高中数学复习数列求和裂项相消法

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

裂项相消法求和

把数列的通项拆成两项之差、正负相消剩下首尾若干项。 1、 特别是对于⎭

⎬⎫

⎩⎨

+1n n a a c ,其中{}n a 是各项均不为0的等差数列,通常用裂项相消法,即利用1+n n a a c =⎪⎪⎭

⎫ ⎝⎛-+111n n a a d c ,其中()n n a a d -=+1 2、 常见拆项:

1

11)1(1+-=+n n n n

)1

21

121(21)12)(12(1+--=+-n n n n

])

2)(1(1

)1(1[21)2)(1(1++-+=++n n n n n n n

!)!1(!n n n n -+=⋅

)!

1(1

!1)!1(+-=+n n n n

例1 求数列1

{}(1)

n n +的前n 和n S .

例2 求数列1

{}(2)

n n +的前n 和n S .

例3 求数列1

{}(1)(2)

n n n ++的前n 和n S .

例4 求数列⋅⋅⋅++⋅⋅⋅++,1

1,

,3

21,

2

11n n 的前n 项和.

例5:求数列311⨯,421⨯,5

31

⨯,…,)2(1+n n ,…的前n 项和S

例6、 求和)

12)(12()2(5343122

22+-++⋅+⋅=n n n S n

一、累加法

1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。 2.若1()n n a a f n +-=(2)n ≥,

21321(1)

(2) ()

n n a a f a a f a a f n +-=-=-=

两边分别相加得 111

()n

n k a a f n +=-=

例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则

11232211

2

()()()()[2(1)1][2(2)1](221)(211)1

2[(1)(2)21](1)1(1)2(1)1

2

(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-++

+⨯++⨯++=-+-++++-+-=+-+=-++=

所以数列{}n a 的通项公式为2

n a n =。

例2 已知数列{}n a 满足112313n

n n a a a +=+⨯+=,,求数列{}n a 的通项公式。

解法一:由1231n n n a a +=+⨯+得1231n

n n a a +-=⨯+则

11232211122112211()()()()(231)(231)(231)(231)3

2(3333)(1)3

3(13)2(1)3

13

331331

n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-

所以3 1.n

n a n =+-

解法二:13231n n n a a +=+⨯+两边除以1

3n +,得

111

21

3333n n n n n a a +++=++

, 则

11121

3333

n n n n n a a +++-=+,故 11223211

2232

111122122()()()(

)33333

333

212121213

()()()()3333333332(1)11111()1

333333

n n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a n --------------=-+-+-++-+=+++++++++-=+++++++

因此1

1(13)

2(1)2113133133223n n n n n

a n n ---=++=+-

-⨯, 则211

33.322

n n n a n =

⨯⨯+⨯- 练习

1.已知数列{}n a 的首项为

1,且

*12()

n n a a n n N +=+∈写出数列

{}n a 的通项公式.

答案:12

+-n n

练习2.已知数列

}

{n a 满足31=a ,

)

2()1(1

1≥-+

=-n n n a a n n ,求此数列的通项公式.

答案:裂项求和

n a n 1

2-

=

评注:已知a a =1,)

(1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分

a

相关文档
最新文档