制冷剂压-焓图 介绍

合集下载

制冷知识第四讲压焓图

制冷知识第四讲压焓图

第四讲压熔图在进行制冷循环的分析及计算时,经常需要利用制冷剂的压焰图来确定制冷剂的状态参数及其变化过程。

压焰图实际为压力-比焰图,也称lg>∕ι图,简称压培图。

它是以制冷剂的比给人作为横坐标,以压力P作为纵坐标绘制而成的,见图2-1。

图中共有8种线条,反应6个参数:图2T 制冷剂的压焰图①饱和液体线(X = 0);②干饱和蒸气线(X= 1);③等于度线,参数为X(X=定值),图2-1中,1 = 0与N=I 之间的等干度线没有画出;④等压线,参数为力(。

=定值);⑤等温线,参数为EU=定值);⑥等比母线,参数为无6 =定值);⑦等比嫡线,参数为$(S=定值);⑧等比体积线,参数为V (V=定数)压培图所标的物理呈压力:垂直于物体表面的作用力,单位牛顿(N)。

压强:单位面积所受到的作用力,单位帕(Pa)。

培:物体内能与压力能之和。

单位焦(J).等压过程中,系统从外界所吸收的热量等于系统熔值的增加。

比玲:Ikg某物质的始值。

单位kj/kg。

在压焰图上,X轴所表示的单位为比焙。

Y轴所表示的单位为压强。

为缩小尺寸,提高低压表示的精度,故取对数。

等墙线燧:能与绝对温度的比值,表示热量转换成功的程度。

在绝热过程中系统的燃不变。

单位 J/Ko系统的燃在可逆绝热过程中不变,在不可逆绝热过程中单调增大。

这就是懒增加原理。

由于孤立系统内部的一切变化与外界无关,必然是绝热过程,所以端增加原理也可表为:一个孤立系统的牖永远不会减少。

它表明随着孤立系统由非平衡态趋于平衡态,其烯单调增大, 当系统达到平衡态时,摘达到最大值。

燧的变化和最大值确定了孤立系统过程进行的方向和限度,端增加原理就是热力学第二定律。

温度:表征物体冷热程度的物理量。

标志着物体内部无规则运动的剧烈程度。

一切相互热平衡的系统,温度一定相同。

温标:表示温度数值的方法称为温标。

常用为摄氏温标与理想气体温标。

等温线:在气体区,液体区,都随压力下降温度直线下降,只有在饱和区内,与等压线重合, 平行于X轴。

浅谈制冷剂与压焓图

浅谈制冷剂与压焓图

五状态:
过冷液体 状态 饱和液体 状态 气液共存 状态 饱和气体 状态 过热蒸汽 状态
制冷剂
六参数:
等压线p — 水平线 等焓线 h— 垂直线 等干度线 x — 湿蒸气区域内曲线 等熵线 s — 向右上方大斜率曲线 等容线 v — 向右上方小斜率曲线 等温线 t — 垂直线(液相区)、 水平线(两相区)、 向右下方弯曲(过热蒸气区)
制冷系统中循环流动的工作介质叫制冷剂 (又称制冷工质),它在系统的各个部件间循 环流动以实现能量的转换和传递,达到制 冷机向高温热源放热;从低温热源吸热, 实现制冷的目的。
制冷剂的概念
一、制冷剂的初步认识
◇制冷剂是制冷系统完成制冷循环所必需的工作 介质。在制冷系统中不断的与外界发生热交换。 ◇制冷剂借助压缩机的做功,将被冷却对象的热 量连续不断传递给外界环境,从而实现制冷。 ◇制冷剂在蒸发器中是低压低温下汽化,在冷凝 器中是高压常温下凝结,因此只有在工作温度 范围内能气化和凝结的物质才能作为制冷剂。 多数制冷剂在大气压力和环境温度下是气态。 ◇制冷剂在制冷系统中状态只发生物理变化,没 有化学变化。如果系统不泄漏,制冷可以长期 循环使用。
二、一些常用制冷剂的分类
(1)按制冷剂的分子结构分类: 无机化合物 :氨、水、二氧化碳 有机化合物:卤代烃:氟利昂 碳氢化合物:甲烷、乙烷、丙烷 混合制冷剂:共沸和非共沸溶液 其他烃类:乙烯、丙烯 (2)按工作温度压力分类: 1.高温低压类:沸点在0℃以上,冷凝压力小于0.3MPa的制冷剂, 包括R11(一氟三氯甲烷)、R114(二氯四氟乙烷)。 2.中温中压类:标准沸点在-60℃~0℃范围内,压力在03MPa~2MPa 范围内的制冷,包括R717(氨)、R12(二氯二氟甲烷)、R22(二 氟一氯甲烷)等。 3.低温高压类:标准沸点低于-60℃,冷凝压力高于2MPa的制冷剂, 包括R13(三氟一氯甲烷)、R14(四氟化碳)、R503(共沸混合 物)。

制冷剂的压焓图

制冷剂的压焓图

制冷剂的压焓图
1.压焓图的构成
制冷剂的压焓图又称lgp-h图,是根据1kg制冷剂的状态变化绘制的。

横坐标表示焓h,标度是均匀的;纵坐标表示压力P,为使低压区内交点更清晰,采用对数坐标,标度是不均匀的。

坐标系内的每一点都对应着制冷剂的一种状态。

为了使用方便,图中还绘制了各种曲线,主要的几种曲线是:
1)等压线和等焓线
图中平行于横轴的直线为等压线,平行于纵轴的直线为等焓线。

2)饱和液体线和干饱和蒸气线
饱和液体线用x=0表示,在这条线上,制冷剂总是处于饱和液体状态;干饱和蒸气线用x=1表示,在这条线上,制冷剂总处于干饱和蒸气状态。

这两条线的交点叫临界点,用K表示。

这两条线将lgp-h图分为三个区域:x=0左边的区域称过冷区,在这个区域,制冷剂总是处于过冷液状态;x=1右边的区域,称为过热蒸气区,在这个区域,制冷剂总是处于过热蒸气状态;中间的区域称为饱和区,制冷剂在这个区域总保持湿蒸气状态。

3)等温线
等温线用t表示,是一条折线:在过冷区为竖虚线;在饱和区为水平虚线与等压线重合;在过热蒸气区为向下的斜线,用虚线绘制。

4)等比体积线
等比体积线用v表示,用点画线绘制。

5)等熵线
等熵线用S表示,为向右上方倾斜的曲线。

6)等干度线
它只存在于饱和区内,用X表示。

在实际应用中,以上各种曲线都有若干条,并标明相应的数据。

制冷原理的压焓图应用

制冷原理的压焓图应用

制冷原理的压焓图应用1. 简介制冷原理中,压焓图(Pressure-Enthalpy Diagram)是一种重要的图示方法,用于描述和分析制冷循环过程中的热力学性质变化。

本文将介绍制冷原理中压焓图的基本概念和应用。

2. 压焓图概述压焓图是一种在压力-焓坐标系下绘制的图形,用于分析和展示制冷系统中的热力学性质变化。

在压焓图中,横轴表示焓(即热含量)而纵轴表示压力。

通过绘制制冷循环过程的轨迹,可以直观地了解制冷系统中的性质变化。

3. 压焓图的绘制制冷系统的压焓图可以通过实际测量数据或理论计算得到。

一般情况下,制冷系统的工作流程可以分为压缩、冷凝、膨胀和蒸发四个阶段。

根据不同的制冷循环类型,可以得到相应的压焓图。

下面以蒸氨制冷循环为例,简要介绍压焓图的绘制过程:1.根据制冷系统中的工质和工作参数,确定系统所处的工质状态点。

2.在压焓图上标出各个状态点,并相应地绘制系统的工作流程轨迹。

3.根据工质的热力学性质,计算各个状态点的焓值,并将其标在图上。

4.连接各个状态点,得到系统的工作流程轨迹。

4. 压焓图的应用压焓图在制冷领域中有广泛的应用,下面列举几个常见的应用场景:4.1 制冷剂选择制冷剂的选择是制冷系统设计中的重要一环。

通过压焓图,可以对比不同制冷剂的性能指标,如蒸发温度、冷凝温度、压缩功率等。

利用压焓图中的等温线和等熵线分析,可以找到系统最优的制冷剂。

4.2 制冷循环分析压焓图可以帮助工程师对制冷循环过程进行详细的分析。

通过观察压焓图上的轨迹,可以判断制冷系统中存在的问题,如液态回流、过热过冷程度不合理等。

同时,可以对制冷系统的性能进行评估和优化。

4.3 热交换器设计在制冷系统中,热交换器是实现热量传递的关键设备。

通过压焓图,可以确定制冷循环中的热量传递过程。

通过计算不同状态点的焓差,可以确定热交换器的设计参数,如传热面积、换热系数等。

4.4 节能改造通过分析制冷循环中的能量流动和损失,可以找到节能改造的潜力。

空调制冷原理-压焓图

空调制冷原理-压焓图
压力
汽液共存
过冷
饱和
过热

17
P-H 图简介 :
饱和区
饱和区 汽液混合物
18
P-H 图简介 :
质量恒定
压力
100% 液体

19
P-H 图简介 :
质量恒定
压力
100% 蒸汽

20
P-H 图简介 :
质量恒定
压力
20% 液体 80% 蒸汽

21
P-H 图简介 :
质量恒定
LATENT
22
P-H 图简介 :
39
在P-H图上描绘制冷循环:
节流装置
节流装置
压力
22.8 psia
节流装置 • 热力膨胀阀 • 节流孔板 • 浮球阀
6 psia

40
在P-H图上描绘制冷循环:
制冷循环
压力
冷凝器 节流装置
蒸发器
压缩机

制冷剂将热 量排放给冷
却介质
制冷剂从负 荷吸收热量
41
在P-H图上描绘制冷循环:
制冷循环效率
59
冷水机组工作原理(P-H图)
压力

满液式蒸发器 (冷冻水在管内流动 ,制冷剂在管外)
60
冷水机组工作原理(P-H图)
压力

挡液板 (阻止制冷剂液体
进入吸气管)
61
冷水机组工作原理(P-H图)
导流叶片 (冷量控制) 压力

62
冷水机组工作原理(P-H图)
吸气管
TURNING VANES
SUCT PIPE
压缩机
压头
35
在P-H图上描绘制冷循环:

压焓图解读原创

压焓图解读原创

压焓图解读原创压焓图(p,h)一、压焓图的用途相变制冷是利用制冷剂的状态变化实现的,制冷剂在不同的状态时具有不同的特性,为方便科学研究以及工程计算,将工质的状态参数绘制在一张曲线图上,p,h图是比较常用的一种。

二、压焓图介绍名词解释:焓的定义:把制冷剂的内能与制冷剂流动过程中所传递能量之和定义为制冷剂的焓。

表达式:h,u,pvh:表示1kg制冷剂的焓(比焓);u:表示1kg制冷剂的内能;pv:表示1kg制冷剂流动过程中传递的能量。

(p-压力,v-比体积)。

从焓的表达式中可以看出u代表1kg工质的内能,是储存于工质的内部的能量,pv 是1kg工质移动时传递的能量。

也就是说,当1kg工质通过一定的界面流入系统时储存在其内部的内能随工质进入系统,同时还把从外部功源获得能量带进系统,因此,系统中因为引进1kg工质所获得的总能量是内能与传递的能量之和。

熵的定义:表示工质温度变化时,热量传递的程度,用S表示,单位kJ/kg•K。

表达式:dQ/dT (dQ-表示热量的变化,dT表示温度的变化)。

目前熵这个参数在空调系统热力计算或参数确定时用的很少。

干度x:表示系统中制冷剂蒸汽与液体的变化关系(数值范围0~1)。

当干度x=1时,说明制冷剂均以饱和蒸汽的形式存在,当干度x=0时,说明制冷剂均以液态形式存在。

干度在0与1之间变化,表示制冷剂蒸汽与液体的变化过程。

等压线:在压焓图上即为水平线。

等焓线:在压焓图上即为垂直线。

等温线:在两相区为水平线,在过冷液体区为略向左上方延伸的上凹曲线,接近于垂直,在过热蒸汽区等温线是向右下方延伸的下凹曲线。

等比容线:在过热蒸汽区为向右上方延伸的下凹曲线。

等比熵线:在过热蒸汽区为向右上方延伸的下凹曲线,斜率大于等比容线。

过热蒸汽区:等干度线x=1的右侧区域为过热蒸汽区(不存在液态制冷剂)。

过冷液体区:等干度线x=0左侧区域为过冷液体区(不存在液态制冷剂)。

两相区:在等干度线x=0与x=1之间的区域为两相区,在两相区内制冷剂液体与制冷剂蒸汽共存。

制冷剂与压焓图

制冷剂与压焓图

(CH3CH2CH2CH33)--R600 ;
异丁烷
(CH(CH3)3)--R600a 。从经济观点来看,它们
是出色的制冷剂,但易燃,安全性很差。
3.不饱和碳氢化合物类
• 它们的命名是在R后面先写“1”主要有: 乙烯: R1150, 丙烯: R1270。
4.氟里昂类(饱和碳氢化合物)
• 它是饱和碳氢化合物的卤族元素的衍生物总称,
• 制冷剂在制冷系统中状态只发生物理变化,没 有化学变化。如果系统不泄漏,制冷可以长期 循环使用。
二、常用制冷剂分类和命名
⑴ 1.无机物化合物 按 2.饱和碳氢化合物
⑵ 按
1.高温低压类
化 3.不饱和碳氢化合物 工
学 4.氟里昂

组 5.共沸溶液
成 分
6.非共沸溶液
温 2.中温中压类 度 压
类 7.有机化合物 8.环状有机化合物
4.2 制冷剂类别与环境保护
• 科学家的研究证实R11、R12、R13等氯氟烃化合物 (CFCs)制冷剂,当它们泄漏或排放后扩散到地球 的平流层中,会破坏臭氧层,结果使地球上生物遭 到紫外线的损害;另一方面,氯氟烃化合物的排放 会加剧地球的温室效应,会像二氧化碳那样使地球 温度升高。
• CFCs中含氯元素,对臭氧层具有最大的破坏作用, 是禁用制冷剂;而HCFCs中由于氢元素的存在,大大 减弱了对臭氧层的破坏作用,目前还可以继续使用, 属过渡制冷剂;至于无氯的HFCs,则不会对臭氧层 破坏,受到国际社会的重视,成为替代制冷剂。
3.5 中国正式加入《蒙特利尔议定书》
• 联合国环保组织1987年在加拿大蒙特利尔市召开会议, 36个国家和10个国际组织共同签署了《关于消耗大气臭 氧层物质的蒙特利尔议定书》,我国1992年正式宣布加 入修订后的《蒙特利尔议定书》。

02-压焓图解读

02-压焓图解读

压焓图该图纵坐标是绝对压力的对数值lnp(图中所表示的数值是压力的绝对值),横坐标是比焓值h。

1、压焓图曲线的含义压焓图曲线的含义可以用一点(临界点)、二线(饱和液体线、饱和蒸汽线)、三区(液相区、两相区、气相区)、五态(过冷液状态、饱和液状态、过热蒸汽状态、饱和蒸汽状态、湿蒸汽状态)和八线(等压线、等焓线、饱和液线、饱和蒸汽线、等干度线、等熵线、等比体积线、等温线)来概括。

2、临界点K和饱和曲线临界点K为两根粗实线的交点。

在该点,制冷剂的液态和气态差别消失。

K点左边的粗实线Ka为饱和液体线,在Ka线上任意一点的状态,均是相应压力的饱和液体;K点的右边粗实线Kb为饱和蒸气线,在Kb线上任意一点的状态均为饱和蒸气状态,或称干蒸气。

3、三个状态区Ka左侧——过冷液体区,该区域内的制冷剂温度低于同压力下的饱和温度;Kb右侧——过热蒸气区,该区域内的蒸气温度高于同压力下的饱和温度;Ka和Kb之间——湿蒸气区,即气液共存区。

该区内制冷剂处于饱和状态,压力和温度为一一对应关系。

在制冷机中,蒸发与冷凝过程主要在湿蒸气区进行,压缩过程则是在过热蒸气区内进行。

4、六组等参数线制冷剂的压-焓(LgP-E)图中共有八种线条:等压线P(LgP) 等焓线(Enthalpy) 饱和液体线(Saturated Liquid) 等熵线(Entropy)等容线(Volume)干饱和蒸汽线(Saturated Vapor) 等干度线(Quality) 等温线(Temperature)(1)等压线:图上与横坐标轴相平行的水平细实线均是等压线,同一水平线的压力均相等。

(2)等焓线:图上与横坐标轴垂直的细实线为等焓线,凡处在同一条等焓线上的工质,不论其状态如何焓值均相同。

(3)等温线:图上用点划线表示的为等温线。

等温线在不同的区域变化形状不同,在过冷区等温线几乎与横坐标轴垂直;在湿蒸气区却是与横坐标轴平行的水平线;在过热蒸气区为向右下方急剧弯曲的倾斜线。

浅谈制冷剂的压-焓图

浅谈制冷剂的压-焓图

浅谈制冷剂的压-焓图以特定制冷剂的焓值Enthalpy(KJ/Kg)为横坐标,以压力Pressure(MPa)为纵坐标绘制成的线图称为该制冷剂的压-焓图。

为了缩小图的尺寸,并使低压区内的线条交点清楚,所以纵坐标使用压力的对数值LgP绘制,因此压-焓图又称LgP-E图。

LgP-E图中有两条比较粗的曲线,左边的一条称饱和液体线(Saturated Liquid),右边的一条称干饱和蒸汽线(Saturated Vapor),两条曲线向上延伸交于一点,称临界点(c.p.)。

因为一般制冷循环都在远离临界点以下进行,所以一些制冷剂的LgP-E图中临界点都未表示出。

饱和液体线与干饱和蒸汽线将LgP-E图分成三个区域:饱和液体线的左边------过冷液体区。

饱和液体线与干饱和蒸汽线之间------湿饱和蒸汽区;饱和状态下制冷剂蒸汽与液体的混合物称湿饱和蒸汽。

在湿饱和蒸汽中制冷剂蒸汽所占的重量比例称干度,用x表示。

制冷剂饱和液体的干度x=0,湿饱和蒸汽的干度0<x<1,干度x=1的饱和蒸汽也称干饱和蒸汽。

在饱和液体线与干饱和蒸汽线之间绘有等干度线1 / 7(Quality)。

干饱和蒸汽线的右边------过热蒸汽区。

Lgp-E图中,还绘有等温线(Temperature),等温线在湿饱和蒸汽区内与等压线P(LgP)重合;在过热蒸汽区,等温线与等压线分开,成为向右下倾斜的一组曲线;在过冷液体区,等温线则与等焓线(Enthalpy)重合。

图中还绘有等熵线(Entropy)和等容线(Volume)。

对R717(氨)制冷剂,由于实际使用的压力都在2 MPa以下,所以R717的LgP-E图只标明2 MPa以下的部分,并把湿饱和蒸汽区的中间部分去掉(实际计算时用不到),使图形清楚紧凑。

不同性质的制冷剂其LgP-E图的形状是不相同的。

综上所述,制冷剂的压-焓(LgP-E)图中共有八种线条:等压线P(LgP) 等焓线(Enthalpy) 饱和液体线(Saturated Liquid)等熵线(Entropy)等容线(Volume)干饱和蒸汽线(Saturated Vapor)等干度线(Quality) 等温线(Temperature)2 / 7其中等压线P(LgP)和等焓线(Enthalpy)由直角坐标系的纵、横坐标确定;其余的等熵线(Entropy)、等容线(Volume)、等干度线(Quality)、等温线(Temperature)则构成了各自的自然坐标系。

R22压焓图解读

R22压焓图解读

压焓图解读在制冷工程中,最常用的热力图就是制冷剂的压焓图。

该图纵坐标是绝对压力的对数值lgp(图中所表示的数值是压力的绝对值),横坐标是比焓值h。

1、临界点K和饱和曲线临界点K为两根粗实线的交点。

在该点,制冷剂的液态和气态差别消失。

K点左边的粗实线Ka为饱和液体线,在Ka线上任意一点的状态,均是相应压力的饱和液体;K点的右边粗实线Kb为饱和蒸气线,在Kb线上任意一点的状态均为饱和蒸气状态,或称干蒸气。

2、三个状态区Ka左侧——过冷液体区,该区域内的制冷剂温度低于同压力下的饱和温度;Kb右侧——过热蒸气区,该区域内的蒸气温度高于同压力下的饱和温度;Ka和Kb之间——湿蒸气区,即气液共存区。

该区内制冷剂处于饱和状态,压力和温度为一一对应关系。

在制冷机中,蒸发与冷凝过程主要在湿蒸气区进行,压缩过程则是在过热蒸气区内进行。

3、六组等参数线制冷剂的压-焓(LgP-E)图中共有八种线条:等压线P(LgP),等焓线(Enthalpy),饱和液体线(Saturated Liquid),等熵线(Entropy),等容线(Volume),干饱和蒸汽线(Saturated Vapor),等干度线(Quality),等温线(Temperature)(1)等压线:图上与横坐标轴相平行的水平细实线均是等压线,同一水平线的压力均相等。

(2)等焓线:图上与横坐标轴垂直的细实线为等焓线,凡处在同一条等焓线上的工质,不论其状态如何焓值均相同。

(3)等温线:图上用点划线表示的为等温线。

等温线在不同的区域变化形状不同,在过冷区等温线几乎与横坐标轴垂直;在湿蒸气区却是与横坐标轴平行的水平线;在过热蒸气区为向右下方急剧弯曲的倾斜线。

(4)等熵线:图上自左向右上方弯曲的细实线为等熵线。

制冷剂的压缩过程沿等熵线进行,因此过热蒸气区的等熵线用得较多,在lgp-h图上等熵线以饱和蒸气线作为起点。

(5)等容线:图上自左向右稍向上弯曲的虚线为等比容线。

压焓图解读

压焓图解读

压焓图解读在制冷工程中,最常用的热力图就是制冷剂的压焓图。

该图纵坐标是绝对压力的对数值lgp(图中所表示的数值是压力的绝对值),横坐标是比焓值h。

1、临界点K和饱和曲线临界点K为两根粗实线的交点。

在该点,制冷剂的液态和气态差别消失。

K点左边的粗实线Ka为饱和液体线,在Ka线上任意一点的状态,均是相应压力的饱和液体;K点的右边粗实线Kb为饱和蒸气线,在Kb线上任意一点的状态均为饱和蒸气状态,或称干蒸气。

2、三个状态区Ka左侧——过冷液体区,该区域内的制冷剂温度低于同压力下的饱和温度;Kb右侧——过热蒸气区,该区域内的蒸气温度高于同压力下的饱和温度;Ka和Kb之间——湿蒸气区,即气液共存区。

该区内制冷剂处于饱和状态,压力和温度为一一对应关系。

在制冷机中,蒸发与冷凝过程主要在湿蒸气区进行,压缩过程则是在过热蒸气区内进行。

3、六组等参数线制冷剂的压-焓(LgP-E)图中共有八种线条:等压线P(LgP),等焓线(Enthalpy),饱和液体线(Saturated Liquid),等熵线(Entropy),等容线(Volume),干饱和蒸汽线(Saturated Vapor),等干度线(Quality),等温线(Temperature)(1)等压线:图上与横坐标轴相平行的水平细实线均是等压线,同一水平线的压力均相等。

(2)等焓线:图上与横坐标轴垂直的细实线为等焓线,凡处在同一条等焓线上的工质,不论其状态如何焓值均相同。

(3)等温线:图上用点划线表示的为等温线。

等温线在不同的区域变化形状不同,在过冷区等温线几乎与横坐标轴垂直;在湿蒸气区却是与横坐标轴平行的水平线;在过热蒸气区为向右下方急剧弯曲的倾斜线。

(4)等熵线:图上自左向右上方弯曲的细实线为等熵线。

制冷剂的压缩过程沿等熵线进行,因此过热蒸气区的等熵线用得较多,在lgp-h图上等熵线以饱和蒸气线作为起点。

(5)等容线:图上自左向右稍向上弯曲的虚线为等比容线。

压焓图介绍

压焓图介绍

END
谢谢!
压—焓图
版号:TT0701
压—焓图
一种以绝对压力的对数值为纵坐标、焓值为横坐标的热工图表
压—焓图
压 力

压—焓图
压 力
临界点

压—焓图
压 力
过冷液体区
临界点
湿蒸汽区
过热蒸汽区

压—焓图
左边一条为饱和液体线(干度x=0) 右边一条为干饱和蒸汽线(干度x=1)
饱和液体线 与干饱和蒸汽线 相交于一点,称为临界点 饱和液体线左侧为过冷液体区 干饱和蒸汽线右侧为过热蒸汽区 两线之间为湿蒸汽区
等温线 焓
压—焓图
等温线:在液体区几乎为垂直线,在湿蒸汽区为水平线, 在过热蒸汽区为稍许向右下方弯曲的倾斜曲线 等熵线:从左到右稍向上弯曲的曲线 等容线:在湿蒸汽区和过热蒸汽区中从左到右稍向上弯 曲的曲线,但比等熵线平坦。液区无等容线,因为不同 压力的液体容积变化不大
压—焓图
压-焓图上每一点都代表制冷剂的某一状态 在温度、压力、比容、焓、熵、干度六个状态参数中, 只要知道其中任意两个(对于饱和液体及干饱和蒸汽只 要知道一个)状态参数,就可以在图上确定其状态,从 而查出其它几个状态参数
压 力
100% 气体

压—焓图
压 力
液体
冷却 和压力不变
蒸发
温度和压力不变
气体
加热 温度升高

压—焓图
压 力
等焓线
等压线
等干度线

压—焓图
等压线:水平线 等焓线:垂直线 等干度线:只存在于湿蒸汽区域内,走向与饱和液体线 或干饱和蒸汽线基本一致
压—焓图
压 力
等熵线 等容线

制冷剂与压焓图

制冷剂与压焓图

3.2 哪些气体可以破坏臭氧层?
• 臭氧层在氯原子,氟原子和溴原子附近会被毁坏。 这些元素含在很稳定的氟氯烃(如氟里昂)中。这些 气体分子升到平流层,在紫外线照射之后,分解成 各种单元素气体,破坏臭氧。这些气体比空气重, 最终会降落到地球表面,和有机物质反应之后被吸 收。但是在平流层已经破坏了很多臭氧。氯气破坏 性最大,可以破坏它十万倍的臭氧。
平流层
3.1 臭氧层被破坏的危害
• 1.会影响人类的健康。 臭氧层被破坏后,其吸收紫外线 的能力大大降低,使得人类接受过量紫外线辐射的机会大 大增加了。一方面,过量的紫外线辐射会破坏人的免疫系 统,使人的自身免疫系统出现障碍,患呼吸道系统传染性 疾病的人数大量增加;另一方面,过量的紫外线辐射会增 加皮肤癌的发病率。据统计,全世界范围内每年大约有10 万人死于皮肤癌,大多数病例与过量紫外线辐射有关。臭 氧层的臭氧每损耗1%,皮肤癌的发病率就会增加 2%。 另外,过量紫外线辐射还会诱发各种眼科疾病,如白内障、 角膜肿瘤等。 • 2. 会影响农作物的生产。 实验表明,过量的紫外线辐射 会使植物叶片变小,减少了植物进行光合作用的面积,从 而影响作物的产量同时,过量紫外线辐射还会影响到部分 农作物种子的质量,使农作物更易受杂草和病虫害的损害。 一项对大豆的初步研究表明,臭氧层厚度减少25%,大豆 将会减产20%-25%。
四、氟里昂从环保角度的分类 Ⅰ
• 卤代烃(氟里昂)是链状饱和碳氢化合物的氟、 氯、溴衍生物的总称。可以分为八类: ① 全卤代烃-PFCs,碳氢化合物中氢原子被氟 置换,具有无毒不燃的性质,结构稳定,不易 分解,对臭氧层不产生影响。如CF4、C2F6等。
② 氯氟烃-CFCs,碳氢化合物中氢全被氯和氟 置换,在紫外线照射下分解出氯原子;如R11, R12等。 ③ 氢氯氟烃-HCFCs,碳氢化合物中氢部分被氯 和氟置换,如R22等。对臭氧层仍有一定的破坏, 只能作为过渡性物质,限期使用。

压焓图

压焓图

两相比例由干度x确定
定义
干饱和蒸汽质量 x?

mv
湿饱和蒸汽质量
mv ? mf
Quality
干饱和蒸汽
对干度x的说明:
饱和水
x = 0 饱和水 x = 1 干饱和蒸汽
0≤x ≤1
在过冷水和过热蒸汽区域,x无意义
湿饱和蒸汽区状态参数的确定
如果有1kg湿蒸气,干度为x, 即有 xkg饱和蒸汽,(1-x)kg饱和水。
? 对于理论循环,离开蒸发器、进入压缩机的 制冷剂蒸汽是处于蒸发压力下的饱和蒸汽; 离开冷凝器和进入膨胀阀的液体是冷凝压力 下的饱和液体;
? 等熵过程:制冷剂在压缩机中压缩是等熵过 程;
? 等压过程:制冷剂在冷却及冷凝过程为等压 过程
? 等焓过程:制冷剂通过膨胀阀节流时,节流 前后焓值相等:
环境压力Environmental pressure
指压力表所处环境
大气压力 Atmospheric pressure
barometric
注意:
环境压力一般为 barometer
h
大气压,但不一定。
大气压力Atmospheric pressure
大气压随时间、地点变化
物理大气压 1atm = 760mmHg
Condenser Expansion valve
Evaporator
Compressor
制冷循环和制冷系数
Coefficient of Performance
COP ? ? ? q2
w
1
?
T0环T境0 ? 1
T
T2
卡诺逆循环 Reversed Carnot cycleq1 w
?C
?

制冷剂与压焓图

制冷剂与压焓图

5.共沸溶液类(混合制冷剂) 5.共沸溶液类(混合制冷剂) 共沸溶液类
• 由两种以上互溶的单组分制冷剂组成,在常温 由两种以上互溶的单组分制冷剂组成, 下按一定比例混合而成。命名是R500 R500序号中编 下按一定比例混合而成。命名是R500序号中编 例如:R501是R22和R12按质量比75/25混合 按质量比75/25混合。 号,例如:R501是R22和R12按质量比75/25混合。 R502是R22和R115按质量比48.8/51.2混合 按质量比48.8/51.2混合。 R502是R22和R115按质量比48.8/51.2混合。 • 特点:在一定压力下具有恒定沸点,和单组制 特点:在一定压力下具有恒定沸点, 冷剂一样。但它比单组制冷剂区别是, 冷剂一样。但它比单组制冷剂区别是,在相同 工作条件下, 蒸发温度变低, 制冷量增大, 工作条件下,①蒸发温度变低,②制冷量增大, 化学稳定性好, 压缩机排气温度降低, ③化学稳定性好,④压缩机排气温度降低,它 可使封闭压缩机电机得到更好的冷却, 可使封闭压缩机电机得到更好的冷却,改善提 高制冷循环性能。 高制冷循环性能。
第一章
制冷基本原理
Байду номын сангаас
§1-4 制冷剂与压焓图
一、制冷剂的作用: 制冷剂的作用:
• 制冷剂是制冷系统完成制冷循环所必需的工作 介质。 介质。制冷剂在制冷系统中不断的与外界发生 热交换。 热交换。 • 制冷剂借助压缩机的做功,将被冷却对象的热 制冷剂借助压缩机的做功, 量连续不断传递给外界环境,从而实现制冷。 量连续不断传递给外界环境,从而实现制冷。 • 制冷剂在蒸发器中是低压低温下汽化,在冷凝 制冷剂在蒸发器中是低压低温下汽化, 器中是高压常温下凝结, 器中是高压常温下凝结,因此只有在工作温度 范围内能气化和凝结的物质才能作为制冷剂。 范围内能气化和凝结的物质才能作为制冷剂。 多数制冷剂在大气压力和环境温度下是气态。 多数制冷剂在大气压力和环境温度下是气态。 • 制冷剂在制冷系统中状态只发生物理变化,没 制冷剂在制冷系统中状态只发生物理变化, 有化学变化。如果系统不泄漏, 有化学变化。如果系统不泄漏,制冷可以长期 循环使用。 循环使用。

制冷剂的压焓简介

制冷剂的压焓简介

六制冷剂的压焓(lg-h)图和热力性质表图6-1 R12压焓图表6-1 R12饱和液体和气体性质表(续表)注:b=正常沸点;c=临界点。

图6-2 R22压焓图表6-2 R22饱和液体和气体性质表(续表)注:b=正常沸点;c=临界点。

图6-3 R23压焓图表6-3 R23饱和液体和气体性质表(续表) 图6-4 R32压焓图表6-4 R32饱和液体和气体性质表(续表)注:a=三相点;b=正常沸点;c=临界点。

图6-5 R50压焓图表6-5 R50饱和液体和气体性质表注:a=三相点;b=正常沸点;c=临界点。

图6-6 R123压焓图表6-6 R123饱和液体和气体性质表(续表)注:b=正常沸点;c=临界点。

图6-7 R124压焓图表6-7 R124饱和液体和气体性质表(续表)注:b=正常沸点;c=临界点。

图6-8 R125压焓图表6-8 R125饱和液体和气体性质表(续表)注:a=三相点;b=正常沸点;c=临界点。

图6-9 R134a压焓图表6-9 R134a饱和液体和气体性质表(续表)注:a=三相点;b=正常沸点;c=临界点。

图6-10 R152a压焓图表6-10 R152a饱和液体和气体性质表(续表)注:a=三相点;b=正常沸点;c=临界点。

图6-11 R170压焓图表6-11 R170饱和液体和气体性质表(续表)注:b=正常沸点;c=临界点。

图6-12 R290压焓图表6-12 R290饱和液体和气体性质表(续表)注:b=正常沸点;c=临界点。

图6-13 R404A压焓图表6-13 R404A沸腾状态液体和结露状态气体性质表(续表)注:b=1个标准大气压时的沸点和露点;c=临界点。

图6-14 R407c压焓图表6-14 R407C沸腾状态液体和结露状态气体性质表(续表)注:b=1个标准大气压时的沸点和露点;c=临界点。

图6-15 R410A压焓图表6-15 R410A沸腾状态液体和结露状态气体性质表(续表)注:b=1个标准大气压时的沸点和露点;c=临界点。

压焓图及其简介

压焓图及其简介

制冷剂的压焓图在制冷工程中,最常用的热力图就是制冷剂的压焓图。

该图纵坐标是绝对压力的对数值lgp (图中所表示的数值是压力的绝对值),横坐标是比焓值h。

1、临界点K和饱和曲线临界点K为两根粗实线的交点。

在该点,制冷剂的液态和气态差别消失。

K点左边的粗实线Ka为饱和液体线,在Ka线上任意一点的状态,均是相应压力的饱和液体;K点的右边粗实线Kb为饱和蒸气线,在Kb线上任意一点的状态均为饱和蒸气状态,或称干蒸气。

2、三个状态区Ka左侧——过冷液体区,该区域内的制冷剂温度低于同压力下的饱和温度;Kb右侧——过热蒸气区,该区域内的蒸气温度高于同压力下的饱和温度;Ka和Kb之间——湿蒸气区,即气液共存区。

该区内制冷剂处于饱和状态,压力和温度为一一对应关系。

在制冷机中,蒸发与冷凝过程主要在湿蒸气区进行,压缩过程则是在过热蒸气区内进行。

3、六组等参数线制冷剂的压-焓图中共有八种线条:等压线P、等焓线、饱和液体线等熵线等容线、干饱和蒸汽线、等干度线等温线(1)等压线:图上与横坐标轴相平行的水平细实线均是等压线,同一水平线的压力均相等。

(2)等焓线:图上与横坐标轴垂直的细实线为等焓线,凡处在同一条等焓线上的工质,不论其状态如何焓值均相同。

(3)等温线:图上用点划线表示的为等温线。

等温线在不同的区域变化形状不同,在过冷区等温线几乎与横坐标轴垂直;在湿蒸气区却是与横坐标轴平行的水平线;在过热蒸气区为向右下方急剧弯曲的倾斜线。

(4)等熵线:图上自左向右上方弯曲的细实线为等熵线。

制冷剂的压缩过程沿等熵线进行,因此过热蒸气区的等熵线用得较多,在lgp-h图上等熵线以饱和蒸气线作为起点。

(5)等容线:图上自左向右稍向上弯曲的虚线为等比容线。

与等熵线比较,等比容线要平坦些。

制冷机中常用等比容线查取制冷压缩机吸气点的比容值。

(6)等干度线:从临界点K出发,把湿蒸气区各相同的干度点连接而成的线为等干度线。

它只存在与湿蒸气区。

上述六个状态参数(p、t、v、x、h、s)中,只要知道其中任意两个状态参数值,就可确定制冷剂的热力状态。

制冷剂压焓图说明

制冷剂压焓图说明

制冷剂压-焓图(lgP-h图)介绍制冷剂的热力学性质可通过热力参数之间的关系来描述,而制冷剂的热力参数之间的关系是通过实验方法测定出来的,一般用热力学性质图、表来表示。

制冷剂的lgP—h图:(又称莫里尔图(Molliev Diagram))图中:K ——临界点 P ——等压线 h ——等焓线 t ——等温度线s ——等熵线 v ——等比容线 x ——等干度线在lgP—h图上任意一点都能表示制冷剂的一种热力状态,在一个状态点上,制冷剂具有确定的压力、温度、比容、焓和熵,以及蒸气所占的比例,即干度值X。

X = 制冷剂蒸气质量 / 制冷剂总质量饱和液体线(X=0):在lgP—h图上,将不同温度下的饱和液体的各点连接起来的曲线叫做饱和液体线。

在饱和液体线上的各点所表示的是制冷剂饱和液体在此点压力下的饱和温度。

干饱和蒸气线(X=1):在lgP—h图上,将不同温度下的干饱和蒸气的各点连接起来的曲线叫做干饱和蒸气线。

在干饱和蒸气线上的各点所表示的是制冷剂干饱和蒸气在此点压力下的饱和温度。

饱和液体线和干饱和蒸气线均为粗实线,相交于临界点,这两条线将lgP—h图分成三个区域。

饱和液体线左边是过冷液体区,干饱和蒸气线右边是过热蒸气区,两条曲线中间的区域为饱和区,也就是湿蒸气区,在这个区域内的制冷剂为饱和状态,区域内各点上的饱和蒸气均为湿蒸气。

等温线(t):将表示温度相同的各点用点划线连接起来成一条折线,这条折线就是等温线。

等温线在过冷液体区为竖直线,与等焓线重合;在湿蒸气区为水平直线,与等压线重合;在过热蒸气区为向右下方向的曲线。

等比容线(v):将比容相同的各点用虚线连接起来的曲线叫做等比容线。

等熵线(h):将熵值相同的各点用细实线连接起来的曲线叫做等熵线。

等干度线(x):在饱和区内将干度相同的点连接而成的曲线叫做等干度线。

在lgP—h图中,箭头所指的方向表示各参数数值增加的方向。

另外,可以根据任意两个状态参数就能确定其在lgP—h图上的状态点,通过这个点,就可以查出其它几个状态参数。

制冷剂与压焓图

制冷剂与压焓图

4.2 制冷剂类别与环境保护
• 科学家的研究证实R11、R12、R13等氯氟烃化合物 (CFCs)制冷剂,当它们泄漏或排放后扩散到地球 的平流层中,会破坏臭氧层,结果使地球上生物遭 到紫外线的损害;另一方面,氯氟烃化合物的排放 会加剧地球的温室效应,会像二氧化碳那样使地球 温度升高。 • CFCs中含氯元素,对臭氧层具有最大的破坏作用, 是禁用制冷剂;而HCFCs中由于氢元素的存在,大大 减弱了对臭氧层的破坏作用,目前还可以继续使用, 属过渡制冷剂;至于无氯的HFCs,则不会对臭氧层 破坏,受到国际社会的重视,成为替代制冷剂。
• HFCs和HC这一类不含氯的制冷剂,对环境无害。
4.3 制冷剂环保指标
ODP大气臭氧层消耗的潜能值;以R11为基准值,人为地规 定其值为1.0; GWP全球变暖潜能;以R11或CO2为基准值,人为地规定其 值为1.0。 一些制冷剂的ODP值和GWP值
GWP 臭氧 制冷剂 (CO2 消耗 制冷剂 (CO2= 代号 =1.0) ODP 代号 1.0) GWP 臭氧 消耗 ODP GWP 制冷 臭氧 剂代 (CO2 消耗 号 =1.0) ODP
平流层
3.1 臭氧层被破坏的危害
• 1.会影响人类的健康。 臭氧层被破坏后,其吸收紫外线 的能力大大降低,使得人类接受过量紫外线辐射的机会大 大增加了。一方面,过量的紫外线辐射会破坏人的免疫系 统,使人的自身免疫系统出现障碍,患呼吸道系统传染性 疾病的人数大量增加;另一方面,过量的紫外线辐射会增 加皮肤癌的发病率。据统计,全世界范围内每年大约有10 万人死于皮肤癌,大多数病例与过量紫外线辐射有关。臭 氧层的臭氧每损耗1%,皮肤癌的发病率就会增加 2%。 另外,过量紫外线辐射还会诱发各种眼科疾病,如白内障、 角膜肿瘤等。 • 2. 会影响农作物的生产。 实验表明,过量的紫外线辐射 会使植物叶片变小,减少了植物进行光合作用的面积,从 而影响作物的产量同时,过量紫外线辐射还会影响到部分 农作物种子的质量,使农作物更易受杂草和病虫害的损害。 一项对大豆的初步研究表明,臭氧层厚度减少25%,大豆 将会减产20%-25%。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

制冷剂压-焓图(lgP-h图)介绍
制冷剂的热力学性质可通过热力参数之间的关系来描述,而制冷剂的热力参数之间的关系是通过实验方法测定出来的,一般用热力学性质图、表来表示。

制冷剂的lgP—h图:(又称莫里尔图(Molliev Diagram))
图中:
K ——临界点 P ——等压线 h ——等焓线 t ——等温度线
s ——等熵线 v ——等比容线 x ——等干度线
在lgP—h图上任意一点都能表示制冷剂的一种热力状态,在一个状态点上,制冷剂具有确定的压力、温度、比容、焓和熵,以及蒸气所占的比例,即干度值X。

X = 制冷剂蒸气质量 / 制冷剂总质量
饱和液体线(X=0):
在lgP—h图上,将不同温度下的饱和液体的各点连接起来的曲线叫做饱和液体线。

在饱和液体线上的各点所表示的是制冷剂饱和液体在此点压力下的饱和温度。

干饱和蒸气线(X=1):
在lgP—h图上,将不同温度下的干饱和蒸气的各点连接起来的曲线叫做干饱和
蒸气线。

在干饱和蒸气线上的各点所表示的是制冷剂干饱和蒸气在此点压力下的饱和温度。

饱和液体线和干饱和蒸气线均为粗实线,相交于临界点,这两条线将lgP—h图分成三个区域。

饱和液体线左边是过冷液体区,干饱和蒸气线右边是过热蒸气区,两条曲线中间的区域为饱和区,也就是湿蒸气区,在这个区域内的制冷剂为饱和状态,区域内各点上的饱和蒸气均为湿蒸气。

等温线(t):
将表示温度相同的各点用点划线连接起来成一条折线,这条折线就是等温线。

等温线在过冷液体区为竖直线,与等焓线重合;在湿蒸气区为水平直线,与等压线重合;在过热蒸气区为向右下方向的曲线。

等比容线(v):
将比容相同的各点用虚线连接起来的曲线叫做等比容线。

等熵线(h):
将熵值相同的各点用细实线连接起来的曲线叫做等熵线。

等干度线(x):
在饱和区内将干度相同的点连接而成的曲线叫做等干度线。

在lgP—h图中,箭头所指的方向表示各参数数值增加的方向。

另外,可以根据任意两个状态参数就能确定其在lgP—h图上的状态点,通过这个点,就可以查出其它几个状态参数。

在使用制冷剂的lgP—h图时,一定要首先确定该图所选取的焓和熵的基准值。

在图上一般都注明温度为0℃时制冷剂饱和液体的焓和熵的基准值。

不同的图中由于基准值选取不同,同一温度和压力下制冷剂的焓和熵的标值也不同,在几个图联用时,尤其需要加以注意,将读取的参数用基准值的差予以修正。

相关文档
最新文档