n -1;选条件②:因为数列S n n 为等差数列,且S nn 的前3项和为6,得S 11+S 22+S 33=3×S 22=6,所以S 22=2,所以S n n 的公差为d=S 22-S 11=2-1=1,得到Sn n =1+n -1 =n ,则S n =n 2,当n ≥2,a n =S n -S n -1=n 2-n -1 2=2n -1.又a 1=1满足a n =2n -1,所以,对任意的n ∈N ∗,a n =2n -1.(2)解:因为b n =a n +a n +1a n ⋅a n +1 2=4n 2n -1 22n +1 2=1212n -1 2-12n +1 2,所以T n =b 1+b 2+⋅⋅⋅+b n =12112-132+132-152+⋅⋅⋅+12n -1 2-12n +1 2 =121-12n +1 2 =2n n +1 2n +12.【过关检测】一、单选题1.S n=12+24+38+⋯+n2n=( )A.2n-n2n B.2n+1-n-22nC.2n-n+12n+1D.2n+1-n+22n【答案】B 【解析】由S n=12+24+38+⋯+n2n,得12S n=1×122+2×123+3×124+⋯+n⋅12n+1,两式相减得12S n=12+122+123+124+⋯+12n-n⋅12n+1=121-12n1-12-n12 n+1=1-12n-n⋅12 n+1=2n+1-n-22n+1.所以S n=2n+1-n-22n.故选:B.2.数列n⋅2n的前n项和等于( ).A.n⋅2n-2n+2B.n⋅2n+1-2n+1+2C.n⋅2n+1-2nD.n⋅2n+1-2n+1【答案】B【解析】解:设n⋅2n的前n项和为S n,则S n=1×21+2×22+3×23+⋯+n⋅2n, ①所以2S n=1×22+2×23+⋯+n-1⋅2n+n⋅2n+1, ②①-②,得-S n=2+22+23+⋯+2n-n⋅2n+1=21-2n1-2-n⋅2n+1,所以S n=n⋅2n+1-2n+1+2.故选:B.3.已知等比数列{an}的前n项和为Sn,若S3=7,S6=63,则数列{nan}的前n项和为( )A.-3+(n+1)×2nB.3+(n+1)×2nC.1+(n+1)×2nD.1+(n-1)×2n【答案】D【解析】设等比数列{an}的公比为q,易知q≠1,所以由题设得S3=a11-q31-q=7S6=a11-q61-q=63 ,两式相除得1+q3=9,解得q=2,进而可得a1=1,所以an=a1qn-1=2n-1,所以nan=n×2n-1.设数列{nan }的前n 项和为Tn ,则Tn =1×20+2×21+3×22+⋯+n ×2n -1,2Tn =1×21+2×22+3×23+⋯+n ×2n ,两式作差得-Tn =1+2+22+⋯+2n -1-n ×2n =1-2n1-2-n ×2n =-1+(1-n )×2n ,故Tn =1+(n -1)×2n .故选:D .4.已知等差数列a n ,a 2=3,a 5=6,则数列1a n a n +1的前8项和为( ).A.15B.25C.35D.45【答案】B 【解析】由a 2=3,a 5=6可得公差d =a 5-a 23=1 ,所以a n =a 2+n -2 d =n +1,因此1a n a n +1=1n +1 n +2 =1n +1-1n +2 ,所以前8项和为12-13 +13-14 +⋯+19-110 =12-110=25故选:B 5.已知数列a n 的前n 项和为S n ,S n +4=a n +n +1 2.记b n =8a n +1a n +2,数列的前n 项和为T n ,则T n 的取值范围为( )A.863,47 B.19,17C.47,+∞D.19,17【答案】A 【解析】因为数列a n 中,S n +4=a n +(n +1)2,所以S n +1+4=a n +1+n +2 2,所以S n +1+4-S n +4 =a n +1-a n +2n +3,所以a n =2n +3.因为b n =8a n +1a n +2,所以b n =82n +5 2n +7=412n +5-12n +7 ,所以T n =417-19+19-111+⋅⋅⋅+12n +5-12n +7=417-12n +7 .因为数列T n 是递增数列,当n =1时,T n =863,当n →+∞时,12n +7→0,T n →47,所以863≤T n <47,所以T n 的取值范围为863,47 .故选:A .6.已知数列满足a 1+2a 2+3a 3+⋯+na n =n 2,设b n =na n ,则数列1b n b n +1的前2022项和为( )A.40424043B.20214043C.40444045D.20224045【答案】D【解析】因为a 1+2a 2+3a 3+⋯+na n =n 2①,当n =1时,a 1=1;当n ≥2时,a 1+2a 2+3a 3+⋯+n -1 a n -1=(n -1)2②,①-②化简得a n =2n -1n ,当n =1时:a 1=2×1-11=1=1,也满足a n =2n -1n,所以a n =2n -1n ,b n =na n =2n -1,1b n b n +1=1(2n -1)(2n +1)=1212n -1-12n +1 所以1b n b n +1的前2022项和121-13+13-15+⋯+12×2022-1-12×2022+1 =121-12×2022+1 =20224045.故选:D .7.已知数列a n 满足a 1=1,且a n =1+a n a n +1,n ∈N *,则a 1a 2+a 2a 3+a 3a 4+⋯⋯+a 2020a 2021=( )A.2021 B.20202021C.122021D.22021【答案】B 【解析】∵a n =1+a n a n +1,即a n +1=a n 1+a n ,则1a n +1=1+a n a n =1a n +1∴数列1a n是以首项1a 1=1,公差d =1的等差数列则1a n =1+n -1=n ,即a n =1n∴a n a n +1=1n n +1=1n -1n +1则a 1a 2+a 2a 3+a 3a 4+⋯⋯+a 2020a 2021=1-12+12-13+...+12020-12021=20202021故选:B .8.等差数列a n 中,a 3=5,a 7=9,设b n =1a n +1+a n,则数列b n 的前61项和为( )A.7-3B.7C.8-3D.8【答案】C 【解析】解:因为等差数列满足a 3=5,a 7=9,所以d =a 7-a 37-3=1,所以a n =a 3+n -3 d =n +2,所以b n =1n +3+n +2=n +3-n +2,令数列b n 的前n 项和为S n ,所以数列b n 的前n 项和S n =4-3+5-4+⋯+n +3-n +2=n +3-3,所以S 61=8-3.故选:C .9.设数列n 22n -1 2n +1的前n 项和为S n ,则( )A.25<S 100<25.5B.25.5<S 100<26C.26<S 100<27D.27<S 100<27.5【答案】A 【解析】由n 2(2n -1)(2n +1)=14⋅4n 24n 2-1=141+14n 2-1 =141+121(2n -1)(2n +1)=14+1812n -1-12n +1,∴S n =n 4+181-13+13-15+⋅⋅⋅+12n -1-12n +1 =n 4+181-12n +1 =n (n +1)2(2n +1),∴S 100=100×1012(2×100+1)≈25.12,故选:A .10.已知数列a n 满足a n =1+2+4+⋯+2n -1,则数列2n a n a n +1 的前5项和为( )A.131B.163C.3031D.6263【答案】D 【解析】因为a n =1+2+4+⋯+2n -1=2n -1,a n +1=2n +1-1,所以2n a n a n +1=2n 2n -1 2n +1-1 =2n +1-1 -2n-1 2n -1 2n +1-1=12n -1-12n +1-1.所以2n a n a n +1 前5项和为121-1-122-1 +122-1-123-1 +⋯+125-1-126-1 =121-1-126-1=1-163=6263故选:D 11.已知数列a n 的首项a 1=1,且满足a n +1-a n =2n n ∈N * ,记数列a n +1a n +2 a n +1+2的前n 项和为T n ,若对于任意n ∈N *,不等式λ>T n 恒成立,则实数λ的取值范围为( )A.12,+∞ B.12,+∞C.13,+∞D.13,+∞【答案】C 【解析】解:因为a n +1-a n =2n n ∈N * ,所以a 2-a 1=21,a 3-a 2=22,a 4-a 3=23,⋯⋯,a n -a n -1=2n -1,所以a n -a 1=21+22+⋯+2n -1=21-2n -1 1-2=2n -2,n ≥2 ,又a 1=1,即a n =2n -1,所以a n +1=2n ,所以a n +1a n +2 a n +1+2 =2n 2n +1 2n +1+1=12n +1-12n +1+1,所以T n =121+1-122+1+122+1-123+1+⋯+12n +1-12n +1+1=13-12n +1+1<13所以λ的取值范围是13,+∞ .故选:C 12.在数列a n 中,a 2=3,其前n 项和S n 满足S n =n a n +12 ,若对任意n ∈N +总有14S 1-1+14S 2-1+⋯+14S n -1≤λ恒成立,则实数λ的最小值为( )A.1B.23C.12D.13【答案】C 【解析】当n ≥2时,2S n =na n +n ,2S n -1=n -1 a n -1+n -1 ,两式相减,整理得n -2 a n =(n -1)a n -1-1①,又当n ≥3时,n -3 a n -1=n -2 a n -2-1②,①-②,整理得n -2 a n +a n -2 =2n -4 a n -1,又因n -2≠0,得a n +a n -2=2a n -1,从而数列a n 为等差数列,当n =1时,S 1=a 1+12即a 1=a 1+12,解得a 1=1,所以公差d =a 2-a 1=2,则a n =2n -1,S n =na 1+n (n -1)2d =n 2,故当n ≥2时,14S 1-1+14S 2-1+⋯+14S n -1=122-1+142-1+⋯+12n 2-1=11×3+13×5+⋯+12n -1 2n +1=121-13+13-15+⋯+12n -1-12n +1 =121-12n +1 ,易见121-12n +1 随n 的增大而增大,从而121-12n +1 <12恒成立,所以λ≥12,故λ的最小值为12,故选:C .二、填空题13.已知正项数列{an }满足a 1=2且an +12-2an 2-anan +1=0,令bn =(n +2)an ,则数列{bn }的前8项的和等于__.【答案】4094【解析】由a 2n +1-2a 2n -a n a n +1=0,得(an +1+an )(an +1-2an )=0,又an >0,所以an +1+an >0,所以an +1-2an =0,所以an +1a n=2,所以数列{an }是以2为首项,2为公比的等比数列,所以a n =2×2n -1=2n ,所以b n =n +2 a n =n +2 ⋅2n ,令数列{bn }的前n 项的和为Tn ,T 8=3×21+4×22+⋯+9×28,则2T 8=3×22+4×23+⋯+9×29,-T 8=6+22+23+⋯+28 -9×29=6+221-271-2-9×29=2-8×29=-4094,则T 8=4094,故答案为:4094.14.已知数列{an }的前n 项和为Sn ,且Sn =2an -2,则数列n a n的前n 项和Tn =__.【答案】2-n +22n.【解析】解:∵Sn =2an -2,∴Sn -1=2an -1-2(n ≥2),设公比为q ,两式相减得:an =2an -2an -1,即an =2an -1,n ≥2,又当n =1时,有S 1=2a 1-2,解得:a 1=2,∴数列{an }是首项、公比均为2的等比数列,∴an =2n ,n a n =n2n ,又Tn =121+222+323+⋯+n2n ,12Tn =122+223+⋯+n -12n +n 2n +1,两式相减得:12Tn =12+122+123+⋯+12n -n 2n +1=121-12n1-12-n2n +1,整理得:Tn =2-n +22n.故答案为:Tn =2-n +22n .15.将1+x n (n ∈Ν+)的展开式中x 2的系数记为a n ,则1a 2+1a 3+⋅⋅⋅+1a 2015=__________.【答案】40282015【解析】1+xn的展开式的通项公式为T k +1=C k n x k ,令k =2可得a n =C 2n =n n -12;1a n =2n n -1=21n -1-1n ;所以1a 2+1a 3+⋅⋅⋅+1a 2015=21-12 +212-13 +⋯+212014-12015=21-12015 =40282015.故答案为:40282015.16.数列a n 的前项n 和为S n ,满足a 1=-12,且a n +a n +1=2n 2+2nn ∈N * ,则S 2n =______.【答案】2n 2n +1【解析】由题意,数列{a n }满足a n +a n +1=2n 2+2n,可得a 2n -1+a 2n =2(2n -1)2+2(2n -1)=2(2n -1)(2n +1)=12n -1-12n +1,所以S 2n =11-13+13-15+⋯+12n -1-12n +1=1-12n +1=2n2n +1,故答案为:2n2n +1三、解答题17.已知数列a n 满足a 1=1,2a n +1a n +a n +1-a n =0.(1)求证:数列1a n 为等差数列;(2)求数列a n a n +1 的前n 项和S n .【答案】(1)证明见解析;(2)S n =n2n +1.【解析】(1)令b n =1a n ,因为b n +1-b n =1a n +1-1a n =a n -a n +1a n ⋅a n +1=2,所以数列b n 为等差数列,首项为1,公差为2;(2)由(1)知:b n =2n -1;故a n =12n -1;所以a n a n +1=12n -1 2n +1=1212n -1-12n +1 ;所以S n =a 1a 2+a 2a 3+⋯+a n a n +1=11×3+13×5+⋯+12n -1 2n +1=121-13+13-15+⋯+12n -1-12n +1 =n 2n +1;18.已知正项数列a n 的前n 项和为S n ,a n +1-a n =3n ∈N * ,且S 3=18.(1)求数列a n 的通项公式;(2)若b n =1a n a n +1,求数列b n 的前n 项和T n .【答案】(1)a n =3n (2)T n =n9n +9【解析】(1)∵a n +1-a n =3,∴数列a n 是以公差为3的等差数列.又S 3=18,∴3a 1+9=18,a 1=3,∴a n =3n .(2)由(1)知b n =13n ×3n +1=19×1n -1n +1 ,于是T n =b 1+b 2+b 3+⋅⋅⋅+b n =191-12 +12-13 +13-14 +⋅⋅⋅+1n -1n +1 =191-1n +1 =n 9n +919.已知数列a n 的首项为3,且a n -a n +1=a n +1-2 a n -2 .(1)证明数列1a n -2 是等差数列,并求a n 的通项公式;(2)若b n =-1 n an n +1,求数列b n 的前n 项和S n .【答案】(1)证明见解析;a n =1n+2(2)-1+-1 n1n +1【解析】(1)因为a n -a n +1=a n +1-2 a n -2 ,所a n -2 -a n +1-2 =a n +1-2 a n -2 ,则1a n +1-2-1a n -2=1,所以数列1a n -2 是以13-2=1 为首项,公差等于1的等差数列,∴1a n -2=1+n -1 =n ,即a n =1n+2;(2)b n =-1 n a n n +1=-1 n 1n n +1+2n +1 =-1 n 1n +1n +1 ,则S n =-1+12 +12+13 -13+14 +⋅⋅⋅+-1 n 1n +1n +1 =-1+-1 n 1n +1;综上,a n =1n +2,S n =-1+-1 n 1n +1 .20.已知数列a n 中,a 1=-1,且满足a n +1=2a n -1.(1)求证:数列a n -1 是等比数列,并求a n 的通项公式;(2)若b n =n +11-a n +1,求数列b n 的前n 项和为T n .【答案】(1)证明见解析,a n=-2n+1(2)T n=32-n+32n+1【解析】(1)解:对任意的n∈N∗,a n+1=2a n-1,所以a n+1-1=2a n-1,且a1-1=-2,所以数列a n-1是以-2为首项,2为公比的等比数列.所以a n-1=-2n,所以a n=-2n+1.(2)解:由已知可得b n=n+11-a n+1=n+12n+1,则T n=222+323+424+⋯+n+12n+1,所以,12T n=223+324+⋯+n 2n+1+n+12n+2,两式相减得12T n=222+123+⋯+12n+1-n+12n+2=12+181-12n-11-12-n+12n+2=34-1 2n+1-n+12n+2=34-n+32n+2,因此,T n=32-n+32n+1.21.已知等比数列a n,a1=2,a5=32.(1)求数列a n的通项公式;(2)若数列a n为正项数列(各项均为正),求数列(2n+1)⋅a n的前n项和T n.【答案】(1)a n=2n或a n=2·-2n-1;(2)T n=2+(2n-1)⋅2n+1.【解析】(1)等比数列a n的公比为q,a1=2,a5=32,则q4=a5a1=16,解得q=±2,所以当q=2时,a n=2n,当q=-2时,a n=2⋅(-2)n-1.(2)由(1)知,a n=2n,则有(2n+1)⋅a n=(2n+1)⋅2n,则T n=3×21+5×22+7×23+⋯+(2n+1)⋅2n,于是得2T n=3×22+5×23+⋯+(2n-1)⋅2n+(2n+1)⋅2n+1,两式相减,得-T n=6+2×(22+23+⋯+2n)-(2n+1)⋅2n+1=6+2×22×(1-2n-1)1-2-(2n+1)⋅2n+1=-2-(2n-1)⋅2n+1,所以T n=2+(2n-1)⋅2n+1.22.已知等差数列a n满足a1=1,a2⋅a3=a1⋅a8,数列b n的前n项和为S n,且S n=32b n.(1)求数列a n,b n的通项公式;(2)求数列a n b n的前n项和T n.【答案】(1)a n=1或a n=2n-1;b n=3n;(2)若a n=1,则T n=33n-13;若a n=2n-1,则T n=n-13n+1+3.【解析】(1)设等差数列a n的公差为d,∵a1=1,a2⋅a3=a1⋅a8,∴1+d1+2d=1+7d,化简得2d2-4d=0,解得:d=0或d=2,若d=0,则a n=1;若d=2,则a n=2n-1;由数列b n的前n项和为S n=32b n-32①,当n=1时,得b1=3,当n≥2时,有S n-1=32b n-1-32②;①-②有b n=32b n-32b n-1,即b nb n-1=3,n≥2,所以数列b n是首项为3,公比为3的等比数列,所以b n=3n,综上所述:a n=1或a n=2n-1;b n=3n;(2)若a n=1,则a n b n=b n=3n,则T n=3+32+⋯+3n=31-3n1-3=33n-12,若a n=2n-1,则a n b n=2n-13n,则T n=1×3+3×32+⋯+2n-1×3n③;③×3得3T n=1×32+3×33+⋯+2n-1×3n+1④;③-④得:-2T n=3+2×32+2×33+⋯+2×3n-2n-1×3n+1=3+2×32(1-3n-1)1-3-(2n-1)×3n+1整理化简得:T n=n-13n+1+3,综上所述:若a n=1,则T n=33n-13;若a n=2n-1,则T n=n-13n+1+3.。
高中数学必修5《数列求和-裂项相消法》PPT
(二)、典例:
谢谢大家!
二、教学重点和难点: 重点:裂项相消的方法和形式。能将一些特殊数
列的求和问题转化为裂项相消求和问题。 难点:用裂项相消的思维过程,不同的数列采用
不同的方法,运用转化与化归思想分析问题和解决问 题。
பைடு நூலகம்
三、教学过程: (一)复习:
常用求和方法: 1.错位相减法:
适用于一个等差数列和一个等比数列(公比不等于1)对应项相乘构成的数列求和. 2.分组求和法:
把一个数列分成几个可以直接求和的数列的和(差)的形式. 3.倒序相加法:
如果一个数列中,与首尾两端“距离”相等两项的和等于同一个常数,那么可用倒序相加求 和.
4.裂项相消法:
把一个数列的通项公式分成两项差的形式, 相加过程中消去中间项,只剩有限项再求和.注意: 在抵消过程中,有的是依次抵消,有的是间隔抵 消。
适用范围。进一步熟悉数列求和的不同呈现形式及解决策略。 2 过程与方法目标 经历数列裂项相消法求和的探究过程、深化过程和推广
过程。培养学生发现问题、分析问题和解决问题的能力。体会 知识的发生、发展过程,培养学生的学习能力。
3 情感与价值观目标 通过数列裂项相消求和法的推广应用,使学生认识到在
学习过程中的一切发现、发明,一切好的想法和念头都可以发 扬光大。激发学生的学习热情和创新意识,形成锲而不舍的钻 研精神和合作交流的科学态度。感悟数学的简洁美﹑对称美。
高中数学必修五 数列求和之裂项相消法
考纲要求
考纲研读
1.掌握等差数列、等比数列的 对等差、等比数列的求和以考
求和公式.
查公式为主,对非等差、非等
比数列的求和,主要考查分组
2.了解一般数列求和的几种方 求和、裂项相消、错位相减等
数列求和-裂项相消法-PPT课件
为等b比n 数列
②乘公比:等式两边乘以等比数列的公比
③错位:让次数相同的相对齐④相减⑤解出Sn
数列求和-裂项相消法
例题探究·提炼方法
(教材必修5习题2.3B组第四题)
解:
an
1 n(n 1)
1 n
1 n 1
Sn a1 a2 a3
an1 an
(1- 1)(1 - 1)(1 - 1) ( 1 1) (1 1 ) 2 2 3 3 4 n 1 n n n 1
1 (1 1 ) 3 3n 1
数列求和-裂项相消法
规律方法·反思提升
(1)an
1 n(n
k)
1 k
(
1 n
n
1
k
)
(2)bn
1 4n2 1
(2n
1 1)(2n
1)
1 2
(
1 2n 1
1) 2n 1
(3)bn
9n2
1 3n
2
(3n
1 2)(3n
1)
1 3
(1 3n
2
1) 3n 1
数列求和-裂项相消法
1 n+1+
= n
n+1-
n,
S2 016=a1+a2+a3+…+a2 016=( 2- 1)+( 3- 2)+( 4- 3) +…+( 2 016- 2 015)+( 2 017- 2 016)= 2 017-1. 答案:C
数列求和-裂项相消法
强化练习·扩展延伸
强化练习2
题型3:
2n
11
an (2n 1)(2n1 1) 2n 1 2n1 1
数列求和 数列求和的基本方法
知识回顾
高一数学复习考点知识讲解课件57---倒序相加求和、裂项相消法
高一数学复习考点知识讲解课件倒序相加求和、裂项相消法考点知识1.熟练掌握等差数列与等比数列的前n项和公式.2.根据数列的结构形式会用倒序相加法和裂项相消法求和.一、倒序相加求和例1已知数列{a n}的通项公式为a n=n-2(n∈N*),设f(x)=x+log22+x8-x,则数列{f(a n)}的各项之和为()A.36 B.33 C.30 D.27 答案D解析由f(x)=x+log22+x8-x ,知2+x8-x>0,解得-2<x<8.所以-2<a n<8.又因为a n=n-2,所以满足f(a n)的a n所有的取值为-1,0,1,2,…,7,即a1,a2,…,a9.因为f(6-x)=6-x+log28-x2+x,所以f(x)+f(6-x)=6.所以数列{f(a n)}的各项之和S=f(a1)+f(a2)+…+f(a9)=f(-1)+f(0)+…+f(7).因为S=f(7)+f(6)+…+f(-1),所以2S=[f(-1)+f(7)]+[f(0)+f(6)]+…+[f(7)+f(-1)]=6×9=54.所以S =27.反思感悟倒序相加法求和适合的题型一般情况下,数列项数较多,且距首末等距离的项之间隐含某种关系,需要结合题意主动发现这种关系,利用推导等差数列前n 项和公式的方法,倒序相加求和.跟踪训练1在推导等差数列前n 项和的过程中,我们使用了倒序相加的方法,类比可以求得sin 21°+sin 22°+…+sin 289°=________.答案44.5⎝ ⎛⎭⎪⎫或892 解析令S =sin 21°+sin 22°+…+sin 289°,则S =sin 289°+sin 288°+…+sin 21°,两式相加可得2S =()sin 21°+sin 289°+()sin 22°+sin 288°+…+()sin 289°+sin 21°=89, 故S =44.5,即sin 21°+sin 22°+…+sin 289°=44.5.二、裂项相消法问题已知数列a n =1n (n +1),如何求{a n }的前n 项和S n . 提示a n =1n (n +1)=1n -1n +1, S n =a 1+a 2+…+a n=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1. 知识梳理常见的裂项求和的形式:①1n (n +k )=1k ⎝ ⎛⎭⎪⎫1n -1n +k ; ②1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1; ③2n (2n +1)(2n +1+1)=12n +1-12n +1+1; ④1n (n +1)(n +2)=12⎣⎢⎡⎦⎥⎤1n (n +1)-1(n +1)(n +2); ⑤1n +1+n=n +1-n ; ⑥ln ⎝ ⎛⎭⎪⎫1+1n =ln(n +1)-ln n . 注意点:(1)裂项前要先研究分子与分母的两个因式的差的关系;(2)若相邻项无法相消,则采用裂项后分组求和,即正项一组,负项一组;(3)检验所留的正项与负项的个数是否相同.例2已知数列{a n }的前n 项和为S n ,满足S 2=2,S 4=16,{a n +1}是等比数列.(1)求数列{a n }的通项公式;(2)若a n >0,设b n =log 2(3a n +3),求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n b n +1的前n 项和.解(1)设等比数列{a n +1}的公比为q ,其前n 项和为T n ,因为S 2=2,S 4=16,所以T 2=4,T 4=20,易知q ≠1,所以T 2=(a 1+1)(1-q 2)1-q=4,① T 4=(a 1+1)(1-q 4)1-q=20,② 由②①得1+q 2=5,解得q =±2. 当q =2时,a 1=13,所以a n +1=43×2n -1=2n +13;当q =-2时,a 1=-5,所以a n +1=(-4)×(-2)n -1=-(-2)n +1.所以a n =2n +13-1或a n =-(-2)n +1-1.(2)因为a n >0,所以a n =2n +13-1,所以b n =log 2(3a n +3)=n +1,所以1b n b n +1=1(n +1)(n +2)=1n +1-1n +2, 所以数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和为 ⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n +1-1n +2 =12-1n +2=n 2(n +2). 反思感悟(1)把数列的每一项拆成两项之差,求和时有些部分可以相互抵消,从而达到求和的目的.(2)裂项原则:一般是前边裂几项,后边就裂几项直到发现被消去项的规律为止.(3)消项规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项. 跟踪训练2设S n 为等差数列{a n }的前n 项和,已知S 3=a 7,a 8-2a 3=3.(1)求a n ;(2)设b n =1S n,求数列{b n }的前n 项和T n . 解(1)设数列{a n }的公差为d ,由题意得⎩⎪⎨⎪⎧3a 1+3d =a 1+6d ,(a 1+7d )-2(a 1+2d )=3,解得a 1=3,d =2,∴a n =a 1+(n -1)d =2n +1.(2)由(1)得S n =na 1+n (n -1)2d =n (n +2),∴b n =1n (n +2)=12⎝ ⎛⎭⎪⎫1n -1n +2. ∴T n =b 1+b 2+…+b n -1+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+…+⎝ ⎛⎭⎪⎫1n -1-1n +1+⎝ ⎛⎭⎪⎫1n -1n +2 =12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2 =34-12⎝ ⎛⎭⎪⎫1n +1+1n +2.1.知识清单:(1)倒序相加法求和.(2)裂项相消求和.2.方法归纳:倒序相加法、裂项求和法.3.常见误区:裂项求和中要关注正项与负项的个数是否相同及相消后前后剩余的项数.1.已知a n=1n+1+n()n∈N*,则a1+a2+a3+…+a80等于()A.7B.8C.9D.10 答案B解析因为a n=1n+1+n=n+1-n()n∈N*,所以a1+a2+a3+…+a80=2-1+3-2+…+81-80=9-1=8.2.数列12×5,15×8,18×11,…,1(3n-1)×(3n+2),…的前n项和为()A.n3n+2B.n6n+4C.3n6n+4D.n+1n+2答案B解析由数列通项公式1(3n -1)(3n +2)=13⎝ ⎛⎭⎪⎫13n -1-13n +2, 得前n 项和S n=13⎝ ⎛⎭⎪⎫12-15+15-18+18-111+…+13n -1-13n +2 =13⎝ ⎛⎭⎪⎫12-13n +2=n 6n +4. 3.已知数列{a n }:12,13+23,14+24+34,15+25+35+45,…,那么数列{b n }=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1前n 项的和为()A .4⎝ ⎛⎭⎪⎫1-1n +1B .4⎝ ⎛⎭⎪⎫12-1n +1 C .1-1n +1D.12-1n +1答案A解析∵a n =1+2+3+…+n n +1=n (n +1)2n +1=n 2, ∴b n =1a n a n +1=4n (n +1)=4⎝ ⎛⎭⎪⎫1n -1n +1. ∴S n =4⎝ ⎛⎭⎪⎫1-12+12-13+13-14+…+1n -1n +1=4⎝ ⎛⎭⎪⎫1-1n +1. 4.设函数f (x )=12+lg x 1-x,则f ⎝ ⎛⎭⎪⎫110+f ⎝ ⎛⎭⎪⎫210+…+f ⎝ ⎛⎭⎪⎫910=________. 答案92 解析若x 1,x 2∈(0,1),且x 1+x 2=1,则f (x 1)+f (x 2)=1+lgx 1x 2(1-x 1)(1-x 2)=1, 故f ⎝ ⎛⎭⎪⎫110+f ⎝ ⎛⎭⎪⎫210+…+f ⎝ ⎛⎭⎪⎫910=4+f ⎝ ⎛⎭⎪⎫12=4+12=92. 课时对点练1.设函数f ()x =22x +1,利用课本中推导等差数列前n 项和的方法,求得f ()-5+f ()-4+…+f ()0+…+f ()4+f ()5的值为()A .9B .11C.92D.112答案B解析∵f ()x =22x +1,∴f ()x +f ()-x =22x +1+22-x +1=22x +1+2·2x 2x ()2-x +1=22x +1+2·2x1+2x =2()1+2x2x +1=2,设S =f ()-5+f ()-4+…+f ()0+…+f ()4+f ()5,则S =f ()5+f ()4+…+f ()0+…+f ()-4+f ()-5,两式相加得2S =11×2=22,因此,S =11.2.在a ,b 中插入n 个数,使它们和a ,b 组成等差数列a ,a 1,a 2,…,a n ,b ,则a 1+a 2+…+a n 等于()A .n (a +b ) B.n (a +b )2 C.(n +1)(a +b )2 D.(n +2)(a +b )2答案B解析令S n =a +a 1+a 2+…+a n +b ,倒过来写S n =b +a n +a n -1+…+a 1+a ,两式相加得2S n =()n +2()a +b ,故S n =()n +2()a +b 2,所以a 1+a 2+…+a n =S n -()a +b =n ()a +b 2,故选B. 3.数列{}a n ,{}b n 满足a n b n =1,a n =n 2+5n +6,n ∈N *,则{}b n 的前10项之和为() A.413B.513C.839D.1039答案D解析因为a n b n =1,a n =n 2+5n +6,故b n =1n 2+5n +6=1n +2-1n +3, 故{}b n 的前10项之和为13-14+14-15+…+112-113=13-113=1039.4.谈祥柏先生是我国著名的数学科普作家,在他的《好玩的数学》一书中,有一篇文章《五分钟挑出埃及分数》,文章告诉我们,古埃及人喜欢使用分子为1的分数(称为埃及分数).则下列埃及分数11×3,13×5,15×7,…,12019×2021的和是() A.20202021B.10102021C.10092019D.20182019答案B解析∵1n ()n +2=12⎝ ⎛⎭⎪⎫1n -1n +2, ∴11×3+13×5+15×7+…+12019×2021=12⎝ ⎛⎭⎪⎫1-13+13-15+15-17+…+12019-12021 =12⎝ ⎛⎭⎪⎫1-12021=10102021. 5.已知正项数列{}a n 是公比不等于1的等比数列,且lg a 1+lg a 2021=0,若f (x )=21+x 2,则f (a 1)+f (a 2)+…+f (a 2021)等于()A .2020B .4036C .2021D .4038答案C解析∵正项数列{}a n 是公比不等于1的等比数列,且lg a 1+lg a 2021=0,∴lg(a 1·a 2021)=0,即a 1·a 2021=1.∵函数f ()x =21+x2, ∴f (x )+f ⎝ ⎛⎭⎪⎫1x =21+x 2+21+1x 2=2+2x 21+x 2=2. 令T =f (a 1)+f (a 2)+…+f (a 2021), 则T =f (a 2021)+f (a 2020)+…+f (a 1),∴2T =f (a 1)+f (a 2021)+f (a 2)+f (a 2020)+…+f (a 2021)+f (a 1)=2×2021, ∴T =2021.6.(多选)设等差数列{a n }满足a 2=5,a 6+a 8=30,公差为d ,则下列说法正确的是() A .a n =2n +1 B .d =2C.1a 2n -1=14⎝ ⎛⎭⎪⎫1n +1n +1 D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a 2n -1的前n 项和为n4(n +1)答案ABD解析设等差数列{a n }的公差为d .∵{a n }是等差数列,∴a 6+a 8=30=2a 7,解得a 7=15,又a 7-a 2=5d .∴d =2.又a 2=5,∴a n =2n +1.故AB 正确;∴1a 2n -1=14n (n +1)=14⎝ ⎛⎭⎪⎫1n -1n +1,故C 错误; ∴⎩⎨⎧⎭⎬⎫1a 2n -1的前n 项和为 S n =14⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=14⎝ ⎛⎭⎪⎫1-1n +1=n4(n +1).故D 正确. 7.在数列{a n }中,a 1=2,a n +1=a n +ln ⎝ ⎛⎭⎪⎫1+1n ,n ∈N *,则a n =________ 答案2+ln n解析∵a n +1=a n +ln ⎝ ⎛⎭⎪⎫1+1n ,∴a n +1-a n =ln ⎝ ⎛⎭⎪⎫1+1n =ln n +1n =ln(n +1)-ln n .又a 1=2,∴a n =a 1+(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+…+(a n -a n -1)=2+[ln2-ln1+ln3-ln2+ln4-ln3+…+ln n -ln(n -1)]=2+ln n -ln1=2+ln n .8.设S n 是数列{}a n 的前n 项和,且a 1=13,a n +1+2S n S n +1=0,n ∈N *,则S 1S 2+S 2S 3+…+S 9S 10=________. 答案17解析因为a n +1+2S n S n +1=0,所以S n +1-S n +2S n S n +1=0,所以S n -S n +1=2S n S n +1, 所以1S n +1-1S n=2.又1S 1=1a 1=3,所以数列⎩⎨⎧⎭⎬⎫1S n 是以3为首项,2为公差的等差数列,所以1S n =3+()n -1×2=2n +1,所以S n =12n +1,所以S n S n +1=12n +1·12n +3=12⎝⎛⎭⎪⎫12n +1-12n +3, 所以S 1S 2+S 2S 3+…+S 9S 10=12⎝ ⎛⎭⎪⎫13-15+15-17+…+119-121=12⎝ ⎛⎭⎪⎫13-121 =17.9.已知等差数列{a n }中,2a 2+a 3+a 5=20,且前10项和S 10=100. (1)求数列{a n }的通项公式; (2)若b n =1a n a n +1,求数列{b n }的前n 项和. 解(1)由已知得⎩⎨⎧2a 2+a 3+a 5=4a 1+8d =20,10a 1+10×92d =10a 1+45d =100,解得⎩⎪⎨⎪⎧a 1=1,d =2,所以数列{a n }的通项公式为a n =1+2(n -1)=2n -1. (2)b n =1(2n -1)(2n +1)=12⎝⎛⎭⎪⎫12n -1-12n +1, 所以T n =12⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1 =12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1. 10.已知数列{}a n 的前n 项和S n =2n +2-4(n ∈N *),函数f (x )对一切实数x 总有f (x )+f (1-x )=1,数列{}b n 满足b n =f (0)+f ⎝ ⎛⎭⎪⎫1n +f ⎝ ⎛⎭⎪⎫2n +…+f ⎝ ⎛⎭⎪⎫n -1n +f (1).分别求数列{}a n ,{}b n 的通项公式.解当n =1,a 1=S 1=21+2-4=4,当n ≥2,a n =S n -S n -1=()2n +2-4-()2n +1-4=2n +1, n =1时满足上式,故a n =2n +1()n ∈N *. ∵f ()x +f ()1-x =1,∴f ⎝ ⎛⎭⎪⎫1n +f ⎝⎛⎭⎪⎫n -1n =1, ∵b n =f ()0+f ⎝ ⎛⎭⎪⎫1n +f ⎝ ⎛⎭⎪⎫2n +…+f ⎝⎛⎭⎪⎫n -1n +f ()1,① ∴b n =f ()1+f ⎝⎛⎭⎪⎫n -1n +f ⎝ ⎛⎭⎪⎫n -2n +…+f ⎝ ⎛⎭⎪⎫1n +f ()0,②∴由①+②,得2b n =n +1,∴b n =n +12.11.在各项都为正数的等比数列{a n }中,若a 1=2,且a 1·a 5=64,则数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n (a n -1)(a n +1-1)的前n 项和是()A .1-12n +1-1B .1-12n +1C .1-12n +1D .1-12n -1答案A解析在各项都为正数,公比设为q (q >0)的等比数列{a n }中,若a 1=2,且a 1·a 5=64,则4q 4=64,解得q =2,则a n =2n .数列⎩⎨⎧⎭⎬⎫a n (a n -1)(a n +1-1)即为⎩⎨⎧⎭⎬⎫2n (2n -1)(2n +1-1). ∵2n (2n -1)(2n +1-1)=12n -1-12n +1-1, ∴数列⎩⎨⎧⎭⎬⎫a n (a n -1)(a n +1-1)的前n 项和是12-1-122-1+122-1-123-1+…+12n -1-12n +1-1=1-12n +1-1,故选A. 12.设S =1+112+122+1+122+132+1+132+142+…+1+120202+120212,[S ]表示不大于S 的最大整数(例如:[2.34]=2,[-π]=-4),则[S ]等于()A .2019B .2020C .2021D .2022 答案B 解析因为1+1n 2+1(1+n )2=()n 2+n 2+2()n 2+n +1n 2(1+n )2=n 2+n +1n ()n +1=1+⎝ ⎛⎭⎪⎫1n -1n +1, 所以S =1+⎝ ⎛⎭⎪⎫11-12+1+⎝ ⎛⎭⎪⎫12-13+…+1+⎝ ⎛⎭⎪⎫12020-12021=2021-12021,所以[]S =2020.13.已知F (x )=f ⎝ ⎛⎭⎪⎫x +12-3是R 上的奇函数,a n =f (0)+f ⎝ ⎛⎭⎪⎫1n +…+f ⎝ ⎛⎭⎪⎫n -1n +f (1),n ∈N *,则数列{}a n 的通项公式为() A .a n =n +1B .a n =3n +1 C .a n =3n +3D .a n =n 2-2n +3 答案C解析由题意知F ()x =f ⎝ ⎛⎭⎪⎫x +12-3是R 上的奇函数,故F ()-x =-F ()x ,代入得f ⎝ ⎛⎭⎪⎫12-x +f ⎝ ⎛⎭⎪⎫12+x =6()x ∈R ,∴函数f ()x 关于点⎝ ⎛⎭⎪⎫12,3对称,令t =12-x ,则12+x =1-t ,得到f ()t +f ()1-t =6, ∵a n =f ()0+f ⎝ ⎛⎭⎪⎫1n +…+f ⎝⎛⎭⎪⎫n -1n +f ()1, a n =f ()1+f ⎝⎛⎭⎪⎫n -1n +…+f ⎝ ⎛⎭⎪⎫1n +f ()0, 倒序相加可得2a n =6()n +1, 即a n =3()n +1.14.已知数列{}a n 的前n 项和为S n ,且S n =12n 2+12n ,若b n =()-1n ·2n +1a n a n +1,则数列{}b n 的前n 项和T n =______________. 答案T n =⎩⎪⎨⎪⎧-nn +1,n 为偶数-n +2n +1,n 为奇数解析∵S n =12n 2+12n , 当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=12n 2+12n -⎣⎢⎡⎦⎥⎤12()n -12+12()n -1=n ,满足a 1=1, ∴a n =n ,∴b n =()-1n·2n +1a n a n +1=()-1n ·2n +1n ()n +1=()-1n ·⎝ ⎛⎭⎪⎫1n +1n +1,当n 为偶数时,T n =-⎝ ⎛⎭⎪⎫1+12+⎝ ⎛⎭⎪⎫12+13-⎝ ⎛⎭⎪⎫13+14+…+⎝ ⎛⎭⎪⎫1n +1n +1=-1+1n +1=-n n +1, 当n 为奇数时,T n =-⎝ ⎛⎭⎪⎫1+12+⎝ ⎛⎭⎪⎫12+13-⎝ ⎛⎭⎪⎫13+14+…-⎝ ⎛⎭⎪⎫1n +1n +1=-1-1n +1=-n +2n +1, ∴T n=⎩⎪⎨⎪⎧-nn +1,n 为偶数.-n +2n +1,n 为奇数.15.在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,36,45,…这些数叫做三角形数.设第n 个三角形数为a n ,则下面结论错误的是() A .a n -a n -1=n (n >1) B .a 20=210 C .1024是三角形数 D.1a 1+1a 2+1a 3+…+1a n =2nn +1 答案C解析∵a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,…,由此可归纳得a n -a n -1=n (n >1),故A 正确;将前面的所有项累加可得a n =(n -1)(n +2)2+a 1=n (n +1)2,∴a 20=210,故B 正确;令n (n +1)2=1024,此方程没有正整数解,故C 错误;1a 1+1a 2+…+1a n =2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=2⎝ ⎛⎭⎪⎫1-1n +1=2nn +1,故D 正确.16.已知等比数列{}a n 的各项均为正数,且a 1=1,a n +2=a n +1+2a n . (1)求数列{}a n 的通项公式;(2)记数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n +1(n +1)·log 2a n +1的前n 项和为S n ,求证:32≤S n <3.(1)解设等比数列{}a n 的公比为q (q >0), 因为a n +2=a n +1+2a n ,所以q 2=q +2(q >0), 解得q =2, 所以a n =2n -1. (2)证明因为1a n+1(n +1)log 2a n +1=12n -1+1(n +1)n =12n -1+1n -1n +1,所以S n =1-12n 1-12+⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=2-12n -1+1-1n +1=3-12n -1-1n +1, 因为对n ≥1,0<12n -1≤1,0<1n +1≤12,∴32≤3-12n -1-1n +1<3,即32≤S n <3.。
专题10 数列 10.4数列求和 题型归纳讲义-2022届高三数学一轮复习(解析版)
专题十《数列》讲义10.4数列求和知识梳理.数列求和1.公式法(1)等差数列{a n }的前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d 2.推导方法:倒序相加法.(2)等比数列{a n }的前n 项和S n ,q ≠1.推导方法:乘公比,错位相减法.(3)一些常见的数列的前n 项和:①1+2+3+…+n =n (n +1)2;②2+4+6+…+2n =n (n +1);③1+3+5+…+(2n -1)=n 2.2.几种数列求和的常用方法(1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.(4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.题型一.裂项相消1.数列{a n}的通项公式a n=1or1),已知它的前n项和S n=99100,则项数n=()A.98B.99C.100D.101【解答】解:列{a n}的通项公式a n=1or1)=1−1r1,所以=1−12+12−13+⋯+1−1r1=1−1r1,由于前n项和S n=99100,所以1−1r1=99100,解得n=99.故选:B.2.已知等差数列{a n}满足a3=10,a1+a4=17.(1)求{a n}的通项公式;(2)设b n=3r1,求数列{b n}的前n项和S n.【解答】解:(1)设首项为a1,公差为d的等差数列,满足a3=10,a1+a4=17.所以3=101+4=17,解得1=4=3,所以a n=4+3(n﹣1)=3n+1.(2)由(1)得b n=3r1=13r1−13r4,所以S n=b1+b2+…+b n=14−17+17−110+⋯+13r1−13r4=14−13r4.3.已知数列{a n}的前n项和为S n,若4S n=(2n﹣1)a n+1+1,且a1=1.(1)求数列{a n}的通项公式;(2)设=1(+2),数列{c n}的前n项和为T n,求T n.【解答】解:(1)在4S n=(2n﹣1)a n+1+1中,令n=1,得a2=3,∵4S n=(2n﹣1)a n+1+1,∴当n≥2时,4S n﹣1=(2n﹣3)a n+1,两式相减,得4a n=(2n﹣1)a n+1﹣(2n﹣3)a n(n≥2),∴(2n+1)a n=(2n﹣1)a n+1,即r1=2r12K1(≥2).∴=K1⋅K1K2⋅K2K3⋯⋅32⋅21⋅1=2K12K3⋅2K32K5⋅2K52K7⋯53⋅31⋅1=2−1,故a n=2n﹣1.(2)=1(+2)=1(2K1)(2r1)=12(12K1−12r1),T n=c1+c2+…+c n=12[(1−13)+(13−15)+(15−17)+⋯+(12K1−12r1)]=12(1−12r1)=2r1,所以=2r1.题型二.错位相减1.已知等差数列{a n}公差不为零,且满足:a1=2,a1,a2,a5成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设=3,求数列{b n}的前n项和.【解答】解:(Ⅰ)设等差数列{a n}的公差为d,d≠0,由题,1=222=15,即(1+p2=1(1+4p,解得d=4.∴a n=2+4(n﹣1)=4n﹣2.(Ⅱ)=3=(4n﹣2)•3n=2(2n﹣1)•3n,设数列{b n}的前n项和为T n,=2×1×31+2×3×32+2×5×33+⋯+2(2n﹣1)×3n,①3=2×1×32+2×3×33+2×5×34+⋯2(2n﹣1)×3n+1,②①﹣②,得:−2=2×1×3+2×2×32+2×2×33+⋯+2×2×3n﹣2(2n﹣1)×3n+1=6+4×32(1−3K1)1−3−2(2−1)×3r1=−12﹣4(n﹣1)•3n+1,∴=6+2(−1)⋅3r1.∴数列{b n}的前n项和=6+2(−1)⋅3r1.2.已知等差数列{a n}的前n项和为S n,S5=30,S7=56;各项均为正数的等比数列{b n}满足b1b2=13,b2b3=127.(1)求数列{a n}和{b n}的通项公式;(2)求数列{a n•b n}的前n项和T n.【解答】解:(1)设等差数列{a n}的首项为a1,公差为d,由S5=30,S7=56,得51+5×42=3071+7×62=56,解得1=2=2.∴a n=2+2(n﹣1)=2n;设等比数列{b n}的公比为q(q>0),由b1b2=13,b2b3=127,得12=13123=127,解得1=1=13.∴=(13)K1;(2)a n•b n=23K1=2⋅3K1.令{3K1}的前n项和为R n,则=130+231+332+⋯+3K1,13=13+232+333+⋯+K13K1+3两式作差可得:23=1+13+132+⋯+13K1−3=1×(1−13)1−13−3=32−2r32⋅3,∴=94−2r34⋅3K1.则=2=92−2r32⋅3K1.3.(2015·山东)设数列{a n}的前n项和为S n,已知2S n=3n+3.(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n},满足a n b n=log3a n,求{b n}的前n项和T n.【解答】解:(Ⅰ)因为2S n=3n+3,所以2a1=31+3=6,故a1=3,=3n﹣1+3,当n>1时,2S n﹣1此时,2a n=2S n﹣2S n﹣1=3n﹣3n﹣1=2×3n﹣1,即a n=3n﹣1,所以a n=3,=13K1,>1..(Ⅱ)因为a n b n=log3a n,所以b1=13,当n>1时,b n=31﹣n•log33n﹣1=(n﹣1)×31﹣n,所以T1=b1=13;当n>1时,T n=b1+b2+…+b n=13+[1×3﹣1+2×3﹣2+…+(n﹣1)×31﹣n],所以3T n=1+[1×30+2×3﹣1+3×3﹣2+…+(n﹣1)×32﹣n],两式相减得:2T n=23+[30+3﹣1+3﹣2+…+32﹣n﹣(n﹣1)×31﹣n]=23+1−31−1−3−1−(n﹣1)×31﹣n=136−6r32×3,所以T n=1312−6r34×3,经检验,n=1时也适合,综上可得T n=1312−6r34×3.题型三.分组求和1.已知数列{a n}是公差不为零的等差数列,a1=2,且a1,a2,a4成等比数列.(1)求数列{a n}的通项公式;(2)设b n=a n﹣2,求数列{b n}的前n项和S n.【解答】解:(1)由题意,设等差数列{a n}的公差为d(d≠0),则a2=2+d,a4=2+3d,∵a1,a2,a4成等比数列,∴a22=a1•a4,即(2+d)2=2(2+3d),整理,得d2﹣2d=0,解得d=0(舍去),或d=2,∴a n=2+2(n﹣1)=2n,n∈N*.(2)由(1)知,设b n=a n﹣2=2n﹣22n=2n﹣4n,故S n=b1+b2+…+b n=(2×1﹣41)+(2×2﹣42)+…+(2n﹣4n)=2×(1+2+…+n)﹣(41+42+…+4n)=2×or1)2−4(1−4)1−4=n2+n+43−4r13.2.在公差不为0的等差数列{a n}中,a1,a3,a9成公比为a3的等比数列,又数列{b n}满足=2,=2−1,2,=2,(k∈N*).(1)求数列{a n}的通项公式;(2)求数列{b n}的前2n项和T2n.【解答】解:(1)公差d不为0的等差数列{a n}中,a1,a3,a9成公比为a3的等比数列,可得a32=a1a9,a3=a1a3,可得(a1+2d)2=a1(a1+8d),a1=1,化简可得a1=d=1,即有a n=n,n∈N*;(2)由(1)可得b n=2,=2−12,=2,k∈N*;前2n项和T2n=(2+8+16+…+22n﹣1)+(4+8+12+…+4n)=2(1−4)1−4+12n(4+4n)=2(4−1)3+2n(n+1).3.已知数列{a n}、{b n}满足:a n+1=a n+b n,{b n+2}为等比数列,且b1=2,a2=4,a3=10.(1)试判断数列{b n}是否为等差数列,并说明理由;(2)求数列{a n}的前n项和S n.【解答】解:(1)数列{b n}不是等差数列.理由如下:由a n+1﹣a n=b n,且a2=4,a3=10,b1=2,得b2=a3﹣a2=6,又∵数列{b n+2}为等比数列,∴数列{b n+2}的首项为4,公比为2.∴3+2=4×22=16,得b3=14,显然2b2=12≠b1+b3=16.故数列{b n}不是等差数列;(2)结合(1)知,等比数列{b n+2}的首项为4,公比为2.故+2=4⋅2K1=2r1,∴=2r1−2.∵a n+1﹣a n=b n,b1=2,a2=4,∴a1=2,∴−K1=2−2(n≥2).令n=2,…,(n﹣1).得2−1=22−2,3−2=23−2,…−K1=2−2(n≥2),累加得−2=(22+23+⋯+2)−2(−1)(n≥2).∴=(2+22+23+⋯+2)−2+2=2(2−1)2−1−2+2=2r1−2(n≥2).又a1=2满足上式,∴=2r1−2.∴=(22−2×1)+(23−2×2)+⋯+(2r1−2p=(22+23+…+2n+1)﹣2(1+2+…+n)=4(2−1)2−1−2×or1)2=2r2−2−−4.题型四.讨论奇偶、绝对值求和1.数列{a n}的前n项和记为S n,对任意的正整数n,均有4S n=(a n+1)2,且a n>0.(1)求a1及{a n}的通项公式;(2)令=(−1)K14r1,求数列{b n}的前n项和T n.【解答】解:(1)当n=1时,41=(1+1)2,则a1=1;当n≥2时,由4S n=(a n+1)2,知4S n﹣1=(a n﹣1+1)2,联立两式,得4a n=(a n+1)2﹣(a n﹣1+1)2,化简得(a n+a n﹣1)(a n﹣a n﹣1﹣2)=0,∵a n>0,∴a n﹣a n﹣1﹣2=0,即{a n}是以a1=1为首项,2为公差的等差数列,故a n=2n﹣1;(2)=(−1)K14r1=(−1)K14(2K1)(2r1)=(﹣1)n﹣1(12K1+12r1),下面对n分奇偶数讨论:当n为偶数时,T n=(1+13)﹣(13+15)+…+(12K3+12K1)﹣(12K1+12r1)=1−12r1=22r1,当n为奇数时,T n=(1+13)﹣(13+15)+…﹣(12K3+12K1)+(12K1+12r1)=1+12r12r22r1,所以T n=为奇数为偶数.2.已知等差数列{a n}前n项和为S n,a5=9,S5=25.(1)求数列{a n}的通项公式及前n项和S n;(2)设=(−1),求{b n}前2n项和T2n.【解答】解:(1)由题意,设等差数列{a n}的公差为d,则5=1+4=95=51+5×42=25,整理,得1+4=91+2=5,解得1=1=2,∴a n=1+2(n﹣1)=2n﹣1,n∈N*,=o1+2K1)2=2.(2)由(1)知,设=(−1)=(﹣1)n•n2.T2n=b1+b2+…+b2n=(b1+b2)+(b3+b4)+…+(b2n﹣1+b2n)=(﹣12+22)+(﹣32+42)+…+[﹣(2n﹣1)2+(2n)2]=[(2﹣1)×(2+1)]+[(4﹣3)×(4+3)]+…+[2n﹣(2n﹣1)]×[2n+(2n﹣1)]=1+2+3+4+…+(2n﹣1)+2n=2δ(1+2p2=2n2+n.3.已知数列{a n}满足a1=﹣2,a n+1=2a n+4.(1)求a2,a3,a4;(2)猜想{a n}的通项公式并加以证明;(3)求数列{|a n|}的前n项和S n.【解答】解:(1)由已知,易得a2=0,a3=4,a4=12.(2)猜想=2−4.因为a n+1=2a n+4,所以a n+1+4=2(a n+4),r1+4+4=2,则{a n+4}是以2为首项,以2为公比的等比数列,所以+4=2,所以==2−4.(3)当n=1时,a1=﹣2<0,S1=|a1|=2;当n≥2时,a n≥0,所以=−1+2+⋯+=2+(22−4)+⋯+(2−4)=2+22+⋯+2−4(−1)=2(1−2)1−2−4(−1)=2r1−4+2,又n=1时满足上式.所以,当n∈N*时,=2r1−4+2.题型五.数列求和选填综合1.首项为正数的等差数列{a n}中,34=75,当其前n项和S n取最大值时,n的值为()A.5B.6C.7D.8【解答】解:∵首项为正数的等差数列{a n}中,34=75,∴5(a1+2d)=7(a1+3d),整理,得:1=−112,∵a1>0,∴d<0,∴=−112B+oK1)2=2(n﹣6)2﹣18d,∴当其前n项和S n取最大值时,n的值为6.故选:B.2.在等比数列{a n}中,a2•a3=2a1,且a4与2a7的等差中项为17,设b n=a2n﹣1﹣a2n,n∈N*,则数列{b n}的前2n项和为112(1−42).【解答】解:等比数列{a n}中,a2•a3=2a1,且a4与2a7的等差中项为17,设首项为a1,公比为q,则:23=214+27=34,整理得:13=213+216=34,解得:1=14=2.则:=1K1=2K3,所以:b n =a 2n ﹣1﹣a 2n =22K32−22K3=−22n ﹣4,则:T 2n =−14(1−42)1−4=112(1−42).故答案为:112(1−42).3.已知数列{a n }的前n 项和为S n ,a 1=1,a 2=2且对于任意n >1,n ∈N *满足S n +1+S n ﹣1=2(S n +1),则()A .a 4=7B .S 16=240C .a 10=19D .S 20=381【解答】解:当n ≥2时,S n +1+S n ﹣1=2(S n +1)⇒S n +1﹣S n =S n ﹣S n ﹣1+2⇒a n +1=a n +2.所以数列{a n }从第2项起为等差数列,a n =1,=12−2,≥2,所以,a 4=6,a 10=18.S n =a 1+(2+)(K1)2=n (n ﹣1)+1,S 16=16×15+1=241,S 20=20×19+1=381.故选:D .4.已知数列{a n }是首项为1,公差为2的等差数列,数列{b n }满足关系11+22+33+⋯+=12−1,数列{b n }的前n 项和为S n ,则S 5的值为()A .﹣454B .﹣450C .﹣446D .﹣442【解答】解:数列{a n }是首项为1,公差为2的等差数列,可得a n =1+2(n ﹣1)=2n ﹣1,由11+22+33+⋯+=12−1,可得11=12−1=−12,可得b 1=﹣2,又11+22+⋯+K1K1=12K1−1,且11+22+33+⋯+=12−1,两式相减可得=12−12K1=−12,可得b n=﹣(2n﹣1)•2n,则S5=﹣2﹣3•4﹣5•8﹣7•16﹣9•32=﹣454,故选:A.5.已知数列{a n}满足1=32,r1=3+3,若=3,则c1+c2+⋅⋅⋅+c n=(2r1)⋅3−14.【解答】解:因为1=32,r1=3+3,所以1r1=+33=13+1,即1r1−1=13,所以数列{1}是首项11=23,公差为13的等差数列,所以1=23+13(−1)=r13,则=3=(+1)3K1,则1+2+⋅⋅⋅+=2×30+3×31+4×32+⋅⋅⋅+(+1)×3K1,设T=2×30+3×31+4×32+⋅⋅⋅+(n+1)×3n﹣1①,则3T=2×3+3×32+……+n×3n﹣1+(n+1)×3n②,①﹣②可得:﹣2T=2+3+32+……+3n﹣1﹣(n+1)×3n=1+3−13−1−(n+1)×3n,则=(2r1)⋅3−14.即1+2+⋅⋅⋅+=(2r1)⋅3−14.故答案为:(2r1)⋅3−14.6.已知数列{a n}的前n项和为S n,a1=2,S n=λa n﹣2,其中λ为常数,若a n b n=13﹣n,则数列{b n}中的项的最小值为−1214.【解答】解:根据题意,数列{a n}的满足a1=2,S n=λa n﹣2,当n=1时,有a1=S1=λa1﹣2,即2=2λ﹣2,解可得λ=2,则S n=2a n﹣2,①=2a n﹣1﹣2,②则有S n﹣1①﹣②:a n=2a n﹣2a n﹣1,变形可得a n=2a n﹣1,则数列{a n }是首项为a 1=2,公比为2的等比数列,则a n =2n ,又由a n b n =13﹣n ,则b n =13−2,当n ≤13时,b n ≥0,当n ≥14时,b n <0,且{b n }为递增数列,则当n =14时,b n 取得最小值,此时b 14=−1214;故答案为:−1214.7.已知数列{a n }和{b n }首项均为1,且a n ﹣1≥a n (n ≥2),a n +1≥a n ,数列{b n }的前n 项和为S n ,且满足2S n S n +1+a n b n +1=0,则S 2019=()A .2019B .12019C .4037D .14037【解答】解:∵a n ﹣1≥a n (n ≥2),a n +1≥a n ,∴a n ≥a n +1≥a n ,∴a n =a n +1,另外:a 1≥a 2≥a 1,可得a 2=a 1=1,∴a n =1.∵2S n S n +1+a n b n +1=0,∴2S n S n +1+b n +1=0,∴2S n S n +1+S n +1﹣S n =0,∴1r1−1=2.∴数列{1}是等差数列,首项为1,公差为2.∴1=1+2(n ﹣1)=2n ﹣1,∴S n =12K1.∴S 2019=14037.故选:D .8.已知数列{a n }满足:a 1=1,a 2=13,11+22+⋅⋅⋅+=r1K1+6(n ≥2且n ∈N +),等比数列{b n }公比q =2,令c n =为奇数,为偶数,则数列{c n }的前n 项和S 2n =2n 2﹣n +4r1−43.【解答】解:因为a1=1,a2=13,11+22+⋅⋅⋅+=r1K1+6(n≥2且n∈N+),①可得n=2时,11+22=31+6,即b1+3b2=b3+6,由等比数列的{b n}的公比为q=2,即b1+6b1=4b1+6,解得b1=2,所以b n=2n,当n=3时,11+22+33=42+6,即2+3×4+83=3×16+6,解得a3=15,又11+22+⋯+K1K1=K2+6(n≥3,且n∈N+),②①﹣②可得,=r1K1−K2,即2=2r1K1−2K2,化为1+1K2=2K1,又11+13=6=22,所以{1}为等差数列,且公差d=12−11=2,则1=11+2(n﹣1)=2n﹣1,所以c n=2−1,为奇数2,为偶数,所以S2n=1+22+5+24+…+(4n﹣3)+22n=(1+5+…+4n﹣3)+(22+24+…+22n)=o1+4K3)2+4(1−4)1−4=2n2﹣n+4r1−43.故答案为:2n2﹣n+4r1−43.9.已知数列{a n}满足2a n a n+1+a n+3a n+1+2=0,其中1=−12,设=K+1,若b3为数列{b n}中唯一最小项,则实数λ的取值范围是(5,7)【解答】解:∵2a n a n+1+a n+3a n+1+2=0,∴a n+1=−(+2)2+3,∴r1+1=−(+2)2+3+1=+12+3,∴1r1+1=2+3+1=2+1+1,即1r1+1−1+1=2,所以数列{1+1}是公差为2的等差数列,∵11+1=2,∴1+1=2+(−1)×2=2n,∴b n=2n(n﹣λ),∴b n+1﹣b n=2(n+1)(n+1﹣λ)﹣2n(n﹣λ)=4n+2﹣2λ,因为b3为数列{b n}中唯一最小项,所以b1>b2>b3<b4<b5<…,∴当n=1时,b2﹣b1=6﹣2λ<0,得λ>3,当n=2时,b3﹣b2=10﹣2λ<0,得λ>5,当n≥3时,4n+2﹣2λ>0恒成立,即λ<2n+1,即有λ<7.所以5<λ<7.故答案为:(5,7).课后作业.数列求和1.已知各项均不相等的等差数列{a n}的前四项和S4=14,且a1,a3,a7成等比.(1)求数列{a n}的通项公式;(2)设T n为数列{1r1}的前n项和,若λT n≤a n+1对一切n∈N*恒成立,求实数λ的最大值.【解答】解:(1)各项均不相等的等差数列{a n}的前四项和S4=14,且a1,a3,a7成等比.设公差为d,由已知得:41+6=14(1+2p2=1(1+6p,,联立解得d=1或d=0(舍去),a1=2,故:a n=n+1.(2)由(1)得:1r1=1(r1)(r2)=1r1−1r2,所以:=12−13+13−14+⋯+1r1−1r2.=12−1r2,=2(r2).由于:λT n≤a n+1对一切n∈N*恒成立,所以:2(r2)≤+2,解得:≤2(r2)2+4)+8,由于:+4≥≥4故:2(+4)+8≥16,即:λ≤16.故λ的最大值为16.2.设等差数列{a n}的前n项和为S n,a3=6,a7=14.(1)求数列{a n}的通项公式及S n;(2)若_____,求数列{b n}的前n项和T n.在①b n=2•a n;②b n=2+r12;③b n=(﹣1)n•a n这三个条件中任选一个补充在第(2)问中,并对其求解.【解答】解:(1)设等差数列{a n}的公差为d,由a3=6,a7=14.得4d=a7﹣a3=14﹣6=8,解得d=2,所以a1=a3﹣2d=6﹣4=2,所以a n=2+2(n﹣1)=2n;S n=2(2+2n)=n2+n.(2)若选择条件①:由(1)可知a n=2n,则b n=2•a n=2n•4n,所以T n=b1+b2+…+b n=2×41+4×42++6×43…+(2n)•4n;4T n=2×42+4×43+6×44+…+(2n)•4n+1,两式相减得:﹣3T n=2×41+2×42+2×43+…+2×4n﹣2n•4n+1=2×4(1−4)1−4−2n•4n+1=−83(1﹣4n)﹣2n•4n+1,所以T n=89(1﹣4n)+23•4n+1;若选择条件②:由a n=2n,S n=n2+n,得b n=2+r12=82+8r4or1)=8+4or1)=8+4(1−1r1),所以T n=b1+b2+b3+…+b n=8n+4(1−12+12−13+⋯+1−1r1)=8n+4r1=82+12r1;若选择条件③:由a n=2n,得b n=(﹣1)n•a n=(﹣1)n•2n,所以T n=﹣2+4﹣6+8+…+(﹣1)n•2n,当n为偶数时,T n=(﹣2+4)+(﹣6+8)++[﹣2(n﹣1)+2n]=2×2=n,当n为奇数时,T n=(﹣2+4)+(﹣6+8)+…+[﹣2(n﹣2)+2(n﹣1)]﹣2n=K12×2n =﹣n﹣1,所以T n=,为奇数−−1,为偶数.3.已知数列{a n}的各项均为正数,前n项和为S n,且S n=(+1)2(n∈N*).(1)求数列{a n}的通项公式;(2)设b n=2(−2)(r1),T n=b1+b2+…+b n,求T n.【解答】解:(1)S n=(+1)2(n∈N*),当n=1时,1=1(1+1)2,∴a1=1,当n≥2时,由S n=(+1)2,得2=2+①取n=n﹣1,得2K1=K12+K1②①﹣②得:2=2(−K1)=2−K12+−K1,∴(a n+a n﹣1)(a n﹣a n﹣1﹣1)=0,∵a n+a n﹣1>0,∴a n﹣a n﹣1=1,n≥2,∴数列{a n}是等差数列,则a n=n;(2)由S n=(+1)2,a n=n,∴=or1)2,则=2(−2)(r1)=(−2),∴=1−2+2(−2)2+⋯+K1(−2)K1+(−2),−2=1+2−2+⋯+K1(−2)K2+(−2)K1,两式作差得:∴−3=1+1−2+⋯+1(−2)K1−(−2)=1−(−12)1−(−12)−(−2)=2+(−12)K13−(−2),∴=3(−2)−2+(−12)K19=3r29(−2)−29.4.在数列{a n}中,a1=12,对任意的n∈N*,都有1(r1)r1=B+1B成立.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{a n}的前n项和S n;并求满足S n<1516时n的最大值.【解答】解:(I)∵a1=12,对任意的n∈N*,都有1(r1)r1=B+1B成立,∴1(r1)r1−1B=1.∴1B=2+(n﹣1)=n+1,∴a n=1or1).(II)a n=1or1)=1−1r1.∴数列{a n}的前n项和S n=(1−12)+(12−13)+⋯+(1−1r1)=1−1r1,S n<1516,即1−1r1<1516,解得n<15,因此满足S n<1516时n的最大值为14.。
高考数学裂项相消十个基本公式
裂项法表达式:1/[n(n+1)]=(1/n)-[1/(n+1)]。
裂项相消公式有n·n!=(n+1)!-n!;1/[n(n+1)]=(1/n)- [1/(n+1)]等。
裂项法求和公式
(1)1/[n(n+1)]=(1/n)- [1/(n+1)]
(2)1/[(2n-1)(2n+1)]=1/2[1/(2n-1)-1/(2n+1)]
(3)1/[n(n+1)(n+2)]=1/2{1/[n(n+1)]-1/[(n+1)(n+2)]}(4)1/(√a+√b)=[1/(a-b)](√a-√b)
(5)n·n!=(n+1)!-n!
(6)1/[n(n+k)]=1/k[1/n-1/(n+k)]
(7)1/[√n+√(n+1)]=√(n+1)-√n
(8)1/(√n+√n+k)=(1/k)·[√(n+k)-√n]
什么是裂项相消法
数列的裂项相消法,就是把通项拆分成“两项的差”的形式,使得恰好在求和时能够“抵消”多数的项而剩余少数几项。
三大特征:
(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x为任意自然数)的,但是只要将x提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” (3)分母上几个因数间的差是一个定值。
(3)分母上几个因数间的差是一个定值。
裂差型运算的核心环节是“两两抵消达到简化的目的”。
整理高中数学复习数列求和裂项相消法
高中数学复习数列求和裂项相消法常用的数列求和方法数列求和是中学数学中一个十分有趣的课题,它对于加深巩固中学课程的学习,开拓中学生的知识领域都十分有益。
这个开阔、有趣的“数列求和”的世界,可以极大的丰富我们的数学知识,提高我们的数学思维能力。
其中最重要的是等差数列和等比数列的和。
我们采用倒序像相加法和错位相减法推导他们的前n 项和。
除此之外还应掌握有等差数列和等比数列这两个基本数列出发组合变形构造的新数列的求和方法。
除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧。
对各种类型的数列给出数列求和是中学数学中一个十分有趣的课题,它对于加深巩固中学课程的学习,开拓中学生的知识领域都十分有益。
对各种类型的数列给出求和的主要方法与实例。
这些方法是我们求一般数列的通法。
一:公式法直接利用公式求和,如果是等差、等比数列可直接利用其求和公式求和,而有些特殊的常见数列则应记住其求和结果,以便于应用。
直接利用公式求和是数列求和的最基本的方法.常用的数列求和公式有:等差数列的前n项和公式:等比数列的前n项和公式:③1+3+5+……+(2n-1)=,,例1、(1)求和:1+1a+1a2+⋯⋯+1a n(2)已知,求的前n项和.例2:是等差数列,前10项的和为100,前100项的和为10,求前110项的和.解析:运用等差数列的性质:若,则.⋅⋅⋅++⋅⋅⋅+++n xxxx32∵,∴.因此,.点评:在运用公式求和时,已知可以求,但往往在不易求得这些值时,利用“整体值”求和十分有效,这种“整体值”的运用在后面的等比数列求和时也常用.练习:已知等比数列中,,,则.例3. 求数列的前项和已知数列的前项和,求数列的前项和.解:,当时,,当时,也适合上式,∴时,,令,则,∴时,;当时,.(1)当时,;(2)当时,.故点评:对于带绝对值号的数列求和问题,应先弄清取什么值时,或,然后再求解.练习:1..在等差数列中,是数列的前n项和,(1)(2)若,求.二. 错位相减法求和。
2023高考真题知识总结方法总结题型突破:30 数列中裂项相消法求和问题(学生版)精选全文
可编辑修改精选全文完整版专题30 数列中裂项相消法求和问题【高考真题】1.(2022·新高考Ⅰ)记n S 为数列{}n a 的前n 项和,已知11, n n S a a ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭是公差为13的等差数列. (1)求{}n a 的通项公式;(2)证明:121112n a a a +++<. 【方法总结】裂项相消法求和裂项相消法裂项相消法的基本思想就是把通项a n 分拆成a n =b n +k -b n (k ≥1,k ∈N *)的形式,从而在求和时达到某些项相消的目的,在解题时要善于根据这个基本思想变换数列{a n }的通项公式,使之符合裂项相消的条件.主要适用于⎩⎨⎧⎭⎬⎫1a n a n +1或⎩⎨⎧⎭⎬⎫1a n a n +2(其中{a n }为等差数列)等形式的数列求和. 常用的裂项公式(1)若{a n }是等差数列,则1a n a n +1=1d ⎝⎛⎭⎫1a n -1a n +1,1a n a n +2=12d ⎝⎛⎭⎫1a n -1a n +2; (2)1n (n +1)=1n -1n +1,1n (n +k )=1k ⎝⎛⎭⎫1n -1n +k ; (3)1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1; (4)1n (n +1)(n +2)=12⎣⎡⎦⎤1n (n +1)-1(n +1)(n +2); (5)2n +1n 2(n +1)2=1n 2-1(n +1)2(6)1n +n +1=n +1-n ,1n +n +k =1k (n +k -n ); (7)log a ⎝⎛⎭⎫1+1n =log a (n +1)-log a n ; (8)2n (2n +1)(2n +1+1)=12n +1-12n +1+1,2n -k (2n +1)(2n +1+1)=12k ⎝⎛⎭⎫12n +1-12n +1+1; (9)n +2(n 2+n )2n +1=1n ·2n -1(n +1)2n +1; (10)k ·2k +1(k +1)(k +2)=2k +2k +2-2k +1k +1; (11) (-1)n n (n -1)(n +1)=(-1)n 12⎝⎛⎭⎫1n -1+1n +1.注意:(1)裂项系数取决于前后两项分母的差.(2)在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项.【题型突破】1.在数列{a n }中,a 1=4,na n +1-(n +1)a n =2n 2+2n .(1)求证:数列⎩⎨⎧⎭⎬⎫a n n 是等差数列; (2)求数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和S n . 2.已知数列{a n }满足a 1=12,且a n +1=2a n 2+a n. (1)求证:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列; (2)若b n =a n a n +1,求数列{b n }的前n 项和S n .3.(2017·全国Ⅲ)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n .(1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和. 4.(2015·全国Ⅰ)S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3.(1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和. 5.正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0.(1)求数列{a n }的通项公式a n ;(2)令b n =n +1(n +2)2a 2n,求数列{b n }的前n 项和为T n . 6.在数列{a n }中,a 1=1,a n +1·a n =a n -a n +1.(1)求数列{a n }的通项公式;(2)若b n =lg a n +2a n,求数列{b n }的前n 项和S n . 7.已知数列{a n },{b n },其中a 1=3,b 1=-1,且满足a n =12(3a n -1-b n -1),b n =-12(a n -1-3b n -1),n ∈N *, n ≥2.(1)求证:数列{a n -b n }为等比数列;(2)求数列⎩⎨⎧⎭⎬⎫2n a n a n +1的前n 项和T n . 8.(2018·天津)设{a n }是等比数列,公比大于0,其前n 项和为S n (n ∈N *),{b n }是等差数列.已知a 1=1, a 3=a 2+2,a 4=b 3+b 5,a 5=b 4+2b 6.(1)求{a n }和{b n }的通项公式;(2)设数列{S n }的前n 项和为T n (n ∈N *),①求T n ;②证明:∑k =1n (T k +b k +2)b k (k +1)(k +2)=2n +2n +2-2(n ∈N *). 9.已知数列{a n }为各项非零的等差数列,其前n 项和为S n ,满足S 2n -1=a 2n .(1)求数列{a n }的通项公式;(2)记b n =n a n a n +1(-1)n ,求数列{b n }的前n 项和T n . 10.在等差数列{a n }中,已知a 6=16,a 18=36.(1)求数列{a n }的通项公式a n ;(2)若________,求数列{b n }的前n 项和S n .在①b n =4a n a n +1,②b n =(-1)n ·a n ,③b n =2a n ·a n 这三个条件中任选一个补充在第(2)问中,并对其求解. 注:若选择多个条件分别解答,按第一个解答计分.11.在①b n =na n ,②b n =⎩⎪⎨⎪⎧a n ,n 为奇数,log 2a n ,n 为偶数,③b n =1(log 2a n +1)(log 2a n +2)这三个条件中任选一个,补充在下 面问题中,并解答.问题:已知数列{a n }是等比数列,且a 1=1,其中a 1,a 2+1,a 3+1成等差数列.(1)求数列{a n }的通项公式;(2)记________,求数列{b n }的前2n 项和T 2n .12.设等差数列{a n }的前n 项和为S n ,已知a 1=9,a 2为整数,且S n ≤S 5.(1)求{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和为T n ,求证:T n ≤49. 13.在等比数列{a n }中,首项a 1=8,数列{b n }满足b n =log 2a n (n ∈N *),且b 1+b 2+b 3=15.(1)求数列{a n }的通项公式;(2)记数列{b n }的前n 项和为S n ,又设数列⎩⎨⎧⎭⎬⎫1S n 的前n 项和为T n ,求证:T n <34. 14.已知数列{a n }为等比数列,数列{b n }为等差数列,且b 1=a 1=1,b 2=a 1+a 2,a 3=2b 3-6.(1)求数列{a n },{b n }的通项公式;(2)设c n =1b n b n +2,数列{c n }的前n 项和为T n ,证明:15≤T n <13. 15.已知等比数列{a n }的前n 项和为S n (n ∈N *),满足S 4=2a 4-1,S 3=2a 3-1.(1)求{a n }的通项公式;(2)记b n =log 2()a n ·a n +1(n ∈N *),数列{b n }的前n 项和为T n ,求证:1T 1+1T 2+…+1T n<2. 16.已知数列{a n }的前n 项和为S n ,a 1=32,2S n =(n +1)a n +1(n ≥2). (1)求{a n }的通项公式;(2)设b n =1(a n +1)2(n ∈N *),数列{b n }的前n 项和为T n ,证明:T n <710(n ∈N *). 17.已知各项均不相等的等差数列{a n }的前四项和S 4=14,且a 1,a 3,a 7成等比数列.(1)求数列{a n }的通项公式;(2)设T n 为数列⎩⎨⎧⎭⎬⎫1a n a n +1前n 项的和,若λT n ≤a n +1对一切n ∈N *恒成立,求实数λ的最大值. 18.设函数f (x )=23+1x (x >0),数列{a n }满足a 1=1,a n =f (1a n -1),n ∈N *,且n ≥2. (1)求数列{a n }的通项公式;(2)对n ∈N *,设S n =1a 1a 2+1a 2a 3+1a 3a 4+…+1a n a n +1,若S n ≥3t 4n 恒成立,求实数t 的取值范围. 19.已知数列{a n }满足a 1=1,a 1+12a 2+13a 3+ (1)a n =a n +1-1(n ∈N *),数列{a n }的前n 项和为S n . (1)求数列{a n }的通项公式;(2)设b n =1S n ,T n 是数列{b n }的前n 项和,求使得T n <m 10对所有n ∈N *都成立的最小正整数m . 20.已知公差不为0的等差数列{a n }的首项a 1=2,且a 1+1,a 2+1,a 4+1成等比数列.(1)求数列{a n }的通项公式;(2)设b n =1a n a n +1,n ∈N *,S n 是数列{b n }的前n 项和,求使S n <319成立的最大的正整数n .。
高考数学(理)之数列 专题08 数列的求和(裂项相消法求和)(解析版)
数列08 数列的求和(裂项相消法求和)一、具体目标:1.掌握等差、等比数列的求和方法; 2.掌握等非差、等比数列求和的几种常见方法.考纲解读:会用公式法、倒序相加法、错位相减法、裂项相消法、分组转化法求解不同类型数列的和,非等差、等比数列的求和是高考的热点,特别是错位相减法和裂项相消法求和. 二、知识概述:求数列前n 项和的基本方法(1)直接用等差、等比数列的求和公式求和; 等差:11()(1)22n n n a a n n S na d +-==+; 等比:11(1)(1)(1)1n n na q S a q q q =⎧⎪=-⎨≠⎪-⎩公比是字母时需要讨论.(理)无穷递缩等比数列时, (2)掌握一些常见的数列的前n 项和公式:()21321+=++++n n n Λ; n n n +=++++22642Λ; 2531n n =++++Λ;()()61213212222++=++++n n n n Λ;()2333321321⎥⎦⎤⎢⎣⎡+=++++n n n Λ(3)倒序相加法求和:如果一个数列{}na ,与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法.(4)错位相减法求和:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求.q 倍错位相减法:若数列{}n c 的通项公式n n n c a b =⋅,其中{}n a 、{}n b qa S -=11【考点讲解】中一个是等差数列,另一个是等比数列,求和时一般可在已知和式的两边都乘以组成这个数列的等比数列的公比,然后再将所得新和式与原和式相减,转化为同倍数的等比数列求和.这种方法叫q 倍错位相减法. 温馨提示:1.两个特殊数列等差与等比的乘积或商的组合.2.关注相减的项数及没有参与相减的项的保留.(5)分组求和:有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,把数列的每一项分成若干项,使其转化为等差或等比数列,先分别求和,再合并.通项公式为a n =,,n n b n c n ⎧⎪⎨⎪⎩为奇数为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和.形如:n n b a +其中⎪⎩⎪⎨⎧是等比数列是等差数列nn b a ,()()⎩⎨⎧∈=∈-==**N k k n n g N k k n n f a n ,2,,12, (6)合并求和:如求22222212979899100-++-+-Λ的和.(7)裂项相消法求和:把数列的通项拆成两项之差,正负相消剩下首尾若干项. 常见拆项:111;(1)1n n n n =-++ 1111;(21)(21)22121n n n n ⎛⎫=- ⎪-+-+⎝⎭ 1111(1)(2)2(1)(1)(2)n n n n n n n ⎡⎤=-⎢⎥+++++⎣⎦;n n n n -+=++111.1.【2019年优选题】+⨯411+⨯741Λ+⨯1071=+-+)13)(23(1n n ( )A.13+n nB.131++n nC.1312+-n n D.1322+-n n 【解析】本题运用的是裂项相消法将每项裂开两项后相加,中间的项是互为相反数相加和为零. 原式=13)1311(31)]131231()7141()411[(31-=+-=+--++-+-n nn n n Λ. 【答案】A2.【2019年优选题】设数列ΛΛΛΛ,11,,321,211++++n n 的前n 项和为n S ,则n S 等于( )A .n n -+1 B.n n ++1 C.11-+nD.11++n【真题分析】【解析】本题考查的是裂项相消法求和,本题是在每项的分母有理化的同时,将每一项转化为两项后,再相加,中间项相消. 因为n n n n -+=++111.所以11321211+++++++=n n S n ΛΛn n n n -++--++-+-=112312Λ11-+=n【答案】C3.【2019年优选题】._______321132112111=+++++++++++nΛΛ 【解析】本题考点是求数列通项及裂项相消法求和.∵12112()123(1)1n a n n n n n ===-++++++L12111211131212112+=⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+-++-+-=n n n n n S n Λ. 【答案】12+n n4.【2017年高考全国II 卷理数】等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑___________. 【解析】设等差数列的首项为1a ,公差为d ,由题意有1123434102a d a d +=⎧⎪⎨⨯+=⎪⎩ ,解得111a d =⎧⎨=⎩ , 数列的前n 项和()()()111111222n n n n n n n S na d n --+=+=⨯+⨯=, 裂项可得12112()(1)1k S k k k k ==-++, 所以1111111122[(1)()()]2(1)223111nk kn S n n n n ==-+-++-=-=+++∑L . 【答案】21n n + 5.【2018年高考天津卷理数】设{}n a 是等比数列,公比大于0,其前n 项和为()n S n *∈N ,{}n b 是等差数列. 已知11a =,322a a =+,435a b b =+,5462a b b =+.(1)求{}n a 和{}n b 的通项公式;(2)设数列{}n S 的前n 项和为()n T n *∈N , (i )求n T ;(ii )证明221()22()(1)(2)2n nk k k k T b b n k k n +*+=+=-∈+++∑N . 【解析】本小题主要考查等差数列的通项公式,等比数列的通项公式及其前n 项和公式等基础知识.考查数列求和的基本方法和运算求解能力.满分13分.(1)设等比数列{}n a 的公比为q.由1321,2,a a a ==+可得220q q --=. 因为0q >,可得2q =,故12n n a -=.设等差数列{}n b 的公差为d ,由435a b b =+,可得13 4.b d +=由5462a b b =+, 可得131316,b d += 从而11,1,b d == 故.n b n =所以,数列{}n a 的通项公式为12n n a -=,数列{}n b 的通项公式为.n b n =(2)(i )由(1),有122112nn n S -==--,故 1112(12)(21)22212n nnkkn n k k T n n n +==⨯-=-=-=-=---∑∑.(ii )证明:因为11212()(222)222(1)(2)(1)(2)(1)(2)21k k k k k k+k T +b b k k k k k k k k k k k k ++++--++⋅===-++++++++,所以,324321221()2222222()()()2(1)(2)3243212n n n nk k k k T b b k k n n n ++++=+=-+-++-=-+++++∑L . 6.【2017年高考全国III 卷】设数列{}n a 满足123(21)2n a a n a n +++-=L .(1)求{}n a 的通项公式;(2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和.【解析】(1)因为a 1+3a 2+…+(2n −1)a n =2n ,故当n ≥2时,a 1+3a 2+…+(2n −3)a n−1 =2(n −1). 两式相减得(2n −1)a n =2,所以a n =22n−1 (n ≥2).又由题设可得a 1=2,从而{a n }的通项公式为a n =22n−1.(2)记{a n2n+1}的前n 项和为S n ,由(1)知a n2n+1 = 2(2n+1)(2n−1)=12n−1−12n+1.则 S n = 11− 13+ 13− 15+…+12n−1−12n+1=2n2n+1.【答案】(1)122-=n a n ;(2)122+n n.1.数列{}n a 的前n 项和为n S ,若5)1(1S n n a n ,则+=等于 ( )A.1B.56C.16D.130【解析】因为111)1(1+-=+=n n n n a n,所以⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=61515141413131212115S6561161515141413131212115=-=-+-+-+-+-=S .【答案】B 2.)13)(23(1741411+-++⨯+⨯n n Λ等于 ( ) A.2231n n -+ B.2131n n -+ C.131n n ++ D.31nn + 【解析】1111()(32)(31)33231n a n n n n ==--+-+111111111:()(1)31447323133131n nS n n n n =-+-++-=-=-+++L【答案】D3.数列{}n a 满足12121n n a n n n =++++++L ,12n n n b a a +=又,求数列{}nb 的前n 项和. 【解析】因为1(12)12=+++=+L n n a n n ,又128(1)+==+n n n b a a n n = 118(1-+n n ) 12111111188()()()811223111n n b b b n n n n ⎡⎤⎡⎤+++=-+-++-=-=⎢⎥⎢⎥+++⎣⎦⎣⎦L L 所以. 【模拟考场】4.数列为等差数列,为正整数,其前项和为,数列为等比数列,且,数列是公比为64的等比数列,. (1)求;(2)求证. 【解析】(1)设的公差为,的公比为,则为正整数,,依题意有①由知为正有理数,故为的因子之一, 解①得.故(2)∴5.已知各项都不相等的等差数列}{n a 的前六项和为60,且2116a a a 和为 的等比中项. (1)求数列}{n a 的通项公式n n S n a 项和及前;(2)若数列}1{,3),(}{11nn n n n b b N n a b b b 求数列且满足=∈=-*+的前n 项和T n . 【解析】(1)设等差数列}{n a 的公差为d ,则⎩⎨⎧+=+=+21111)5()20(,60156d a d a a d a 解得⎩⎨⎧==.5,21a d32+=∴n a n .)4(2)325(+=++=n n n n S n(2)由).,2(,111*--+∈≥=-∴=-N n n a b b a b b n n n n n n{}n a n a n n S {}n b 113,1a b =={}n a b 2264b S =,n n a b 1211134n S S S +++<L {}n a d {}n b q d 3(1)n a n d =+-1n n b q -=1363(1)22642(6)64n n nda d n d ab q q b q S b d q +++-⎧====⎪⎨⎪=+=⎩(6)64d q +=q d 61,2,3,62,8d q ==132(1)21,8n n n a n n b -=+-=+=35(21)(2)n S n n n =++++=+L 121111111132435(2)n S S S n n +++=++++⨯⨯⨯+L L 11111111(1)2324352n n =-+-+-++-+L 11113(1)22124n n =+--<++112211121112,()()()(1)(14)3(2).3,n n n n n n n n b b b b b b b b a a a b n n n n b -----≥=-+-++-+=++++=--++=+=L L 当时对也适合))(2(*∈+=∴N n n n b n ).211(21)2(11+-=+=∴n n n n b n )211123(21)2114121311(21+-+-=+-++-+-=n n n n T n Λ )2)(1(4532+++=n n n n6.已知n S 是数列{n a }的前n 项和,并且1a =1,对任意正整数n ,241+=+n n a S ;设Λ,3,2,1(21=-=+n a a b n n n ).(I )证明数列}{n b 是等比数列,并求}{n b 的通项公式; (II )设}log log 1{,32212++⋅=n n n n n C C T b C 为数列的前n 项和,求n T . 【解析】(I )),2(24,2411≥+=∴+=-+n a S a S n n n n Θ 两式相减:),2(4411≥-=-+n a a a n n n*),(2)2(2,2)(42,2),2)((41111121111N n b a a b a a a a a b a a b n a a a n n n n n n n n n n n n n n n n ∈=-=--=-=∴-=∴≥-=∴++++++++-+,21=∴+nn b b }{n b ∴是以2为公比的等比数列, ,325,523,24,2112121121=-==+=∴+=+-=b a a a a a a a b 而Θ*)(231N n b n n ∈⋅=∴-(II ),231-==n n n b C ,)1(12log 2log 1log log 11222212+=⋅=⋅∴+++n n C C n n n n 而,111)1(1+-=+n n n n .111)111()4131()3121()211(+-=+-++-+-+-=∴n n n T n Λ7.已知数列{}a n :ΛΛΛ,2133323122211nn n n ++++++,,,, ①求证数列{}a n 为等差数列,并求它的公差. ②设()N n a a b n n n ∈=+11,求……++++n b b b 21的和。
数列求和——裂项相消法——教案2
数列求和方法之——裂项相消法(课型:高三复习课)授课人:王彦文一、教学目标1、使学生能够熟练掌握应用裂项相消法给数列求和。
2、让学生能够(1)准确辨认出这类问题(应用裂项相消法求和)的形式:(2)掌握如何拆项,如何提系数,消去之后余项是什么:二、教学重难点重点:利用裂项相消法求数列的前n 项之和.难点:在裂项相消法中如何“裂项”,裂项相消法的应用.三、教学过程(一)例题引入:求数列1,—21,21,—31,31,—41,41,…….—n 1,n 1,—11+n 的前2n 项和(二)裂项相消求和:例1、比较上题求:1111122334(1)n S n n =++++⨯⨯⨯+…的前n 项和变式:求)12)(12(1751531311+-+⋅⋅⋅+⨯+⨯+⨯=n n S n总结:1、常见的裂项有:(1)=+)2(1n n (2)=+)(1k n n (2)=+-)12)(12(1n n ;(3)=⋅+11n n a a (其中数列{}n a 是等差数列,公差为d )例2.已知数列{}n a 的各项如下:1,211+,3211++,…………,n ++++ 3211。
求它的前n 项和n S 。
变式: 11211++⋅⋅⋅++++=n n n n a n ,又12+⋅=n n n a a b ,求数列{bn}的前n 项的和.3、(备选题)能力提升(全国新课标)已知等比数列{}n a 的各项均为正数,且26223219,13a a a a a ==+. (1)求数列{}n a 的通项公式;(2)设n n a a a b 32313log log log +⋅⋅⋅++=,求数列}1{n b 的前n 项和.四、课堂总结:(口述)六、课后作业:1、已知2221111(2)23n S n n =+++⋅⋅⋅≥,那么n S 的范围是? 2、.S ,1-41n 2求已知n a n =七、课后反思。
1数列求和之裂项相消法优质课件PPT全
1
nn
k
1 k
1 n
n
1
k
变式4:
求和:
Sn
1+ 1 1+2
1 1+2+3
1
1+2+3
n
例2 数列an的前n项和Sn , 通项公式an 2n1,
设bn
=
an +1 Sn Sn+1
,求:数列bn
的前项和Tn
bn
2n 2n 1 2n1 1
1
1
2n 1 2n1 1
1
Tn =1 2n1 1
1 n 1
n ,求其前n项和为Sn.
知识归纳
裂项相消法 分式型
裂项相消法的一般步骤 求通项 裂项 相消
裂项相消法常见裂项公式
求和
变式4:数列的通项公式an
nn
1
1 n
2
, 求其前n项和Sn.
n
n
1
1
n
2
1 2
n
1
n 1
n
1
1
n
2
Sn
=
1 2
1 2
n
1
1
n
2
变式1: 已知数列an为等差数列,a1 1 ,a1 a2 a3
S 数列 bn
满足 bn
2n 1
anan1 2
求:数列 bn
的前n项和
n
bn
2n
n2 n
1
12
1 n2
1 n 1 2
提升
数列an的前n项和Sn ,通项公式an
1 n2
,
证明: Sn 2
小结
裂项相消法-高考数学复习
所以 2Tn= 2 + 3 + 2 + 1 − 3-1,
所以 2Tn- +1 = 2 + 3 + 2 + 1 − 3-1- 2 + 1 = 2 + 3 − 3-1,
当 n≥3 时, 2 + 3 − 3-1≥ 2 × 3 + 3 − 3-1=3- 3-1=2- 3>0,
-1
-2
又
2
·…·
1
+1
-1
4
3
·a1=
×
×
×…× 2 × 1 ·a1(n≥2),
-1
-2 -3
(+1)×
(+1)
a1=1,∴an= 2×1 ×1= 2 (n≥2).
又当 n=1 时,a1=1 也符合上式,
(+1)
∴an= 2 .
①
②
1
2
1
1
(2)证明 由(1)知, = (+1)=2 - +1 ,
1 + 3 + 1 + 6 = 20,
则
9×8
91 + 2 = 27(1 + ),
21 + 9 = 20,
1 = 1,
即
解得
181 = 9,
= 2,
所以 an=a1+(n-1)d=1+2(n-1)=2n-1.
(2)证明 bn=
2
+2 +
2( 2+3- 2-1)
4
+1
1
.
4
高中数学复习_数列求和_裂项相消法
裂项相消法求和把数列的通项拆成两项之差、正负相消剩下首尾若干项。
1、 特别是对于⎭⎬⎫⎩⎨⎧+1n n a a c ,其中{}n a 是各项均不为0的等差数列,通常用裂项相消法,即利用1+n n a a c =⎪⎪⎭⎫ ⎝⎛-+111n n a a d c ,其中()n n a a d -=+1 2、 常见拆项:111)1(1+-=+n n n n )121121(21)12)(12(1+--=+-n n n n ])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n !)!1(!n n n n -+=⋅)!1(1!1)!1(+-=+n n n n 例1 求数列1{}(1)n n +的前n 和n S .例2 求数列1{}(2)n n +的前n 和n S .例3 求数列1{}(1)(2)n n n ++的前n 和n S .例4 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.例5:求数列311⨯,421⨯,531⨯,…,)2(1+n n ,…的前n 项和S例6、 求和)12)(12()2(534312222+-++⋅+⋅=n n n S n一、累加法1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。
2.若1()n n a a f n +-=(2)n ≥,则 21321(1)(2)()n n a a f a a f a a f n +-=-=-=两边分别相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=所以数列{}n a 的通项公式为2n a n =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
裂项相消法求和
把数列的通项拆成两项之差、正负相消剩下首尾若干项。
1、 特别是对于⎭
⎬⎫
⎩⎨
⎧
+1n n a a c ,其中{}n a 是各项均不为0的等差数列,通常用裂项相消法,即利用1+n n a a c =⎪⎪⎭
⎫ ⎝⎛-+111n n a a d c ,其中()n n a a d -=+1 2、 常见拆项:
1
11)1(1+-=+n n n n
)1
21
121(21)12)(12(1+--=+-n n n n
])
2)(1(1
)1(1[21)2)(1(1++-+=++n n n n n n n
!)!1(!n n n n -+=⋅
)!
1(1
!1)!1(+-=+n n n n
例1 求数列1
{}(1)
n n +的前n 和n S .
例2 求数列1
{}(2)
n n +的前n 和n S .
例3 求数列1
{}(1)(2)
n n n ++的前n 和n S .
例4 求数列⋅⋅⋅++⋅⋅⋅++,1
1,
,3
21,
2
11n n 的前n 项和.
例5:求数列311⨯,421⨯,5
31
⨯,…,)2(1+n n ,…的前n 项和S
例6、 求和)
12)(12()2(5343122
22+-++⋅+⋅=n n n S n
一、累加法
1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。
2.若1()n n a a f n +-=(2)n ≥,
则
21321(1)
(2) ()
n n a a f a a f a a f n +-=-=-=
两边分别相加得 111
()n
n k a a f n +=-=
∑
例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则
11232211
2
()()()()[2(1)1][2(2)1](221)(211)1
2[(1)(2)21](1)1(1)2(1)1
2
(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-++
+⨯++⨯++=-+-++++-+-=+-+=-++=
所以数列{}n a 的通项公式为2
n a n =。
例2 已知数列{}n a 满足112313n
n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
解法一:由1231n n n a a +=+⨯+得1231n
n n a a +-=⨯+则
11232211122112211()()()()(231)(231)(231)(231)3
2(3333)(1)3
3(13)2(1)3
13
331331
n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-
所以3 1.n
n a n =+-
解法二:13231n n n a a +=+⨯+两边除以1
3n +,得
111
21
3333n n n n n a a +++=++
, 则
11121
3333
n n n n n a a +++-=+,故 11223211
2232
111122122()()()(
)33333
333
212121213
()()()()3333333332(1)11111()1
333333
n n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a n --------------=-+-+-++-+=+++++++++-=+++++++
因此1
1(13)
2(1)2113133133223n n n n n
a n n ---=++=+-
-⨯, 则211
33.322
n n n a n =
⨯⨯+⨯- 练习
1.已知数列{}n a 的首项为
1,且
*12()
n n a a n n N +=+∈写出数列
{}n a 的通项公式.
答案:12
+-n n
练习2.已知数列
}
{n a 满足31=a ,
)
2()1(1
1≥-+
=-n n n a a n n ,求此数列的通项公式.
答案:裂项求和
n a n 1
2-
=
评注:已知a a =1,)
(1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分
a
①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ②若f(n)是关于n 的二次函数,累加后可分组求和;
③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和。
例3.已知数列
}
{n a 中,
>n a 且
)(21n n n a n a S +=
,求数列}{n a 的通项公式.
解:由已知
)(21n n n a n a S +=
得)(2111---+-=n n n n n S S n
S S S ,
化简有
n
S S n n =--2
12,由类型(1)有
n
S S n ++++= 32212
,
又11a S =得11=a ,所以
2)
1(2
+=
n n S n ,又0>n a ,
2)
1(2+=
n n s n ,
则
2)
1(2)1(2--+=
n n n n a n
此题也可以用数学归纳法来求解.
二、累乘法
1.适用于: 1()n n a f n a += ----------这是广义的等比数列 累乘法是最基本的二个方法之二。
2.若
1()n n a f n a +=,则31212(1)(2)()n n
a a
a
f f f n a a a +===,,, 两边分别相乘得,1
11
1()n
n k a a f k a +==⋅∏ 例4 已知数列{}n a 满足112(1)53n
n n a n a a +=+⨯=,,求数列{}n a 的通项公式。
解:因为112(1)53n
n n a n a a +=+⨯=,,所以0n a ≠,则
1
2(1)5n n n
a n a +=+,故
1
32
112
21
12211(1)(2)21
(1)1
2
[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53
32
5
!
n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=
⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯
所以数列{}n a 的通项公式为(1)1
2
32
5
!.n n n n a n --=⨯⨯⨯
例5.设{}n a 是首项为1的正项数列,且
()0
112
21=+-+++n n n n a a na a n (n =1,2, 3,…),则它的
通项公式是n a =________.
解:已知等式可化为:
[]0
)1()(11=-++++n n n n na a n a a
0>n a (*
N n ∈)∴(n+1)01=-+n n na a , 即
1
1+=+n n
a a n n
∴2≥n 时,
n
n a a n n 1
1-=-
∴
112211a a a a a a a a n n n n n ⋅⋅⋅⋅=
--- =121121⋅⋅--⋅- n n n
n =n 1. 评注:本题是关于
n
a 和
1
+n a 的二次齐次式,可以通过因式分解(一般情况时用求根公式)得到
n
a 与
1
+n a 的更为明显的关系式,从而求出
n
a .
练习.已知
1
,111->-+=+a n na a n n ,求数列{an}的通项公式.
答案:
=n a )
1()!1(1+⋅-a n -1.
评注:本题解题的关键是把原来的递推关系式
,
11-+=+n na a n n 转化为
),
1(11+=++n n a n a 若令
1
+=n n a b ,则问题进一步转化为
n
n nb b =+1形式,进而应用累乘法求出数列
的通项公式.。