七年级数学上册第四章测试题复习课程

合集下载

浙教版七年级数学上册第四章复习课PPT课件

浙教版七年级数学上册第四章复习课PPT课件

02
知识点回顾
知识点一:数的认识
总结词:数的分类与性质 总结词:数的运算
详细描述:回顾有理数、无理数、整数、分数等数的分 类,掌握数的性质,如奇偶性、大小关系等。
详细描述:复习加减乘除等基本运算,理解运算律,如 交换律、结合律等,掌握运算顺序。
知识点二:代数式
总结词
代数式的定义与表示
详细描述
理解代数式的概念,掌握代数 式的表示方法,如单项式、多 项式等。
例题二:代数式的简化
总结词
代数式的简化是数学中常见的题型,需要学生掌握代数式的合并 同类项、化简等技巧。
详细描述
代数式的简化是解决复杂数学问题的关键步骤之一。通过合并同 类项、化简等技巧,可以将复杂的代数式简化为更易于处理的形 式。这有助于学生更好地理解代数式,并提高解题效率。
例题三:一元一次方程与不等式的解法
浙教版七年级数学上册第四章 复习课

CONTENCT

• 引言 • 知识点回顾 • 重点与难点解析 • 典型例题解析 • 练习题与答案 • 总结与展望
01
引言
复习目标
02
01
03
掌握第四章的基本概念和公式。 提高学生运用数学知识解决实际问题的能力。 培养学生的数学思维和逻辑推理能力。
复习内容概述
练习题二:代数式
01
代数式的运算
02
代数式的应用
代数式的分类
03
练习题二:代数式
代数式的变换技巧
1
代数式的恒等变换
2
代数式的因式分解
3
练习题三:方程与不等式
01
一元一次方程的解法
02
一元一次方程的应用
03

人教版七年级数学上册第四章 几何图形初步 专题复习练习题

人教版七年级数学上册第四章 几何图形初步 专题复习练习题

人教版七年级数学上册第四章几何图形初步专题复习练习题专题(一)正方体的展开与折叠1、下列图形中,可以是正方体表面展开图的是(D),A) ,B),C) ,D)2、将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,应剪去(序号)(D)A.1或2或3 B.3或4或5C.4或5或6 D.1或2或63、如图是正方体的展开图,每个面都标注了字母.如果b在下面,c在左面,那么d在(C) A.前面B.后面C.上面D.下面4、某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“点”字所在面相对面上的汉字是(B)A.青B.春C.梦D.想5、如图,该平面展开图按虚线折叠成正方体后,相对面上两个数之和为7,则x+y的值是(C)A.7 B.8 C.9 D.10专题(二) 线段的计算1、如图,点C 在线段AB 上,点M ,N 分别是AC ,BC 的中点.(1)若AC =9 cm ,CB =6 cm ,则线段MN 的长为152cm ; (2)若AC =a cm ,CB =b cm ,则线段MN 的长为a +b 2cm ; (3)若AB =m cm ,求线段MN 的长度;(4)若点C 为线段AB 上任意一点,且AB =n cm ,其他条件不变,你能猜想MN 的长度吗?并用一句简洁的话描述你发现的结论.解:(3)因为点M ,N 分别是AC ,BC 的中点,所以MC =12AC ,CN =12BC. 又因为MN =MC +CN ,所以MN =12(AC +BC)=12AB =m 2cm . (4)猜想:MN =12AB =n 2cm . 结论:若点C 为线段AB 上一点,且点M ,N 分别是AC ,BC 的中点,则MN =12AB. 2、若MN =k cm ,求线段AB 的长.解:因为点M 是AC 的中点,点N 是BC 的中点,所以CM =12AC ,CN =12BC. 所以MN =CM +CN =12(AC +BC)=12AB. 所以AB =2MN =2k cm .3、若将例题中的“点C 在线段AB 上”改为“点C 在线段AB 的延长线上”,其他条件不变,(3)中结论还成立吗?请画出图形,写出你的结论,并说明理由.解:MN =m 2cm 成立.理由如下: 当点C 在线段AB 的延长线上时,如图.因为点M ,N 分别是AC ,BC 的中点,所以MC =12AC ,CN =12BC. 又因为MN =MC -CN ,所以MN =12(AC -BC)=12AB =m 2cm . 4、如图,已知点C ,D 为线段AB 上顺次两点,M ,N 分别是AC ,BD 的中点.(1)若AB =24,CD =10,求MN 的长;(2)若AB =a ,CD =b ,请用含a ,b 的式子表示出MN 的长.。

人教版初中七年级数学上册第四章《几何图形初步》经典复习题(含答案解析)

人教版初中七年级数学上册第四章《几何图形初步》经典复习题(含答案解析)

人教版初中七年级数学上册第四章《几何图形初步》经典复习题(含答案解析)一、选择题1.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则在图2中,小虫从点A沿着正方体的棱长爬行到点B的长度为()A.0 B.1 C.2 D.3B解析:B【分析】将图1折成正方体,然后判断出A、B在正方体中的位置关系,从而可得到AB之间的距离.【详解】解:将图1折成正方体后点A和点B为同一条棱的两个端点,得出AB=1,则小虫从点A沿着正方体的棱长爬行到点B的长度为1.故选B.【点睛】本题主要考查的是展开图折成几何体,判断出点A和点B在几何体中的位置是解题的关键.2.观察下列图形,其中不是正方体的表面展开图的是()A.B.C.D. B解析:B【分析】利用正方体及其表面展开图的特点解题.【详解】解:A、C、D均是正方体表面展开图;B、是凹字格,故不是正方体表面展开图.故选:B.【点睛】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.3.如图,点O 在直线AB 上,射线OC ,OD 在直线AB 的同侧,∠AOD =40°,∠BOC =50°,OM ,ON 分别平分∠BOC 和∠AOD ,则∠MON 的度数为( )A .135°B .140°C .152°D .45°A 解析:A【分析】根据题意各种角的关系直接可求出题目要求的角度.【详解】因为∠AOD =40°,∠BOC =50°,所以∠COD =90°,又因为OM ,ON 分别平分∠BOC 和∠AOD ,所以∠N OD+∠M OC =45°,则∠MON=∠N OD+∠M OC+∠COD=135°.【点睛】本题考查了角平分线的知识,掌握角平分线的性质是解决此题的关键.4.已知线段8AB =,在线段AB 上取点C ,使得:1:3AC CB =,延长CA 至点D ,使得2AD AC =,点E 是线段CB 的中点,则线段ED 的长度为( ).A .5B .9C .10D .16B 解析:B【分析】按图形将要求的线段ED 可转化成已知线段.ED=EC+CD=12BC+3AC ,而BC 、AC 都可根据题中比例求得,于是线段ED 可求.【详解】解:根据题意画图:因为:1:3AC CB =,且8AB =,所以2AC =,6BC =.由题意可知:113632922ED EC CD BC AC =+=+=⨯+⨯=, 故选:B .【点睛】本题考查的线段的相关运算,根据题意画好图形是关键,利用图形进行线段间的转化是解题突破口.5.某正方体的平面展开图如下图所示,这个正方体可能是下面四个选项中的( ).A.B.C.D. A解析:A【分析】根据正方体的展开与折叠.可以动手折叠看看,充分发挥空间想象能力解决也可以.【详解】根据题意及图示只有A经过折叠后符合.故选:A.【点睛】此题考查几何体的展开图,解题关键在于空间想象力.6.如图,在数轴上有A,B,C,D四个整数点(即各点均表示整数),且2AB=BC=3CD,若A,D两点表示的数分别为-5和6,点E为BD的中点,在数轴上的整数点中,离点E最近的点表示的数是()A.2 B.1C.0 D.-1A解析:A【分析】根据A、D两点在数轴上所表示的数,求得AD的长度,然后根据2AB=BC=3CD,求得AB、BD的长度,从而找到BD的中点E所表示的数.【详解】解:如图:∵|AD|=|6-(-5)|=11,2AB=BC=3CD,∴AB=1.5CD,∴1.5CD+3CD+CD=11,∴CD=2,∴AB=3,∴BD=8,∴ED=12BD=4, ∴|6-E|=4, ∴点E 所表示的数是:6-4=2.∴离线段BD 的中点最近的整数是2.故选:A .【点睛】本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.7.已知α∠和β∠互补,且αβ∠>∠,则有下列式子:①90β︒-∠;②90α∠-︒;③()12αβ∠+∠;④()12αβ∠-∠;⑤()1902α∠-︒;其中,表示β∠的余角的式子有( ) A .4个 B .3个 C .2个D .1个B解析:B【分析】根据余角和补角的概念进行角度的计算即可得解.【详解】∵9090ββ︒-∠+∠=︒,∴①正确;∵α∠和β∠互补,∴180αβ∠+∠=︒,∴901809090αβ∠-︒+∠=︒-︒=︒,∴②正确,⑤错误; ∵()11180909022αββββ∠+∠+∠=⨯︒+∠=︒+∠≠︒, ∴③错误; ∵()()11118090222αββαβ∠-∠+∠=∠+∠=⨯︒=︒, ∴④正确;∴①②④正确,故选:B.【点睛】 本题主要考查了余角和补角的含义,熟练掌握相关角度的计算是解决本题的关键. 8.如图是正方体的展开图,则原正方体相对两个面上的数字和最小是( )A.8B.7C.6D.4C解析:C【分析】确定原正方体相对两个面上的数字,即可求出和的最小值.【详解】解:由题意,2和6是相对的两个面;3和4是相对两个面;1和5是相对的2个面,因为2+6=8,3+4=7,1+5=6,所以原正方体相对两个面上的数字和最小的是6.故选:C.【点睛】本题考查了正方体相对两个面上的文字,解决本题的关键是根据相对的面的特点得到相对的两个面上的数字.9.由A站到G站的某次列车,运行途中停靠的车站依次是A站——B站—C站——D站——E站——F站——G站,那么要为这次列车制作的火车票有()A.6种B.12种C.21种D.42种C解析:C【解析】【分析】从A出发要经过6个车站,所以要制作6种车票,从B出发要经过5个车站,所以要制作5种车票,从C出发要经过4个车站,所以要制作4种车票,从D出发要经过3个车站,所以要制作3种车票,从E出发要经过2个车站,所以要制作2种车票,从F出发要经过1个车站,所以要制作1种车票,把车票数相加即可得解.【详解】共需制作的车票数为:6+5+4+3+2+1=21(种).故选C.【点睛】本题从A站出发,逐站求解即可得到所有可能的情况,不要遗漏.10.如下图,直线的表示方法正确的是()①②③④A.都正确B.只有②正确C.只有③正确D.都不正确C解析:C【分析】用直线的表示方法解答,通常直线用两个大写字母或一个小写字母表示.【详解】∵通常直线用两个大写字母或一个小写字母表示,例直线AB ,直线a .故选C .【点睛】本题考查了几何中直线的表示方法,是最基本的知识.二、填空题11.线段AB =12cm ,点C 在线段AB 上,且AC =13BC ,M 为BC 的中点,则AM 的长为_______cm.5【分析】可先作出简单的图形进而依据图形分析求解【详解】解:如图∵点C 在AB 上且AC=BC ∴AC=AB=3cm ∴BC=9cm 又M 为BC 的中点∴CM=BC=45cm ∴AM=AC+CM=75cm 故答案为解析:5【分析】可先作出简单的图形,进而依据图形分析求解.【详解】解:如图,∵点C 在AB 上,且AC=13BC , ∴AC=14AB=3cm ,∴BC=9cm ,又M 为BC 的中点, ∴CM=12BC=4.5cm ,∴AM=AC+CM=7.5cm . 故答案为7.5.【点睛】本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想是解题的关键.12.线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =__________.4【分析】根据线段的和差关系即可求解【详解】∵线段在线段的延长线上截取则AB+BC=4cm 故填:4【点睛】此题主要考查线段的长度解题的关键是熟知线段的和差关系解析:4【分析】根据线段的和差关系即可求解.【详解】∵线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC AB+BC=4cm,故填:4.【点睛】此题主要考查线段的长度,解题的关键是熟知线段的和差关系.13.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于________.142°【解析】【分析】根据对顶角相等求出∠AOC的度数再根据角平分线的定义求出∠AOM的度数然后根据平角等于180°列式计算即可得解【详解】解:∵∠BOD=76°∴∠AOC=∠BOD=76°∵射线解析:142°【解析】【分析】根据对顶角相等求出∠AOC的度数,再根据角平分线的定义求出∠AOM的度数,然后根据平角等于180°列式计算即可得解.【详解】解:∵∠BOD =76°,∴∠AOC=∠BOD =76°,∵射线OM平分∠AOC,∴∠AOM=12∠AOC=12×76°=38°,∴∠BOM=180°-∠AOM=180°-38°=142°.故答案为142°.【点睛】本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键.14.同一条直线上有三点A,B,C,且线段BC=3AB,点D是BC的中点,CD=3,则线段AC的长为______.4或8【分析】分点C在AB的延长线上与点C在BA的延长线上两种情况画出图形分别利用线段中点的定义和已知条件求出BC和AB再利用线段的和差计算即可【详解】解:(1)当点C在AB的延长线上时如图1∵点D解析:4或8【分析】分点C在AB的延长线上与点C在BA的延长线上两种情况,画出图形,分别利用线段中点的定义和已知条件求出BC和AB,再利用线段的和差计算即可.【详解】解:(1)当点C在AB的延长线上时,如图1,∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵BC=3AB,∴AB=13BC=13×6=2,∴AC=AB+BC=2+6=8;(2)当点C在BA的延长线时,如图2,∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵BC=3AB,∴AB=13BC=13×6=2,∴AC=BC-AB=6-2=4.故答案为:4或8.【点睛】本题考查了线段中点的定义、两点间的距离和线段的和差等知识,正确分类、画出图形、熟练掌握线段中点的概念和线段的和差计算是解题的关键.15.植树节,只要定出两棵树的位置,就能确定这一行树所在的直线,这是因为两点确定_______条直线.一【分析】经过两点有且只有一条直线根据直线的性质可得答案【详解】解:植树时只要定出两棵树的位置就能确定这一行树所在的直线用数学知识解释其道理是:两点确定一条直线故答案为:一【点睛】本题考查了直线的性解析:一【分析】经过两点有且只有一条直线.根据直线的性质,可得答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”用数学知识解释其道理是:两点确定一条直线,故答案为:一.【点睛】本题考查了直线的性质,熟练掌握直线的性质是解题的关键.16.某产品的形状是长方体,长为8cm,它的展开图如图所示,则长方体的体积为_____cm3.192【分析】根据已知图形得出长方体的高进而得出答案【详解】解:设长方体的高为xcm 则长方形的宽为(14-2x )cm 根据题意可得:14-2x+8+x+8=26解得:x=4所以长方体的高为4cm 宽为6解析:192【分析】根据已知图形得出长方体的高进而得出答案.【详解】解:设长方体的高为xcm ,则长方形的宽为(14-2x )cm ,根据题意可得:14-2x+8+x+8=26,解得:x=4,所以长方体的高为4cm ,宽为6cm ,长为8cm ,长方形的体积为:8×6×4=192(cm 3);故答案为:192【点睛】本题考查几何体的展开图、一元一次方程的应用及几何体的体积等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.17.如图,折一张长方形纸的一角,使角的顶点落在A′处,且使得∠ABA′=90°,BC 为折痕,若BD 为∠A′BE 的平分线,则∠CBD =________°.90【分析】根据折叠的性质及平角的定义求出根据BD 为∠A′BE 的平分线得到根据角的和差计算求出答案【详解】∵∠ABA′=90°∴∵BD 为∠A′BE 的平分线∴∴故答案为:90【点睛】此题考查折叠的性质解析:90【分析】根据折叠的性质及平角的定义求出45ABC A BC '∠=∠=︒,18090A BE ABA ''∠=︒-∠=︒,根据BD 为∠A′BE 的平分线,得到45A BD '∠=︒,根据角的和差计算求出答案.【详解】∵∠ABA′=90°,∴45ABC A BC '∠=∠=︒,18090A BE ABA ''∠=︒-∠=︒,∵BD 为∠A′BE 的平分线,∴45A BD '∠=︒,∴90CBD A BC A BD ∠∠∠=+=''︒故答案为:90.【点睛】此题考查折叠的性质:折叠前后的对应角角相等,利用平角求角的度数,角平分线的性质,掌握图形中各角的位置关系是解题的关键.18.如图,上午6:30时,时针和分针所夹锐角的度数是_____.15°【分析】计算钟面上时针与分针所成角的度数一般先从钟面上找出某一时刻分针与时针所处的位置确定其夹角再根据表面上每一格30°的规律计算出分针与时针的夹角的度数【详解】∵时针12小时转一圈每分钟转动 解析:15°【分析】计算钟面上时针与分针所成角的度数,一般先从钟面上找出某一时刻分针与时针所处的位置,确定其夹角,再根据表面上每一格30°的规律,计算出分针与时针的夹角的度数.【详解】∵时针12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°,∴时针1小时转动30°,∴6:30时,分针指向刻度6,时针和分针所夹锐角的度数是30°×12=15°. 故答案是:15°.【点睛】考查了钟面角,解题时注意,分针60分钟转一圈,每分钟转动的角度为:360°÷60=6°;时针12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°.19.如图,将一副三角板叠放一起,使直角的顶点重合于点O ,则∠AOD +∠COB 的度数为___________度. 180【分析】根据角度的关系∠AOD+∠COB=∠COD+∠AOB据此即可求解【详解】∠AOD+∠COB=∠COD+∠AOC+∠COB=∠COD+∠AOB=90°+90°=180°故答案是:180【解析:180【分析】根据角度的关系∠AOD+∠COB=∠COD+∠AOB,据此即可求解.【详解】∠AOD+∠COB=∠COD+∠AOC+∠COB =∠COD+∠AOB=90°+90°=180°.故答案是:180.【点睛】本题考查了三角板中角度的计算,正确把∠AOD+∠COB转化成∠COD+∠AOB是解决本题的关键.20.如图,::2:3:4AB BC CD=,AB的中点M与CD的中点N的距离是3cm,则BC=______.5cm【分析】运用方程的思想设AB=2xcmBC=3xcmCD=4xcm求出MB=xcmCN=2xcm得出方程x+3x+2x=3求出即可【详解】解:设AB=2xcmBC=3xcmCD=4xcm∵M是解析:5cm【分析】运用方程的思想,设AB=2xcm,BC=3xcm,CD=4xcm,求出MB=xcm,CN=2xcm,得出方程x+3x+2x=3,求出即可.【详解】解:设AB=2xcm,BC=3xcm,CD=4xcm,∵M是AB的中点,N是CD的中点,∴MB=xcm,CN=2xcm,∴MB+BC+CN=x+3x+2x=3,∴x=0.5,∴3x=1.5,即BC=1.5cm.故答案为:1.5cm.【点睛】本题考查了求两点之间的距离的应用,关键是能根据题意得出关于x的方程.三、解答题21.如图,已知线段AB和CD的公共部分1134BD AB CD==,线段AB、CD的中点E、F之间的间距是10cm,求AB、CD的长.解析:AB=12cm,CD=16cm【分析】先设BD=xcm,由题意得AB=3xcm,CD=4xcm,AC=6xcm,再根据中点的定义,用含x的式子表示出AE=1.5xcm和CF=2xcm,再根据EF=AC-AE-CF=2.5xcm,且E、F之间距离是EF=10cm,所以2.5x=10,解方程求得x的值,即可求AB,CD的长.【详解】设BD=xcm,则AB=3xcm,CD=4xcm,AC=6xcm.∵点E、点F分别为AB、CD的中点,∴AE=12AB=1.5xcm,CF=12CD=2xcm.∴EF=AC-AE-CF=2.5xcm.∵EF=10cm,∴2.5x=10,解得:x=4.∴AB=12cm,CD=16cm.【点睛】本题考查了线段中点的性质,设好未知数,用含x的式子表示出各线段的长度是解题关键.22.如图,点C是AB的中点,D,E分别是线段AC,CB上的点,且AD=23AC,DE=35AB,若AB=24 cm,求线段CE的长.解析:CE=10.4cm.【分析】根据中点的定义,可得AC、BC的长,然后根据题已知求解CD、DE的长,再代入CE=DE-CD即可.【详解】∵AC=BC=12AB=12cm,CD=13AC=4cm,DE=35AB=14.4cm,∴CE=DE﹣CD=10.4cm.23.如图,是一个几何体的表面展开图.(1)该几何体是________;A .正方体B .长方体C .三棱柱D .四棱锥(2)求该几何体的体积.解析:(1)C ;(2)4【分析】(1)本题根据展开图可直接得出答案.(2)本题根据体积等于底面积乘高求解即可.【详解】(1)本题可根据展开图中两个全等的等腰直角三角形,以此判定该几何体为三棱柱,故选C .(2)由图已知:该几何体底面积为等腰三角形面积12222=⨯⨯=;该几何体的高为2; 故该几何体体积=底面积⨯高=22=4⨯.【点睛】本题考查几何体展开图以及体积求法,根据展开图推测几何体时需要以展开图的特征位置作为推测依据,求解体积或者面积时按照公式求解即可.24.已知线段10cm AB =,在直线AB 上取一点C ,使16cm AC =,求线段AB 的中点与AC 的中点的距离.解析:13cm 或3cm .【分析】结合题意画出简单的图形,再结合图形进行分类讨论:当C 在BA 延长线上时,当C 在AB 延长线上时,分别依据线段的和差关系求解.【详解】解:①如图,当C 在BA 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点,所以15cm 2AD AB ==,18cm 2AE AC ==, 所以81513(cm)DE AE AD =+=+=. ②如图,当C 在AB 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点,所以15cm 2AD AB ==,18cm 2AE AC ==, 所以853(cm)DE AE AD =-=-=. 综上,线段AB 的中点与AC 的中点的距离为13cm 或3cm .【点睛】本题主要考查了两点间的距离,解决问题的关键是依据题意画出图形,进行分类讨论.25.如图,已知A、B、C、D四点,根据下列要求画图:(1)画直线AB、射线AD;(2)画∠CDB;(3)找一点P,使点P既在AC上又在BD上.解析:(1)见解析;(2)见解析;(3)见解析.【分析】(1)利用直线以及射线的定义画出图形即可;(2)利用角的定义作射线DC,DB即可;(3)连接AC,与BD的交点即为所求.【详解】解:(1)如图所示:直线AB、射线AD即为所求;(2)如图所示:∠CDB即为所求;(3)如图所示:点P即为所求.【点睛】此题主要考查了直线、射线以及角的定义,正确把握相关定义是解题关键.26.如图,一个点从数轴上的原点开始,先向左移动2cm到达A点,再向左移动3cm到达B点,然后向右移动9cm到达C点.(1)用1个单位长度表示1cm,请你在数轴上表示出A,B, C三点的位置;(2)把点C到点A的距离记为CA,则CA=______cm.(3)若点B以每秒2cm的速度向左移动,同时A.C点分别以每秒1cm、4cm的速度向右移动.设移动时间为t秒,试探索:CA−AB的值是否会随着t的变化而改变?请说明理由.解析:(1)数轴见解析;(2)6;(3)CA−AB的值不会随着t的变化而改变,理由见解析;【分析】(1)在数轴上表示出A,B,C的位置即可;(2)求出CA的长即可;(3)不变,理由如下:当移动时间为t秒时,表示出A,B,C表示的数,求出CA-AB的值即可做出判断.【详解】(1)如图:(2)CA=4−(−2)=4+2=6cm,(3)不变,理由如下:当移动时间为t秒时,点A. B. C分别表示的数为−2+t、−5−2t、4+4t,则CA=(4+4t)−(−2+t)=6+3t,AB=(−2+t)−(−5−2t)=3+3t,∵CA−AB=(6+3t)−(3+3t)=3∴CA−AB的值不会随着t的变化而改变.【点睛】此题考查数轴,两点间的距离,整式的加减,列代数式,解题关键在于结合数轴进行解答. 27.如图,把下列物体和与其相似的图形连接起来.解析:见解析.【分析】根据圆锥,圆柱,球体,正方体的形状连接即可.【详解】连接如图.【点睛】此题考查认识立体图形,解题关键在于掌握立体图的概念.28.如图,已知C是AB的中点,D是AC的中点,E是BC的中点.(1)若DE=9cm,求AB的长.(2)若CE=5cm,求DB的长.解析:(1)AB=18;(2)DB=15.【分析】(1)由线段中点的定义可得CD=12AC,CE=12BC,根据线段的和差关系可得DE=12AB,进而可得答案;(2)根据中点定义可得AC=BC,CE=BE,AD=CD,根据线段的和差关系即可得答案.【详解】(1)∵D是AC的中点,E是BC的中点.∴CD=12AC,CE=12BC,∵DE=CD+CE=9,∴12AC+12BC=12(AC+BC)=9,∵AC+BC=AB,∴AB=18.(2)∵C是AB的中点,D是AC的中点,E是BC的中点,∴AC=BC,CE=BE=12BC,,AD=CD=12AC,∴AD=CD=CE=BE,∴DB=CD+CE+BE=3CE,∵CE=5,∴DB=15.【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.。

人教版七年级数学上册第四章几何图形复习试题一(含答案) (49)

人教版七年级数学上册第四章几何图形复习试题一(含答案) (49)

人教版七年级数学上册第四章几何图形复习试题一(含答案) 若一个直棱柱有12个顶点,则它有__________条棱,有__________个面.【答案】18 8【解析】【分析】一个直棱柱有12个顶点则说明它的上下底面是两个六边形,从而得知其是六棱柱,然后进一步求解即可.【详解】∵一个直棱柱有12个顶点,∴这个直棱柱的上下底面是两个六边形,∴这个直棱柱为六棱柱,∴面的个数为6+2=8个,棱的个数为6×3=18个.所以答案为18,8.【点睛】本题主要考查了直棱柱的相关性质,熟练掌握相关概念是解题关键.82.将一个正方体木块涂成红色,然后如图把它的棱三等分,再沿等分线把正方体切开,可以得到27个小正方体.其中三面涂色的小正方体有8个,两面涂色的小正方体有12个,一面涂色的小正方体有6个,各面都没有涂色的小正方体有1个;现将这个正方体的棱n等分,如果得到各面都没有涂色的小正方体125个,那么n的值为_____.【答案】7【解析】【分析】根据已知图形中没有涂色的小正方形个数得出变化规律,得将这个正方体的棱n等分,有3n-个是各个面都没有涂色的,列方程即可得到结论.(2)【详解】解:由题意可知:将这个正方体的棱n等分,有3n-个是各个面都没有涂(2)色的,所以3n-=,(2)125解得n=7,故答案为:7.【点睛】本题是立体几何的规律探究题,解题的关键是结合图形得出规律,列出方程,解方程即可.83.一个棱柱共有9个面,则它共有_____个顶点.【答案】14【解析】【分析】根据直棱柱的概念,可得,侧面有7个,底面有2个.,上下各有7个顶点,即可的答案解:∵一个棱柱共有9个面∴侧面有7个,底面有2个,∴侧棱有7条,∴上下底均为七边形,各有7个顶点∴则这个直棱柱共有14个顶点【点睛】本题主要考查直棱柱的概念,掌握直棱柱的侧棱数与一个底面的边数及顶点数之间的关系是解题的关键.84.若一个七棱柱共有_______个面, _______条棱,________个顶点。

北师版七年级上册数学教材课后习题课件 第四章 复习题

北师版七年级上册数学教材课后习题课件 第四章 复习题

则点O到四边形ABCD四个顶点的
距离之和最小.
O
理由如下:根据两点之间,线段最
短,易得OA+OC+OB+OD=AC+BD.
解:(1)如图所示.
(2)得到一个正方形.
9.上海世博景区一角如图所示, (1)比较世博文化中心O到香港馆C 的距离OC和世博文化中心O到A13区 中心D的距离OD的远近,并与同伴交 流你的想法;
解:(1)OC>OD.
(2)估计台湾馆、中国国家馆、中心广场、亚洲广 场分别位于世博文化中心的南偏东多少度,然后再量 一量,验证你的估计.
解:台湾馆位于世博文化中心的南偏东大约是0°. 中国国家馆位于世博文化中心的南偏东大约是10°. 中心广场位于世博文化中心的南偏东大约是38°. 亚洲广场位于世博文化中心的南偏东大约是52°.
*10.如图,在任意四边形ABCD内找一点O,使它到四
边形四个顶点的距离之和最小,并说说你的理由.
解:如图,连接AC,BD交于点O,
北师版
七(上)数学教材习题
第四章 复习题
1.如图,在同一平面内有四个点A,B,
C,D,请用直尺按下列要求作图:
(1)作射线CD;
(2)作直线AD;
O
(3)连接AB;
(4)作直线BD与直线AC相交于点O.
2.把弯曲的河道改直,可以缩短航程,请说说 其中的道理. 解:两点之间的所有连线中,线段最短.
6.如图,甲、乙、丙、丁四个扇形的面积之比为
1∶2∶3∶4,分别求出它们圆心角的度数.
解:甲、乙、丙、丁四个扇形的圆心角
的度数分别为
360°× 1 =72°,1 2 3 4
=36°,360°×
1
2Hale Waihona Puke 2 34360°×

人教版七年级数学上册第四章几何图形复习试题二(含答案) (67)

人教版七年级数学上册第四章几何图形复习试题二(含答案) (67)

人教版七年级数学上册第四章几何图形复习试题二(含答案) 指出下列平面图形各是什么几何体的展开图.【答案】(1)圆柱;(2)圆锥;(3)三棱柱;(4)三棱锥;(5)长方体.【解析】【分析】根据几何体的平面展开图的特征可知:(1)是圆柱的展开图;(2)是圆锥的展开图;(3)是三棱柱的展开图;(4)是三棱锥的展开图;(5)是长方体的展开图.【详解】(1)圆柱;(2)圆锥;(3)三棱柱;(4)三棱锥;(5)长方体.【点睛】本题主要考查几何体展开图的知识点,熟记常见几何体的平面展开图的特征是解决此类问题的关键.62.如图是一个长方体的表面展开图,每个外表面都标注了字母,请根据要求回答问题:(1)如果面A在多面体的底部,那么哪一个面会在上面?(2)如果面F在前面,从左面看是面B,那么哪一个面会在上面?(3)如果从右面看是面C,面D在后面,那么哪一个面会在上面?【答案】(1)面F.(2)面C.(3)面A.【解析】【分析】利用长方体及其表面展开图的特点解题.这是一个正方体的平面展开图,共有六个面,其中面“A”与面“F”相对,面“B”与面“D”相对,“C”与面“E”相对.【详解】由图可知,“C”与面“E”相对.则(1)∵面“A”与面“F”相对,∴A面是长方体的底部时,F面在上面;(2)由图可知,如果F面在前面,B面在左面,那么“E”面在下面,∵面“C”与面“E”相对,∴C面会在上面;(3)由图可知,如果C面在右面,D面在后面,那么“F”面在下面,∵面“A”与面“F”相对,∴A面在上面.A面会在上面.【点睛】本题考查的知识点是展开图折叠成长方体,解题关键是注意长方体的空间图形,从相对面入手,分析及解答问题.63.两位同学画的小动物如图所示,哪个图形是用立体图形组成的?用了哪些立体图形?哪个图形是用平面图形组成的?用了哪些平面图形?【答案】左边的图形是用立体图形组成的,用了圆柱体、长方体、球体和正方体;右边的图形是用平面图形组成的,用了三角形、正方形、长方形、五边形、六边形、圆.【解析】【分析】左图是由立体图形组成的,右图是由平面图形组成的,仔细识图即可作答.【详解】左边的图形是用立体图形组成的,用了圆柱体、长方体、球体和正方体;右边的图形是用平面图形组成的,用了三角形、正方形、长方形、五边形、六边形、圆.【点睛】本题考查的知识点是立体图形和平面图形的区别,解题关键是熟记立体图形和平面图形的定义.64.以给定的图形“○○、△△、=”(两个圆、两个三角形、两条线段)为构件,构思独特且有意义的图形.举例:如图,左框中是符合要求的一个图形.你还能构思出其他的图形吗?请在右框中画出与之不同的一个图形,并写出一两句贴切、诙谐的解说词.【答案】见解析.【解析】【分析】本题答案不唯一,结合实际生活中的实物,画一幅图画,再说出它像什么就可以.【详解】答案不唯一,如:【点睛】本题的关键是要善于观察与思考,结合实际有利于培养想象能力.65.如图①、②、③、④四个图形都是平面图形,观察图②和表中对应数值,探究计数的方法并解答下面的问题.(1)数一数每个图各有多少顶点、多少条边、这些边围成多少区域,将结果填入下表:(2)根据表中的数值,写出平面图的顶点数、边数、区域数之间的关系;(3)如果一个平面图形有20个顶点和11个区域,求这个平面图形的边数.【答案】(1)见表格解析;(2)V+F=E+1;(3)30.【解析】【分析】(1)根据图中的四个平面图形数出其顶点数、边数、区域数得出结果;(2)根据表(1)数据总结出归律;(3)根据题(2)的公式把20个顶点和11个区域代入即可得平面图形的边数.【详解】(1)结和图形我们可以得出:图①有4个顶点、6条边、这些边围成3个区域;图②有7个顶点、9条边、这些边围成3个区域;图③有8个顶点、12条边、这些边围成5个区域;图④有10个顶点、15条边、这些边围成6区域.(2)根据以上数据,顶点用V表示,边数用E表示,区域用F表示,他们的关系可表示为:V+F=E+1;(3)把V=20,F=11代入上式得:E=V+F﹣1=20+11﹣1=30.故如果平面图形有20个顶点和11个区域,那么这个平面图形的边数为30.【点睛】本题考查了图形的变化规律,找出图形之间的联系,得出数字的运算规律,利用规律解决问题.66.一个正方体6个面分别写着1,2,3,4,5,6.根据下列摆放的三种情况,那么每个数对面上的数是几?【答案】1对4,2对5,3对6;或1对5,2对4,3对6.【解析】【分析】根据正方体的特征知,相邻的面一定不是对面,所以面“1”与面“4”相对,面“2”与面“5”相对,“3”与面“6”相对;或面“1”与面“5”相对,面“2”与面“4”相对,“3”与面“6”相对.【详解】根据正方体的特征知,相邻的面一定不是对面,所以面“1”与面“4”相对,面“2”与面“5”相对,“3”与面“6”相对;或面“1”与面“5”相对,面“2”与面“4”相对,“3”与面“6”相对.故答案为1对4,2对5,3对6;或1对5,2对4,3对6.【点睛】注意正方体的空间图形,从相对面入手,分析及解答问题.67.如图是一个正方体的展开图,每个面内都标注了字母,请根据要求回答下列问题:(1)如果面F在正方体的底部,那么哪一面会在上面?(2)如果面B在前面,从左面看是面C,那么哪一面会在上面?(3)如果从右面看到面D,面E在后面,那么哪一面会在上面?【答案】(1)面B;(2)面D;(3)面F.【解析】【分析】根据题意可以将多面体的展开图动手折一下,观察每个面的对面,进行转动,再找到其对面.【详解】将多面体的展开图再动手折一下,得到:A和D相对,B和F相对,C和E 相对.故(1)如果面F在正方体的底部,那么面B会在上面;(2)如果面B在前面,从左面看是面C,那么面D会在上面;(3)如果从右面看到面D,面E在后面,那么面F会在上面.【点睛】本题考查了灵活运用正方体的相对面解答问题,立意新颖,是一道不错的题.68.如图是一个几何体的平面展开图.(1)这个几何体是____;(2)求这个几何体的体积.(π取3.14)【答案】(1)圆柱;(2)1570cm3【解析】【分析】(1)根据几何体的展开图侧面是矩形,两底面是圆形,可得几何体;(2)根据圆柱的体积公式,可得答案.【详解】解:(1)几何体的展开图侧面是矩形,两底面是圆形,几何体是圆柱.故答案为圆柱;(2)由图可知:底面直径为10cm,高为20cm,故圆柱的体积=3.14×(10÷2)2×20=1570cm3.答:这个几何体的体积是1570cm3.【点睛】本题考查了几何体的展开图,几何体的展开图侧面是矩形,两底面是圆形的几何体是圆柱.69.如图,在一次数学活动课上,张明用17个底面为正方形,且底面边长为a,高为b的小长方体达成了一个几何体,然后他请王亮用尽可能少的同样的长方体在旁边再搭一个几何体,使王亮所搭的几何体恰好可以和张明所搭的几何体拼成一个大长方体(即拼大长方体时将其中一个几何体翻转,且假定组成每个几何体的小长方体粘合在一起).(1)王亮至少还需要个小长方体;(2)请画出张明所搭几何体的左视图,并计算它的表面积(用含,a b的代数式表示);(3)请计算(1)条件下王亮所搭几何体的表面积(用含,a b的代数式表示).【答案】(1)19(2),23418.ab a(3)2+ab a3216.【解析】【分析】(1)确定张明所搭几何体所需的正方体的个数,然后确定两人共搭建几何体所需小立方体的数量,求差即可.(2)根据图形,画出左视图,计算表面积即可.(3)画出王亮所搭几何体的俯视图,即可求出表面积.【详解】(1)∵王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体,∴该长方体需要小立方体2⨯=个,4336∵张明用17个边长为1的小正方体搭成了一个几何体,∴王亮至少还需36−17=19个小立方体.(2)张明所搭几何体的左视图有三列,第一列有4个长方形,第二列有2个长方形,第三列有1个长方形:表面积为:()()22+++++=+ab a ab a101077993418.(3)王亮所搭几何体的俯视图如图所示,图中数字代表该列小正方体的个数.故王亮所搭几何体的表面积为:()()22+++++=+9977883216.ab a ab a 【点睛】本题主要考查的是由三视图判断几何体的知识,能够根据题意确定出两人所搭几何体的形状是解答本题的关键;70.如图是一正方体的展开图,若正方体相对两个面上的式子的值相等,求下列代数式的值:(1)求27x的值;(2)求32x﹣y的值.【答案】(1)8;(2)1【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点确定出相对面,然后根据幂的乘方的性质和同底数幂的除法的运算性质分别进行计算即可得解.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“3x”与“2”是相对面,“3y”与“4”是相对面,∵正方体相对两个面上的式子的值相等,∴3x=2,3y=4,(1)27x=(3x)3=23=8;(2)32x﹣y=32x÷3y=(3x)2÷3y=22÷4=4÷4=1.【点睛】考查正方体的表面展开图,根据相对的面之间一定相隔一个正方形,确定向对面是解题的关键.三、填空题。

人教版七年级数学上册第四章几何图形复习试题一(含答案) (50)

人教版七年级数学上册第四章几何图形复习试题一(含答案) (50)

人教版七年级数学上册第四章几何图形复习试题一(含答案) 一个正方体的六个面分别标有字母A,B,C,D,E,F,从三个不同方向看到的情形如图.(1)A对面的字母是,B对面的字母是;(请直接填写答案)(2)已知A=x,B=﹣x2+3x,C=﹣3,D=1,E=x2019,F=6.①若字母A表示的数与它对面的字母表示的数互为相反数,求E的值;②若2A﹣3B+M=0,求出M的表达式.【答案】(1)D,E;(2)①E=﹣1;②M=﹣3x2+7x.【解析】【分析】(1)根据正方体各个面上的字母分布特点,即可求得答案,(2)①由(1)题可知,字母A表示的数与它对面的字母D表示的数互为相反数,即可得到答案,②把A=x,B=﹣x2+3x,代入2A﹣3B+M=0,即可得到M的表达式.【详解】(1)由图可得,A与B、C、E、F都相邻,故A对面的字母是D;E与A、C、D、F都相邻,故B对面的字母是E;故答案为:D,E;(2)①∵字母A表示的数与它对面的字母D表示的数互为相反数,∴x=﹣1,∴E=(﹣1)2019=﹣1;②∵2A﹣3B+M=0,∴2x﹣3(﹣x2+3x)+M=0,∴M=﹣2x+3(﹣x2+3x)=﹣3x2+7x.【点睛】本题主要考查正方体各个面上字母相对和相邻的关系以及整式的加减法和求值,观察图形,得到A,B对面的字母,式解题的关键.92.如图,是一个由小正方体所搭成的几何体,从上面看到的平面图形,从正方形中的数字表示该位置小正方体的个数,请你画出它从正面和从左面看到的平面图形.【答案】见解析【解析】【分析】由已知条件可知,从正面看有3列,每列小正方数形数目分别为3,3,2,从左面看有3列,每列小正方形数目分别为1,3,3.据此可画出图形.【详解】解:如图所示:从正面看从左面看【点睛】本题考查从不同方向看小正方体所搭成的几何体所得到的平面图形.关键是要得出从不同方向看有几列,每列有几个小正方形.93.小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在图上补全.(请在备用图中画出所有可能)(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的4倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是720cm,求这个长方体纸盒的体积.【答案】(1)8,(2)四种可能,图形见详解(3)128000 cm2【解析】【分析】(1)根据展开后的图形即可解题,(2)根据长方体的展开图的特点,进行画图,注意考虑周全.,(3)利用底面是正方形, 最长的一条棱是最短的一条棱的4倍,棱长的和是720cm,求出长宽高,即可解题.【详解】解:(1)由展开图发现,小明一共剪开了8条棱,故答案是8,(2)如下图,四种可能,(3)∵长方体纸盒的底面是一个正方形,∴设最短的棱长即高为acm,则长与宽相等为4acm.∵长方体纸盒所有棱长的和是720cm,∴4(a+4a+4a)=720,解得a=20 这长方体纸盒的体积为20×80×80=128000cm2故答案是8;四种情况;128000 cm2【点睛】本题考查了立体图形的展开,属于简单题,熟悉立体图形的性质是解题关键.94.如图是一个正方体的表面展开图,每个面上都标注了字母,请根据要求回答下列问题:(1)如果面B在正方体的底部,那么面_______会在上面;(2)如果面E在前面,从左面看是B,那么面_______会在上面;(3)从右面看是面C,面A在后面,那么面_______会在上面.【答案】(1)D;(2)A;(3)D【解析】【分析】首先将展开图折叠起来,然后即可得解.【详解】将展开图折叠起来,即可得出(1)如果面B在正方体的底部,那么面D会在上面;(2)如果面E在前面,从左面看是B,那么面A会在上面;(3)从右面看是面C,面A在后面,那么面D会在上面.【点睛】此题主要考查对正方体的表面展开图的理解,熟练掌握,即可解题.95.十八世纪瑞士数学家欧拉证明了简单多面体中项点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列儿种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:你发现项点数(V)、面数(F)、棱数(F)之间存在的关系式是__________________________.(2)一个多面体的面数比顶点数小8,且有30条棱,则这多面体的顶点数是20;(3)某个玻璃饰品的外形是简单多面体,它的外表是由三角形和八边形两种多边形拼接而成,且有48个顶点,每个顶点处都有3条棱,设该多面体表面三角形的个数为x个,八边形的个数为y个,求x+y的值.【答案】(1) 见解析,V+F-E=2;(2) 20;(3)26【解析】【分析】(1)观察表格可以看出:顶点数+面数-棱数=2,关系式为:V+F-E=2;(2)代入(1)中公式进行计算;(3)根据欧拉公式可得顶点数+面数-棱数=2,然后表示出棱数,进而可得面数.【详解】解:(1)根据题意得如下图∵4+4-6=2,8+6-12=2,6+8-12=2,∴顶点数(V)、面数(F)、棱数(E)之间存在的关系式是V+F-E=2;(2)由(1)可知:V+F-E=2,∵一个多面体的面数比顶点数小8,且有30条棱,∴V+V-8-30=2,即V=20;(3)∵有48个顶点,每个顶点处都有3条棱,两点确定一条直线;∴共有48×3÷2=72条棱,设总面数为F,48+F-72=2,解得F=26,∴x+y=26.【点睛】本题考查了多面体的顶点数,面数,棱数之间的关系及灵活运用,得出欧拉公式是解题关键.96.从正面、左面观察如图所示几何体,分别画出你所看到的几何体的形状图.【答案】见解析【解析】【分析】从正面看、左面看、上面看到的行、列上各有几个小立方体,然后画出相应的视图即可.【详解】解:【点睛】考查简单几何体的三视图,看到的图形要注意“长对正,宽相等,高平齐”,把握每列上有几层是正确画出图形的关键.97.(1)观察下列多面体,并把下表补充完整.(2)观察上表中的结果,你能发现a 、b 、c 之间有什么关系吗?请写出关系式.【答案】(1)8、7、18;(2)a +c -2=b【解析】【分析】(1)只要将各个图形的顶点数、棱数、面数数一下就可以得出答案;(2)通过观察找出每个图形中“顶点数、棱数、面数”之间隐藏的数量关系,用公式表示出来即可.【详解】解:(1)通过计算可得出四棱柱的顶点数为8;五棱柱的面数为7;六棱柱的棱数为18;故答案为:8、7、18;(2)通过观察找出每个图形中“顶点数、棱数、面数”之间隐藏的数量关系,可得出:a+c-2=b.【点睛】本题考查的知识点是欧拉公式,公式描述了简单多面体顶点数、面数、与棱数特有的规律.98.⑴三棱柱有条棱,四棱柱有条棱,五棱柱有条棱;⑵n棱柱有条棱;⑶三十棱柱有条棱.【答案】(1)9,12,15;(2)3n;(3)30.【解析】【分析】由于三棱柱有9条棱,四棱柱有12条棱,五棱柱有15条棱,即棱的条数是棱数的3倍,由此可得到n棱柱的棱的条数,进而得到三十棱柱的棱数.【详解】(1)三棱柱有9条棱,四棱柱有12条棱,五棱柱有15条棱,…(2)由(1)得:n棱柱有3n条棱;(3)三十棱柱有90条棱.故答案为:9,12,15,3n,30.【点睛】本题考查了认识立体图形.结合实物,认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.99.如图是一个正方体的平面展开图,标注了字母A的是正方体的正面,且正方体的左面与右面标注的式子相等,求x的值.【答案】x=1【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,然后列出方程求解即可;【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“-2”是相对面,“3”与“1”是相对面,“x”与“3x-2”是相对面,∵正方体的左面与右面标注的式子相等,∴x=3x-2,解得x=1.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.100.用棱长为1的小立方体摆成如图所示的几何体,请完成下列问题:画出该几何体的三视图.【答案】如图所示见解析.【解析】【分析】从正面看,得到从左往右3列正方形的个数依次为1,3,2;从左面看得到从左往右2列正方形的个数依次为3,1;从上面看得到从左往右3列正方形的个数依次为1,2,1,依此画出图形即可.【详解】从正面看,得到从左往右3列正方形的个数依次为1,3,2;从左面看得到从左往右2列正方形的个数依次为3,1;从上面看得到从左往右3列正方形的个数依次为1,2,1,如图所示:本题考查了作图-三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.。

北师大版七年级数学上册第四章《基本平面图形》精品复习课件

北师大版七年级数学上册第四章《基本平面图形》精品复习课件

渝南田家炳中学欢迎您!
课堂练习:
一、图形个数问题
例1 如图,A,B,C,D为平面内每三点都
不在一条直线上的四点,那么过其中任意的两点,
可画出几条直线?若A,B,C,D,E为平面内
每三点都不在一条直线上的五点,则过其中任意 的两点可画几条直线?若是n个点呢?
渝南田家炳中学欢迎您!
解:对于已知四点,A点与其他三点共可确定3条直线,过
渝南田家炳中学欢迎您!
4. 比较线段的长短 线段长度的比较有两种方法: (1)叠合比较法,如比较线段AB,CD的长度,可将线段 AB,CD移到同一条射线上,使它们的端点A,C都与射线的端点重 合,再由点B与点D的位置关系,就可得出线段AB和CD的长度关 系. (2)度量比较法,先用刻度尺度量各线段的长度,再按照度量的 长度比较它们的长短.
渝南田家炳中学欢迎您!
二、线段长度的计算 例2 如图,线段AB=32cm,点C在AB上,
且AC∶CB=5∶3,点D是AC的中点,点O 是AB的中点,求DB与OC的长.
【解析】 从图上可以看出DB=AB-AD,而D是
AC的中点,AD= 1/2 AC,结合AC∶CB=5∶3,AB= 32 cm,故AC和BC可求,OC=OB-BC=1/2AB-BC.
渝南田家炳中学欢迎您!
三、时钟夹角问题
例3 钟表在3点半时,它的时针和分针所 成的锐角是( B )
A.70° B.75° C.85° D.90°
【解析】 可以画出草图,如图所示,要注 意的是3点半时,分针指在正下方6处,而时针 并非指在3处,而是在3与4的正中间,所以分 针和时针的夹角为90°- 1/2×30°=75°.
渝南田家炳中学欢迎您!
四、有关角度的计算

人教版数学七年级上册第四章《几何图形初步》 综合复习题

人教版数学七年级上册第四章《几何图形初步》 综合复习题

第四章几何图形初步综合复习题一、单选题1.(2022·福建三明·七年级期末)如图,下列图形全部属于柱体的是()A.B.C.D.2.(2022·福建龙岩·七年级期末)下列图形中,绕铅垂线旋转一周可得到如图所示几何体的是()A.B.C.D.3.(2022·福建泉州·七年级期末)在开会前,工作人员进行会场布置,如图为工作人员在主席台上由两人拉着一条绳子,然后以“准绳”摆放整齐的茶杯,这样做的理由是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.过一点可以作无数条直线4.(2022·福建宁德·七年级期末)如图,已知线段a,b.按如下步骤完成尺规作图,则AC的长是()①作射线AM;①在射线AM 上截取2AB a =;①在线段AB 上截取BC b =.A .a b +B .b a -C .2a b +D .2a b -5.(2022·福建莆田·七年级期末)如图,点,C D 在线段AB 上.则下列表述或结论错误的是( )A .若AC BD =,则AD BC =B .AC AD DB BC =+- C .AD AB CD BC =+- D .图中共有线段12条6.(2022·福建南平·七年级期末)如图,线段6,4AB BC ==,点D 是AB 的中点,则线段CD 的长为( )A .3B .5C .7D .87.(2022·福建福州·七年级期末)在同一条直线上按顺序从左到右有P 、Q 、M 、N 四个点,若MN QM PQ -=,则下列结论正确是( )A .Q 是线段PM 的中点B .Q 是线段PN 的中点C .M 是线段QN 的中点D .M 是线段PN 的中点8.(2022·福建泉州·七年级期末)如图,下列说法中错误的是( )A .OA 方向是北偏东30°B .OB 方向是北偏西15°C .OC 方向是南偏西25°D .OD 方向是东南方向9.(2022·福建莆田·七年级期末)如图,按照上北下南,左西右东的规定画出方向十字线,①AOE =m °,①EOF =90°,OM ,ON 分别平分①AOE 和①BOF ,下面说法:①点E 位于点O 北偏西m °的方向上;①点F 位于点O 北偏东m °的方向上;①①MON =135°,其中正确的有( )A.3个B.2个C.1个D.0个∠的余角的度数为()10.(2022·福建泉州·七年级期末)如果52a∠=︒,则aA.38︒B.48︒C.52︒D.128︒二、填空题11.(2022·福建漳州·七年级期末)如图,是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,那么x-y=_____.12.(2022·福建泉州·七年级期末)如图,是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面上,与“祝”相对的面上的汉字是______.13.(2022·福建福州·七年级期末)木工师傅用两根钉子就能将一根细木条固定在墙上了,这其中含有的数学知识是___.14.(2022·福建南平·七年级期末)植树时,只要定出两个树坑的位置,就能使同一行树坑在同一条直线上,这是根据___.(应用所学过的数学知识填空)15.(2022·福建漳州·七年级期末)已知,线段AB=6,点C在直线AB上,AB=3BC,则AC= ___.16.(2022·福建三明·七年级期末)如图,两块三角板的直角顶点O重叠在一起,且OB恰好平分①COD,则①AOD的度数是____度.∠三等分,若图中所有小于平角的角的度17.(2022·福建龙岩·七年级期末)如图,射线OA,OB把POQ∠的度数为_____.数之和是300,则POQ18.(2022·福建泉州·七年级期末)把两块三角板按如图所示那样拼在一起,则①ABC等于___°.三、解答题19.(2022·福建宁德·七年级期末)在如图所示的正方形网格中,每个小正方形中都标有1个有理数,其中4个已经涂上阴影.现要在网格中选择2个空白的小正方形并涂上阴影,与图中的4个阴影正方形一起构成正方体的表面展开图.(1)图1是小明涂成的一个正方体表面展开图,求该表面展开图上6个有理数的和;(2)你能涂出一种与小明涂法不一样的正方体表面展开图吗?请在图2中涂出;(3)若要使涂成的正方体表面展开图上的6个有理数之和最大,应该如何选择?请在图3中涂出.20.(2022·福建龙岩·七年级期末)如图,已知四点A、B、C、D,用圆规和无刻度的直尺,按下列要求与步骤画出图形;(1)画直线AB;(2)画射线CB;(3)延长线段DA 至点E ,使AE=AD (保留作图痕迹).21.(2022·福建泉州·七年级期末)已知A ,B ,C ,D 四点在同一条直线上,点C 是线段AB 的中点.(1)点D 在线段AB 上,且AB =6,13BD BC =,求线段CD 的长度; (2)若点E 是线段AB 上一点,且AE =2BE ,当:2:3AD BD =时,线段CD 与CE 具有怎样的数量关系,请说明理由.22.(2022·福建福州·七年级期末)如图,已知线段10AB =,点C 是AB 的中点,点D 是线段上一点,3AD =.求线段CD 的长.23.(2022·福建厦门·七年级期末)如图,,B C 两点在射线AM 上,AC BC >,在射线BM 上作一点D 使得BD AC BC =-.(1)请用圆规作出点D 的位置;(2)若6cm AD =,求线段AC 的长.24.(2022·福建泉州·七年级期末)如图,在数轴上有A 、B 两点(点B 在点A 的右边),点C 是数轴上不与A 、B 两 点重合的一个动点,点M 、N 分别是线段AC 、BC 的中点.(1)如果点A 表示4-,点B 表示8,则线段AB = ;(2)如果点A 表示数a ,点B 表示数b ,①点C 在线段AB 上运动时,求线段MN 的长度(用含a 和b 的代数式表示);①点C 在点B 右侧运动时,请直接写出线段MN 的长度:___________________(用含a 和b 的代数式表示). 25.(2022·福建福州·七年级期末)如图,以直线AB 上一点O 为端点作射线OC ,使70AOC ∠=︒,在同一个平面内将一个直角三角板的直角顶点放在点O 处.(注:90DOE ∠=︒)(1)如图1,如果直角三角板DOE 的一边OD 放在射线OA 上,那么COE ∠的度数为______;(2)如图2,将直角三角板DOE 绕点O 按顺时针方向转动到某个位置,如果OC 恰好平分AOE ∠,求COD ∠的度数;(3)如图3,将直角三角板DOE 绕点O 任意转动,如果OD 始终在AOC ∠的内部,请直接用等式表示AOD ∠和COE ∠之间的数量关系.26.(2022·福建厦门·七年级期末)如图,对于线段AB 和A OB ''∠,点C 是线段AB 上的任意一点,射线OC '在A OB ''∠内部,如果AC A OC AB A OB ∠=∠'''',则称线段AC 是A OC ''∠的伴随线段,A OC ''∠是线段AC 的伴随角.例如:10,100AB A OB '='=∠︒,若3AC =,则线段AC 的伴随角30A OC ∠=''︒.(1)当8,130AB A OB '='=∠︒时,若65A OC ∠=''︒,试求A OC ''∠的伴随线段AC 的长;(2)如图,对于线段AB 和,6,120A OB AB A OB ''''∠=∠=︒.若点C 是线段AB 上任一点,E ,F 分别是线段,AC BC 的中点,,,A OE A OC A OF ''∠∠'∠'''分别是线段,,AE AC AF 的伴随角,则在点C 从A 运动到B 的过程中(不与A ,B 重合),E OF ''∠的大小是否会发生变化?如果会,请说明理由;如果不会,请求出E OF ''∠的大小.(3)如图,已知AOC ∠是任意锐角,点M ,N 分别是射线,OA OC 上的任意一点,连接MN ,AOC ∠的平分线OD 与线段MN 相交于点Q .对于线段MN 和AOC ∠,线段MP 是AOD ∠的伴随线段,点P 和点Q 能否重合?如果能,请举例并用数学工具作图,再通过测量加以说明;如果不能,请说明理由.27.(2022·福建三明·七年级期末)已知,O 为直线AB 上一点,①DOE =90°.(1)如图1,若①AOC =128°,OD 平分①AOC .①求的①BOD 度数;①请通过计算说明OE 是否平分①BOC .(2)如图2,若①AOD :①DOB =4:5,求①BOE 的度数.28.(2022·福建泉州·七年级期末)时钟上的分针和时针像两个运动员,绕着它们的跑道昼夜不停地运转.以下请你解答有关时钟的问题:(1)分针每分钟转了几度?(2)中午12时整后再经过几分钟,分针与时针所成的钝角会第一次等于121︒?(3)在(2)中所述分针与时针所成的钝角等于121︒后,再经过几分钟两针所成的钝角会第二次等于121︒?参考答案:1.C【解析】解:A 、有一个是三棱锥,故不符合题意;B 、有一个是不规则的多面体,故不符合题意;C 、分别是一个圆柱体、两个四棱柱;D 、有一个是圆台,故不符合题意.故选:C .2.A【解析】面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.解:A 、是直角梯形绕高旋转形成的圆台,故A 正确;B 、是直角梯形绕底边的腰旋转形成的圆柱加圆锥,故B 错误;C 、绕直径旋转形成球,故C 错误;D 、绕直角边旋转形成圆锥,故D 错误.故选A.本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转.3.B由两人拉着一条绳子,然后以“准绳”摆放整齐的茶杯,这样做的理由是两点确定一条直线 故选B .4.D【解析】根据题意作出图形,根据线段的和差进行求解即可解:如图,根据作图可知,AC AB BC =-2a b =-故选D本题考查了尺规作图作线段,线段和差的计算,数形结合是解题的关键.5.D【解析】根据两点间的距离的含义和求法,以及直线、射线和线段的认识,逐项判断即可. 解: A. 因为AD=AC+CD,BC=CD+DB,若AC=BD ,所以可得AC=BD ,此选项说法正确;B. AC AD DB BC =+-,此选项说法正确;C. AD AB CD BC =+-,此选项说法正确;D.由图形可得图中共有线段6条所以,此选项说法错误,故选D.此题主要考查了两点间的距离的含义和求法,以及直线、射线和线段的认识,要熟练掌握.6.C【解析】根据点D是AB的中点,可得BD=3,再由CD=BD+BC,即可求解.解:①AB=6,点D是AB的中点,①BD=3,①BC=4,①CD=BD+BC=3+4=7.故选:C本题主要考查了有关中点的计算,明确题意,准确得到线段间的数量关系是解题的关键.7.D-=,得出线段之间的关系,逐项进行判断即【解析】根据题意画出图形,根据MN QM PQ可.①PQ不一定等于QM,①Q不一定是线段PM的中点,故A错误;-=,①MN QM PQ=+=,①MN PQ QM PM①PM MN PN+=,①M是线段PN的中点,故B错误,D正确;-=,①MN QM PQ>,①MN QM①M不是线段QN的中点,故C错误.故选:D.本题主要考查了线段之间的关系,根据题意画出图形是解题的关键.8.A试题分析:方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)多少度.根据定义就可以解决.解:A、OA方向是北偏东60°,此选项错误;B、OB方向是北偏西15°,此选项正确;C、OC方向是南偏西25°,此选项正确;D、OD方向是东南方向,此选项正确.错误的只有A.故选A.9.B【解析】观察方向图形,根据方向角解答即可.解:①点E位于点O北偏西(90﹣m)°的方向上,原结论错误;①①①AOE+①EOD=90°,①DOF+①EOD=90°,∴①DOF=①AOE=m°,∴点F位于点O北偏东m°的方向上,原结论正确;①①①AOE+①BOF=90°,OM,ON分别平分①AOE和①BOF,①①MOE+①NOF=45°,①∠MON=135°,原结论正确;其中正确的有2个.故选:B.此题考查的知识点是方向角,角平分线的性质,解题关键是明确方向角的意义,熟练运用角平分线和余角的性质推导角的关系.10.A【解析】根据余角的定义,利用90°减去52°即可.a∠的余角=90°-52°=38°.故选A.本题考查求一个数的余角,关键在于牢记余角的定义.11.5【解析】由正方体的表面展开图中的相对面中间一定隔着一个面的特点出发,确定相对面,再求解,x y的值,从而可得答案.解:由正方体的表面展开图可得:3和y相对,2-与x相对,而相对面上所标的两个数互为相反数,3,2,y xx y23235,故答案为:5本题考查的是正方体展开图中相对面上的数字,掌握正方体是立体图形,从相对面的特点进行分析是解本题的关键.12.功【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点,即可作答.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,① “你”与“试”相对,“考”与“成”相对,“祝”与“功”相对,①与“迎祝”相对的面上的汉字是“功”.故答案为:功本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题是解题的关键.13.两点确定一条直线【解析】细木条为一条线段,两根钉子相当于两个点,即可求解.解:细木条代表一条直线,两根钉子相当于两个点,两个点确定,细木条代表的直线就确定了,故答案为:两点确定一条直线此题考查了两点确定一条直线的应用,解题的关键是理解题意,掌握并运用两点确定一条直线的性质.14.两点确定一条直线【解析】根据两点确定一条直线,即可求解.解:根据题意得的:这是根据两点确定一条直线.故答案为:两点确定一条直线本题主要考查了直线的基本事实,熟练掌握两点确定一条直线是解题的关键.15.4或8【解析】先求出BC的长,根据点C的位置分别计算可得答案.解:①AB=6,AB=3BC,①BC=2,当点C在线段AB上时,AC=AB-BC=6-2=4;当点C在线段AB延长线上时,AC=AB+BC=6+2=8;故答案为:4或8.此题考查了线段的和差计算,掌握分类思想解决问题是解题的关键,避免漏解的现象.16.135°【解析】本题是有公共定点的两个直角三角形问题,通过图形可知①AOC+①BOC=90°,①BOD+①BOC=90°,同时①AOC+①BOC+①BOD+①BOC=180°,可以通过角平分线性质求解.①OB平分①COD,①①COB=①BOD=45°,①①AOB=90°,①①AOC=45°,①①AOD=135°.故答案为135.本题考查的知识点是角的平分线与对顶角的性质,解题关键是熟记角平分线的性质是将两个角分成相等的两个角.17.90°【解析】先找出所用的角,分别用含字母x的代数式将每个角的度数表示出来,再列方程即可求出x的值,进一步求出①POQ的度数.设①QOB=x,则①BOA=①AOP=x,则①QOA=①BOP=2x,①QOP=3x,①①QOB+①BOA+①AOP+①QOA+①BOP+①QOP=10x=300°,解得:x=30°,①①POQ=3x=90°.故答案为:90°.本题考查了确定角的个数及角的度数的计算,解答本题的关键是根据题意列出方程.18.120解:由图可知①ABC=30°+90°=120°.故答案为:12019.(1)-6(2)见解析(3)见解析【解析】(1)根据有理数加法法则计算即可得答案;(2)根据正方体表面展开图添加即可;(3)根据正方体表面展开图,选择两个数字的和最大的添加即可.(1)-4+2+6+1+(-3)+(-8)=-6,答:该表面展开图上6个有理数的和是-6.(2)根据正方体表面展开图添加如下:(3)根据正方体表面展开图可添加数字如下:-4+4=0,-6+(-8)=-14,-6+4=-2,-6+3=-3,-6+(-1)=-7,3+(-1)=2,①涂成的正方体表面展开图上的6个有理数之和最大,①添加3和-1,如图所示:本题考查有理数加法运算及正方体表面展开图,熟练掌握正方体11种展开图是解题关键.20.(1)见解析(2)见解析(3)见解析【解析】(1)画直线AB,直线向两方无限延伸;(2)画射线CB,C为端点,再沿CB方向延长;(3)画线段DA,延长线段DA,以A为圆心,AD为半径作弧交DA的延长线于E,则AE=AD.(1)画出直线AB;(2)画出射线CB;(3)延长线段DA,以A为圆心,AD为半径作弧交DA的延长线于E,则AE=AD(要求保留作图圆弧的痕迹,弧线和点E各画直线),所以,AE为所求作的线段(或表述E为所求作的点),如图所示:本题主要考查了直线、射线、线段,关键是掌握直线向两方无限延伸,射线向一方无限延伸,线段不能向两方无限延伸.21.(1)线段CD的长度为2;(2)5CD=3CE或CD=15CE.理由见解析【解析】(1)根据线段中点的性质求出BC,根据题意计算即可;(2)分两种情况讨论,当点D在线段AB上和点D在BA延长线上时,利用设元的方法,分别表示出AB以及CD、CE的长,即可得到CD与CE的数量关系.(1)解:如图1,①点C是线段AB的中点,AB=6,①BC=12AB=3,①BD=13 BC,①BD=1,①CD=BC-BD=2;(2)解:5CD=3CE或CD=15CE.理由如下:当点D在线段AB上,如图2,设AD =2x ,则BD =3x ,①AB =AD +BD =5x ,①点C 是线段AB 的中点,①AC =12AB =52x , ①CD =AC -AD =12x , ①AE =2BE ,①AE =23AB =103x , CE =AE -AC =56x , ①CD CE =1256x x ,即5CD =3CE ; 当点D 在BA 延长线上时,如图3,设AD =2a ,则BD =3a ,①AB =BD -AD =a ,①点C 是线段AB 的中点,①AC =12AB =12a , ①CD =AC +AD =52a , ①AE =2BE ,①AE =23AB =23a , CE =AE -AC =16a , ①CD CE =5216a a ,即CD =15CE . 综上,5CD =3CE 或CD =15CE .本题考查的是两点间的距离,正确理解线段中点的概念和性质是解题的关键.解第2问注意分类讨论.22.2CD =【解析】根据中点的性质可得AC 的长,再根据线段的和差计算出CD 的长即可. ①10AB =,点C 是AB 的中点 ①1110522AC AB ==⨯= ①5AC =,3AD =①532CD AC AD =-=-=本题考查了中点的定义和线段的和差,熟练掌握相关知识是解题的关键.23.(1)见解析(2)3cm【解析】(1)以C 为圆心,以AC 的长为半径画弧与射线CM 交于点D ,点D 即为所求; (2)根据BD AC BC =-,BD CD BC =-,得到AC CD =,由此即可得到答案.(1)解:如图所示,点D 即为所求;(2)解:①BD AC BC =-,BD CD BC =-,①AC CD =, ①13cm 2AC AD ==. 本题主要考查了尺规作图—作线段,线段的和差计算,熟知相关知识是解题的关键.24.(1)12 (2)①1()2b a -;①1()2MN b a =-【解析】(1)结合数轴根据两点距离求解即可;(2)①由点M 、N 分别是线段AC 、BC 的中点,得AC BC AB b a +==-,进而根据12MN CM CN AB =+=求解即可; ①同理可得12MN CM CN AB =-=. (1) 点A 表示4-,点B 表示8,()8412AB ∴=--=故答案为:12(2)如果点A 表示数a ,点B 表示数b , ①点C 在线段AB 上,点M 、N 分别是线段AC 、BC 的中点,12CM AC ∴=,12CN BC =,AC BC AB b a +==-, 11()22MN CM CN AB b a ∴=+==-; ①点C 在点B 右侧运动时,设C 点表示的数为c ,点M 、N 分别是线段AC 、BC 的中点,12CM AC ∴=,12CN BC =,()()AC BC c a c b b a -=---=-, ()11()22MN AC BC b a ∴=-=- 故答案为:1()2MN b a =-. 本题考查了数轴上两点距离,线段段中点的性质,线段和差的计算,数形结合是解题的关键. 25.(1)20︒;(2)20︒;(3)20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.【解析】(1)如图1,如果直角三角板DOE 的一边OD 放在射线OA 上,则①COE =20°; (2)由角平分线可得70COE AOC ∠=∠=︒,再利用角的和差进行计算即可;(3)分别用①COE 及①AOD 的式子表达①COD ,进行列式即可.解:(1)①90DOE ∠=︒,70AOC ∠=︒①907020COE DOE AOC =∠-∠=︒-︒=︒∠故答案为:20︒(2)①OC 平分AOE ∠,70AOC ∠=︒,①70COE AOC ∠=∠=︒,①90DOE ∠=︒,①907020COD DOE COE ∠=∠-∠=︒-︒=︒.(3)①90COD DOE COE COE =∠-∠=︒-∠∠, 70COD AOC AOD AOD =∠-∠=︒-∠∠ ①9070COE AOD ︒-∠=︒-∠①20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.故答案为:20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.本题考查了角的和差关系,准确表达出角的和差关系是解题的关键.26.(1)AC =4;(2)不会,①E ′OF ′=60°.理由见解析(3)能,理由见解析【解析】(1)根据伴随角和伴随线段的定义定义列出等式即可求解;(2)由中点的定义可得EF =12AB ,再利用伴随角和伴随线段的定义列出等式,可得出结论; (3)由伴随角和伴随线段的定义可得,点P 和点Q 重合时,是MN 的中点,画出图形,测量即可.(1) 解:由伴随角和伴随线段的定义可知,AC A OC AB A OB ∠=∠'''',, ①65181302AC ︒==︒, ①AC =4;(2)解:不会,①E ′OF ′=60°.理由如下:①点E ,F 分别是线段AC ,BC 的中点,①EC =12AC ,CF =12BC , ①EF =12AB =3. ①①A ′OE ′,①A ′OC ′,①A ′OF ′分别是线段AE ,AC ,AF 的伴随角, ①AE A OE AB A OB ∠=∠'''',AC A OC AB A OB ∠=∠'''',AF A OF AB A OB ∠=∠'''', ①EF =AF -AE , ①12EF AF AE A OF A OE E OF AB AB AB A OB A OB A OB ∠∠'''''''''''∠'=-=-==∠∠∠, ①①A ′OB ′=120°,①①E ′OF ′=60°;(3)解:能,理由如下:①OD 是①AOC 的平分线,①①AOD =12①AOC ,①线段MP是①AOD的伴随线段,①12MP AODMN AOC∠==∠.即点P是MN的中点.若点P和点Q重合,则点Q为MN的中点.根据题意画出图形如下所示:测量得出当点P和点Q重合时,NP=MQ=1.25cm.本题属于线段和角度中新定义类问题,涉及中点的定义和角平分线的定义,关键是理解伴随角和伴随线段的定义.27.(1)①①BOD=116°;①OE平分①BOC,见解析(2)①BOE=10°.【解析】(1)①根据角平分线的定义求出①AOD的度数,再根据平角的定义求出①BOD的度数;①根据角的和差求出①COE=①DOE-①DOC=90°-64°=26°,①BOE=①BOD-①DOE=116°-90°=26°,根据角平分线的定义即可求解;(2)设①AOD=4x,则①DOB=5x,根据平角的定义列出方程求出x,进一步求出①BOE的度数.(1)解:①①OD平分①AOC,①AOC=128°,①①AOD=①DOC=12①AOC=12×128°=64°,①①BOD=180°-①AOD=180°-64°=116°;①①①DOE=90°,又①①DOC=64°,①①COE=①DOE-①DOC=90°-64°=26°,①①BOD=116°,①DOE=90°,①①BOE=①BOD-①DOE=115°-90°=26°,①①COE=①BOE,即OE平分①BOC;(2)解:若①AOD :①DOB =4:5,设①AOD =4x ,则①DOB =5x ,又①①AOD +①DOB =180°,①4x +5x =180°,①x =20°,①①AOD =4x =80°,①①DOE =90°,①①BOE =180°-80°-90°=10°.本题主要考查了角平分线的定义和角的运算.结合图形找到其中的等量关系是解题的关键. 28.(1)6︒(2)22 (3)23611【解析】(1)根据分针一小时转一圈即360°,用360°除以60计算即得;(2)根据分针每分钟转6°,时针每分钟转0.5°,时针与分针转过的角度差是121︒,列方程解答即可;(3)相对于12时整第二次所成的钝角第二次等于121︒时,时针与分针转过的角度差超过180°,这个差与121︒之和是360°.(1)解:①分针一小时转一圈即360°,①分针每分钟转过的角度是:360606︒÷=︒ ,答:分针每分钟转了6度;(2)设中午12时整后再经过x 分钟,分针与时针所成的钝角会第一次等于121°,①时针一小时转动角度为: 3601230︒÷=︒,时分针每分钟转过的角度是:30600.5÷︒=︒ ;①分针与时针所成的钝角会第一次等于121︒,①时针与分针转过的角度差是121︒,①60.5121x x -=,解得:22x =,答:中午12时整后再经过22分钟,分针与时针所成的钝角会第一次等于121°;(3)设经过y 分钟两针所成的钝角会第二次等于121︒,则从12时算起经过(y +22)分钟两针所成的钝角会第二次等于121︒,因为时针与分针转过的角度差超过180°,这个差与121︒之和是360°,故列得方程:6(22)0.5(22)121360y y +-++=,解得:6(22)0.5(22)121360y y +-++=, 解得:23611y =, 答:经过23611分钟两针所成的钝角会第二次等于121︒. 本题通过钟面角考查一元一次方程,掌握时针分针的转动情况,会根据已知条件列方程是解题的关键.选择合适的初始时刻会简化理解和运算难度,起到事半功倍的效果.。

冀教版七年级数学上册 第四章 期末复习 练习题教学课件PPT初一公开课

冀教版七年级数学上册 第四章 期末复习 练习题教学课件PPT初一公开课

数学·冀教版·七年级上册第四章 整式的加减4. 1 整式课时1 单项式1. [2022上海徐汇区期中]下列属于单项式的是 ( )A.a+bB.C.D. 11.D2. [2022郑州外国语学校期中]在式子a2+2, ,ab2, ,-8x,2a+m中,单项式有( )A.5个B.4个C.3个D.2个2.C 单项式有ab2, ,-8x,共3个.3.一辆长途汽车从甲地出发,3小时后到达距甲地s千米的乙地,这辆长途汽车的平均速度是 千米/时,所列代数式 单项式(填“是”或“不是”).3. 是4.易错题[2022邢台期末]单项式-x2y的系数与次数分别是( )A.-13B.-142,2,C.-π3D.-π42,2,4.C5. [2022厦门湖滨中学期末]下列各式中,次数为3的单项式是 ( )A.3abB.a3bC.a3+b3D.5a2b5.D6.B 因为-2ax 3的系数是-2,- 的系数是- ,- abc 3的系数是- ,- xy 2的系数是- ,而- >-2>- >- ,所以系数最大的是6. [2022唐山期末]下列单项式中,系数最大的是 ( )A .-2ax 3B .-C .- abc 3D .- xy 210 .2x y -7.教材P124习题A组T3变式[2021邯郸月考]单项式 x4-m y与6xy2的次数相同,则m的值为( )A. 1B.2C.3D.47.B 因为单项式 x4-m y与6xy2的次数相同,所以4-m+1=1+2,解得m=2.8.结论开放[2022福州一中期中]一个单项式满足下列三个条件:①系数是1;②含有两个字母;③次数是3.则同时满足上述三个条件的单项式为 .(答出一个即可)8.m2n(答案不唯一)9.教材P123例1变式用单项式表示下列各量,并写出它的系数和次数: ( 1)原产量为n吨,增产25%之后的产量;(2)x的平方与y的积的3 ;(3)底面积为S,高为h的圆柱的体积.9.解:(1) n吨,系数为 ,次数为1.(2) x2y,系数为 ,次数为3.(3)Sh,系数为1,次数为2.10. [2022洛阳期中]观察下列一系列单项式的特点:x 2y ,- x 2y 2 , x 2y 3 ,- x 2y 4 , … .( 1)写出第8个单项式.(2)猜想第n (n 为正整数)个单项式是什么?并指出它的系数和次数.10.解:(1)第8个单项式是(- 1)8+ 1( )8x 2y 8 ,即-( )8x 2y 8.(2)由题意知第n 个单项式是(- 1)n+1( )n x 2y n ,系数是(- 1)n+1(1)n ,次数是n+2.22课时2 多项式、 整式1. [2022广州南武实验学校期中]在式子x2+5,- 1,x2-3x+2,π , ,x2+中,多项式有( )A.2个B.3个C.4个D.6个1.A 多项式有x2+5,x2-3x+2,共2个.2.多项式2x2-x-3的项是 ( )A.2x2,x,3B.2x2,-x,-3C.2x2,x,-3D.2x2,-x,32.B3. [2022石家庄新华区期中]二次三项式x2-2x-3的二次项系数、 一次项系数、 常数项分别是 ( )A.-2, 1,-3B.0,2,-3C. 1,-2,-3D.0,2,33.C4. [2022重庆潼南中学期末]下列关于多项式5ab2-2a2bc- 1的说法中,正确的是 ( )A.它是三次三项式B.它是二次四项式C.最高次项是-2a2bcD.常数项是14.C 多项式5ab2-2a2bc- 1的最高次项为-2a2bc,次数为2+ 1+ 1=4,常数项为- 1,所以该多项式是四次三项式,故A,B,D 错误,C正确.5. [2021无锡期中]若多项式(k+1)x2-3x+1中不含x2项,则k的值为 ( )A.0B.- 1C. 1D.25.B 因为多项式(k+1)x2-3x+1中不含x2项,所以k+1=0,解得k=- 1.6. [2022唐山期中]若多项式3x|k|-2(k-3)x2+x+1是关于x的三次四项式,则k的值为 ( )A.±4B.4C.-3D.±36.C 依题意得,|k|=3且-2(k-3)≠0,所以k=-3.7.结论开放[2021北京海淀区期末]如图是一位同学数学笔记的一部分.若要将这个式子补充完整,你补充的内容是.7.2x5(答案不唯一)8. [S0S1石家庄期末[单项式-的系数是m,多项式a S b+S ab-3的次数是n,则m+n=.8. 由题意知,m=- ,n=3,所以m+n=-+3=.29.教材P125例3变式如图,在一个长方形休闲广场的四角都设计一个花坛,花坛的形状均为半径相同的四分之一圆, 若广场长为6a米,宽为b米,花坛所在圆的半径为a米.( 1)请用含a,b的式子表示广场空地的面积;.(2)(1)中所得的式子是不是多项式?如果是多项式,请指出它是几次几项式9.解:(1)广场空地的面积为(6ab-πa2)平方米.(2)这个代数式是多项式,是二次二项式.10. [2022廊坊期中]式子x2+2, +4, , ,-5x,0, 中,整式有( )A.6个B.5个C.4个D.3个10.B ,-5x,0是单项式,x2+2, 是多项式,它们都是整式.故整式有5个.11.阅读理解:把一个整式按某个字母的指数按从大到小的顺序排列,叫做把整式按这个字母的降幂排列,反之叫做升 幂排列,如x3y+x2y2-2xy+1是按字母x的降幂排列.( 1)把整式-4x2+5x-8-x4+2x3按字母x的降幂排列,为 ;(2)把整式-3ab+4b4-6a3-4a2b2按字母b的升幂排列,为 .11.( 1)-x4+2x3-4x2+5x-8;(2)-6a3-3ab-4a2b2+4b44.2 合并同类项课时1 合并同类项1. [2021上海中考]下列单项式中,a2b3的同类项是 ( )A.a3b2B.2a2b3C.a2bD.ab31.B2. [2022蚌埠期末]下列各组单项式中,不是同类项的是 ( )A.-a2与2a2B.2与0C.2ab2与2a2bD.-mn与2nm2.C 2ab2与2a2b所含字母相同,但相同字母的指数不相同,故它们不是同类项.3.教材P129习题A组T1变式[2022沧州期末]若代数式5x b-1y a-1与x2y是同类项,则a b的值为 ( )A.2B.8C. 16D.323.B 由题意可知,b- 1=2,a- 1=1,所以b=3,a=2,所以a b=23=8.4.结论开放 [2021北京延庆区期末]写出-2m3n的一个同类项: .4.3m3n(答案不唯一)5.将下列给出的单项式填在相应的横线上:a,3ab,3a2b,2ba2,a2,b2, ba,2.5a2b,4ab2,a2b2, ,- ,-b2a. ( 1)a2b的同类项: .(2)-ab的同类项: .(3)2 022ab2的同类项: .5.( 1)3a2b,2ba2,2.5a2b,- ;(2)3ab, ba, ;(3)4ab2,-b2a6. [2021石家庄新华区一模]计算:-a2+2a2=( )A.a2B.-a2C.2a2D.06.A7. [2022沧州期末]下列各式中正确的是( )A.3m-m=2B.a2b-ab2=0C.3x+3y=6xyD.3xy-5xy=-2xy7.D A项,3m-m=2m,故A不合题意;B项,a2b与-ab2不是同类项,所以不能合并,故B不合题意;C项,3x与3y不是同类项,所以不能合并,故C不合题意;D项,3xy-5xy=-2xy,故D符合题意.8. [2022唐山路北区期末]若-2a n b5与5a3b2m+n的差仍是单项式,则m+n的值是 ( )A.2B.3C.4D.58.C 因为-2a n b5与5a3b2m+n的差仍是单项式,所以n=3,2m+n=5,所以m=1,所以m+n=1+3=4.9.教材P130习题B组T2变式[2021洛阳期末]三个连续偶数中,n- 1是最大的一个,则这三个偶数的和为 .9. 3n-9 由题意知,另两个偶数为n-3,n-5,故n- 1+n-3+n-5=3n-9.10.合并同类项:( 1)3x-8x-9x;(2)6xy- 10x2-5yx+7x2+5x;(3)5a2+2ab-4a2-4ab;(4)7ab-3a2b2+7+8ab2+3a2b2-3-7ab.10.解:(1)3x-8x-9x=(3-8-9)x=- 14x.(2)6xy- 10x2-5yx+7x2+5x=(6-5)xy+(- 10+7)x2+5x=xy-3x2+5x.(3)5a2+2ab-4a2-4ab=(5-4)a2+(2-4)ab=a2-2ab.(4)7ab-3a2b2+7+8ab2+3a2b2-3-7ab =(7-7)ab+(-3+3)a2b2+8ab2+(7-3) =8ab2+4.1. [2021温州二中月考]若M=2a2b,N=7ab2,P=-4a2b,则下列等式成立的是 ( )A.M+N=9a2bB.N+P=3aC.M+P=-2a2bD.M-P=2a2b1.C A选项,2a2b与7ab2不是同类项,所以M和N不能合并,不符合题意;B选项,7ab2与-4a2b不是同类项,所以N和P不能合并,不符合题意;C选项,M+P=2a2b-4a2b=-2a2b,符合题意;D选项,M-P=2a2b-(-4a2b)=6a2b,不符合题意.2. [2022防城港防城区期中]多项式-x2y-8x3+3x3+2x3y+x2y-2x3y+5x3的值 ( )A.只与x的值有关B.只与y的值有关C.与x,y的值都有关D.与x,y的值都无关2.D -x2y-8x3+3x3+2x3y+x2y-2x3y+5x3=(-x2y+x2y)+(-8x3+3x3+5x3)+(2x3y-2x3y)=0,所以该多项式的值与x,y的值都无关.3.若把x-y看成一项,则合并2(x-y)2+3(x-y)+5(y-x)2+3(y-x)得 ( )A.7(x-y)2B.-3(x-y)2C.-3(x+y)2+6(x-y)D.(y-x)23.A 2(x-y)2+3(x-y)+5(y-x)2+3(y-x)=[2(x-y)2+5(x-y)2]+[3(x-y)+3(y-x)]=7(x-y)2.4. [2022娄底期中]如果M是五次多项式,N是五次多项式,那么M+N一定是 ( )A.十次多项式B.次数不高于5的整式C.五次多项式D.次数不低于5的整式4.B5.合并同类项m-3m+5m-7m+9m- 11m+ … +2 021m-2 023m的结果为 ( )A.0B.- 1 000mC.- 1 012mD. 1 012m5.C m-3m+5m-7m+9m- 11m+ … +2 021m-2 023m=-2m-2m-2m- …-2m=-2m×506=- 1 012m.6. [2021阜阳月考]若ax2y+2bx3y+4x2y+c=3x2y+4x3y+1,则a+b+c=.6.2 因为ax2y+2bx3y+4x2y+c=(a+4)x2y+2bx3y+c=3x2y+4x3y+1,所以a+4=3,2b=4,c=1,所以a=- 1,b=2,c=1,所以a+b+c=2.7.若多项式x2-2kxy-y2+xy-8化简后不含xy项,则k的值是 .7. x2-2kxy-y2+xy-8=x2-(2k- 1)xy-y2-8,因为x2-(2k- 1)xy-y2-8不含xy项,所以-(2k- 1)=0,解得k=.变式(1)已知将关于x,y的多项式mx2+4xy-x-2x2+2nxy-3y合并同类项后不含二次项,则m+n的值是 ;(2)关于x的多项式5x3-2mx2-2x2+3,若合并同类项后是三次二项式,则m满足的条件是 ;若合并同类项后是三 次三项式,则m满足的条件是 .变式(1)0;(2)m=- 1 m≠- 1 ( 1)mx2+4xy-x-2x2+2nxy-3y=(m-2)x2+(4+2n)xy-x-3y,因为(m-2)x2+(4+2n)xy-x-3y不含二次项,所以m-2=0,4+2n=0,解得m=2,n=-2,故m+n=0.(2)5x3-2mx2-2x2+3=5x3-(2m+2)x2+3,若5x3-(2m+2)x2+3是三次 二项式,则-(2m+2)=0,解得m=- 1.若5x3-(2m+2)x2+3是三次三项式,则-(2m+2)≠0,解得m≠- 1.8. ( 1)已知无论x,y取何值,都有 x5y n+1-mx p y3=0,求(3m+n-2p)2的值; (2)已知m,n为常数,三个单项式4x2y,m x3−n2y,8x3y的和仍为单项式,求m+n的值.8.解:(1)因为无论x,y取何值,都有 x5y n+1-mx p y3=0,所以m= ,p=5,n+1=3,所以n=2,所以(3m+n-2p)2=(3 × +2-2 ×5)2=(-6)2=36.(2)①若4x2y与m X3−n2y为同类项,则3-n2=2,所以n=±1.因为三个单项式的和仍为单项式,所以4+m=0,所以m=-4,所以m+n=-5或-3.,所以n=0.因为三个单项式的和仍为单项式,所以m+8=0,所以m=-8,所以m+n=-8.综上所述,m+n的值为-5,-3或-8.9.小明去商场购物,已知甲种商品每件是m元,乙种商品的单价是甲种商品单价的一半,丙种商品的单价比甲种商品单价的1.5倍少5元,若小明同时购买甲、 乙、 丙三种商品各两件,则他应付多少元?9.解:由题意得,乙种商品的单价是 m元,丙种商品的单价是(1.5m-5)元,所以甲、 乙、 丙三种商品各买一件的价钱是m+m+(1.5m-5)=(3m-5)(元),所以小明同时购买三种商品各两件应付(6m- 10)元.课时2 多项式的化简求值1.当x=-4时,代数式-x3-4x2-2+x3+5x2+3x-4的值是 ( )A.0B.4C.-4D.-21.D -x3-4x2-2+x3+5x2+3x-4=x2+3x-6,当x=-4时,原式=(-4)2+3 ×(-4)-6=-2.2. [2021张家口月考]当a=- ,b=4时,多项式2a2b-3a-3a2b+2a的值为( )A.2B.-2C.D.-2.D 2a2b-3a-3a2b+2a=(2-3)a2b+(-3+2)a=-a2b-a,将a=- ,b=4代入可得,-a2b-a=-(- )2×4-(- )=-.3. [2022保定期中]某村种植了小麦、 水稻、 玉米三种农作物,小麦的种植面积是a公顷,水稻的种植面积是小麦种植面积的4倍,玉米的种植面积比小麦种植面积的2倍少3公顷,则该村三种农作物的种植总面积为 公顷.当a=9 时,该村三种农作物的种植总面积为 公顷.3.(7a-3) 60 根据题意,知水稻的种植面积为4a公顷,玉米的种植面积为(2a-3)公顷,所以该村三种农作物的种植总面积为a+4a+2a-3=(7a-3)(公顷);当a=9时,7a-3=63-3=60(公顷).。

七年级数学上册第四章测试题及有答案[最终版]

七年级数学上册第四章测试题及有答案[最终版]

七年级数学上册第四章测试题及有答案[最终版]第一篇:七年级数学上册第四章测试题及有答案[最终版]1.下面去括号错误的是(CX)TA.Xa-(b+c)=a-b-cTB.Xa+(b-c)=a+b-cTC.X3(a-b)=3a-bTD.X-(a-2b)=-a+2b2.-4x+313x-2等于(BX)TA.X-3x+6TB.X-3x-6TC.X-5x-6TD.X-5x+63.下列运算中,正确的是(DX)TA.X-2(a-b)=-2a-bTB.X-2(a-b)=-2a+bTC.X-2(a-b)=-2a-2bTD.X-2(a-b)=-2a+2b4.a-b+c的相反数是(CX)TA.X-a-b+cTB.Xa-b-cTC.Xb-a-cTD.Xa+b-c5.化简:(2x2+x-3)-3(x2-x+1)=-x2+4x-6.6.填空:(1)x2-y2+2y-1=x2-(y2-2y+1);(2)a-3b-4c=a-(3b+4c);(3)(5x2+6x-7)+[-4x2-(4x-8)]=x2+2x+1;(4)(x3-4x2y+11xy2-y3)+(7x2y-16xy2+y3)=x3+3x2y-5xy2.7.去括号,并合并同类项:(1)-2n-(3n-1);(2)a-(5a-3b)+(2b-a);(3)-3(2s-5)+6s;(4)1-(2a-1)-(3a+3).【解】(1)原式=-2n-3n+1=-5n+1.(2)原式=a-5a+3b+2b-a=-5a+5b.(3)原式=-6s+15+6s=15.(4)原式=1-2a+1-3a-3=-5a-1.(第8题)8.有理数a,b,c在数轴上的对应点如图所示,化简|a-b|-|a+c|-|b-c|.【解】由图可知:a3x2-(2x2-x+1)+2(-3+x-x2),其中x=-3.【解】原式=3x2+2x2+x-1+(-6)+2x-2x2=-x2+3x-7.当x=-3时,原式=-(-3)2+3×(-3)-7=-25.(第10题)10.如图,面积分别为25和9的两个正方形叠合在一起,所形成的两个阴影部分的面积分别为a,b(a>b),则代数式(a+5b)-412a+b 的值是多少?【解】设叠合部分的面积为x.则a=25-x,b=9-x.∴(a+5b)-412a+b=a+5b-2a-4b=b-a=(9-x)-(25-x)=9-x-25+x=-16.11.已知A=x3-2y3+3x2y+xy2-3xy+4,B=y3-x3-4x2y-3xy-3xy2+3,C=y3+x2y+2xy2+6xy-6.试说明不论x,y,z取何值,A+B+C都是常数.【解】∵A+B+C=(x3-2y3+3x2y+xy2-3xy+4)+(y3-x3-4x2y-3xy-3xy2+3)+(y3+x2y+2xy2+6xy-6)=1,∴不论x,y,z取何值,A+B+C都等于常数1.12.不改变a-(3b-5c)的值.把括号前的“-”号改成“+”号应为(CX)TA.Xa+(3b+5c)TB.Xa+(3b-5c)TC.Xa+(-3b+5c)TD.Xa+(-3b-5c)13.当a为整数时,多项式2a5-3a3-3a+7与多项式3a3-7a-2-2a5的和一定是(CX)TA.X3的倍数TB.X偶数TC.X5的倍数TD.X以上均不对【解】(2a5-3a3-3a+7)+(3a3-7a-2-2a5)=2a5-3a3-3a+7+3a3-7a-2-2a5=-10a+5=-5(2a-1),故选TCX.14.下面是小明做的一道多项式的加减运算题,但他不小心把一滴墨水滴在了上面:-x2+3xy-12y2--12x2+4xy-12y2=-12x2,污点处即墨迹弄污的部分,那么被墨迹遮住的一项应是(AX)TA.X-xyTB.X+xyTC.X-7xyTD.X+7xy【解】-x2+3xy-12y2--12x2+4xy-12y2=-x2+3xy-12y2+12x2-4xy+12y2=-12x2-xy,故选TAX.15.若m,n互为倒数,则mn2-(n-1)的值为__1__.【解】∵m,n互为倒数,∴mn=1.∴mn2-(n-1)=1n-(n-1)=n-n+1=1.16.比2x2-3x+7少4x2-1的多项式是-2x2-3x+8.【解】(2x2-3x+7)-(4x2-1)=2x2-3x+7-4x2+1=-2x2-3x+8.17.化简关于m的代数式(2m2+m)-[km2-(3m2-m+1)],并求使该代数式的值为常数的k的值.【解】原式=2m2+m-[km2-3m2+m-1]=2m2+m-km2+3m2-m+1=(5-k)m2+1.要使该代数式的值为常数,则5-k=0,∴k=5.18.某同学做一道代数题:当x=-1时,求代数式10x9+9x8+8x7+…+3x2+2x+1的值.该同学由于将式中某一项前的“+”看成了“-”,求得代数式的值为7,那么这位同学看错了几次项前的符号?【解】当x=-1时,第1,2;3,4;5,6;7,8;9,10项的和均为-1,∴结果应为-5.又∵看错符号后的代数式的值为7,∴看错的项应为+6x5.∴该同学看错了五次项前面的符号.19.有甲、乙、丙三种货物,若购买甲3件、乙7件、丙1件,共需315元;若购买甲4件、乙10件、丙1件共需420元.问:购买甲、乙、丙各1件共需多少元?【解】设甲、乙、丙的单价分别是x,y,z元,由题意,得3x+7y+z=315,4x+10y+z=420,∴x+y+z=3(3x+7y+z)-2(4x+10y+z)=3×315-2×420=105(元).答:购买甲、乙、丙各1件共需105元.第二篇:七年级数学上册第一单元测试题及答案七年级数学上册第一单元测试题(附答案)一、仔细选一选(30分)1.0是()A.正有理数 B.负有理数 C.整数 D.负整数2.中国第一座跨海大桥——杭州湾跨海大桥全长36千米,其中36属于()A.计数 B.测量 C.标号或排序 D.以上都不是3.下列说法不正确的是()A.0既不是正数,也不是负数 B.0的绝对值是0C.一个有理数不是整数就是分数 D.1是绝对值最小的数4.在数- , 0 , 4.5, |-9|, -6.79中,属于正数的有()个A.2 B.3 C.4 D.55.一个数的相反数是3,那么这个数是()A.3 B.-3 C. D.6.下列式子正确的是()A.2>0>-4>-1 B.-4>-1>2>0 C.-4-147.一个数的相反数是最大的负整数,则这个数是()A.1 B.±1 C.0 D.-18.把数轴上表示数2的点移动3个单位后,表示的数为()A.5 B.1 C.5或1 D.5或-19.大于-2.2的最小整数是()A.-2 B.-3 C.-1 D.010.学校、家、书店依次座落在一条东西走向的大街上,学校在家的西边20米,书店在家东边100米,张明同学从家里出发,向东走了50米,接着又向西走了70米,此时张明的位置在()A.在家B.在学校C.在书店D.不在上述地方二、认真填一填(本题共30分)11.若上升15米记作+15米,则-8米表示。

新北师大版七年级数学上册第四章复习

新北师大版七年级数学上册第四章复习

02
10. 角平分线:
A
O
B
C
从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角平分线
方位:
01.

01.

01.
西
01.

01.
北偏东60°
01.
北偏西30°
01.
东偏南45°
01.
南偏东45°
01.
西偏南60°
01.
东南
01.
60°
01.
30°
01.
∠1.
01.
∠2.
01.
∠3.
01.
∠4.
01.
∠5.
01.
如图,直线MN表示一条铁路,在铁路的两边各有一点A、B表示工厂,要在靠近铁路处建立一个货站,使它到两个工厂的距离的和最短,问这个货站应该建在何处?
M N
A
B
12.作图题
用度表示:6°45′=_____′=_____′′
∴MN=MB-NB=8-5 = 3
∴AB=AC+CB=6+10=16
又∵M是AB 的中点
∴MB= AB= ×16=8
如图,线段AB上有两点M、N,且AM:MB=5:11,AN:NB=5:7,MN=10,求AB的长。
A M N B
6.如图,点A,B,C都在直线a上, 下列说法错误的是( ). (A)点A在射线BC上 (B)点C在直线AB上 (C)点A在线段BC上 (D)点C在射线AB上
如图,下列结论中,不能说明射线OC平分∠AOB的是( ). ∠AOC=∠BOC 2∠AOB=∠BOC ∠AOB=2∠BOC ∠AOC+∠BOC=∠BOA
A

七年级数学上册第四章复习(浙教版)高品质版

七年级数学上册第四章复习(浙教版)高品质版

例1.把下列各式填入相应的圈内
m 4a b2
2ab
5
2xy
1
x2 xy2 3y+2x=0
x
4+ab
0
2x
单项式
多项式
变式训练
s 下列哪些是单项式哪些是多项式
2 x - 3y
0
-2x3y2
4
t
3a
3a
3x+2y-5=0
x
3 xy 2
π
4
(1-20%)a
例2填空
1.单项式
3ab
足的条件是 a3
变式训练
•已知 (3m-2n)x2yn+1是关于x,y的5次 单项式,求m-2n的值
例4 求k为何值时,代数式
x6 --55kx44y3 - 4x6 ++xx44yy33 +10中,
不含 x4y3 的项。
变式训练 无论x取何值,代数式-3x2+mx+nx2-x-3 的值恒为3,试求m,n的值
例5 一个多项式A减去2x2-3x+7,马虎同学因把“减 去” 误认为“加上”,结果得到5x2-2x+4,你能得 到
多项式A是

其正确的答案是


变式训练
两个代数式的和是3x2-xy+y2,其中一个
代数式是x2+2xy,试求出另一个代数式。
自主 合作 探究 互动 新世纪 七(上)数学
变式训练
已知A=-3x2-2xy+3x+1,B=2x2+xy-1, 且2A+3B的值与x无关,求y的值。
3
的系数是

3 5
5
次数是 四次

鲁教版(五四制)数学七年级上册第四章-实数 复习检测

鲁教版(五四制)数学七年级上册第四章-实数 复习检测

鲁教版七年级上册第四章-实数 复习检测一、选择题1. 下列运算正确的是( )A. √9=±3 B. a 6÷a 2=a 3C. (ab 2)3=a 3b 6 D. 2a +3b =5ab2. 下列各数中,绝对值最小的数是( ) A. −5B. 12C. −1D. √23. 已知实数a ,b 满足:(a −b +3)2+√a +b −1=0,则a 2020+b 6等于( )A. 65B. 64C. 63D. 624. 在实数范围内定义运算“☆”:a ☆b =a +b −1,例如:2☆3=2+3−1=4.如果2☆x =1,则x的值是( )A. −1B. 1C. 0D. 25. 若√a +b −1+(b +2)2=0,则a 的值是( )A. 2B. −2C. 3D. −36. 下列实数是无理数的是( )A. 0B. 227C. √4D. −√−937. 已知a =(−23)−2,b =(√52)0,c =0.25−1,a ,b ,c 的大小关系是( )A. a >b >cB. b >a >cC. c >a >bD. c >b >a8. |3−π|+√(π−4)2的结果是( )A. 1B. −1C. 7D. −79. 一个正偶数的算术平方根是m ,则和这个正偶数相邻的下一个偶数的算术平方根是( )A. m +2B. m +√2C. √m 2+2D. √m +210. 下列实数中,无理数是( )A. 3.1415926B. −0.202002000C. √25D. √9311. 下列化简中错误的是( )①√16=4;②√93=3;③√(−3)2=3;④±√32=3;⑤√(−3)33=−3A. ②③B. ①④C. ②④D. ③⑤12. 已知|x|=3,y 2=25,且x >y ,那么x +y 等于( )A. 8B. −2C. 8或−2D. −8或−213. 估算√13−1的值在( )A. 0和1之间B. 1和2之间C. 2和3之间D. 3和4之间14. 估计√2(√8+1)的值应在( )A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间二、填空题15. √16的值是______;√64的立方根是______.16. 已知实数x ,y 满足√x −2+(y +1)2=0,则x y =______. 17. √10______3(选填“>”、“<”或“=”)18. 若|a −2|+√b −3=0,则a +b =______.19. 若一个正数的两个平方根分别为2a −7与−a +2,则a 等于______.三、计算题20. (1)计算:√9−(√5−π)0+(−1)2020 (2)已知:x 2−9=0,求x 的值(3)已知:(x −3)2=16,求x 的值 (4)已知:−8(x −3)3=27,求x 的值四、解答题21.求下列各式中的x:(1)2x2−1=9;(2)(x+1)3+27=0.22.(1)已知:2a+1的算术平方根是3,3a−b−1的立方根是2,求√20b+a3的值.(2)已知10+√3=x+y,其中x是整数,且0<y<1,求x−y+√3的算术平方根.23.若√2a−2与|b+2|互为相反数,求(a−b)2的平方根.24.判断下列说法是否正确:(1)√64的立方根是−2;(2)±3是27的立方根.李蕾认为(1)错误,(2)正确.请问李蕾的观点正确吗?如果不正确,请说明理由.答案1. 【答案】C2.【答案】B3.【答案】A4.【答案】C5.【答案】C6.【答案】D7.【答案】C8.【答案】A9.【答案】C 10.【答案】D 11.【答案】C 12.【答案】D 13.【答案】C 14.【答案】C 15.【答案】4 2 16.【答案】12 17.【答案】> 18.【答案】5 19.【答案】520.【答案】解:(1)原式=3−1+1=3;(2)x 2=9, x =±3; (3)x −3=±4, x −3=4或x −3=−4, x =7或−1; (4)(x −3)3=−278, x −3=−32 x =32.21.【答案】解(1)2x 2=10,x 2=5, x =±√5;(2)(x +1)3=−27, x +1=−3, x =−4.22.【答案】(1)解:∵2a +1的算术平方根是3,3a −b −1的立方根是2,∴2a +1=9,3a −b −1=8, 解得:a =4,b =3, 则原式=√643=4;(2)解:∵10+√3=x +y ,其中x 是整数,且0<y <1,1<√3<2, ∴x =11,y =10+√3−11=√3−1, 则x −y +√3=11−√3+1+√3=12, ∴x −y +√3的算术平方根是2√3.23.【答案】解:∵√2a −2与|b +2|互为相反数,∴√2a −2+|b +2|=0, ∴2a −2=0,b +2=0, ∴a =1,b =−2,则(a −b)2=[1−(−2)]2=9, 所以(a −b)2的平方根是±3.24.【答案】解:李蕾的观点不正确.理由如下:∵√64=8,∴√64的立方根即8的立方根为2,故(1)错误; 27的立方根是3,故(2)错误.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学上册第四
章测试题
七年级数学第四章测试试卷
(时间:60分钟 满分:100分 )
班级:__________姓名:_________座号: _________
一、选择题(共12小题,每小题3分,计36分.每小题只有一个选项是符合题意的)
1.如图,下列不正确的几何语句是( ) A .直线AB 与直线BA 是同一直线 B .射线OA 与射线OB 是同一射线 C .射线OA 与射线AB 是同一射线 D .线段AB 与线段BA 是同一线段 2.下列说法中正确的是( )
A .到线段两个端点距离相等的点叫做线段的中点
B .线段中点到线段两个端点的距离相等
C .线段中点可以有两个
D .线段的中点有若干个 3.角是指( )
A .由两条线段组成的图形
B .由两条射线组成的图形
C .由两条直线组成的图形
D.有公共端点的两条射线组成的图形
4.如图,下列说法正确的是( )
A.∠1就是∠ABC
B.∠1就是∠DCB
C.以B点为顶点的角有两个
D.图中有两个角能用一个大写字母表示
5.如果两条直线和第三条直线相交,则()
A.这两条直线平行
B.这两条直线相交
C.这两直线平行或相交
D.不能确定
6.下列说法错误的是( )
A.不相交的两条直线叫做平行线
B.直线外一点与直线上各点连接的所有线段中,垂线段最短
C.平行于同一条直线的两条直线平行
D.平面内,过一点有且只有一条直线与已知直线垂直
7.同一平面内两两相交的三条直线,如果最多有m个交点,最少有n个交点,那么m+n是( )
A.1 B.2 C.3 D.4
8.在同一平面内,有三条直线a,b,c,如果,
⊥那么a与b的位置关系
a⊥
,c
c
b
是()
A.相交B.平行C.垂直D.不能确定
9.点到直线的距离是指( )
A .直线外一点与这条直线上任意一点的距离
B .直线外一点到这条直线的垂线的长度
C .直线外一点到这条直线的垂线段
D .直线外一点到这条直线的垂线段的长度
10.把一条弯曲的的高速路改为直道,可以缩短路程,其道理用几何知识解释应为( )
A .两点确定一条直线
B .两点之间,线段最短
C .垂线段最短
D .平面内过一点有且只有一条直线与已知直线垂直
11.如图,点C 是线段AB 的中点,点D 是线段BC 的中点,下面等式不正确的是( )
A .A
B CD 31
=
B .DB A
C C
D -= C .BD AB CD -=21
D .BC AD CD -=
12.甲、乙、丙、丁四位同学在判断时钟的时针和分针互相垂直的时刻,他们每个人都说两个时刻,其中说对的是( )
A .甲说3时整和3时30分
B .乙说6时15分和6时45分
C .丙说9时整和12时15分
D .丁说3时整和9时整 二、填空题(共8小题,每小题3分,共计24分.)
13.要整齐地栽一行树,只要确定两端的树坑的位置,就能确定这一行树坑所在的直线,其依据是 。

14.22.5°12°24′
15.三条直线AB ,CD ,EF ,若A B ∥EF ,CD ∥EF ,则 ∥ ,理由是 。

16.如图4,O A ⊥OB ,∠BOC=30°,OD 平分∠AOC ,则∠BOD= 。

17.已知线段CD ,延长CD 到B ,使CD DB 2
,延长DC 到A ,使AC=2DB ,若AB=10厘米,则CD= 厘米,AC=
厘米。

18.在一副七巧板中,有 种不同形状的图形。

19.如图,点A ,O ,B 在同一条直线上,找出图中共 条射线。

20.有四条线段,它们的长短关系为AB>CD=EF>GH ,现取线段AB ,CD ,EF ,GH 的中点M 1 ,M 2, M 3,M 4,试比较A M 1,C M 2,E M 3,G M 4的长短:
三、解答题
21.(8分)已知线段AC 和BC 在一条直线上,如果AC=8厘米,BC=3厘米,求线段AC 和BC 的中点间的距离。

22.(8分)一副三角板如图所示摆放,请求出∠AMB的度数?
23.(
6分)如图所示,A、B、C三点分别代表学校、车站、超市中的某一处,已知车站、超市都在学校的北偏西方向,超市在车站的北偏东方向,问A、B、C三点分别代表哪个单位?
24
.(8分)如图所示,已知O
A⊥OC于点,∠1=∠2,试判断OB和OD的位置
25.(10分)如图所示,A、B、C是一条公路上的三个村庄,A、B间间路程为100km,A、C间路程为40km,现在A、B之间设一个车站P,设P、C之间的路为xkm。

(1)用含x的代数式表示车站到三个村庄的的路程之和;
(2)若路程之和为102km,则车站应设在何处?
(3)若要使车站到三个村庄的路程总和最小,问车站应设在何处?。

相关文档
最新文档