换热器的温度控制方案

换热器的温度控制方案

换热器的温度控制方案

1、调节换热介质流量

通过调节换热介质流量来控制换热器温度的流程是一种常见的控制方案,有无相变均可使用,但流体必须是可以调节的。

2、调节换热面积

适用于蒸汽冷凝换热器。调节阀装在凝液管路上,热流体温度高于给定值时,调节阀关小使凝液积累,有效冷凝面积减小,传热面积随之减小,直至平衡为止,反之亦然。其特点是滞后大,有较大传热面积余量;传热量变化缓和,能防止局部过热,对热敏性介质有利。

3、旁路调节

这种调节主要用于两种固定工艺物流之间的换热。

列管式换热器课程设计报告书

——大学《化工原理》列管式换热器 课程设计说明书 学院: 班级: 学号: 姓名: 指导教师: 时间:年月日

目录 一、化工原理课程设计任务书............................................................................ . (2) 二、确定设计方案............................................................................ (3) 1.选择换热器的类型 2.管程安排 三、确定物性数据............................................................................ (4) 四、估算传热面积............................................................................ (5) 1.热流量 2.平均传热温差 3.传热面积 4.冷却水用量 五、工艺结构尺寸............................................................................ (6) 1.管径和管内流速 2.管程数和传热管数 3.传热温差校平均正及壳程数 4.传热管排列和分程方法 5.壳体内径 6.折流挡板 (7) 7.其他附件 8.接管 六、换热器核算............................................................................ . (8) 1.热流量核算 2.壁温计算 (10) 3.换热器内流体的流动阻力 七、结构设计............................................................................ . (13) 1.浮头管板及钩圈法兰结构设计 2.管箱法兰和管箱侧壳体法兰设计 3.管箱结构设计 4.固定端管板结构设计 5.外头盖法兰、外头盖侧法兰设计 (14) 6.外头盖结构设计 7.垫片选择

换热器热流出口温度控制

毕业设计说明书 G RADUATE T HESIS 论文题目:换热器热流出口温度控制学院:电气工程学院

摘要 换热器作为一种标准工艺设备已经被广泛应用于动力工程领域和其他过程工业部门。以工业上常用的列管式换热器为例,热流体和冷流体通过对流热传导达到换热的目的,从而使换热器物料出口温度满足工业生产的需求。但由于目前制造工艺的限制,控制方式的单一性,换热器普遍存在控制效果差,换热效率低的现象,造成能源的浪费。如何提高换热器的控制效果,提高换热效率,对于缓解我国能源紧张的状况,具有长远的意义。 本课题来源于对SMPT—1000实验平台换热器的研究,对于换热器热流出口温度的控制,使用PID控制来进行调节,通过不断的调整其参数,确定一个比较准确的参数值,通过调整冷水阀的开度调整其流量来控制热流的出口温度。 本设计利用PCS7来完成整个系统自动控制,通过PCS7软件对系统进行硬件和软件组态,完成控制出口温度的编程,最后通过人机界面监控维护控制系统正常运行。 关键词换热器;温度;PID控制;PCS7

Abstract Heat exchanger as a standard process equipment has been widely used in the field of power engineering and other process industries. In the industry commonly used shell and tube heat exchanger, for example, the hot fluid and cold fluid heat transfer by convection heat transfer to achieve the purpose, so that the heat exchanger outlet temperature of the material to meet the needs of industrial production. However, as the manufacturing process constraints, control unity, common heat exchanger control is poor, the phenomenon of low heat transfer efficiency, resulting in waste of energy. How to improve the control performance of the heat exchanger to improve heat transfer efficiency, to ease China's energy shortage situation, have long-term significance. The design comes from the SMPT-1000 test platform research exchanger for heat exchanger outlet temperature control, the use of PID control to adjust, through continuous adjusting its parameters to determine a more accurate parameter values by adjusting opening of the cold water valve to control the flow of adjustment of the outlet temperature of the heat flow. This design uses PCS7 to complete the system of automatic control by PCS7 software on the system hardware and software configuration, complete control of the outlet temperature of the programming, the last operating normally by HMI monitoring and control system. Keywords Heat;temperature; PID control; PCS7

换热器温度控制系统简单控制系统方案

换热器温度控制系统简单控制系统方案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

目录 目录 (2) 1、题目................................................................................................................. 错误!未定义书签。 2、换热器概述..................................................................................................... 错误!未定义书签。 换热器的用途............................................................................................... 错误!未定义书签。 换热器的工作原理及工艺流程图............................................................... 错误!未定义书签。 3、控制系统 (3) 控制系统的选择 (3) 工艺流程图和系统方框图 (3) 4、被控对象特性研究 (4) 被控变量的选择 (4) 操纵变量的选择 (4) 被控对象特性 (5) 调节器的调节规律的选择 (6) 5、过程检测控制仪表的选用 (7) 测温元件及变送器 (7) 执行器 (10) 调节器 (12) 、仪表型号清单列表 (12) 6、系统方块图 (13) 7、调节控制参数,进行参数整定及系统仿真,分析系统性能 (13) 调节控制参数 (13) PID参数整定及系统仿真 (14) 系统性能分析 (16) 8、参考文献 (17)

化工原理设计:列管式换热器设计

化工原理课程设计 设计题目:列管式换热器的设计班级:09化工 设计者:陈跃 学号:20907051006 设计时间:2012年5月20 指导老师:崔秀云

目录 概述 1.1.换热器设计任务书 .................................................................... - 7 - 1.2换热器的结构形式 .................................................................. - 10 - 2.蛇管式换热器 ........................................................................... - 11 - 3.套管式换热器 ........................................................................... - 11 - 1.3换热器材质的选择 .................................................................. - 11 - 1.4管板式换热器的优点 .............................................................. - 13 - 1.5列管式换热器的结构 .............................................................. - 14 - 1.6管板式换热器的类型及工作原理............................................ - 16 - 1.7确定设计方案.......................................................................... - 17 - 2.1设计参数................................................................................. - 18 - 2.2计算总传热系数...................................................................... - 19 - 2.3工艺结构尺寸.......................................................................... - 19 - 2.4换热器核算 ............................................................................. - 21 - 2.4.1.换热器内流体的流动阻力 (21) 2.4.2.热流量核算 (22)

课程设计—列管式换热器

课程设计设计题目:列管式换热器 专业班级:应化1301班 姓名:王伟 学号: U201310289 指导老师:王华军 时间: 2016年8月

目录 1.课程设计任务书 (5) 1.1 设计题目 (5) 1.2 设计任务及操作条件 (5) 1.3 技术参数 (5) 2.设计方案简介 (5) 3.课程设计说明书 (6) 3.1确定设计方案 (6) 3.1.1确定自来水进出口温度 (6) 3.1.2确定换热器类型 (6) 3.1.3流程安排 (7) 3.2确定物性数据 (7) 3.3计算传热系数 (8) 3.3.1热流量 (8) 3.3.2 平均传热温度差 (8) 3.3.3 传热面积 (8) 3.3.4 冷却水用量 (8) 4.工艺结构尺寸 (9) 4.1 管径和管内流速 (9) 4.2 管程数和传热管数 (9)

4.3 传热管排列和分程方法 (9) 4.4 壳体内径 (10) 4.5 折流板 (10) 4.6 接管 (11) 4.6.1 壳程流体进出管时接管 (11) 4.6.2 管程流体进出管时接管 (11) 4.7 壁厚的确定和封头 (12) 4.7.1 壁厚 (12) 4.7.2 椭圆形封头 (12) 4.8 管板 (12) 4.8.1 管板的结构尺寸 (13) 4.8.2 管板尺寸 (13) 5.换热器核算 (13) 5.1热流量衡算 (13) 5.1.1壳程表面传热系数 (13) 5.1.2 管程对流传热系数 (14) 5.1.3 传热系数K (15) 5.1.4 传热面积裕度 (16) 5.2 壁温衡算 (16) 5.3 流动阻力衡算 (17) 5.3.1 管程流动阻力衡算 (17) 5.3.2 壳程流动阻力衡算 (17)

换热器温度控制系统

1. E-0101B混合加热器设计 为确保混合加热器(E-0101B)中MN(亚硝酸甲酯),CO(一氧化碳)的出口温度为408K,选用0.68Mpa,408K 的加热蒸汽加热入口温度为294K的工艺介质。为保证生成物的产量,质 量,及最终生成物的转化率,且工艺介质较稳定,蒸汽源压力较小,变化不大,因此针对此 实际情况,最后确定设计一个换热器的反馈控制方案。 1.1 换热器概述 换热器工作状态如何, 可用几项工作指标加以衡量。常用的工作指标主要有漏损率、换热效率 和温度效率。它们比较全面的说明了换热器的特点和工作状态,在生产和科学试验中了解这 些指标,对于换热器的管理和改进都是必不可少的。 换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。换热器在化工、石油、 动力、食品及其它许多工业生产中占有重要地位,其在化工生产中换热器可作为加热器、冷 却器、冷凝器、蒸发器和再沸器等,应用广泛。换热器是一种在不同温度的两种或两种以上 流体间实现物料之间热量传递的节能设备,是使热量由温度较高的流体传递给温度较低的流 体,使流体温度达到流程规定的指标,以满足工艺条件的需要,同时也是提高能源利用率的 主要设备之一。 1.2换热器的分类 适用于不同介质、不同工况、不同温度、不同压力的换热器,结构型式也不同,换热器 的具体分类如下: 一按传热原理分类:间壁式换热器,蓄热式换热器,流体连接间接式换热器,直接接触 式换热器,复式换热器 二按用途分类:加热器,预热器,过热器,蒸发器 三、按结构分类:浮头式换热器,固定管板式换热器,U形管板换热器,板式换热器等 此设计要求是将进料温度都为297.99K 的MN(亚硝酸甲酯)和CO(一氧化碳)加热到出

2020年换热器温度控制系统简单控制系统

作者:旧在几 作品编号:2254487796631145587263GF24000022 时间:2020.12.13 目录 目录 (1) 1、题目........................................................ 错误!未定义书签。 2、换热器概述.................................................. 错误!未定义书签。 2.1换热器的用途............................................ 错误!未定义书签。 2.2换热器的工作原理及工艺流程图............................ 错误!未定义书签。 3、控制系统 (3) 3.1控制系统的选择 (3) 3.2工艺流程图和系统方框图 (3) 4、被控对象特性研究 (4) 4.1 被控变量的选择 (4) 4.2 操纵变量的选择 (4) 4.3 被控对象特性 (5) 4.4 调节器的调节规律的选择 (6) 5、过程检测控制仪表的选用 (7) 5.1 测温元件及变送器 (7) 5.2 执行器 (10) 5.3 调节器 (13) 5.4、仪表型号清单列表 (13) 6、系统方块图 (14) 7、调节控制参数,进行参数整定及系统仿真,分析系统性能 (14) 7.1调节控制参数 (14)

7.2 PID参数整定及系统仿真 (15) 7.3 系统性能分析 (18) 8、参考文献 (19) 1、题目 热交换器出口温度的控制。 2、换热器概述 2.1 换热器的用途 换热器又叫做热交换器(heat exchanger),是化工、石油、动力、食品及 其它许多工业部门的通用设备,在生产中占有重要地位。进行换热的目的主要有 下列四种: ①.使工艺介质达到规定的温度,以使化学反应或其他工艺过程很好的进行; ②.生产过程中加入吸收的热量或除去放出的热量,使工艺过程能在规定的温度 范围内进行;③.某些工艺过程需要改变无聊的相态;④.回收热量。 由于换热目的的不同,其被控变量也不完全一样。在大多数情况下,被控变 量是温度,为了使被加热的工艺介质达到规定的温度,常常取出温度问被控温度、 调节加热蒸汽量使工艺介质出口温度恒定。对于不同的工艺要求,被控变量也可 以是流量、压力、液位等。 2.2 换热器的工作原理及工艺流程图 换热器的温度控制系统换热器工作原理工艺流程如下:冷流体和热流体分别 通过换热器的管程和壳程,通过热传导,从而使热流体的出口温度降低。热流体

课程设计报告,列管式换热器设计

设计(论文)题目: 列管式换热器的设计 目录 1 前言 (3) 2 设计任务及操作条件 (3) 3 列管式换热器的工艺设计 (3) 3.1换热器设计方案的确定 (3) 3.2 物性数据的确定 (4) 3.3 平均温差的计算 (4) 3.4 传热总系数K的确定 (4) 3.5 传热面积A的确定 (6) 3.6 主要工艺尺寸的确定 (6) 3.6.1 管子的选用 (6) 3.6.2 管子总数n和管程数Np的确定 (6) 3.6.3 校核平均温度差 t m及壳程数Ns (7) 3.6.4 传热管排列和分程方法 (7) 3.6.5 壳体径 (7) 3.6.6 折流板 (7)

3.7 核算换热器传热能力及流体阻力 (7) 3.7.1 热量核算 (7) 3.7.2 换热器压降校核 (9) 4 列管式换热器机械设计 (10) 4.1 壳体壁厚的计算 (10) 4.2 换热器封头选择 (10) 4.3 其他部件 (11) 5 课程设计评价 (11) 5.1 可靠性评价 (11) 5.2 个人感想 (11) 6 参考文献 (11) 附表换热器主要结构尺寸和计算结果 (12) 1 前言 换热器(英语翻译:heat exchanger),是将热流体的部分热量传递给冷流体的设备,又称热交换器。换热器是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛。换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。 列管式换热器工业上使用最广泛的一种换热设备。其优点是单位体积的传热面积、处理能力和操作弹性大,适应能力强,尤其在高温、高压和大型装置中采用更为普遍。列管式换热器主要有以下几个类型:固定管板式换热器、浮头式换热器、U形管式换热器等。 设计一个比较完善的列管式换热器,除了能满足传热方面的要求外,还应该满足传热效率高、体积小、重量轻、消耗材料少、制造成本低、清洗维护方便和操作安全等要求。 列管式换热器的设计,首先应根据化工生产工艺条件的要求,通过化工工艺计算,确定换热器的传热面积,同时选择管径、管长,确定管数、管程数和壳程数,

列管式换热器设计

酒泉职业技术学院 毕业设计(论文) 2013 级石油化工生产技术专业 题目:列管式换热器设计 毕业时间: 2015年7月 学生姓名:陈泽功刘升衡李侠虎 指导教师:王钰 班级: 13级石化(3)班 2015 年 4月20日 酒泉职业技术学院 2013 届各专业 毕业论文(设计)成绩评定表

答辩小 组评价 意见及 评分 成绩:签字(盖章)年月日 教学系 毕业实 践环节 指导小 组意见 签字(盖章)年月日 学院毕 业实践 环节指 导委员 会审核 意见 签字(盖章)年月日 一、列管式换热器计任务书 某生产过程中,需用循环冷却水将有机料液从102℃冷却至40℃。已知有机料液的流量为2.23×104 kg/h,循环冷却水入口温度为30℃,出口温度为40℃,并要求管程压降与壳程压降均不大于60kPa,试设计一台列管换热器,完成该生产任务。 已知: 有机料液在71℃下的有关物性数据如下(来自生产中的实测值) 密度 定压比热容℃ 热导率℃

粘度 循环水在35℃下的物性数据: 密度 定压比热容K 热导率K 粘度 二、确定设计方案 (1)选择换热器的类型 (2)两流体温的变化情况: 热流体进口温度102℃出口温度40℃;冷流体进口温度30℃,出口温度为40℃,该换热器用循环冷却水冷却,冬季操作时,其进口温度会降低,考虑到这一因素,估计该换热器的管壁温度和壳体温度之差较大,因此初步确定选用浮头式换热器。 (3)管程安排 从两物流的操作压力看,应使有机料液走管程,循环冷却水走壳程。但由于循环冷却水较易结垢,若其流速太低,将会加快污垢增长速度,使换热器的热流量下降,所以从总体考虑,应使循环水走管程,混和气体走壳程。 三、确定物性数据 定性温度:对于一般气体和水等低黏度流体,其定性温度可取流体进出口温度的平均值。故壳程混和气体的定性温度为 T= =71℃ 管程流体的定性温度为 t=℃ 根据定性温度,分别查取壳程和管程流体的有关物性数据。对有机料液来说,最可靠的无形数据是实测值。若不具备此条件,则应分别查取混合无辜组分的有关物性数据,然后按照相应的加和方法求出混和气体的物性数据。有机料液在71℃下的有关物性数据如下(来自生产中的实测值) 密度

列管式换热器设计方案计算过程参考

根据给定的原始条件,确定各股物料的进出口温度,计算换热器所需的传热面积,设计换热器的结构和尺寸,并要求核对换热器压强降是否符合小于30 kPa的要求。各项设计均可参照国家标准或是行业标准来完成。具体项目如下:设计要求: =0.727Χ10-3Pa.s 密度ρ=994kg/m3粘度μ 2 导热系数λ=62.6Χ10-2 W/(m.K) 比热容Cpc=4.184 kJ/(kg.K) 苯的物性如下: 进口温度:80.1℃出口温度:40℃ =1.15Χ10-3Pa.s 密度ρ=880kg/m3粘度μ 2 导热系数λ=14.8Χ10-2 W/(m.K) 比热容Cpc=1.6 kJ/(kg.K) 苯处理量:1000t/day=41667kg/h=11.57kg/s 热负荷:Q=WhCph(T2-T1)=11.57×1.6×1000×(80.1-40)=7.4×105W 冷却水用量:Wc=Q/[c pc(t2-t1)]=7.4×105/[4.184×1000×(38-30)]=22.1kg/s

4、传热面积的计算。 平均温度差 确定R和P值 查阅《化工原理》上册203页得出温度校正系数为0.8,适合单壳程换热器,平均温度差为 △tm=△t’m×0.9=27.2×0.9=24.5 由《化工原理》上册表4-1估算总传热系数K(估计)为400W/(m2·℃) 估算所需要的传热面积: S0==75m2 5、换热器结构尺寸的确定,包括: (1)传热管的直径、管长及管子根数; 由于苯属于不易结垢的流体,采用常用的管子规格Φ19mm×2mm 管内流体流速暂定为0.7m/s 所需要的管子数目:,取n为123 管长:=12.9m 按商品管长系列规格,取管长L=4.5m,选用三管程 管子的排列方式及管子与管板的连接方式: 管子的排列方式,采用正三角形排列;管子与管板的连接,采用焊接法。(2)壳体直径; e取1.5d0,即e=28.5mm D i=t(n c—1)+2e=19×(—1)+2×28.5=537.0mm,按照标准尺寸进行整圆,壳体直径为600mm。此时长径比为7.5,符合6-10的范围。

列管式换热器课程设计

(封面) XXXXXXX学院 列管式换热器课程设计报告 题目: 院(系): 专业班级: 学生姓名: 指导老师: 时间:年月日 目录

1、设计题目(任务书) (2) 2、流程示意图 (3) 3、流程及方案的说明和论证 (3) 4、换热器的设计计算及说明 (4) 5、主体设备结构图 (10) 6、设计结果概要表 (11) 7、设计评价及讨论 (12) 8、参考文献 (12) 附图:主体设备结构图和花版设计图 一.任务书

(一)设计题目: 列管式冷却器设计 (二)设计任务: 将自选物料用河水冷却或自选热源加热至生产工艺所要求的温度 (三)设计条件: 1.处理能力:G=学号最后2位×300t物料/d; 2.冷却器用河水为冷却介质,考虑广州地区可取进口水温度为20~30C;加热器用热水或水蒸气为热源,条件自选; 3.允许压降:不大于105Pa; 4.传热面积安全系数5~15% 5.每年按330天计,每天24小时连续运行。 (四)设计要求: 1.对确定的设计方案进行简要论述; 2.物料衡算、热量衡算; 3.确定列管壳式冷却器的主要结构尺寸; 4.计算阻力; 5.选择合宜的列管换热器并运行核算; 6.用Autocad绘制列管式冷却器的结构(3号图纸)、花板布置图(3号图纸); 7.编写设计说明书(包括:①.封面;②.目录;③.设计题目;④.流程示意图;⑤.流程及方案的说明和论证;⑥设计计算及说明;⑦主体设备结构图;⑧设计结果概要表;⑨对设计的评价及问题讨论;⑩参考文献。) (五)设计进度安排: 备注:参考文献格式: 期刊格式为:作者姓名.出版年.论文题目.刊物名称.卷号(期号):起止页码。专著格式为:作者姓名.出版年.专著书名.出版社名.起止页码。 二.流程示意图

列管式换热器的设计

化工原理课程设计 学院: 化学化工学院 班级: | 姓名学号: 指导教师: $

目录§一.列管式换热器 ! .列管式换热器简介 设计任务 .列管式换热器设计内容 .操作条件 .主要设备结构图 §二.概述及设计要求 .换热器概述 .设计要求 ~ §三.设计条件及主要物理参数 . 初选换热器的类型 . 确定物性参数 .计算热流量及平均温差 壳程结构与相关计算公式 管程安排(流动空间的选择)及流速确定 计算传热系数k 计算传热面积 ^ §四.工艺设计计算 §五.换热器核算 §六.设计结果汇总 §七.设计评述 §八.工艺流程图 §九.主要符号说明 §十.参考资料

: §一 .列管式换热器 . 列管式换热器简介 列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。一种流体在关内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。管束的壁面即为传热面。 其主要优点是单位体积所具有的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,因此在高温、高压和大型装置上多采用列管式换热器。为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍流程度大为增加。 列管式换热器中,由于两流体的温度不同,使管束和壳体的温度也不相同,因此它们的热膨胀程度也有差别。若两流体温差较大(50℃以上)时,就可能由于热应力而引起设备的变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。 设计任务 ¥ 1.任务 处理能力:3×105t/年煤油(每年按300天计算,每天24小时运行) 设备形式:列管式换热器 2.操作条件 (1)煤油:入口温度150℃,出口温度50℃ (2)冷却介质:循环水,入口温度20℃,出口温度30℃ (3)允许压强降:不大于一个大气压。 备注:此设计任务书(包括纸板和电子版)1月15日前由学委统一收齐上交,两人一组,自由组合。延迟上交的同学将没有成绩。 [ .列管式换热器设计内容 1.3.1、确定设计方案 (1)选择换热器的类型;(2)流程安排 1.3.2、确定物性参数 (1)定性温度;(2)定性温度下的物性参数 1.3.3、估算传热面积 (1)热负荷;(2)平均传热温度差;(3)传热面积;(4)冷却水用量 % 1.3.4、工艺结构尺寸 (1)管径和管内流速;(2)管程数;(3)平均传热温度差校正及壳程数;(4)

换热器出口温度设置

换热器出口温度设置 Prepared on 24 November 2020

摘要 目前,换热器控制中大多数仍采用简单控制系统及传统的PID控制,以加热(冷却)介质的流量作为调节手段,以被加热(冷却)工艺介质的出口温度作为被控量构成控制系统。但是,由于换热系统这种被控对象具有纯滞后、大惯性、参数时变的非线性特点,传统的PID控制往往不能满足其静态、动态特性的要求。使换热器普遍存在控制效果差,换热效率低的现象,造成能源的浪费。如何提高换热器的控制效果,提高换热效率,对于缓解我国能源紧张的状况,具有长远的意义 本课题是针对换热器实验设备温度控制改进提出的。设计中首先通过对现阶段换热器出口温度控制的特点进行分析,从而发现了制约控制效果进一步提高的瓶颈,为下一步改善换热器的控制效果提供了理论依据。然后根据换热系统组成、控制流程的特点对换热器温度控制系统建立数学模型。再根据所建立的数学模型,联系换热器温度控制的特点,给出了相应的控制策略,提出了串级控制及前馈控制或串级—反馈,前馈—反馈等复杂控制系统,来满足对于存在大的负荷干扰且和控制品质要求较高的应用场合。 关键字:换热器、数学模型、PID 、出口温度控制、串级控制

前言 换热器是国民经济和工业生产领域中应用十分广泛的热量交换设备。随着现代新工艺、新技术、新材料的不断开发和能源问题的日趋严重,世界各国已普遍把石油化工深度加工和能源综合利用摆到十分重要的位置。换热器因而面临着新的挑战。换热器的性能对产品质量、能量利用率以及系统运行的经济性和可靠性起着重要的作用,有时甚至是决定性的作用。在继续提高设备热效率的同时,促进换热设备的结构紧凑性,产品系列化、标准化和专业化,并朝大型化的方向发展。随着我国工业化和城镇化进程的加快,以及全球发展中国家经济的增长,国内市场和出口市场对换热器的需求量将会保持增长,客观上为我国换热器产业的快速发展提供了广阔的市场空间。从市场需求来看,在国家大力投资的刺激下,我国国民经济仍将保持较快发展。石油化工、能源电力、环境保护等行业仍然保持稳定增长,大型乙烯项目、大规模的核电站建设、大型风力发电场的建设、太阳能光伏发电产业中多晶硅产量的迅速增长、大型环境保护工程的开工建设、海水淡化工程的日益成熟,都将对换热器产业产生巨大的拉动。 未来换热器将会朝着更加节能环保和美观实用的角度不断创新与发展,短时期钢制柱式散热器和铜铝复合散热器任将会是市场主流产品与选择。

换热器温度控制系统范本

换热器温度控制系 统

1.E-0101B混合加热器设计 为确保混合加热器(E-0101B)中MN(亚硝酸甲酯),CO(一氧化碳)的出口温度为408K,选用0.68Mpa,408K的加热蒸汽加热入口温度为294K 的工艺介质。为保证生成物的产量,质量,及最终生成物的转化率,且工艺介质较稳定,蒸汽源压力较小,变化不大,因此针对此实际情况,最后确定设计一个换热器的反馈控制方案。 1.1换热器概述 换热器工作状态如何,可用几项工作指标加以衡量。常见的工作指标主要有漏损率、换热效率和温度效率。它们比较全面的说明了换热器的特点和工作状态,在生产和科学试验中了解这些指标,对于换热器的管理和改进都是必不可少的。 换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。换热器在化工、石油、动力、食品及其它许多工业生产中占有重要地位,其在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用广泛。换热器是一种在不同温度的两种或两种以上流体间实现物料之间热量传递的节能设备,是使热量由温度较高的流体传递给温度较低的流体,使流体温度达到流程规定的指标,以满足工艺条件的需要,同时也是提高能源利用率的主要设备之一。

1.2换热器的分类 适用于不同介质、不同工况、不同温度、不同压力的换热器,结构型式也不同,换热器的具体分类如下: 一按传热原理分类:间壁式换热器,蓄热式换热器,流体连接间接式换热器,直接接触式换热器,复式换热器 二按用途分类:加热器,预热器,过热器,蒸发器 三、按结构分类:浮头式换热器,固定管板式换热器,U形管板换热器,板式换热器等 此设计要求是将进料温度都为297.99K的MN(亚硝酸甲酯)和CO (一氧化碳)加热到出口温度为473K,因此我们经过调查研究,综合比较之后选择了管壳式(又称列管式) 换热器。管壳式换热器主要有壳体、管束、管板和封头等部分组成,壳体多呈圆形,内部装有平行管束或者螺旋管,管束两端固定于管板上。在管壳换热器内进行换热的两种流体,一种在管内流动,其行程称为管程;一种在管外流动,其行程称为壳程。管束的壁面即为传热面。 1.3换热器的用途 换热器又叫做热交换器(heat exchanger),是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。进行换热的

列管式换热器课程设计

化工原理课程设计说明书列管式换热器的选用和设计

目录 1 化工原理课程设计任务书 2 设计概述 3 换热器方案的确定 3.1 确定设计方案 3.2确定物性数据 3.3 计算总传热系数 4 计算换热面积 5 工艺结构尺寸 5.1 管径和管内流速 5.2 管程和传热管数 5.3 平均传热温差校正及壳程数 6传热管的排列和分程方法 7换热器核算 8 换热器的主要结构尺寸和计算结果表 9 设计评述 10 参考资料 11 主要符号说明 12 特别鸣谢

1化工原理课程设计任务书 欲用自来水将2.3万吨/年的异丁烯从300℃冷却至90℃,冷水进、出口温度分别为25℃和90℃。若要求换热器的管程和壳程压强降不大于100kpa,试选择合适型号的列管式换热器。假设管壁热阻和热损失可以忽略。 名称水异丁烯 密度 996 12 比热 4.08 130 导热系数 0.668 0.037 粘度 0.37×10^-3 13×10^-3 2.概述与设计方案简介 换热器的类型 列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。一种流体在关内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。管束的壁面即为传热面。 其主要优点是单位体积所具有的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,因此在高温、高压和大型装置上多采用列管式换热器。为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍流程度大为增加。列管式换热器中,由于两流体的温度不同,使管束和壳体的温度也不相同,因此它们的热膨胀程度也有差别。若两流体温差较大(50℃以上)时,就可能由于热应力而引起设备的变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。 2.1换热器 换热器是化工、石油、食品及其他许多工业部门的通用设备,在生产中占有重要地位。由于生产规模、物料的性质、传热的要求等各不相同,故换热器的类型也是多种多样。 按用途它可分为加热器、冷却器、冷凝器、蒸发器和再沸器等。根据冷、热流体热量交换的原理和方式可分为三大类:混合式、蓄热式、间壁式。 间壁式换热器又称表面式换热器或间接式换热器。在这类换热器中,冷、热流体被固体壁面隔开,互不接触,热量从热流体穿过壁面传给冷流体。该类换热器适用于冷、热流体不允许直接接触的场合。间壁式换热器的应用广泛,形式繁多。将在后面做重点介绍。

列管式换热器设计

第一章列管式换热器的设计 1.1概述 列管式换热器是一种较早发展起来的型式,设计资料和数据比较完善,目前在许多国家中已有系列化标准。列管式换热器在换热效率,紧凑性和金属消耗量等方面不及其他新型换热器,但是它具有结构牢固,适应性大,材料范围广泛等独特优点,因而在各种换热器的竞争发展中得以继续应用下去。目前仍是化工、石油和石油化工中换热器的主要类型,在高温高压和大型换热器中,仍占绝对优势。例如在炼油厂中作为加热或冷却用的换热器、蒸馏操作中蒸馏釜(或再沸器)和冷凝器、化工厂中蒸发设备的加热室等,大都采用列管式换热器[3]。 1.2列管换热器型式的选择 列管式换热器种类很多,目前广泛使用的按其温度差补偿结构来分,主要有以下几种:(1)固定管板式换热器:这类换热器的结构比较简单、紧凑,造价便宜,但管外不能机械清洗。此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。通常在管外装置一系列垂直于管束的挡板。同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。因此,当管壁与壳壁温度相差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以致管子扭弯或使管子从管板上松脱,甚至毁坏整个换热器。 为了克服温差应力必须有温度补偿装置,一般在管壁与壳壁温度相差50℃以上时,为安全起见,换热器应有温差补偿装置。 (2)浮头换热器:换热器的一块管板用法兰与外壳相连接,另一块管板不与外壳连接,以便管子受热或冷却时可以自由伸缩,但在这块管板上来连接有一个顶盖,称之为“浮头”,所以这种换热器叫做浮头式换热器。这种型式的优点为:管束可以拉出,以便清洗;管束的膨胀不受壳体的约束,因而当两种换热介质的温差大时,不会因管束与壳体的热膨胀量的不同而产生温差应力。其缺点为结构复杂,造价高。 (3)填料函式换热器:这类换热器管束一端可以自由膨胀,结构与比浮头式简单,造价也比浮头式低。但壳程内介质有外漏的可能,壳程终不应处理易挥发、易爆、易燃和有毒的介质。 (4)U型管换热器:这类换热器只有一个管板,管程至少为两程管束可以抽出清洗,

换热器温度控制系统设计

换热器温度控制系统设计 1、换热设备概述 换热器又称热交换器,是进行热量交换的设备的统称。换热器广泛应用于化工、石化、炼油、轻工、制药、食品加工、动力以及原子能等工业。换热器应用于存在温度差的流体间的热交换设备,换热器中至少有两种流体,温度较高则放出热量,反之则吸收热量。换热器依据传热原理和实现热交换的方法一般分为间壁式、混合式、蓄热式三类。其中间壁式换热器应用最广。它又可分为管式换热器、板式换热器、翅片式换热器、热管换热器等。其中以管式(包括蛇管式、套管式、管壳式等)换热器应用最普遍。列管式和板式,各有优点,列管式是一种传统的换热器,广泛应用于化工、石油、能源等设备;板式则以其高效、紧凑的特点大量应用于工业当中。 2、控制方案的确定 实验控制对象位列管式换热器,主要的扰动是冷物料的流量Q。换热器温度控制系统包括换热器、控制冷流体的离心泵,传感器等设备。实验采用温度流量串级控制,以冷物料出口温度为主对象,以冷物料流量Q为副对象。 换热器控制图

3、系统硬件设计 或控制量 型号 参数 温度变送器 (Endress+Hauser ) TR13 热保护套管末端类型 直管型 工作温度范围 PT100 (薄膜式(TF) 50 °C...500 °C (58 °F...932 °F) PT100 (绕线式(WW)): -200 °C...600 °C (-328 °F...1,112 °F) PT100 (薄膜式(TF)): -50 °C...400 °C (58 °F...752 °F) 最大过程压力(静压) 20 °C 时:50 bar (725 psi) 流量变送器 (Endress+Hauser )73W 涡街 流量计 73W 参数: 标称口径 DN 15 (150) (1/2"…6") 测量范围 气体: 4…5 210 m3/h 过程温度 -200...+400°C (-328...+752°F) 最高可达 +450°C / 842°F (特殊选型) 输出信号 4…20 mA 电流输出 防爆认证 ATEX 、FM 、CSA 、TIIS 、NEPSI 、IEC 防护等级 IP 67 (NEMA 4x) X 主调节器 副调节器 换热器热水出口温 主回路干 给定值+ - 换热器热水出口温度和冷水流量串级控制框图 X - 调节阀 涡街流量 流量 换热器热水出口温 变频器干扰 水泵

列管式换热器设计(水蒸气加热水)要点

食品工程原理课程设计 设计题目:列管式换热器的设计 班级:食品卓越111班 设计者:张萌 学号:5603110006 设计时间:2013年5月13日~5月17日指导老师:刘蓉

目录 概述 1.1.换热器设计任务书 ......................................................................... - 7 - 1.2换热器的结构形式 ....................................................................... - 10 - 2.蛇管式换热器 ................................................................................. - 11 - 3.套管式换热器 ................................................................................. - 11 - 1.3换热器材质的选择 ....................................................................... - 11 - 1.4管板式换热器的优点 ................................................................... - 13 - 1.5列管式换热器的结构 ................................................................... - 14 - 1.6管板式换热器的类型及工作原理 ............................................... - 16 - 1.7确定设计方案 ............................................................................... - 17 - 2.1设计参数........................................................................................ - 18 - 2.2计算总传热系数 ........................................................................... - 19 - 2.3工艺结构尺寸 ............................................................................... - 20 - 2.4换热器核算.................................................................................... - 21 - 2.4.1.换热器内流体的流动阻力 (21) 2.4.2.热流量核算 (22)

相关文档
最新文档