河北省衡水中学2021届高三上学期期中考试含答案
河北省衡水中学2021届上学期期中考试高三数学(含答案)
C. f(x) 在区间 − π4 ,π4 上的最大值与最小值的和为 21
D.将 f(x) 图象上所有点的横坐标伸长为原来的 2 倍(纵坐标不变),再向左平移 π6 个单位得到 y =
g(x) 的图象,则 g(x) =− cosx
第Ⅱ卷(非选择题 共 90 分)
三、填空题:本题共 4 小题,每小题 5 分,共 20 分。
<
4 3
.
甲同学记得缺少的条件是首项 a1 的值,乙同学记得缺少的条件是公比 q 的值,并且他俩都记得第(1)
问的答案是 S1,S3,S2 成等差数列.
如果甲、乙两名同学记得的答案是正确的,请通过推理把条件补充完整并解答此题.
22.(12 分)
定义可导函数
y
=
f(x)
在
x
处的弹性函数为
f'(x)
⋅
x f(x)
,其中
f'(x)
为
f(x)
的导函数.
在区间
D
上,若函数 f(x) 的弹性函数值大于 1,则称 f(x) 在区间 D 上具有弹性,相应的区间 D 也称作 f(x) 的弹性
区间. (1)若 r(x) = ex − x + 1,求 r(x) 的弹性函数及弹性函数的零点; (2)对于函数 f(x) = (x − 1)ex + lnx − tx (其中 e 为自然对数的底数).
f(x) 的顶点坐标为(1,0). 由 f(x) = x2 − ax + b =
x
−
a 2
2
+
b
−
a2 4
,
得
解得
4.C【解析】设公差为 d,由题意知
解得
衡水市衡水中学2021届高三物理上学期期中试题含解析
B。 小球B的运动轨迹是一段圆弧
C。 细线上的张力一直减小
D. 细线上的张力可能先变小后变大
【答案】BC
【解析】
【详解】AB.设小球B受到的重力为mg,A、B两球的带电量分别为q1、q2,两球间的距离为r,定滑轮距离A球为h,距离B球为d,对B球受力分析如图
根据相似三角形可知
MgH+mgh=
解得
v=5 m/s
故C正确,D错误。
故选BC.
9。 一个质量为0。5 kg的小钢球竖直下落,落地时速度大小为1m/s,与地面作用0.1s后以等大的动量被反弹.小钢球在与地面碰撞的过程中,下列说法中正确的是( )
A。 小钢球重力的冲量是0。1 kg·m/s
B。 若选向上为正方向,则小钢球的动量变化是1 kg·m/s
12。 如图甲所示,长木板B放在光滑的水平面上,质量为m=4kg的小物块A可视为质点,以水平速度v0=3m/s滑上原来静止的长木板B的上表面,由于A、B间存在摩擦,导致A、B的速度随时间变化情况如图乙所示,取g=10m/s2,则下列说法正确的是
A。A、B之间的滑动摩擦因数为0.1
B. 物块A克服摩擦力做功为16J
C。 若选向上为正方向,则小钢球受到的合力冲量是-1 N·s
D。 若选向上为正方向,则小钢球的受到的合力为5N
【答案】B
【解析】
A、根据冲量定义可知: ,故A错;
B、若选向上为正方向,则小钢球的动量变化量为 ,故B对;
C、根据动量定理,合力冲量等于动量的变化量,所以若选向上为正方向,则小钢球受到的合力冲量是 ,故C错;
丙轨道在小球通过1/4圆以后小球要想到达P点,在P点要有动能,根据机械能守恒,小球到不了P点,故丙轨道不可能;
2021届河北省衡水中学高三上学期期中数学(理)试题(解析版)
2021届河北省衡水中学高三上学期期中数学(理)试题一、单选题1.集合{}2210M x x x =--<,{}20N x x a =+>,U =R ,若UM N =∅,则a 的取值范围是( ) A .1a > B .1a ≥ C .1a < D .1a ≤【答案】B【分析】求出集合M ,N 的等价条件,结合条件UM N =∅,建立不等式关系进行求解即可.【详解】由题得1{|1},C {|}222U a a M x x N x x N x x ⎧⎫=-<<=>-∴=≤-⎨⎬⎩⎭,, 因为U M N =∅,所以1,122a a -≤-∴≥. 故选:B.【点睛】本题主要考查集合的基本运算,求出集合的等价条件是解决本题的关键.2.若直线y kx =与双曲线22194x y-=相交,则k 的取值范围是( )A .20,3⎛⎫⎪⎝⎭B .2,03⎛⎫- ⎪⎝⎭C .22,33⎛⎫- ⎪⎝⎭D .22,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭【答案】C【分析】联立直线和双曲线的方程得到2236049x k =>-,即得k 的取值范围.【详解】联立直线和双曲线的方程得222224936,49)36,x k x k x -=∴-=( 当2490-=k ,即23k =±时,直线和双曲线的渐近线重合, 所以直线与双曲线没有公共点. 当2490k -≠,即23k ≠±时,2236049x k =>-, 解之得2233k -<<. 故选:C.【点睛】本题主要考查直线和双曲线的位置关系,意在考查学生对这些知识的掌握水平和分析推理能力.3.在ABC 中,3AB =,2AC =,12BD BC =,则AD BD ⋅=( ) A .52-B .52C .54-D .54【答案】C【分析】用,AB AC 表示出,AD BD ,利用数量积定义,即可容易求得结果. 【详解】如图所示,∵1()2BD AC AB =-, ∴1()2AD AC AB =+,∴AD BD ⋅=()2211()()2344AC AB AC AB -⋅+=-=﹣54. 故选:C .【点睛】本题考查利用数量积定义求数量积,属简单题.4.已知数列{}n a 的前n 项和为2n S n n =-,正项等比数列{}n b 中,23b a = ,()23142,n n n b b b n n N +-+=≥∈,则2log n b =( )A .1n -B .21n -C .2n -D .n【答案】D【分析】数列{a n }的前n 项和S n =n 2﹣n ,a 1=S 1=0,n ≥2时,a n =S n ﹣S n ﹣1,可得a n .设正项等比数列{b n }的公比为q >0,b 2=a 3=4.b n +3b n ﹣1=4b n 2(n ≥2,n ∈N +),化为q 2=4,解得q ,可得b n .【详解】数列{a n }的前n 项和S n =n 2﹣n ,∴a 1=S 1=0,n ≥2时,a n =S n ﹣S n ﹣1=2n ﹣2,n=1时也成立. ∴a n =2n ﹣2.设正项等比数列{b n }的公比为q >0,b 2=a 3=4. b n +3b n ﹣1=4b n 2(n ≥2,n ∈N +),∴2211n n b qb q +-⋅=4121()n b q -,化为q 2=4,解得q=2.∴b 1×2=4,解得b 1=2. ∴b n =2n . 则log 2b n =n . 故答案为:D【点睛】(1)本题主要考查数列通项的求法,考查等比数列通项的求法,意在考查学生对这些知识的掌握水平和分析推理计算能力.(2) 若在已知数列中存在:()()n n n S f a S f n ==或的关系,可以利用项和公式11(1)(2)n nn S n a S S n -=⎧=⎨-≥⎩,求数列的通项.5.已知直线10ax y +-=与圆()()22:11C x y a -++=相交于A ,B ,且ABC 为等腰直角三角形,则实数a 的值为( ) A .17或1- B .1- C .1 D .1或1-【答案】D【分析】由三角形ABC 为等腰直角三角形,得到圆心C 到直线的距离d=rsin45°,利用点到直线的距离公式列出方程,求出方程的解即可得到a 的值. 【详解】∵由题意得到△ABC 为等腰直角三角形,∴圆心C (1,﹣a )到直线ax +y ﹣1=0的距离d=rsin45°2, 整理得:1+a 2=2,即a 2=1, 解得:a=﹣1或1, 故答案为D【点睛】此题考查了直角与圆的位置关系,涉及的知识有:点到直线的距离公式,圆的标准方程,等腰直角三角形的性质,以及锐角三角函数定义,熟练掌握公式及性质是解本题的关键.6.在ABC 中,,,a b c 分别是角,,A B C 的对边,若2222014a b c +=,则()2tan tan tan tan tan A BC A B ⋅+的值为( )A .2013B .1C .0D .2014【答案】A【分析】由a 2+b 2=2014c 2,利用余弦定理可得a 2+b 2﹣c 2=2013c 2=2abcosC .利用三角函数基本关系式和两角和的正弦公式、正弦定理可得()2tanA tanB tanC tanA tanB ⋅+=2sinA sinBcosA cosBsinC sinA sinB cosC cosA cosB ⋅⎛⎫+ ⎪⎝⎭=()2sinAsinBcosC sinCsin A B +=22abcosC c 即可得出.【详解】∵a 2+b 2=2014c 2, ∴a 2+b 2﹣c 2=2013c 2=2abcosC .∴()2tanA tanB tanC tanA tanB ⋅+=2sinA sinBcosA cosBsinC sinA sinB cosC cosA cosB ⋅⎛⎫+ ⎪⎝⎭=()2sinAsinBcosC sinCsin A B +=22abcosC c =2013. 故答案为:A【点睛】本题考查了三角函数基本关系式和两角和的正弦公式、正弦定理、余弦定理等基础知识与基 本技能方法,属于难题.7.已知点()(),0M a b ab ≠是圆222:C x y r +=内一点,直线l 是以M 为中点的弦所在的直线,直线m 的方程为2bx ay r -=,那么( )A .l m ⊥且m 与圆C 相切B .l m 且m 与圆C 相切 C .l m ⊥且m 与圆C 相离D .l m 且m 与圆C 相离【答案】C【分析】求圆心到直线的距离,然后与a 2+b 2<r 2比较,可以判断直线与圆的位置关系,易得两直线的关系.【详解】以点M 为中点的弦所在的直线的斜率是﹣a b ,直线m 的斜率为ba,∴直线l ⊥m ,∵点M (a ,b )是圆x 2+y 2=r 2内一点,∴a 2+b 2<r 2, ∴圆心到bx ﹣ay=r 22r ,故相离.故答案为:C【点睛】本题主要考查直线的位置关系,考查直线和圆的位置关系,意在考查学生对这些知识的掌握水平和分析推理能力.8.若圆22210x y ax y +-++=和圆221x y +=关于直线1y x =-对称,过点(),C a a -的圆P 与y 轴相切,则圆心P 的轨迹方程是( )A .24480y x y -++=B .22220y x y +-+=C .24480y x y +-+=D .2210y x y --+=【答案】C【分析】求出两个圆的圆心坐标,两个半径,利用两个圆关于直线的对称知识,求出a 的值,然后求出过点C (﹣a ,a )的圆P 与y 轴相切,就是圆心到C 的距离等于圆心到y 轴的距离,即可求出圆心P 的轨迹方程.【详解】圆x 2+y 2﹣ax +2y +1=0的圆心(12a-,),因为圆x 2+y 2﹣ax +2y +1=0与圆x 2+y 2=1关于直线y=x ﹣1对称,设圆心(12a -,)和(0,0)的中点为(142a -,), 所以(142a -,)满足直线y=x ﹣1方程,解得a=2, 过点C (﹣2,2)的圆P 与y 轴相切,圆心P 的坐标为(x ,y )x = 解得:y 2+4x ﹣4y +8=0,所以圆心P 的轨迹方程是y 2+4x ﹣4y +8=0, 故答案为:C【点睛】(1)本题主要考查圆关于直线的对称问题,考查动点的轨迹方程的求法,意在考查学生对这些知识的掌握水平和分析推理计算能力.(2) 求轨迹方程的四种主要方法 : ①待定系数法:通过对已知条件的分析,发现动点满足某个曲线(圆、圆锥曲线)的定义,然后设出曲线的方程,求出其中的待定系数,从而得到动点的轨迹方程.②代入法:如果点M 的运动是由于点P 的运动引起的,可以先用点M 的坐标表示点P 的坐标,然后代入点P 满足的方程,即得动点M 的轨迹方程.③直接法:直接把已知的方程和条件化简即得动点的轨迹方程.④参数法:动点(,)M x y 的运动主要是由于某个参数ϕ的变化引起的,可以选参、设参,然后用这个参数表示动点的坐标,即()()x f y g ϕϕ=⎧⎨=⎩,再消参.9.平行四边形ABCD 中,2AB =,AD 1,?1AB AD =⋅=-,点M 在边CD 上,则MA MB ⋅的最大值为( )A 1B 1C .0D .2【答案】D【分析】根据向量的数量积的运算,求出A=120°,再建立坐标系,得到MA •MB =x (x ﹣2)+34=x 2﹣ 2x +34=(x ﹣1)2﹣14,设f (x )=(x ﹣1)2﹣14,利用函数的单调性求出函数的最值,问题得 以解决.【详解】∵平行四边形ABCD 中,AB=2,AD=1,AB •AD =﹣1,点M 在边CD 上,∴|AB |•|AD |•cos ∠A=﹣1, ∴cosA=﹣12,∴A=120°, 以A 为原点,以AB 所在的直线为x 轴,以AB 的垂线为y 轴,建立如图所示的坐标系,∴A (0,0),B (2,0),D (﹣12设M (x ,则﹣12≤x ≤32,∴MA =(﹣x MB =(2﹣x ∴MA •MB =x (x ﹣2)+34=x 2﹣2x +34=(x ﹣1)2﹣14, 设f (x )=(x ﹣1)2﹣14,则f (x )在[﹣12,1)上单调递减,在[1,32]上单调递增,∴f (x )min =f (1)=﹣14,f (x )max =f (﹣12)=2, 则MA •MB 的最大值是2, 故答案为:D【点睛】本题考查了向量的数量积定义和向量数量积的坐标表示和函数的最值问题,关键是建立坐标系,属于中档题.10.已知椭圆()222210x y a b a b+=>>上一点A 关于原点的对称点为点B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且,64ππα⎡⎤∈⎢⎥⎣⎦,则该椭圆的离心率e 的取值范围是( )A .2⎤⎥⎣⎦B .231⎤⎥⎣⎦ C .23⎣⎦ D .36⎣⎦【答案】B【分析】设椭圆()222210x y a b a b+=>>的左焦点为:1F ,根据AF BF ⊥,得到四边形为1AF BF 为矩形,再由ABF α∠=,结合椭圆的定义得到22sin 2cos a c c αα=+,然后由1sin cos c e a αα==+求解. 【详解】设椭圆()222210x y a b a b+=>>的左焦点为:1F ,因为AF BF ⊥,所以四边形为1AF BF 为矩形, 所以12AB FF c == 因为ABF α∠=,所以2sin ,2cos ,AF c BF c αα==由椭圆的定义得:22sin 2cos a c c αα=+,所以11sin cos 24c e a πααα===+⎛⎫+ ⎪⎝⎭,因为,64ππα⎡⎤∈⎢⎥⎣⎦, 所以5,4122πππα⎡⎤+∈⎢⎥⎣⎦,所以sin 4πα⎤⎛⎫+∈⎥ ⎪⎝⎭⎣⎦,142πα⎡⎛⎫+∈⎢⎪⎝⎭⎣,所以12e ⎤∈⎥⎣⎦,故选:B【点睛】方法点睛:椭圆定义的应用主要有两个方面:一是确认平面内与两定点有关的轨迹是否为椭圆;二是当P 在椭圆上时,与椭圆的两焦点F 1,F 2组成的三角形通常称为“焦点三角形”,利用定义可求其周长;利用定义和余弦定理可求|PF 1|·|PF 2|;通过整体代入可求其面积等.11.已知点A 是抛物线24x y =的对称轴与准线的交点,点B 为抛物线的焦点,P 在抛物线上且满足PA m PB =,当m 取最大值时,点P 恰好在以A 、B 为焦点的双曲线上,则双曲线的离心率为A .12B 1C D 1【答案】B【分析】根据题目可知,过P 作准线的垂线,垂足为N ,则由抛物线的定义,结合PA m PB =,可得1PN PAm=,设PA 的倾斜角为α,当m 取得最大值时,sin α最小,此时直线PA 与抛物线相切,即可求出的P 的坐标,再利用双曲线的定义,即可求得双曲线得离心率.【详解】由题意知,由对称性不妨设P 点在y 轴的右侧,过P 作准线的垂线,垂足为N ,则根据则抛物线的定义,可得PN PB =,PA m PB =1PN PAm∴=设PA 的倾斜角为α,当m 取得最大值时,sin α最小,此时直线PA 与抛物线相切,设直线PA 的方程为1y kx =-,与24x y =联立,得2440x kx -+=, 令216160k ∆=-=,解得1k =± 可得(2,1)P , 又此时点P 恰好在以A 、B 为焦点的双曲线上∴双曲线的实轴21)a PA PB =-=1,1a c ∴==1e ∴=故答案选B .【点睛】本题主要考查了双曲线与抛物线的性质的应用,在解决圆锥曲线相关问题时常用到方程思想以及数形结合思想.12.已知在R 上的函数()f x 满足如下条件:①函数()f x 的图象关于y 轴对称;②对于任意R x ∈,()()220f x f x +--=;③当[]0,2x ∈时,()f x x =;④函数()()()12n n f x f x -=⋅,*n N ∈,若过点()1,0-的直线l 与函数()()4f x 的图象在[]0,2x ∈上恰有8个交点,在直线l 斜率k 的取值范围是( ) A .80,11⎛⎫ ⎪⎝⎭B .110,8⎛⎫⎪⎝⎭C .80,19⎛⎫ ⎪⎝⎭D .190,8⎛⎫ ⎪⎝⎭【答案】A【分析】先由条件①②,得到函数()f x 是周期为4的周期函数;根据③求出函数()f x 在一个周期[]22-,上的表达式为(),02,20x x f x x x ≤≤⎧=⎨--≤<⎩,根据④得到()()4f x 的周期为12,其图象可由()f x 的图象压缩为原来的18得到,作出()()4f x 的图象,结合图象,即可求出结果.【详解】因为函数()f x 是偶函数,由()()220f x f x +--=得()()()222f x f x f x +=-=-,即()()4f x f x +=,所以函数()f x 是周期为4的周期函数; 若[]2,0x ∈-,则[]0,2x ∈;因为当[]0,2x ∈时,()f x x =, 所以[]0,2x -∈时,()f x x -=-,因为函数()f x 是偶函数,所以()()f x x f x -=-=, 即()f x x =-,[]2,0x ∈-,则函数()f x 在一个周期[]22-,上的表达式为(),02,20x x f x x x ≤≤⎧=⎨--≤<⎩,因为()()()12n n f x f x -=⋅,*n N ∈,所以函数()()()48f x f x =,*n N ∈,故()()4f x 的周期为12,其图象可由()f x 的图象压缩为原来的18得到,作出()()4f x 的图象如图:易知过()1,0M -的直线l 斜率存在,设过点()1,0-的直线l 的方程为()1y k x =+, 则要使直线l 与()()4f x 的图象在[]0,2x ∈上恰有8个交点,则0MA k k <<,因为7,24A ⎛⎫⎪⎝⎭,所以20871114MA k -==+,故8011k <<. 故选:A.【点睛】关键点点睛:求解本题的关键在于,根据条件,由函数基本性质,得到()()4f x 的图象,再由函数交点个数,利用数形结合的方法,即可求解.二、填空题13.在ABC 中,,,a b c 分别是角,,A B C 的对边,已知1sin 262A π⎛⎫+= ⎪⎝⎭,1b =,ABC sin sin b c B C ++的值为_______________.【答案】2【分析】根据1262sin A π⎛⎫+= ⎪⎝⎭解出A=3π,利用三角形的面积公式算出c=2.根据余弦定理a 2=b 2+c 2﹣2bccosA 的式子算出 【详解】∵1262sin A π⎛⎫+= ⎪⎝⎭,A ∈(0,π) ∴2A +6π=56π,可得A =3π∵b=1,△ABC∴S =12112c sinA ⨯⨯⨯=,解之得c =2 由余弦定理,得a 2=b 2+c 2﹣2bc cosA=1+4﹣2×123cos π⨯=3∴a根据正弦定理,得b c sinB sinC ++=asinA 3sin故答案为2【点睛】本题着重考查了特殊角的三角函数值、三角形的面积公式、正余弦定理解三角形等知识,属 于中档题.14.已知平面上有四点,,,O A B C ,向量OA ,OB ,OC 满足:0OA OB OC ++=,1OA OB OB OC OC OA ⋅=⋅=⋅=-,则ABC 的周长是_______________.【答案】【分析】先判断三角形为正三角形,再根据正弦定理,问题得以解决. 【详解】平面上有四点O ,A ,B ,C ,满足OA +OB +OC =0, ∴O 是△ABC 的重心,∵OA •OB =OB •OC ,∴OB •(OA ﹣OC )=OB •CA =0, 即:OB ⊥CA ,同理可得:OC ⊥BA ,OA ⊥BC , 即O 是垂心, 故△ABC 是正三角形,∵OA •OB =OB •OC =OC •OA =﹣1, 令外接圆半径R ,则:R 2cos (∠AOB )=R 2cos (23π)=﹣1 即:R即:a sinA =3a sinπ, 即:a, 故周长:3a=, 故答案为:【点睛】本题考查了平面向量的有关知识以及正弦定理解三角形等有关知识,属于中档题.15.已知1F 、2F 是椭圆和双曲线的公共焦点,P 是他们的一个公共点,且123F PF π∠=,则椭圆和双曲线的离心率的倒数之和的最大值为___.【分析】设|PF 1|=r 1,|PF 2|=r 2,|F 1F 2|=2c ,椭圆和双曲线的离心率分别为e 1,e 2, 由余弦定理可得4c 2=(r 1)2+(r 2)2﹣2r 1r 2cos 3π,①在椭圆中,①化简为即4c 2=4a 2﹣3r 1r 2…②,在双曲线中,化简为即4c 2=4a 12+r 1r 2…③,2212134e e +=所以,再利用柯西不等式求椭圆和双曲线的离心率的倒数之和的最大值.【详解】设椭圆的长半轴为a ,双曲线的实半轴为a 1,(a >a 1),半焦距为c , 由椭圆和双曲线的定义可知, 设|PF 1|=r 1,|PF 2|=r 2,|F 1F 2|=2c , 椭圆和双曲线的离心率分别为e 1,e 2, ∵∠F 1PF 2=3π,则∴由余弦定理可得4c 2=(r 1)2+(r 2)2﹣2r 1r 2cos 3π,① 在椭圆中,①化简为即4c 2=4a 2﹣3r 1r 2…②, 在双曲线中,①化简为即4c 2=4a 12+r 1r 2…③,2212134e e +=所以, 由柯西不等式得(1+13)(221213e e +)≥(121e e +)212113e e +≤所以【点睛】本题主要考查椭圆和双曲线的定义和性质,利用余弦定理和柯西不等式是解决本题的关 键.属于难题.16.已知数列{}n a 的前n 项和122n n n S a +=-,若不等式223(5)n n n a λ--<-,对n N +∀∈恒成立,则整数λ的最大值为______.【答案】4【详解】当1n =时,21122S a =-,得14a =,当2n ≥时,122nn n S a -=-, 又122n n n S a +=-,两式相减得1222nn n n a a a -=--,得122nn n a a -=+,所以11122n n nn a a ---=. 又1122a =,所以数列2n n a ⎧⎫⎨⎬⎩⎭是以2为首项,1为公差的等差数列, 12nn a n =+,即(1)2n n a n =+⋅.因为0n a >,所以不等式223(5)n n n a λ--<-,等价于2352nn λ-->. 记122311,,224n nn b b b -==-=, 2n ≥时,112121223462n n nnn b n n b n ++--==--. 所以3n ≥时,11,n nb b +< 综上,max 33()8n b b ==,所以33375,5888λλ-><-=,所以整数λ的最大值为4. 【解析】1.数列的通项公式;2.解不等式.三、解答题17.在ABC 中,角,,A B C 的对边分别是,,a b c ,已知向量33cos,sin 22A A m ⎛⎫= ⎪⎝⎭,cos ,sin 22A A n ⎛⎫= ⎪⎝⎭,且满足3m n +=.(1)求角A 的大小;(2)若3b c a +=,试判断ABC 的形状. 【答案】(1)(2)直角三角形【分析】(1)直接化简3m n +=得1cos 2A =,60A =︒.(2)联立222122b c a bc --=①,3b c a +=②,化简得2b c =或2c b =,当b=2c 时,可以推理得到ABC 为直角三角形,同理,若2c b =,则ABC 也为直角三角形. 【详解】(1)∵()()2223m n m n ++⋅=,代入33cos,sin 22A A m ⎛⎫= ⎪⎝⎭,cos ,sin 22A A n ⎛⎫= ⎪⎝⎭,有33112cos cos sin sin 32222A A A A ⎛⎫+++= ⎪⎝⎭,∴331coscos sin sin 22222A A A A ⎛⎫+= ⎪⎝⎭,即31cos 222A A ⎛⎫-= ⎪⎝⎭,∴1cos 2A =,60A =︒.(2)∵1cos 2A =,∴222122b c a bc +-=①又∵b c +=②联立①②有,222bc b c =+-,即222520b bc c --=,解得2b c =或2c b =,又∵b c +=,若2b c =,则a =,∴)2222224a c c c b +=+==,ABC 为直角三角形,同理,若2c b =,则ABC 也为直角三角形.【点睛】(1)本题主要考查三角恒等变换,考查余弦定理解三角形,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解题的关键是推理得到2b c =或2c b =. 18.已知圆C 经过原点()0,0O 且与直线28y x =-相切于点()4,0P (Ⅰ)求圆C 的方程;(Ⅱ)在圆C 上是否存在两点,M N 关于直线1y kx =-对称,且以线段MN 为直径的圆经过原点?若存在,写出直线MN 的方程;若不存在,请说明理由 【答案】(Ⅰ)()()22215x y -+-=. (Ⅱ)见解析.【分析】(Ⅰ)由已知得圆心经过点P (4,0)、且与y=2x ﹣8垂直的直线122y x =-+上,它又在线段OP 的中垂线x=2上,求得圆心C (2,1)C 的方程.(Ⅱ)假设存在两点M ,N 关于直线y=kx ﹣1对称,则y=kx ﹣1通过圆心C (2,1),求得k=1,设直线MN 为y=﹣x+b ,代入圆的方程,利用韦达定理及 OM •ON =0,求得b 的值,可得结论.【详解】(Ⅰ)法一:由已知,得圆心在经过点()4,0P 且与28y x =-垂直的直线122y x =-+上,它又在线段OP 的中垂线2x =上,所以求得圆心()2,1C ,半径为所以圆C 的方程为()()22215x y -+-=. (细则:法一中圆心3分,半径1分,方程2分)法二:设圆C 的方程为()()22200x x y y r -+-=,可得()222000022200,1,424x y r y x x y r r ⎧⎪+=⎪⎪⎪=-⎨-⎪⎪⎛⎫⎪-+== ⎪⎪⎝⎭⎩解得002,1,x y r ⎧=⎪=⎨⎪=⎩,所以圆C 的方程为()()22215x y -+-= (细则:方程组中一个方程1分)(Ⅱ)假设存在两点,M N 关于直线1y kx =-对称,则1y kx =-通过圆心()2,1C ,求得1k =,所以设直线MN 为y x b =-+代入圆的方程得()2222220x b x b b -++-=,设()11,M x x b -+,()22,N x x b -+,则()221212230OM ON x x b x x b b b ⋅=-++=-=解得0b =或3b =这时0∆>,符合题意,所以存在直线MN 为y x =-或3y x =-+符合条件 (细则:未判断0∆>的扣1分).【点睛】本题主要考查了圆锥曲线的综合应用问题,其中解答中涉及到圆的标准方程及其简单的几何性质的应用,直线与圆的位置关系的应用,向量的坐标运算等知识点的考查,着重考查了学生分析问题和解答问题的能力,本题的解答中把直线的方程和椭圆方程联立,转化为方程的根与系数的关系、韦达定理的应用是解答问题的关键19.各项均为正数的数列{}n a 中,11a =,n S 是数列{}n a 的前n 项和,对任意*n N ∈,有()222n n n S pa pa p p R =+-∈.(1)求常数p 的值;(2)求数列{}n a 的通项公式;(3)记423nn n S b n =⋅+,求数列{}n b 的前n 项和n T . 【答案】(1)1p =(2)12n n a +=(3) ()1122n n T n +=-⋅+ 【分析】(1)令()222n n n S pa pa p p R =+-∈中n=1即得p 的值.(2)利用项和公式求数列{}n a 的通项公式.(3)先求出4223nn n n S b n n =⋅=⋅+,再利用错位相减法求数列{}n b 的前n 项和n T .【详解】解:(1)由11a =及()2*22n n n S pa pa p n N =+-∈,得:22p p p =+-,∴1p =.(2)由2221n n n S a a =+-①,得2111221n n n S a a +++=+-②由②-①,得()()2211122n n n n n a a a a a +++=-+-,即:()()()11120n n n n n n a a a a a a ++++--+=, ∴()()112210n n n n a a a a +++--=,由于数列{}n a 各项均为正数,∴1221n n a a +-=,即112n n a a +-=, ∴数列{}n a 是首项为1,公差为12的等差数列, ∴数列{}n a 的通项公式是()111122n n a n +=+-⨯=.(3)由12n n a +=,得:()34n n n S +=,∴4223n n n n S b n n =⋅=⋅+, ∴231222322nn T n =⨯+⨯+⨯+⋯+⋅()23121222122n n n T n n +=⨯+⨯+⋯+-⨯+⨯,()()2311121222222212212n n n n n n T n n n +++--=+++⋯+-⋅=-⨯=--⋅--()1122n n T n +=-⋅+.【点睛】(1)本题主要考查项和公式求数列的通项,考查等差数列的通项和求和公式,考查错位相减法求和,意在考查学生对这些知识的掌握水平和分析推理计算能力.(2) 数列{}·n n b c ,其中{}n b 是等差数列,{}n c 是等比数列,则采用错位相减法.20.已知椭圆()2222 :?10x y C a b a b +=>>的离心率2e =,原点到过点(),0A a ,()0,B b -.(1)求椭圆C 的方程; (2)如果直线()10y kx k =+≠交椭圆C 于不同的两点E ,F ,且E ,F 都在以B为圆心的圆上,求k 的值.【答案】(1)221164x y +=;(2)4k =±【分析】(1)由离心率e =2a b =,再求出直线1:B x a A y b -=,从而得5d ==,解方程组可求出,a b 的值,进而可得椭圆C 的方程; (2)设()22,E x y ,()33,F x y ,EF 的中点是(),M M M x y ,再将直线()10y kx k =+≠与椭圆方程联立成方程组,消元后利用根与系数的关系可得2234214M x x k x k +-==+,21114M My kx k =+=+,再由E ,F 都在以B 为圆心的圆上,可得20M M x ky k ++=,从而可求出k 的值 【详解】解:(1)因为c a =222a c b -=,所以2a b =. 因为原点到直线1:B x a A y b -=的距离d ==,解得4a =,2b =.故所求椭圆C 的方程为221164x y +=.(2)由题意2211164y kx x y =+⎧⎪⎨+=⎪⎩消去y ,整理得()22148120k x kx ++-=.可知0∆>.设()22,E x y ,()33,F x y ,EF 的中点是(),M M M x y ,则2234214M x x kx k +-==+,21114M M y kx k=+=+, 因为E ,F 都在以B 为圆心的圆上,且()0,2B -,所以21M My k x +⋅=-, 所以20M M x ky k ++=.即224201414k kk k k-++=++. 又因为0k ≠,所以218k =.所以4k =±【点睛】关键点点睛:此题考查椭圆方程的求法,考查直线与椭圆的位置关系,解题的关键是将EF 的中点(),M M M x y 坐标用含k 的式子表示,再由E ,F 都在以B 为圆心的圆上,得20M M x ky k ++=,将点M 的坐标代入可求出k 的值,考查计算能力,属于中档题21.已知定点()0,1F ,定直线:1l y =-,动圆M 过点F ,且与直线l 相切. (1)求动圆M 的圆心轨迹C 的方程;(2)过点F 的直线与曲线C 相交于,A B 两点,分别过点,A B 作曲线C 的切线12,l l ,两条切线相交于点P ,求PAB ∆外接圆面积的最小值.【答案】(Ⅰ)24x y =;(Ⅱ)当0k =时线段AB 最短,最短长度为4,此时圆的面积最小,最小面积为4π.【解析】试题分析:(Ⅰ)设(),M x y=1y +化简即可得结论;(Ⅱ)由题意PAB △的外接圆直径是线段AB ,设AB l :1y kx =+,与 24x y =联立得2440x kx --=,从而得()241AB k =+,0k =时线段AB 最短,最短长度为4,此时圆的面积最小,最小面积为4π.试题解析:(Ⅰ)设点M 到直线l 的距离为d ,依题意MF d =. 设(),M xy = 1y +.化简得24x y =.所以点M 的轨迹C 的方程为24x y =. (Ⅱ)设AB l :1y kx =+,代入24x y =中,得2440x kx --=. 设()11,A x y ,()22,B x y ,则124x x k +=,124x x ⋅=-.所以AB = ()21241x x k ⋅-=+.因为C :24x y =,即24x y =,所以2x y '=.所以直线1l 的斜率为112x k =,直线2l 的斜率为222xk =. 因为121214x x k k ==-, 所以PA PB ⊥,即PAB 为直角三角形.所以PAB 的外接圆的圆心为线段AB 的中点,线段AB 是直径. 因为()241AB k =+,所以当0k =时线段AB 最短,最短长度为4,此时圆的面积最小,最小面积为4π. 【方法点晴】本题主要考查直接法求轨迹方程、点到直线的距离公式及三角形面积公式,属于难题.求轨迹方程的常见方法有:①直接法,设出动点的坐标(),x y ,根据题意列出关于,x y 的等式即可;②定义法,根据题意动点符合已知曲线的定义,直接求出方程;③参数法,把,x y 分别用第三个变量表示,消去参数即可;④逆代法,将()()00x g x y h x =⎧⎪⎨=⎪⎩代入()00,0=f x y .本题(Ⅰ)就是利用方法①求圆心轨迹方程的. 22.设函数()21ln 2f x x ax bx =--. (1)当12a b ==时,求函数()f x 的最大值; (2)令()()212a F x f x ax bx x=+++,(03x <≤)其图象上任意一点()00,P x y 处切线的斜率12k恒成立,求实数a 的取值范围; (3)当0a =,1b =-,方程()22mf x x =有唯一实数解,求正数m 的值. 【答案】(1)34-;(2)12a ≥;(3)12m =. 【分析】(1)对函数求导,根据导数大于0或小于0,确定函数的单调区间,进而求出函数的最大值.(2)求出()(]ln ,0,3a F x x x x=+∈,根据()012'=≤k F x ,列不等式,分离参数可得200max12a x x ⎛⎫≥-+ ⎪⎝⎭,进而求出结果. (3)22ln 20x m x mx --=有唯一正实数解,构造函数()22ln 2g x x m x mx =--,对函数求导,确定函数的单调区间,进而求出函数的最小值为0,进而求出m 值.【详解】(1)依题意,知()f x 的定义城为()0,∞+, 当12a b ==时,()211ln 42f x x x x =--, ()()()21111222x x f x x x x-+-'=--=,令()0f x '=,解得1x =. 当01x <<时,()0f x '>,此时()f x 单调递增;当1x >时,()0f x '<,此时()f x 单调递减,所以()f x 的极大值为()314f =-,此即为最大值. (2)()(]ln ,0,3a F x x x x =+∈,则有()002012x a k F x x -'==≤,在(]00,3x ≤上恒成立, 所以200max12a x x ⎛⎫≥-+ ⎪⎝⎭,(]00,3x ∈. 当01x =时,22000111(1)+222-+=--x x x 取得最大值12,所以12a ≥. (3)因为方程()22mf x x =有唯一实数解,所以22ln 20x m x mx --=有唯一正实数解,设()22ln 2g x x m x mx =--,则()2222x mx m g x x --'=,令()0g x '=,20x mx m --=,因为0m >,0x >,所以10x =<(舍去),20x =>, 当()20,x x ∈时,()0g x '<,()g x 在()20,x 上单调递减;当()2,x x ∈+∞时,()0g x '>,()g x 在()2,x +∞上单调递增;故2x x =时,()20g x '=,()g x 取最小值()2g x因为()0g x =有唯一正实数解,所以()20g x =,则()()220,0,g x g x ⎧=⎪⎨='⎪⎩即22222222ln 20,0,x m x mx x mx m ⎧--=⎨--=⎩ 所以222ln +0-=m x mx m ,因为0m >,所以()222ln 10x x +-=*.设函数()2ln 1h x x x =+-,因为当0x >时,()h x 是增函数,所以()0h x =至多有一解,因为()10h =,所以方程()的解为21x =1=,解得12m =. 【点睛】本题考查了导数的综合应用,考查了运算求解能力和逻辑推理能力,属于难题.。
河北省衡水中学2021届高三上学期期中考试物理试题及参考答案
衡水中学高三上学期期中考试 物理试题参考答案 第1页 共10页
衡水中学高三上学期期中考试 物理试题参考答案 第2页 共10页
衡水中学高三上学期期中考试 物理试题参考答案 第3页 共10页
衡水中学高三上学期期中考试 物理试题参考答案 第4页 共10页
衡水中学高三上学期期中考试 物理试题参考答案 第5页 共10页
衡水中学高三上学期期中考试 物理试题参考答案 第6页 共10页
衡水中学高三上学期期中考试 物理试题参考答案 第7页 共10页
衡水中学高三上学期期中考试 物理试题参考答案 第8页 共10页
衡水中学高三上学期期中考试 物理试题参考答案 第9页 共10页
衡水中学高三上学期期中考试 物理试题参考答案 第10页 共10页。
河北省衡水中学2021届高三上学期期中考试 化学 Word版含答案
化学试卷时间:110分钟满分:100分可能用到的相对原子质量:H 1 C 12 N 14 O 16 Na 23 Mg 24 Al 27 Ca 40 Cl 35.5 Ba 137 Zn 65 Cu 64 Fe 56 As 75第I卷(选择题共50分)一、选择题(下列每小题所给选项只有一个选项符合题意,每小题1分,共10分)1.下列古诗词描述的场景中发生的化学反应不属于氧化还原反应的是2.化学与生产、生活密切相关,下列说法不正确的是A.垃圾分类中可回收物标志是B.水泥冶金厂常用高压电除去工厂烟尘,利用了胶体的性质C.金属冶炼是利用金属矿物中的金属离子失去电子变成金属单质所发生的氧化还原反应D.光导纤维的主要成分是SiO2,计算机芯片使用的材料是单质硅3.下列变化一定属于化学变化的是①金属导电②爆炸③二氧化氮经加压冷却凝成无色液体;④氯气使品红溶液褪色⑤无水硫酸铜由白变蓝⑥工业制O2⑦Na2CO3·10H2O风化⑧久置浓硝酸变黄⑨16O与18O间的相互转化⑩煤的干馏和石油的分馏A.②④⑦⑧⑨B.③④⑤⑦⑧C.①③⑥⑨⑩D.①②⑤⑥⑩4.如图所示,在同温同压下,分别用氯化氢和四种混合气体吹出体积相等的五个气球。
A、B、C、D四个气球中,与充有氯化氢的气球所含原子数一定相等的是5.古代中国常用如图所示装置来炼丹、熬烧酒、制花露水等。
南宋张世南《游宦纪闻》中记载了民间制取花露水的方法:“锡为小瓶,实花一重,香骨一重,常使花多于香。
窍甑之傍,以泄汗液,以器贮之。
”该装置利用的实验操作方法是A.升华B.过滤C.萃取D.蒸馏6.下列说法正确的是A.用四氯化碳萃取碘水中的碘单质,振荡过程中需进行放气操作B.用容量瓶配制溶液,定容时仰视刻度线,则所配溶液浓度偏高C.量简上标有“0”刻度、温度和规格D.用棕色的碱式滴定管准确量取10.00 mL溴水7.下列关于物质分类的说法正确的是①稀豆浆、硅酸、氯化铝溶液都属于胶体②氨水、次氯酸、醋酸都属于弱电解质③Na2O、MgO、Al2O3均属于碱性氧化物④明矾、冰水混合物、四氧化三铁都不是混合物⑤电解熔融的Al2O3、活性炭除去水中的颜色都属于化学变化⑥葡萄糖、油脂都不属于有机高分子A.①②B.②④C.③⑤D.④⑥8.下列陈述I、II均正确且有因果关系的是9.C、Si、S、N都是自然界中含量丰富的非金属元素,下列有关说法中正确的是A.四种元素在自然界中既有游离态又有化合态B.二氧化物都属于酸性氧化物,都能与碱反应而不能与任何酸反应C.最低价的气态氢化物都具有还原性,一定条件下都能与O2发生反应D.氮的氧化物相互转化都是氧化还原反应10.某学生以铁丝和Cl2为原料进行下列三个实验。
河北省衡水中学2021届高三第一学期中考试数学试卷(理科)
(5分)己知数列{。
〃}的前”项和Sn = ir - n,正项等比数列{》〃}中,》2 =々3,址3岛1 =牺“2 (”22)住N+,则 log2^=()(5分)已知直线 欢顷・1= 0与圆C : (x- I )2+ (对。
)2 = 1相交于H, 3两点,且△,招C为等腰直角三角形,则实数々的值为()6.(5分)在△纽C 中,川"别是角M 、C 的对边,若罚J 。
*,则号篇的值为()2020-2021学年河北省衡水中学高三(±)期中数学试卷(理科)一、选择题:本题共12个小题,每小题均只有一个正确选项,每小题5分,共60分。
1. (5 分)集合 M=(x|2x 2-x- KO}, N={x\2x+a>0}. U=R,若也^。
成=0,则〃的取 值范围是( ) A. a>lC. a<l 2.x 2 y 2(5分)若直线y=kx 与双曲线一一二=1相交,则吊勺取值范围是( ) 9 4 2 A. (0. |) 2 B ・0) 3. 2 2 C •(一如 3)2 2D. (一8, 一 亍)U (], +8) (5 分)在&4BC 中,且8 = 3, ,4C=2, BD = *BC,贝\\AD^BD 的值为( ) --I5 B.- 2 c-"I5D. 一44. A. 77-1B. 2〃 - 1C. 〃・2D. n5. A.-或一17B. - 1C. 1或・1D. 1A. 0B. 1C. 2013D. 20147.(5分)已知点M (a, b )(由商))是圆C : U+)2=,2内一点,直线/是以就为中点的弦所在的直线,直线〃?的方程为bx-ay=P,那么()A. /且,〃与圆C 相切B. l//m 且成与圆C 相切C. lA.ni 且“7与圆C 相离D. l//ni 且m 与圆C 相离8. (5 分)若圆 x 2+yr - ax+2_y+l = 0 与圆 x 2+yr=l 关于直线),=、-1 对称,过点 C ( -a, a )的圆F 与>轴相切,则圆心F 的轨迹方程为()A. y 2 - 4x+4>H-8=0B. y 2 - 2x - 2y+2 = 0C. )2+4* ・ 4)+8=0D. >,2 - 2x - v - 1 = 09. (5分)平行四边形.158 中,AB=2, .W=b AB^AD = -h 点Af 在边CD 上,则 MB 的最大值为()A. 2B. 2V2-1C. 5D. V3-1y 210. (5分)已知椭圆—+;-=l (^>^>0)上一点H 关于原点的对称点为点3, F 为其右a 2b 2焦点,若耽,设ZABF=a,且灰£,务,则该椭圆离心率e 的取值范围为()A.[手,y ]B.[孚,1)C.[孚,V3-1]D.序乎]11. (5分)己知点H 是抛物线jr=4y 的对称轴与准线的交点,点8为抛物线的焦点,F 在抛物线上且满足|B4|="i 『8|,当,〃取最大值时,点F 恰好在以.4, B 为焦点的双曲线上, 则双曲线的离心率为()12. (5分)己知定义在R 上的函数/(x )满足如下条件:①函数/(x )的图象关于y 轴对 称;倨TA. -------v f 2 + l B.2C. V2+1D. V5-1②对任意x£R,/(2+x) -/(2-x) =0:③当能[0, 2]时./(x) =x;④函数/ S (x) =r (2" l・x), 若过点(-1,0)的直线7与函数/.4)(X)的图象在[0,2]上恰有8个交点.则直线/斜率上的取值范围是()二、填空麟本题共4个小题,每小题5分.共20分。
河北衡水中学2021届高三化学上学期期中试题解析(含解析)
衡水中学2021—2021学年度第一学期期中考试高三年级化学试卷一、选择题(以下每题所给选项只有一个选项符合题意,每题1分,共10分。
)1.有四种晶体,其离子排列方式如以下图所示,其中化学式不属AB型的是()2.氮氧化铝(AlON)属原子晶体,是一种超强透明材料,以下描述错误的选项是()A.AlON和石英的化学键类型相同B.AlON和石英晶体类型相同C.AlON和(工业上通过电解法制备铝用的)Al2O3的化学键类型不同D.AlON和(工业上通过电解法制备铝用的)Al2O3晶体类型相同3.元素周期表中铋元素的数据见右图,以下说法正确的选项是()A.Bi元素的质量数是209 B.Bi元素的相对原子质量是209.0C.Bi原子6p亚层(能级)有一个未成对电子D.Bi原子最外层有5个能量相同的电子4.“低碳经济”是以低能耗、低污染、低排放为基础的可持续进展经济模式。
以下说法与“低碳经济”不符合的是...A.大力研发新型有机溶剂替代水作为萃取剂B.增强对煤、石油、天然气等综合利用的研究,提高燃料的利用率C.利用CO2合成聚碳酸酯类可降解塑料,实现“碳”的循环利用D.甲烷和乙醇的燃烧热别离是891.0 kJ·mol-1、1366.8 kJ·mol-1,利用甲烷更“低碳”五、在中学化学实验中利用的玻璃、陶瓷等仪器,在实验操作中不能经受温度的急剧转变,不然会引发平安事故。
以下实验操作进程不是基于上述缘故的是()A、用排水法搜集气体后,先移出导气管,后熄灭酒精灯B、在用二氧化锰和浓盐酸制氯气时,在加入二氧化锰后应第一加入浓盐酸,然后再点燃酒精灯C、在用固体氯化铵和氢氧化钙制取氨气终止后,将大试管从铁架台上取下置于石棉网上冷却后再洗涤D、钠与水反映时,只能取黄豆粒大小的钠投入盛水的烧杯中反映【答案】D【解析】六、以下各组描述正确的选项是A 化工生产要遵守三原那么:充分利用原料、充分利用能量、爱惜环境。
河北省衡水市衡水中学2021届高三数学上学期期中试题 文(含解析)
河北省衡水市衡水中学2021届高三数学上学期期中试题 文(含解析)一、选择题1.下列函数中,既是偶函数又在()0,+∞上单调递增的是( ) A. ln y x =B. 2y x =-C. xy e =D.cos y x =【答案】A 【解析】 【分析】根据偶函数的定义,可得A ,B ,D 是偶函数,再利用函数单调性的性质,即可得出结论. 【详解】根据偶函数的定义()()f x f x =-,可得A ,B ,D 是偶函数,B 在()0,+∞上单调递减,D 在()0,+∞上有增有减,A 在()0,+∞上单调递增, 故选A .【点睛】本题考查函数单调性的性质,考查函数的奇偶性,考查学生分析解决问题的能力,比较基础.2.等差数列{}n a 的前n 项和为n S ,已知175100,5770a S S =--=.则101S 等于( ) A. 100 B. 50C. 0D. 50-【答案】C 【解析】设等差数列{}n a 的公差为d ,又1100a =-,所以757654575(700)7(500)7022S S d d ⨯⨯-=-+--+=,解得2d =, 所以101101100101(100)202S ⨯=⨯-+⨯=,故选C. 3.已知曲线()cos 3f x x x x =+在点()()0,0f 处的切线与直线410ax y ++=垂直,则实数a 的值为( ) A. -4 B. -1 C. 1 D. 4【答案】C【分析】先求出()f x 在点()()0,0f 处的切线斜率,然后利用两直线垂直的条件可求出a 的值. 【详解】由题意,()cos sin 3f x x x x '=-+,()0cos034f '=+=,则曲线()f x 在点()()0,0f 处的切线斜率为4,由于切线与直线410ax y ++=垂直,则414a -⨯=-,解得1a =.故选C.【点睛】本题考查了导数的几何意义,考查了两直线垂直的性质,考查了计算能力,属于基础题.4.在ABC ∆中,D 是AB 边上一点,2AD DB =,且23CD AC CB λ=+,则λ的值为( ) A.14B. 14-C.13D. 13-【答案】D 【解析】 【分析】根据2AD DB =,用基向量,AC CB 表示CD ,然后与题目条件对照,即可求出. 【详解】由在ABC ∆中,D 是AB 边上一点,2AD DB =, 则1112()3333CD CB BD CB BA CB CA CB AC CB =+=+=+-=-+, 即13λ=-,故选D .【点睛】本题主要考查了平面向量基本定理的应用及向量的线性运算.5.已知双曲线离心率2e =,与椭圆221248x y +=有相同的焦点,则该双曲线渐近线方程是()A. 13y x =±B. 3y x =±C. y =D.y =±【答案】C 【解析】先求出椭圆221248x y +=的焦点()4,0和()4,0-,所以双曲线方程可设为22221x y a b-=,所以其渐近线方程为by x a=±,由题意得双曲线的4c =,再根据其离心率2e =,求出a ,根据222c a b =+,得到b ,从而得到双曲线的渐近线方程,求出答案.【详解】因为椭圆221248x y +=,其焦点为()4,0和()4,0-,因为双曲线与椭圆有相同的焦点,所以设双曲线的方程为22221x y a b-=,则其渐近线方程为b y x a =±,且双曲线中4c = 因为双曲线的离心率2ce a==,所以2a =, 又因双曲线中222c a b =+所以22212b c a =-=,即b =所以双曲线的渐近线方程为y = 故选C 项.【点睛】本题考查根据双曲线的离心率和焦点求,,a b c ,双曲线的渐近线,属于简单题. 6.已知角α满足1cos()63πα+=,则sin(2)6πα-=( )A. C. 79-D.79【答案】D 【解析】 【分析】由已知利用诱导公式可求133sin πα⎛⎫-= ⎪⎝⎭,sin 2263cos ππαα⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,再由二倍角公式化简,即可得结果. 【详解】162633cos sin sin ππππααα⎡⎤⎛⎫⎛⎫⎛⎫+=-+=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,2sin 2cos 2cos 2262633cos πππππαααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫∴-=--=-=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦22171212()339sin πα⎛⎫=--=-⨯= ⎪⎝⎭.故选D .【点睛】本题主要考查了诱导公式,二倍角公式在三角函数化简求值中的应用,属于基础题.三角函数求值有三类,(1)“给角求值”;(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种系;(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.7.已知函数()sin()(0,0,0)2f x A wx A πϕωϕ=+>><<的部分图象如图所示,则3()4f π=( )A. 22-B. 12-C. 1-D.22【答案】C 【解析】 【分析】根据图像最低点求得A ,根据函数图像上两个特殊点求得,ωϕ的值,由此求得函数()f x 解析式,进而求得3π4f ⎛⎫⎪⎝⎭的值. 【详解】根据图像可知,函数图像最低点为7π,212⎛⎫-⎪⎝⎭,故2A =,所以()2sin()f x x ωϕ=+,将点(7π,,212⎛⎫- ⎪⎝⎭代入()f x解析式得2sin 7π2sin 212ϕωϕ⎧=⎪⎨⎛⎫+=-⎪ ⎪⎝⎭⎩,解得2π3ωϕ=⎧⎪⎨=⎪⎩,故()π2sin 23f x x ⎛⎫=+ ⎪⎝⎭,所以3π3ππ2sin 21443f ⎛⎫⎛⎫=⨯+=- ⎪ ⎪⎝⎭⎝⎭,故选C.【点睛】本小题主要考查根据三角函数图象求三角函数解析式,并求三角函数值,属于中档题.8.已知各项不为0的等差数列{}n a 满足2578220a a a -+=,数列{}n b 是等比数列且77b a =,则212b b 等于( )A.49B.32C.94D.23【答案】C 【解析】由题意可得:()()2225787777722222320a a a a d a a d a a -+=--++=-=,7730,2a a ≠∴=,则:222127794b b b a ===. 本题选择C 选项.9.已知点P 为双曲线22221(0,0)x y a b a b-=>>右支上一点,点F 1,F 2分别为双曲线的左右焦点,点I 是△PF 1F 2的内心(三角形内切圆的圆心),若恒有12122IPF IPF IF F S SS -≥成立,则双曲线的离心率取值范围是() A. (1) B. (1,) C. (1,] D. (1]【答案】D 【解析】 【分析】根据条件和三角形的面积公式,求得,a c 的关系式,从而得出离心率的取值范围,得到答案. 【详解】设12PF F ∆的内切圆的半径为r,则12121212111,,222IPF IPF IF F S PF r S PF r S F F r ∆∆∆=⋅=⋅=⋅,因为12122IPF IPF IF F S S S ∆∆∆-≥,所以1212PF PF F -≥, 由双曲线的定义可知12122,2PF PF a F F c -==, 所以2a ≥,即c a ≤,又由1ce a=>,所以双曲线的离心率的取值范围是, 故选D .【点睛】本题考查了双曲线的几何性质——离心率的求解,其中求双曲线的离心率(或范围),常见有两种方法:①求出,a c ,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程,即可得e 的值(范围). 10.函数()sin 23f x x π⎛⎫=+⎪⎝⎭向右平移()0ϕϕπ≤≤个单位后得到函数()g x ,若()g x 在,66ππ⎛⎫- ⎪⎝⎭上单调递增,则ϕ的取值范围是() A. 0,4⎡⎤⎢⎥⎣⎦πB. 20,3π⎡⎤⎢⎥⎣⎦C. 2,43ππ⎡⎤⎢⎥⎣⎦D.,124ππ⎡⎤⎢⎥⎣⎦【答案】D 【解析】 【分析】首先求函数()g x ,再求函数的单调递增区间,区间,66ππ⎛⎫- ⎪⎝⎭是函数单调递增区间的子集,建立不等关系求ϕ的取值范围. 【详解】()()sin 23g x x πϕ⎡⎤=-+⎢⎥⎣⎦,令2222232k x k ππππϕπ-+≤-+≤+解得51212k x k ππϕπϕπ-++≤≤++ ,k Z ∈ 若()g x ,66ππ⎛⎫- ⎪⎝⎭上单调递增, 126{5126k k ππϕπππϕπ++≥-++≤- ,解得:124k k πππϕπ-≤≤- ()0,ϕπ∈0k ∴=时,124ππϕ≤≤.故选D.【点睛】本题考查了三角函数的性质和平移变换,属于中档题型. 11.已知函数21()(2)e x f x x x -=-,若当1x > 时,()10f x mx m -++≤有解,则m 的取值范围为( ) A. 1m B. 1m <- C. 1m >- D. m 1≥【答案】C 【解析】 【分析】求得函数的导数21()(2)ex f x x -'=-,得到函数()f x 的单调性,以及()()1,2f f f 的取值,再由导数的几何意义,即可求解. 【详解】由题意,函数21()(2)ex f x x x -=-,则导数21()(2)ex f x x -'=-,所以函数()f x在上递减,在)+∞上递增,当2x >时,()0f x >,又由(1)1f =-,1f <-,(2)0f =,当1x > 时,()10f x mx m -++≤有解,即函数()y f x =和(1)1y m x =--的图象有交点,如图所示,又因为在点(1,(1))f 的切线的斜率为(1)1f '=-,所以1m >-.【点睛】本题主要考查导数在函数中的综合应用,以及方程的有解问题,着重考查了转化与化归思想、数形结合思想和推理、运算能力,对于方程的有解问题,通常转化为两个函数图象的交点个数,结合图象求解.12.在平面直角坐标系xOy 中,圆1C :224x y +=,圆2C :226x y +=,点(1,0)M ,动点A ,B 分别在圆1C 和圆2C 上,且MA MB ⊥,N 为线段AB 的中点,则MN 的最小值为 A. 1 B. 2C. 3D. 4【答案】A 【解析】 【分析】由MA MB ⊥得0MA MB ⋅=,根据向量的运算和两点间的距离公式,求得点N 的轨迹方程,再利用点与圆的位置关系,即可求解MN 的最小值,得到答案. 【详解】设11(,)A x y ,22(,)B x y ,00(,)N x y , 由MA MB ⊥得0MA MB ⋅=,即1212121x x y y x x +=+-, 由题意可知,MN 为Rt △AMB 斜边上的中线,所以12MN AB =,则2222222121211221122()()22AB x x y y x x x x y y y y =-+-=-++-+222211221212120()()2()102(1)124x y x y x x y y x x x =+++-+=-+-=-又由12MN AB =,则224AB MN =,可得220001244[(1)]x x y -=-+,化简得220019()24x y -+=, ∴点00(,)N x y 的轨迹是以1(,0)2为圆心、半径等于32的圆C 3, ∵M 在圆C 3内,∴ MN 的最小值即是半径减去M 到圆心1(,0)2的距离,即min 31122MN r d =-=-=,故选A . 【点睛】本题主要考查了圆的方程及性质的应用,以及点圆的最值问题,其中解答中根据圆的性质,求得N 点的轨迹方程,再利用点与圆的位置关系求解是解答的关键,着重考查了推理与运算能力,属于中档试题. 二、填空题13.已知向量(3,1)a =-,(3,1)b =,则a 在b 方向上的投影为___________. 【答案】1 【解析】 【分析】根据||||cos a b a b a ⋅=<,b >,得a 在b 上的投影为||cos a a <,||a bb b ⋅>=,求出a b ⋅,代入投影的公式计算即可. 【详解】向量(3a =,1)-,(3b =,1),∴312a b ⋅=-=,||2b =,∴a 在b 方向上的投影为||cos a a <,212||a b b b ⋅>===. 故答案为:1.【点睛】本题考查平面向量数量积的坐标运算及几何意义,属于基础题.14.若函数321()(3)3x f x e x kx kx =--+只有一个极值点,则k 的取值范围为___________.【答案】[0,]e 【解析】 【分析】利用函数求导函数2()(2)2(2)()xxf x e x kx kx x e kx '=--+=--,只有一个极值点时()0f x '=只有一个实数解有0x e kx -≥,设新函数设()x u x e =,()h x kx =,等价转化数形结合法即可得出结论,【详解】函数321()(3)3x f x e x kx kx =--+只有一个极值点,2()(2)2(2)()x x f x e x kx kx x e kx '=--+=--,若函数321()(3)3x f x e x kx kx =--+只有一个极值点,()0f x '=只有一个实数解,则:0x e kx -≥, 从而得到:x e kx ≥, 当0k = 时,成立.当0k ≠时,设()xu x e =,()h x kx =,当两函数相切时,k e =,此时得到k 的最大值,但k 0<时不成立. 故k 的取值范围为:(0,]e 综上:k 的取值范围为:[0,]e . 故答案为:[0,]e .【点睛】本题考查利用导数研究函数的极值点、不等式问题的等价转化方法,考查数形结合思想、函数与方程思想、分类讨论思想的综合运用,考查逻辑推理能力和运算求解能力,属于中档题.15.已知抛物线E :212y x =的焦点为F ,准线为l ,过F 的直线m 与E 交于A ,B 两点,过A 作AM l ⊥,垂足为M ,AM 的中点为N ,若AM FN ⊥,则AB =___________. 【答案】16 【解析】 【分析】由题意画出图形,得到直线AB 的斜率,进一步求得直线AB 的方程,与抛物线方程联立求解即可得答案. 【详解】AF AM =,N 为AM 的中点,且FN AM ⊥,30AFN ∴∠=︒,则直线AB 的倾斜角为60︒,斜率为3.由抛物线212y x =,得(3,0)F ,则直线AB 的方程为3(3)y x =-.联立23(3)12y x y x⎧=-⎪⎨=⎪⎩,得21090x x -+=.则10A B x x +=, ||16A B AB x x p ∴=++=.故答案为:16.【点睛】本题考查抛物线的简单性质、直线与抛物线位置关系及抛物线过焦点弦公式的应用,属于中档题.16.数列{}n a 为1,1,2,1,1,2,3,1,1,2,1,1,2,3,4,…,首先给出11a =,接着复制该项后,再添加其后继数2,于是21a =,32a =,然后再复制前面所有的项1,1,2,再添加2的后继数3,于是41a =,51a =,62a =,73a =,接下来再复制前面所有的项1,1,2,1,1,2,3,再添加4,…,如此继续,则2019a =______. 【答案】1 【解析】 【分析】根据数列构造方法可知:21n a n -=,即()21121n nk k a a k -+=≤<-;根据变化规律可得20192a a =,从而得到结果.【详解】由数列{}n a 的构造方法可知11a =,32a =,73a =,154a =,可得:21n a n -= 即:()21121n nk k a a k -+=≤<-201999648523010340921a a a a a a a a ∴========本题正确结果:1【点睛】本题考查根据数列的构造规律求解数列中的项,关键是能够根据构造特点得到数列各项之间的关系,考查学生的归纳总结能力. 三、解答题17.已知ABC ∆的面积为32,且1AB AC ⋅=-且AB AC >. (1)求角A 的大小;(2)设M 为BC 的中点,且32AM =,BAC ∠的平分线交BC 于N ,求线段AN 的长度. 【答案】(1)23π;(2)23. 【解析】 【分析】(1)根据已知条件求出角的正切值,再结合角的范围即可求解;(2)先根据条件求出b ,c ,a ;再借助于面积之间的关系求出CN ,BN 之间的比例关系,结合题中条件即可求解.【详解】(1)1AB AC ⋅=-||||cos cos 1AB AC A bc A ⇒⋅⋅==-, 又13sin 2ABC S bc A ∆==,即sin 3bc A =, ∴sin sin tan 3cos cos bc A A A bc A A===-,又(0,)A π∈,∴23A π=.(2)如下图所示:在ABC ∆中,AM 为中线,∴2AM AB AC =+,∴2222224||()||2||AM AB AC AB AB AC AC c b =+=+⋅+=+∴225b c +=.由(1)知:sin bc A =2bc ⇒=,又c b >, ∴2c =,1b =,由余弦定理可得:2222cos 527a b c bc A =+-=+=⇒a =11sin sin 22ANC S AN b CAN AN CAN =⋅∠=⨯∠, 1csin sin 2BANS AN BAN AN BAN =⨯∠=⨯∠, 又CAN BAN ∠=∠,∴12BAN ANC S CN S BN ==,又CN BN a +==,∴3CN =, 在ACN ∆中,有:2222cos AN b CN b CN ACB =+-⨯⨯∠712193=+-⨯⨯7441939=+-=, 所以23AN =. 【点睛】本题考查向量的数量积的应用、正余弦定理的应用,考查函数与方程思想、数形结合思想,考查运算求解能力,属于中档题.18.已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,且11a =,11b =,224a b +=.(1)若337a b +=,求{}n b 的通项公式; (2)若313T =,求5S【答案】(1)12n n b -=;(2)5或75.【解析】 【分析】(1)设等差数列{}n a 公差为d ,等比数列{}n b 公比为()0q q ≠,由已知条件求出q ,再写出通项公式;(2)由1313T =,求出q 的值,再求出d 的值,求出5S .【详解】设等差数列{}n a 公差为d ,等比数列{}n b 公比为()0q q ≠有()14d q ++=,即3d q +=.(1)∵()2127d q ++=,结合3d q +=得2q =,∴12n n b -=.(2)∵23113T q q =++=,解得4q =-或3,当4q =-时,7d =,此时55457752S ⨯=+⨯=; 当3q =时,0d =,此时5155S a ==.【点睛】本题主要考查等差数列与等比数列的通项公式、等差数列的前n 项和公式,属于中档题. 等差数列基本量的运算是等差数列的一类基本题型,数列中的五个基本量1,,,,,n n a d n a S 一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,另外,解等差数列问题要注意应用等差数列的性质2p q m n r a a a a a +=+=(2p q m n r +=+=)与前n 项和的关系.19.已知点F 为抛物线2:2(0)E y px p =>的焦点,点(2,)A m 在抛物线E 上,且3AF =.(Ⅰ)求抛物线E方程;(Ⅱ)已知点(1,0)G -,延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.【答案】(Ⅰ)24y x =;(Ⅱ)详见解析.【解析】解法一:(Ⅰ)由抛物线的定义得F 22pA =+. 因为F 3A =,即232p+=,解得2p =,所以抛物线E 的方程为24y x =. (Ⅱ)因为点()2,m A 在抛物线:E 24y x =上,所以m =±(A .由(A ,()F 1,0可得直线F A的方程为)1y x =-.由)21{4y x y x=-=,得22520x x -+=,解得2x =或12x =,从而1,2⎛B ⎝. 又()G 1,0-,所以()G 0213k A==--,()G 01312k B ==---,所以G G 0k k A B +=,从而GF GF ∠A =∠B ,这表明点F 到直线G A ,G B 的距离相等, 故以F 为圆心且与直线G A 相切的圆必与直线G B 相切. 解法二:(Ⅰ)同解法一.(Ⅱ)设以点F 为圆心且与直线G A 相切的圆的半径为r . 因为点()2,m A 在抛物线:E 24y x =上,所以m =±(A .由(A ,()F 1,0可得直线F A的方程为)1y x =-.由)21{4y x y x=-=,得22520x x -+=,解得2x =或12x =,从而1,2⎛B ⎝. 又()G 1,0-,故直线G A的方程为30y -+=,从而r ==.又直线G B 的方程为30y ++=,所以点F 到直线G B 的距离d r ===. 这表明以点F 为圆心且与直线G A 相切的圆必与直线G B 相切. 考点:1、抛物线标准方程;2、直线和圆的位置关系. 【此处有视频,请去附件查看】20.已知数列{}n a 的各项均为正数,对任意*n ∈N ,它的前n 项和n S 满足()()1126n n n S a a =++,并且2a ,4a ,9a 成等比数列. (1)求数列{}n a 的通项公式; (2)设()111n n n n b a a ++=-,n T 为数列{}n b 的前n 项和,求2n T .【答案】(1)32n a n =-,*n ∈N (2)2186n n -- 【解析】 【分析】(1)根据n a 与n S 的关系,利用临差法得到13n n a a --=,知公差为3;再由1n =代入递推关系求1a ;(2)观察数列{}n b 的通项公式,相邻两项的和有规律,故采用并项求和法,求其前2n 项和. 【详解】(1)对任意*n ∈N ,有()()1126n n n S a a =++,① ∴当1a =时,有()()11111126S a a a ==++,解得11a =或2. 当2n ≥时,有()()1111126n n n S a a ---=++.② ①-②并整理得()()1130n n n n a a a a --+--=. 而数列{}n a 的各项均为正数,13n n a a -∴-=.当11a =时,()13132n a n n =+-=-, 此时2429a a a =成立;当12a =时,()23131n a n n =+-=-,此时2429a a a =,不成立,舍去.32n a n ∴=-,*n ∈N .(2)2122n n T b b b =+++=12233445221n n a a a a a a a a a a +-+-+-()()()21343522121n n n a a a a a a a a a -+=-+-++-242666n a a a =----()2426n a a a =-+++()246261862n n n n +-=-⨯=--.【点睛】已知n S 与n a 的递推关系,利用临差法求n a 时,要注意对下标与n 分两种情况,即1,2n n =≥;数列求和时要先观察通项特点,再决定采用什么方法.21.已知函数()(1)ln f x x x =-,3()ln eg x x x =--. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)令()()()(0)h x mf x g x m =+>两个零点1212,()x x x x <,证明:121ex e x +>+. 【答案】(Ⅰ)()f x 在(0,1)上单调递减,在[1,)+∞上单调递增.(Ⅱ)见证明 【解析】 【分析】(Ⅰ)求得函数的导数1()ln 1f x x x=+-',且()01f '=,进而利用导数的符号,即可求得函数单调区间;(Ⅱ)由3()(1)ln ln h x m x x x x e=-+--有两个零点,利用导数求得函数()h x 的单调性与最值,结合图象,即可得出证明.【详解】(Ⅰ)由题意,函数()(1)ln f x x x =-,则1()ln 1f x x x=+-',且()01f '=, 当01x <<时,()0f x '<,函数()f x 单调递减;当1x ≥时,()0f x '≥,函数()f x 单调递增;所以函数()f x 在(0,1)上单调递减,在[1,)+∞上单调递增. (Ⅱ)由3()(1)ln ln h x m x x x x e=-+--有两个零点可知 由11()(1ln )1h x m x x x-'=++-且0m >可知, 当01x <<时,()0h x '<,函数()h x 单调递减; 当1x ≥时,()0h x '≥,函数()h x 单调增;即()h x 的最小值为3(1)10h e=-<, 因此当1x e=时,1113(1)2()(1)(1)(1)0m e e h m e e e e e -+-=--+---=>, 可知()h x 在1(,1)e上存在一个零点;当x e =时,3()(1)10h e m e e e=-+-->, 可知()h x 在(1,)e 上也存在一个零点, 因此211x x e e -<-,即121x e x e+>+. 【点睛】本题主要考查导数在函数中的综合应用,以及不等式的证明,着重考查了转化与化归思想、分类讨论、及逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.22.在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b +=>>的焦距为4,且过点.(1)求椭圆C 的方程(2)设椭圆C 的上顶点为B ,右焦点为F ,直线l 与椭圆交于M 、N 两点,问是否存在直线l ,使得F 为BMN ∆的垂心,若存在,求出直线l 的方程;若不存在,说明理由.【答案】(1)22184x y +=;(2)存在直线8:3l y x =-满足题设条件,详见解析 【解析】【分析】(1)由已知列出关于a ,b ,c 的方程组,解得a ,b ,c ,写出结果即可;(2)由已知可得,(0,2)B ,(2,0)F .所以1BF k =-,因为BF l ⊥,所以可设直线l 的方程为y x m =+,代入椭圆方程整理,得2234280x mx m ++-=.设1(M x ,1)y ,2(N x ,2)y ,由根与系数的关系写出两根之和和两根之积的表达式,再由垂心的性质列出方程求解即可.【详解】(1)由已知可得,2222224421c a b a b c=⎧⎪⎪+=⎨⎪=+⎪⎩ 解得28a =,24b =,2c =,所以椭圆C 的方程为22184x y +=.(2)由已知可得,(02)(20)B F ,,,,∴1BF k =-.∵BF l ⊥, ∴可设直线l 的方程为y x m =+,代入椭圆方程整理,得2234280x mx m ++-=.设()()1122M x y N x y ,,,, 则2121242833m m x x x x -+=-=,,∵1212212y y BN MF x x -⊥∴⋅=--,. 即121212220y y x x y x +--=∵()()()1122121212,220y x m y x m x m x m x x x m x =+=+∴+++-+-=,即()212122(2)20x x m x x m m +-++-=,∵222842(2)2033m mm m m --⋅+-⋅+-=∴28321603m m m +-=∴=-,或2m =. 由()222(4)12289680m m m ∆=--=->,得212m < 又2m =时,直线l 过B 点,不合要求,∴83m =-,故存在直线8:3l y x=-满足题设条件.【点睛】本题主要考查椭圆方程的求法,直线与椭圆的位置关系应用,以及垂心的定义应用.意在考查学生的数学运算能力.。
2021届河北省衡水中学高三上学期期中考试数学(文)试题(解析版)
2021届河北省衡水中学高三上学期期中考试数学(文)试题(解析版)一、选择题1. 设集合{}210A x x =-<,{}2,xB y y x A ==∈,则A B =( )A. ()0,1B. ()1,2-C. ()1,+∞D. 1,12⎛⎫⎪⎝⎭【答案】D 【解析】 【分析】先由一元二次不等式的解法求得集合A ,再根据指数函数的值域求得集合B ,利用集合的交集运算可得选项.【详解】因为{}()(){}()210+1101,1A x x x x x =-<=-<=-,又11x -<<时,1112222x -=<<,所以{}12,22xB y y x A ⎛⎫==∈= ⎪⎝⎭,, 所以AB =1,12⎛⎫⎪⎝⎭,故选:D.2. 已知复数z 满足:()()312z i i i -+=(其中i 为虚数单位),复数z 的虚部等于( )A. 15- B. 25-C.45D.35【答案】C 【解析】 【分析】利用复数代数形式的乘除运算法则求出241255i z i i i -=+=-++,由此能求出复数z 的虚部. 【详解】∵复数z 满足:()()312z i i i -+=(其中i 为虚数单位), ∴()()()122412121255i i i z i i i i i i ---=+=+=-+++-. ∴复数z 的虚部等于45,故选C. 【点睛】本题考查复数的虚部的求法,是基础题,解题时要认真审题,注意复数代数形式的乘除运算法则的合理运用.3. 命题:p 若α为第一象限角,则sin αα<;命题q :函数()22x f x x =-有两个零点,则( )A. p q ∧为真命题B. p q ∨为真命题C. p q ⌝∨⌝为真命题D. p q ⌝∧为真命题【答案】C 【解析】 【分析】根据三角函数的性质,对于命题p 可以举出反例1112πα=-,可得其为假,对于命题q ,根据零点存在定理可得其至少有三个零点,即q 为假,结合复合命题的真假性可得结果. 【详解】对于命题p ,当取第一象限角1112πα=-时,显然sin αα<不成立,故p 为假命题, 对于命题q ∵()10f -<,()00f >,∴函数()f x 在()1,0-上有一个零点, 又∵()()240f f ==,∴函数()f x 至少有三个零点,故q 为假, 由复合命题的真值表可得p q ⌝∨⌝为真命题,故选C.【点睛】本题主要借助考查复合命题的真假,考查三角函数的性质,零点存在定理的应用,属于中档题.若要判断一个含有逻辑联结词的命题的真假,需先判断构成这个命题的每个简单命题的真假,再依据“或”:一真即真,“且”:一假即假,“非”:真假相反,作出判断即可. 4. 正项等比数列{}n a 中的14031,a a 是函数()3214633f x x x x =-+-的极值点,则2061a =( ) A. 1 B. 2D. 1-【答案】A 【解析】【详解】试题分析:由()3214633f x x x x =-+-,则()22860f x x x =+'-=,因为14031,a a 是函数 ()3214633f x x x x =-+-的极值点,所以140316a a ⋅=,又0n a >,所以2016a ==2061a =1,故选A .考点:对比数列与函数的综合应用.【方法点晴】本题主要考查了数列与函数的综合应用,其中解答中涉及到等比数列的通项公式、等比中项公式、利用导数研究函数的极值点和对数的运算等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及知识点的灵活应用,试题涉及知识点多,应用灵活,属于中档试题,其中解答中根据函数极值点的概念,得到140316a a ⋅=是解答关键.5. O 是正方形ABCD 的中心.若DO =λAB +μAC ,其中λ,μ∈R ,则λμ=( )A. -2B. -12C. -2D. 2【答案】A 【解析】 【分析】根据正方形几何特点,结合向量的线性运算,用,AB AC 表示目标向量,即可求得结果. 【详解】根据题意,作图如下:DO =DA +AO =CB +AO =AB -AC +12AC =AB -12AC , 所以λ=1,μ=-12,因此λμ=-2.故选:A .【点睛】本题考查平面向量的线性运算,属基础题.6. 在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且222b c a bc +=+若2sin sin sin B C A ⋅=,则ABC ∆的形状是() A. 等腰三角形 B. 直角三角形C. 等边三角形D. 等腰直角三角形【答案】C 【解析】 【分析】直接利用余弦定理的应用求出A 的值,进一步利用正弦定理得到:b =c ,最后判断出三角形的形状. 【详解】在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c , 且b 2+c 2=a 2+bc .则:2221222b c a bc cosA bc bc +-===,由于:0<A <π, 故:A 3π=.由于:sin B sin C =sin 2A , 利用正弦定理得:bc =a 2, 所以:b 2+c 2﹣2bc =0, 故:b =c ,所以:△ABC 为等边三角形. 故选C .【点睛】本题考查了正弦定理和余弦定理及三角形面积公式的应用,主要考查学生的运算能力和转化能力,属于基础题型.7. 如图直角坐标系中,角02παα⎛⎫<<⎪⎝⎭、角02πββ⎛⎫-<< ⎪⎝⎭的终边分别交单位圆于A 、B 两点,若B 点的纵坐标为513-,且满足3AOB S =△,则1sin 3cos sin 2222ααα⎛⎫-+ ⎪⎝⎭的值为( )A. 513-B. 1213-C.1213D.513【答案】C 【解析】 【分析】 由AOBS,可得()3sin αβ-=,结合β范围可得3παβ-=,化简1sin3cos sin cos 2222αααβ⎫-+=⎪⎭,利用点B 的坐标即可得解. 【详解】由()13sin 24AOBSOA OB αβ=-=,得()3sin 2αβ-=.根据题意可知125B(,1313-),所以512sin ,cos 1313ββ=-=, 可知06πβ-<<,203παβ<-<. 所以3παβ-=.11112sinsin sin sin sin cos 222222636213cos ααααππππααβββ-⎫⎛⎫⎛⎫⎛⎫-+-+=+=++=+==⎪ ⎪ ⎪ ⎪⎭⎝⎭⎝⎭⎝⎭. 故选C.【点睛】本题主要考查了任意角三角函数的定义及二倍角公式和诱导公式,属于中档题. 8. 已知公比不为1的等比数列{}n a 的前n 项和为n S ,且满足258,2,3a a a 成等差数列,则363S S =() A.134B.1312C.94D.1112【答案】C 【解析】258,2,3a a a 成等差数列,52843a a a ∴=+,即476311143,3410a q a q a q q q =+-+=,解得313q =或31q =(舍去),()()313661113313913141191a q S qS a q q-⎛⎫⨯- ⎪-⎝⎭===---,故选C.9. 已知函数()51cos 1242f x x x ⎛⎫=+- ⎪-⎝⎭,若函数()242g x x x =-+-与()f x 图象的交点为()11,x y ,()22,x y ,…,(),n n x y ,则1mi i x ==∑( )A. 2mB. 3mC. 4mD. m【答案】A 【解析】 【分析】结合函数的解析式可得()()4f x f x -=,求出()f x 的对称轴为2x =,根据两图象的对称关系分为m 为奇数和偶数即可得出答案. 【详解】∵()51cos 1242f x x x ⎛⎫=+- ⎪-⎝⎭,∴()()()51514cos 41cos 12422244f x x x x x ⎡⎤⎛⎫-=+--=+- ⎪⎢⎥---⎣⎦⎝⎭()f x =∴()f x 的图象关于直线2x =对称, 又242x x -+-的图象关于直线2x =对称,当m 为偶数时,两图象的交点两两关于直线2x =对称, ∴1 422mi i mx m ==⨯=∑, 当m 为奇数时,两图象的交点有1m -个两两对称,另一个交点在对称轴上, ∴114222mi i m x m =-=⨯+=∑,故选A . 【点睛】本题函数考查了函数的图象对称关系,分类讨论的思想,解题的关键是根据函数的性质得到()()4f x f x -=,属于中档题.10. 将函数()2sin 0y x =>ωω的图象向左平移02φπφω⎛⎫<≤ ⎪⎝⎭个单位长度后,再将所得的图象向下平移一个单位长度得到函数()y g x =的图象,且()y g x =的图象与直线1y =相邻两个交点的距离为π,若()1g x >-对任意,123x ππ⎛⎫∈- ⎪⎝⎭恒成立,则φ的取值范围是( )A. ,122ππ⎡⎤⎢⎥⎣⎦B. ,63ππ⎡⎤⎢⎥⎣⎦C. ,123ππ⎡⎤⎢⎥⎣⎦D. ,62ππ⎡⎤⎢⎥⎣⎦【答案】B 【解析】 【分析】由已知求得()()2sin 1g x x ωϕ=+-,再由已知得函数()g x 的最小正周期为π,求得2ω=,结合()1g x >-对任意,123x ππ⎛⎫∈- ⎪⎝⎭恒成立列关于ϕ的不等式组求解.【详解】将函数()2sin 0y x =>ωω的图象向左平移 (0)2ϕπϕω<≤个单位长度后,再将所得的图象向下平移一个单位长度,得()()2sin 12sin 1g x x x ϕωωϕω⎛⎫=+-=+- ⎪⎝⎭,又()y g x =的图象与直线1y =相邻两个交点的距离为π,得T π=,即22πωπ==.∴()()2sin 1g x x ωϕ=+-,当,123x ππ⎛⎫∈- ⎪⎝⎭时,22,63x ππϕϕϕ⎛⎫+∈-++ ⎪⎝⎭, ∵()1g x >-,02πϕ<≤,∴06 23πϕπϕπ⎧-+≥⎪⎪⎨⎪+≤⎪⎩,解得 63ππϕ≤≤,∴ϕ的取值范围是[]63ππ,,故选B .【点睛】本题主要考查三角函数的图象变换与性质,根据图象求出函数的解析式是解决本题的关键,是中档题.11. 已知函数()2f x x ax =-,()ln xg x x e =-,在其共同的定义域内,()g x 的图象不可能在()f x 的上方,则求a 的取值范围( ) A. 101a e <<+ B. 0a > C. 1a e ≤+ D. 0a ≤【答案】C 【解析】 【分析】利用已知条件转化为:不等式恒成立,分离参数ln x e xa x x x≤-+,然后构造函数利用导数,求解函数的最值即可.【详解】函数()2f x x ax =-,()ln xg x x e =-,在其共同的定义域内,()g x 的图象不可能在()f x 的上方,当0x >时,∴2ln x x ax x e -≥-恒成立,化为:2ln xe x x ax -+>,即ln x e xa x x x≤-+,0x >;令()ln x e xh x x x x =-+,(0x >),()()2211ln 'x e x x x h x x-+-+=. 令()()211ln xt x ex x x =-+-+,()1'20x t x e x x x=⋅++>, 函数()t x 在()0,+∞单调递增,10t =(),∴()0,1x ∈时,()0t x <,()'0h x <,函数单调减函数,()1x ∈+∞,时,()0t x >,()'0h x >,函数单调增函数,所以()()11h x h e ≥=+,∴1a e ≤+,故选C.【点睛】本题考查了利用导数研究函数的单调性极值与最值以及恒成立问题,考查了推理能力与计算能力,属于难题. 考查恒成立问题,正确分离参数是关键,也是常用的一种手段.通过分离参数可转化为()a h x >或()a h x <恒成立,即()max a h x >或()min a h x <即可,利用导数知识结合单调性求出()max h x 或()min h x 即得解.12. 已知函数()g x 满足121()'(1)(0)2x g x g e g x x -=-+,且存在实数0x 使得不等式021()m g x -≥成立,则m 的取值范围为( ) A. [1,)+∞ B. (,3]-∞ C. (,2]-∞ D. [0,)+∞【答案】A 【解析】 【分析】先求()()0'1g g ,,再利用导数求()g x 最小值,最后解不等式的结果. 【详解】因为121()(1)(0)2x g x g e g x x '-=-+, 所以1()(1)(0)(1)(1)(0)1(0)1x g x g eg x g g g g '-'''=-+∴=-+∴=因为1(0)(1)(1)g g e g e '-'∴==, 因此21()2xg x e x x =-+,()1()10x x g x e x g x e '''=-+∴=+>, 当0x >时()(0)0,()(0)1g x g g x g ''>=>=; 当0x <时()(0)0,()(0)1g x g g x g ''<=>=; 因此()g x 最小值为1,从而2111m m ,-≥≥,选A.【点睛】本题考查利用导数求函数最值,考查基本分析求解能力,属中档题.二、填空题13. 平面向量a 与b 的夹角为60︒,()2,0,1a b ==,则2+a b 等于____【答案】【解析】 【分析】根据()2,0a =求出2a = ,利用2222(2)44cos60a b a b a b a b +=+=++⋅,即得结果.【详解】因为||2,||1a b ==,a 与b 的夹角为60︒,故||||cos 601a b a b ⋅=⋅=,则2222(2)44cos60a b a b a b a b +=+=++⋅244423a b +=++=,故答案为:23【点睛】本题主要考查了向量的数量积以及模的计算,属于基础题.14. 在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,且B 为锐角,若sin sin A B =52c b ,sin B =74,S △ABC=57,则b 的值为________. 【答案】14 【解析】 【分析】利用正弦定理将角化边,可得,a c 等量关系;再利用面积公式,再得,a c 的另一个等量关系,据此求得,a c 由sin B 求得cos B ,利用余弦定理即可求得b .【详解】由sin sin A B =52cb ,可得a b =52c b ,故a =52c ,① 由S △ABC =12ac sin B 57且sin B 7得12ac =5,② 联立①,②得a =5,且c =2. 由sin B 7且B 为锐角知cos B =34,由余弦定理知b 2=25+4-2×5×2×34=14,b 1414.【点睛】本题考查利用正余弦定理解三角形,涉及利用正弦定理实现边角互化,属综合基础题.15. 已知数列{}n a 的前n 项和为n S ,且满足:11a =,22a =,()*211n n n S a a n +++=-∈N ,则n S =______.【答案】21n - 【解析】 【分析】由n S 与n a 的递推式可证得{}n a 是以1为首项,2为公比的等比数列,再利用等比数列前n 项和公式运算即可.【详解】因为()*211n n n S a a n +++=-∈N ,所以()*1112,n n n S a a n n N -++=-≥∈两式相减,得212n n n n a a a a ++=-+,即212n n a a ++=, 又当1n =时,113211a S a a +=+=-,11a =,22a =, 所以34a =,满足322a a =,212a a =, 所以{}n a 是以1为首项,2为公比的等比数列,所以1(12)12n n S ⨯-==-21n -故答案为:21n -【点睛】关键点睛:本题主要考查了n a 与n S 的关系,熟练掌握11,1,2*n nn a n a S S n n N -=⎧=⎨-≥∈⎩且是解题关键.16. 已知函数()212ln x x f x e e ⎛⎫=≤≤⎪⎝⎭,()1g x mx =+,若()f x 与()g x 的图象上存在关于直线1y =对称的点,则实数m 的取值范围是_____________.【答案】322,3e e -⎡⎤-⎢⎥⎣⎦【解析】 【分析】求出函数()g x 关于直线1y =的对称函数()h x ,令()f x 与()h x 的图象有交点得出m 的范围即可. 【详解】()1g x mx =+关于直线1y =对称直线为()1y h x mx ==-,∴直线1y mx =-与2ln y x =在21[,]e e上有交点,作出1y mx =-与2ln y x =的函数图象,如图所示:若直线1y mx =-经过点12e-(,),则3m e =,若直线1y mx =-与2ln y x =相切,设切点为(),x y ,则1 22y mx y lnx m x⎧⎪=-⎪=⎨⎪⎪=-⎩,解得3232 32x e y m e -⎧=⎪⎪=⎨⎪⎪=-⎩. ∴322?3e m e --≤≤,故答案为322,3e e -⎡⎤-⎢⎥⎣⎦.【点睛】本题考查了函数的对称问题解法,注意运用转化思想,以及零点与函数图象的关系,导数的几何意义,属于中档题.三、解答题17. 已知等差数列{}n a 的前n 项和为n S ,且满足11a =, 981S =. (1)求{}n a 的通项公式; (2)求122017111122017S S S ++++++的值.【答案】(1)21n a n =-(2)20172018【解析】 【分析】(1)直接利用已知条件求出数列的通项公式;(2)根据数列的通项公式,进一步利用裂项相消法求出数列的和.【详解】(1)设等差数列{}n a 的公差为d ,由981S =,得5981a =, 则有59a =,所以51912514a a d --===-,故()12121n a n n =+-=- ()*n N ∈.(2)由(1)知,()213521n S n n =+++⋯+-=,则()111111n S n n n n n ==-+++,所以12201711111111112201722320172018S S S ⎛⎫⎛⎫⎛⎫++⋯+=-+-+⋯+- ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭ 12017120182018=-=. 【点睛】本题主要考查了等差数列的概念,以及数列的求和,属于高考中常考知识点,难度不大;常见的数列求和的方法有公式法即等差等比数列求和公式,分组求和类似于n n n c a b =+,其中{}n a 和{}n b 分别为特殊数列,裂项相消法类似于()11n a n n =+,错位相减法类似于n n n c a b =⋅,其中{}n a 为等差数列,{}n b 为等比数列等.18. 在ABC ∆中, 内角A ,B ,C 的对边分别为a ,b ,c ,且22cos c a B b -=. (1)求角A 的大小; (2)若ABC ∆且22cos 4c ab C a ++=,求a . 【答案】(1)3A π=;(2)a . 【解析】试题分析:(1)首先利用正弦定理、三角形内角和定理以及两角和的正弦函数公式化简已知条件式,由此求得cos A 的值,从而求得角A 的大小;(2)首先根据条件等式结合余弦定理得到,,a b c 的关系式,然后根据三角形面积公式求得bc 的值,从而求得a 的值. 试题解析:(1)由22cos c a B b -=及正弦定理可得2sin 2sin cos sin C A B B -=,()sin sin sin sin cos cos sin ,cos sin 2BC A B A B A B A B =+=+∴=,1sin 0,cos 2B A ≠∴=,又因为0,3A A ππ<<∴=.(2)22cos 4c ab C a ++=①,又由余弦定理得222cos 2a b c ab C +-=,代入①式得22283b c a +=-, 由余弦定理222222cos a b c b A b c bc =+-=+-.221sin 1,8312ABC S bc A bc a a ∆==∴=∴=--,得a .考点:1、正弦定理与余弦定理;2、两角和的正弦函数公式;3、三角形面积公式. 19. 已知数列{}n a 中,11a =,()*13nn n a a n N a +=∈+. (1)求{}n a 的通项公式n a ; (2)数列{}n b 满足的()312nn n n n b a =-⋅⋅,数列{}n b 的前n 项和为n T ,若不等式()112nnn n T λ--<+对一切*n N ∈恒成立,求λ的取值范围. 【答案】(1)231n n a =-;(2)23λ-<<. 【解析】 【分析】 (1)将()*13n n n a a n N a +=∈+,变形为1131n na a +=+,再利用等比数列的定义求解. (2)由(1)得12n n nb -=,然后利用错位相减法求得1242n n n T -+=-,将不等式()112nn n n T λ--<+对一切*n N ∈恒成立,转化为()12142nn λ--<-,对一切*n N ∈恒成立,分n 为偶数和奇数讨论求解.【详解】(1)由()*13nn n a a n N a +=∈+, 得13131n n n na a a a ++==+, ∴11111322n n a a +⎛⎫+=+ ⎪⎝⎭, 所以数列112n a ⎧⎫+⎨⎬⎩⎭是以3为公比,以111322a ⎛⎫+= ⎪⎝⎭为首项的等比数列,所以1113322n n a -+=⨯,即231n na =-. (2)12n n nb -=()0122111111123122222n n n T n n --=⨯+⨯+⨯+⋅⋅⋅+-⨯+⨯ ()121111112122222n n n T n n -=⨯+⨯+⋅⋅⋅+-⨯+⨯, 两式相减得:012111111222222222n n n n T n n -+=+++⋅⋅⋅+-⨯=-,∴1242n n n T -+=-, 因不等式()112nn n nT λ--<+对一切*n N ∈恒成立, 所以()12142nn λ--<-,对一切*n N ∈恒成立, 因为1242n t -=-单调递增, 若n 为偶数,则1242n λ-<-,对一切*n N ∈恒成立,∴3λ<;若n 为奇数,则1242n λ--<-,对一切*n N ∈恒成立,∴2λ-<,∴2λ>-综上:23λ-<<.【点睛】方法点睛:求数列的前n 项和的方法(1)公式法:①等差数列的前n 项和公式,()()11122n n n a a n n S na d +-==+②等比数列的前n 项和公式()11,11,11n n na q S a q q q=⎧⎪=-⎨≠⎪-⎩;(2)分组转化法:把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.(4)倒序相加法:把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.(5)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列对应项之积构成的,则这个数列的前n 项和用错位相减法求解.(6)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.20. 已知ABC 中,角,,A B C 所对的边分别是,,a b c ,且203SBA AC ⋅+=,其中S 是ABC 的面积,4Cπ.(1)求cos B 的值; (2)若24S =,求a 的值. 【答案】(1; (2)【解析】 【分析】(1)首先利用向量的数量积和三角形的面积公式求出结果sin 3cos A A =,,进一步建立等量关系求出结果;(2)利用三角形的面积公式和正弦定理建立方程组,进一步求出结果.【详解】∵203S BA AC ⋅+=,得13cos 2sin 2bc A bc A =⨯,得sin 3cos A A =, 即()222sin 9cos 91sin A A A ==-,所以29sin 10A =,又30,4A π⎛⎫∈ ⎪⎝⎭,∴sin 0A >,故sin A =,cos A = ()cos cos cos cos sin sin B A C A C A C =-+=-+===. (2)24S =,所以sin 48bc A =,得bc =①,由(1)得cos B =,所以sin B =在ABC 中,由正弦定理,得sin sin b cB C==②, 联立①②,解得8b =,c =2222cos 72a b c bc A =+-=,所以a =【点睛】本题考查的知识要点:三角函数关系式的恒等变换,向量数量积的应用,正弦定理的应用,三角形面积公式的应用,方程组的解法,属于基础题型. 21. 已知函数()()()1ln 42f x m x m x m R x=+-+∈. (1)当4m ≥时,求函数()f x 的单调区间;(2)设[],1,3t s ∈,不等式()()()()ln322ln3f t f s a m -<+--对任意的()4,6m ∈恒成立,求实数a 的取值范围.【答案】(1)当4m =时,()f x 在定义域()0,∞+单调递减;当4m >时,函数()f x 的单调递增区间为11,22m ⎛⎫- ⎪-⎝⎭,递减区间为10,2m ⎛⎫- ⎪-⎝⎭,1,2⎛⎫+∞ ⎪⎝⎭; (2)13,3⎛⎤-∞- ⎥⎝⎦. 【解析】 【分析】(1)求出函数的导数,分为4m =和4m >两种情形,求出函数的单调区间即可;(2)问题等价于对任意的()4,6m ∈,恒有()()1ln 322ln 352ln 31263a m m m m +-->----+成立,即()()22423m a m ->--,根据2m >,分离a ,从而求出a 的范围即可. 【详解】(1)函数定义域为()0,+∞,且()()()2221211'42x m x m f x m x x x ⎡⎤--+⎣⎦=-+-=,令()'0f x =,得112x =,212x m=--, 当4m =时,()'0f x ≤,函数()f x 在定义域()0,+∞单调递减; 当4m >时,由()'0f x >,得1122x m -<<-;由()'0f x <,得102x m <<--或12x >, 所以函数()f x 的单调递增区间为11,22m ⎛⎫- ⎪-⎝⎭,递减区间为10,2m ⎛⎫- ⎪-⎝⎭,1,2⎛⎫+∞ ⎪⎝⎭. 综上所述,当4m =时,()f x 在定义域()0,+∞单调递减; 当4m >时,函数()f x 的单调递增区间为11,22m ⎛⎫-⎪-⎝⎭,递减区间为10,2m ⎛⎫- ⎪-⎝⎭,1,2⎛⎫+∞ ⎪⎝⎭. (2)由(1)知当()4,6m ∈时,函数()f x 在区间[]1,3单调递减,所以当[]1,3x ∈时,()()max 152f x f m ==-,()()min 13ln31263f x f m m ==++-.问题等价于:对任意的()4,6m ∈,恒有()()1ln322ln352ln31263a m m m m +-->----+成立,即()()22423m a m ->--. 因为2m >,则()2432a m <--,∴()min2432a m ⎛⎫<- ⎪⎪-⎝⎭,设[)4,6m ∈,则当4m =时,()2432m --取得最小值133-, 所以,实数a 的取值范围是13,3⎛⎤-∞-⎥⎝⎦. 【点睛】本题考查了函数单调性、最值问题,考查导数的应用以及函数恒成立问题,考查分类讨论思想,是一道综合题.22. 已知函数()2xf x ke x =-(其中k ∈R ,e 是自然对数的底数).(1)若2k =,当()0,x ∈+∞时,试比较()f x 与2的大小;(2)若函数()f x 有两个极值点()1212,x x x x <,求k 的取值范围,并证明:()101f x <<.【答案】(1)() 2.f x >(2)2(0,).e见解析 【解析】试题分析:()1求()f x 的导数()'f x ,利用()'f x 判定()f x 的单调性,从而求出()f x 的单调区间,可比较()f x 与2的大小;()2先求导数()'f x ,根据题意知12,x x 是()'20x f x ke x =-=的两个根,令()2xx x e ϕ=,利用导数得到函数()x ϕ的单调区间,继而得到k 的取值范围,知()111'20xf x ke x =-=,则112x x k e =,又由()()21111f x x =--+,()10,1x ∈,即可得到()101f x <<解析:(1)当2k =时,()22xf x e x =-,则()'22xf x e x =-,令()()22,'22xxh x e x h x e =-=-,由于()0,x ∈+∞故()'220xh x e =->,于是()22xh x e x =-在()0,+∞为增函数,所以()()22020x h x e x h =->=>,即()'220x f x e x =->在()0,+∞恒成立,从而()22xf x e x =-在()0,+∞为增函数,故()()220 2.xf x e x f =->=(2)函数()f x 有两个极值点12,x x ,则12,x x 是()'20xf x ke x =-=的两个根,即方程2xxk e =有两个根, 设()2x x x e ϕ=,则()22'xxx eϕ-=, 当0x <时,()'0x ϕ>,函数()x ϕ单调递增且()0x ϕ<; 当01x <<时,()'0x ϕ>,函数()x ϕ单调递增且()0x ϕ>; 当1x >时,()'0x ϕ<,函数()x ϕ单调递增且()0x ϕ>; 要使方程2x x k e =有两个根,只需()201k eϕ<<=,如图所示故实数k 的取值范围是20,.e ⎛⎫⎪⎝⎭又由上可知函数()f x 的两个极值点12,x x 满足1201x x <<<,由()111'20xf x ke x =-=得112x x k e=.()()111222211111112211x x x x f x ke x e x x x x e ∴=-=-=-+=--+ 由于()10,1x ∈,故()210111x <--+<,所以()10 1.f x <<。
2021届河北衡水中学高三英语上学期期中考试试题及答案
2021届河北衡水中学高三英语上学期期中考试试题及答案第一部分阅读(共两节,满分40分)第一节(共15小题;每小题2分,满分30分)阅读下列短文,从每题所给的A、B、C、D四个选项中选出最佳选项AThe 2021 Weibo Movie Night—an award ceremony jointly organized by Sina Weibo and China Movie Channel—was held on June 12, gathering around 100 filmmakers and A-list stars. Following are some upcoming films.BipolarCast: Dou Jingtong, Tian Zhuangzhuang and Wang ZhiwenDirector: Li MengqiaoAudience will follow a young woman’s unusual trip across China,who wishes to send a stolen lobster (龙虾) back to the sea. Li said that it’s a sort of experiment, examining the line between dreams and reality. Andthis is singer-actress Dou Jingtong’s first leading role.On Your MarkCast: Wang Yanhui and Zhang YouhaoDirector: Chiu Keng Gua (Malaysia)Inspired from a true story,On Your Markis about a taxi driver and his son, a marathon enthusiast who’s struggling with a visually-impaired disease. In order to help his son to realize his dream, the father joins a marathon training group to serve as his son’s personal “competition assistant”. This film is expected to tug the heartstrings of moviegoers near Father’s Day.TheBattleatLakeChangjinCast: Wu Jing, Hu Jun, Li Chen and Zhang HanyuDirector: Chen Kaige, Tsui Hark and Dante LamThe film centers on how the Chinese People’s Volunteers fearlessly fought against foreign invaders during an extremely cold winter. The battle destroyed around 13,000 enemies of US troops, becoming a turning point to lay the foundation for the final victory.Chinese DoctorsCast: Zhang Hanyu, Yuan Quan, Zhu Yawen and Li ChenDirector: Liu WeiqiangAdapted from true stories, it is about Chinese medical staff’s battle to rescue lives during the COVID-19 outbreak last year inWuhanJinyintanHospital.1. Who plays the leading role inBipolar?A. Dou Jingtong.B. Yuan Quan.C. Li Mengqiao.D. Zhang Hanyu.2. Which film focuses on the war betweenChinaand theU.S.?A.Bipolar.B.On Your Mark.C.Chinese Doctors.D.TheBattleatLakeChangjin.3. What doOn Your MarkandChinese Doctorshave in common?A. They both star Zhang Hanyu.B. They are based on true stories.C. They reflect the efforts to rescue lives.D. They are directed by Chinese directors.BImaginary friends in childhood refer to the invisible beings that a child gives a personality to and plays with for over three months.Crabbycrab(蟹)appeared on a holiday in Norway by running out of my four-year-old son Fisher's ear after a night of tears from an earache. Like other childhood imaginary friends, Crabby should be a sign thatFisher's mind is growing and developing positively. Indeed, research shows that imaginary friends can help develop children's social skills.Research has shown that the positive effects of having imaginary friends as a child continue into adulthood. Adolescents who remember their imaginary playmates have been found to use more activecoping(应对)styles, such as seeking advice from loved ones rather than bottle things up inside. Even adolescents with behavioral problems who had imaginary friends as children have been found to have better coping skills through the teenage years.Scientists thinkthis could be because these teens have been able to adjust themselves to the social world with imagination rather than choose to be involved in relationships with more difficult classmates. It could also be because the imaginary friends help to reduce these adolescents,loneliness.These teens are also more likely to seek out social connections -they tend to turn to others for advice. Current research by Tori Watson is taking this evidence and looking at how adolescents who have imaginaryfriends as children deal withbullying(欺凌)at school. It is found that teens who remember their imaginary friends are better at dealing with bullying.While we know a lot about childhood imaginary friends such as Crabby Crab and the positive effects they can have, there is still a lot to learn about imaginary friends.4. What is Crabby crab?A. It is a crab Fisher caught inNorway.B. It is Fisher's imaginary friend.C. It is a toy Fisher like much.D. It is a cause of earache.5. Why do children with imaginary friends have better coping skills?A. Imaginary friends help improve their adjustment.B. Having imaginary friends makes them smarter.C. They have rich imagination.D. They are no longer alone.6. What will a child with imaginary friends probably do if he is bullied?A. Escape from the bully.B. Fight with the bully bravely.C. Keep silent about being bullied.D. Ask a parent or a teacher for help.7. What is the author's attitude towards the effect of imaginary friends?A. Concerned.B. Doubtful.C. Optimistic.D. Indifferent.CYou run into the grocery store to quickly pick up your item. You grab what you need and head to the front of the store. After quickly sizing up the check-out lines, you choose the one that looks fastest. You chose wrong. People getting in other lines long after you have already checked out and headed to the parking lot. Why does this seem to always happen to you?Well, as it turns out, it's just math that is working against you. A grocery store tries to have enough employees at the checkout lines to get all their customers through with minimum delay. But sometimes, like on a Sunday afternoon, they get super busy. Because most grocery stores don't have the physical space to add morecheckout lines, their system becomes overburdened. Some small interruption — a price check, a particularly talkative customer — will have downstream effects, holding up the entire line behind them.If there are three lines at the store, these delays will happen randomly at different registers (收银台). Think about the probability. The chances of your line being that fastest one are only one in three, which means you have a two-thirds chance of not being in the fastest line. So it's not just in your mind: Another line is probably moving faster thanyours.Now, mathematicians have come up with a good solution, which they call queuing theory, to this problem: Just make all customers stand in one long snaking line, called a serpentine line, and serve each person at the front with the next available register. With three registers, this method is about three times faster on average than the more traditional approach. This is what they do at most banks, Trader Joe's, and some fast-food places. With a serpentine line, a long delay at one register won't unfairly punish the people who lined up behind it. Instead, it will slow everyone down a little bit.8. What phenomenon is described in the first paragraph?A. Queuing in a line.B. A shopping experience.C. A rush in the morning.D. Cutting in a line.9. According to the article, what may cause delays in checking out?A. The lack of employees in the grocery store.B. Some unexpected delays of certain customers.C. The increasing items bought by customers.D. A worsening shopping system of the store.10. What is the solution given by mathematicians?A. Employing more workers for checking out.B. Limiting the number of queuing people.C. Making only one line available.D. Always standing in the same line.11. What's the principle behind the queuing theory?A. To pursue the maximum benefit.B. To leave success or failure to luck.C. To avoid the minimum loss.D. To spread the risk equally among everyone.DResearchers say spicy tomatoes could soon be on the menu thanks to the rise of gene-editing technology.It's not the first time that experts have claimed techniques could develop fruit with unusual features: scientists have already been looking at changing the color1 of kiwi fruit and bettering the taste of strawberries.But researchers inBrazilandIrelandsay such methods could also offer practical advantages, with hot tomatoes offering a new way of harvesting the pungent chemicals found in peppers known as capsaicinoids, which make food taste “hot”.“Capsaicinoids are valuable. They are used as painkillers and there are some researches showing that they promote weight loss,” said Agustin Zsogon from a Brazilian university, a co-author of a new article arguing for the benefits of engineering hot tomatoes.Writing in the journal Trends in Plant Science, the researchers say peppers are difficult crops to grow and low productive. Worse still, it is tricky to keep the pungency of the fruits table. By contrast, tomato production is high and the plant is well-studied. “You could produce the capsaicinoids in a more cost-effective manner,” said Zsogon.Tomatoes and peppers developed from a common ancestor, but separated about 19 million years ago. “All these genes to produce capsaicinoids exist in the tomato, they are just not active,” said Zsogon. “Using gene-editing technology, it is likely to switch these genes back on in tomatoes, making the fruit more special”, he said.12. Why are the tomatoes made hot by the researchers?A. To test the gene-editing technologyB. To improve the amount of the tomatoesC. To explore ways to harvest more capsaicinoids.D. To make the tomatoes more delicious.13. For what purpose can capsaicinoids be used according to the text?A. To put on weight.B. To ease the pain.C. To improve sleep.D. To better the look.14. What is Zsogon's attitude to the gene-editing technology?A. Confident.B. Critical.C. Anxious.D. Doubtful.15. What's the main idea of the text?A. An introduction to gene-editing plants.B. Creating hot tomatoes by gene-editing.C. Problems with capsaicinoid production.D. The procedure of producing capsaicinoids.第二节(共5小题;每小题2分,满分10分)阅读下面短文,从短文后的选项中选出可以填入空白处的最佳选项。
2021年河北衡水中学高三英语上学期期中考试试卷及答案解析
2021年河北衡水中学高三英语上学期期中考试试卷及答案解析第一部分阅读(共两节,满分40分)第一节(共15小题;每小题2分,满分30分)阅读下列短文,从每题所给的A、B、C、D四个选项中选出最佳选项AThough online ordering is popular in the UK today,handson experience still attracts many buyers' attention.Oxford StreetLondon is a shoppers' paradise,and most visitors head for Oxford Street.Halfway along is Selfridges,one of the world's first department stores where the architecture and window dressing impress you even before you go in.There are at least four other major stores on this street,plus Europe's largest music shop.In December the atmosphere is especially festive because of the Christmaslights which are always lighted by a politician,a great sportsman,or a super star.Kensington High StreetA fashionable area for shopping is Kensington High Street.One of its department stores even has a roof garden—good for relaxing between purchases.There's also an organic food superstore.Borough MarketYou can't visit London without going to a supermarketOne of the oldest and best for food is probably Borough Market on the south bank of the Thames.Get off the underground at London Bridge and wander among fresh fish stalls,bakeries,and fruit and vegetable sellers.You can also buy specialities to take away,like cheeses,pork pies,mustard and chutney.More places for bargainsPortobello Road Market on a Saturday is your best choice for jewelry or collector's items.It's a shortwalk from the underground station at Notting Hill Gate and you never know what you will find.For clothes,Camden Market is the place.It gets a little crowded at the weekends,though.Convent Garden Market offers great experience for the simple pleasure of looking at jewelry and gifts.1.Oxford Street becomes special in December for ________.A.the wonderful window dressingB.the Europe's largest music shopC.the lights lighted by a famous personD.many bargains to choose from2.To enjoy food,you can goto ________.A.Camden MarketB.Borough MarketC.Kensington High StreetD.Portobello Road Market3.Where is this passage probably taken from?AA science book. B.A traveler's journal.C.A news report.D.A trip guide.BI’ve never been the kind of person to say, “it’s the thought that counts” when it comes to gifts. That was until a couple of weeks ago, when my kids gave me a present thatblew me away.For years now, I’ve been wanting to sell our home, the place where my husband and I raised our kids. But to me, this house is much more than just a building.In the front room, there’s a wall that has hundreds of pencil lines, marking the progress of my children’s growth. Every growth stage is marked in grey, with each child’s name and the date they were measured. Of all the objects and all the memories, it’s this one thing in a home that’s the hardest to leave behind. Friends I know have returned home after work only to discover their wall of heights has been freshly painted over. A new paint job wouldn’t normally be greeted by tears, but erasing that evidence of motherhood hurts more than it should. Our kids grow in so many ways, but the wall is physical evidence of their progress, right there for everyone to see. Over the years, I’ve talked about how much I would hate leaving that wall behind when I moved, even though the last marks were made 10 years ago when my kids stopped growing.So one day, while I was at work, my childrendecided to do something about it.They hired Jacquie Manning, a professional photographer whose work is about capturing (捕捉) the beautiful things in life, from clear lakes and skies to diamonds and ballgowns (舞会礼服).She came to our house while I was at work, and over several hours, took photos of the hundreds of drawings and lines, little grey fingerprints (手印), and old marks. Somehow, she managed to photograph all those years of memories perfectly. Afterwards, she put all the photos together into one image, transforming them into a beautiful history of my family.Three weeks later, my children’s wonderful gift made its way to me—a life-size photo of the pencil lines and fingerprints that represents entire lifetimes of love and growth.4. The underlined phrase in Para. I “blew me away” probably means “________”.A. attracted meB. surprised meC. accepted meD. refused me5. What does the house really mean to the author?A. A house.B. Buildings.C. An object.D. Memories.6. What surprised the friends I know after work?A. Finding the wall repainted.B. Erasing the fingerprints.C. Greeting them by tears.D. Leaving the wall unfinished.7. What is the best title for the text?A. Gift Made with LoveB. Buildings Made by ChildrenC. A Very Wonderful PaintingD. A Family HistoryCI dropped out of college after my first year. Three years later, I returned to college after having been stuck in a dead-end job, working at a department store. I saw school as my way out. But I quickly found myself up against the same problems that had caused me to give up before. I was in over my head with college-level algebra (代数) and a heavy workload of reading and writing homework. In addition, I was still unsure of my career (职业) direction。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
衡水中学2021届高三上学期期中考试英语试卷及答案第一卷(选择题共90分)第一部分听力(共两节,满分20分)第一节听下面5段对话。
每段对话后有一个小题,从题中所给的的A、B、C三个选项中选出最佳选项。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题每段对话仅读一遍。
1. What does the woman ask John to do?A. Leave the room for a moment.B. Have a discussion with Pete.C. Get something to eat.2. How are the prices in the restaurant?A. Reasonable.B. High.C. Low.3. What does the man really want to say?A. The lady shouldn't care too much about it.B. He gave the kid fewer candies on purpose.C. The kid has secretly had some of the candies.4. What day is it when the conversation takes place?A. Saturday.B. Monday.C. Sunday.5. How does the man feel?A. Worried.B. Relieved.C. Confused.第二节(共15小题:每小题1.5分,满分22.5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅.读各个小题,每小题5秒钟;听完后,各小题给出5秒钟的作答时间。
每段对话或独白读两遍。
听第6段材料,回答第6、7题。
6. Where is the man going?A. The travel agency.B. The shop.C. The bank.7. How will the man go there?A. In his own car.B. In the woman's car.C. In a taxi.听第7段材料,回答第8. 9题。
8. How will the speakers decorate their house again?A. By repainting the living room.B. By painting the wall in blue.C. By drawing a picture on the curtain.9. What will the two speakers do firs?A. Make a plan.B. Buy some paint.C. Visit a country-style house.听第8段材料,回答第10至12题。
10. What does the man want the girl to do?A. Find a village.B. Draw a picture.C. Provide information.11. Which of the following can describe the girl?A. She is unfriendly.B. She lacks imagination.C. She lacks confidence.12. What is the probable relationship between the two speakers?A. Teacher and student.B. Father and daughter.C. Boss and secretary. 听第9段材料,回答第13至16题。
13. What is the relationship likely to be between the two speakers?A. Waiter and customer.B. Friends.C. Wife and husband.14. Where are the two speakers?A. In a laundry.B. In a coffee shop.C. In a university.15. What will people do to make the French toast before baking it?A. Mix the bread with eggs.B. Put some fresh fruit on the top.C. Spread some powdered sugar.16. Who will probably pay the bill next time?A. Betty.B. The man.C. Both of them.听第10段材料,回答第17至20题。
17. How long did Bart work as an engineer in the steelworks?A. For four years.B. For fifteen yearsC. For forty years.18. What was Bart after his 55th birthday?A. A manager.B. An advisor.C. A volunteer.19. What does Bart like best now?A. Playing golf.B. Painting pictures.C. Making articles.20. How is Bart's life in the retirement community?A. Dull.B. Busy.C. Colorful.第二部分阅读理解(共20小题;每小题2分,满分40分)第一节阅读下列短文,从每题所给的四个选项(A、B、C、D)中,选出最佳选项。
AAdding math talk to story time at home is a winning factor for children's math achievement, according to a new research from a university. The study from psychologists Sian Beilock and Susan Levine shows a marked increase in math achievement among children whose families used Bedtime Math, an Wad app that delivers engaging math story problems for parents and children to solve together.Even children who used the app with their parents as little as once a week saw gains in math achievement by the end of the school year. The app's effect was especially strong for children whose parents tend to be anxious or uncomfortable with math.Previous research from this group has demonstrated the importance of adults' attitudes about math for children's math success. For example, a recent study found that math-anxious parents who help their children with math homework actually weaken their children's math achievement.The new findings demonstrate that structured, positive interactions around math at home can cut the link between parents' uneasiness about math and children's low math achievement."Many people experience high levels of anxiety when they have to solve a math problem, with a majority of adults feeling at least some worries about math, " said Beilock, professor in Psychology and author of Choke, a book about stress and performance. "These math-anxious parents are probably less likely to talk about math at home, which affects how competent their children are in math. Bedtime Math encourages a dialogue between parents and kids about math, and offers a way to engage in high-quality math interactions in a low-effort, high-impact way."Study participants included 587 first-grade students and their parents. Families were given an Wad installed with a version of the Bedtime Math app, with which parents and their children read stories and answer questions involving math, including topics like counting, shapes and problem-solving. A control group received a reading app that had similar stories without the math content and questions related to reading comprehension instead. Children's math achievement was assessed at the beginning and end of the school year. Parents completed a questionnaire about their nervousness with math.The more times parents and children in the math group used the app, the higher children's achievement on a math assessment at the end of the school year. Indeed, children who frequently used the math app with their parents outperformed similar students in the reading group in math achievement at year's end.21. Bedtime Math is an iPad app that .A. requires parents and children to answer reading comprehension questionsB. encourages children together with their parents to solve math story problemsC. teaches children how to count, recognize shapes and solve practical problemsD. assesses children's math achievement and parents' nervousness with math22. The previous study found that .A. children's math achievement is related to parents' attitude about mathB. help from math-anxious parents improves children's math achievementC. interactions around math at home will cut off the family relationshipD. children can achieve more success if they see the importance of math23. We can infer from the passage that .A. children using the app can see gains in all academic achievementsB. children whose parents are uneasy about math outperform other studentsC. it is the math problems related to the stories that make the great differenceD. the frequency of using the app has nothing to do with children's achievementBThe clearing of my parents' home has made me think about the importance, even centrality of books to the house's life and soul. The house, and our lives in it, would not have been the same without books. The force of the statement comes home to me as I see what happens when shelves are emptied. The rooms suddenly look uncomfortably bare.I always rather took it for granted that books furnished a room. The only rooms in our house without books were the dining-room and the bathrooms. Otherwise there were books everywhere: in all the bedrooms, in the drawing-room and in the piano room which became my parents' comfortable winter study.I couldn't help feeling that books were rather like people: some more formal and boring, others more entertaining; some simply for show, others with unpromising outsides but rich interiors. They did more, in fact, than furnish a room; they were companions who could offer insights, good advice.Now the books are being contributed (not all, to be sure, but very many), and I fear for their future, almost as if they were refugees. "Habent sua fata libelli," goes as the old Latin saying, originally written by Terentianus; it meant that the fate and future of books were determined by the capability of the reader. But the meaning of the phrase has been misunderstood by time and is now associated with the physical fate of particular books, how they have passed from owner to owner. This is how Walter Benjamin read the saying when he wrote his essay Unpacking My Library, which analyses the extraordinarily close relationship between a collector and his or her books.As I deal with the books-many are going to charity shops and I hope they will find good homes-I can't help wondering if my generation is the last that will oversee such a process. Books are disappearing, as more and more are bought in electronic form and exist only as bytes of information on E-books or other devices. Does this matter? Could books become more spiritual, as they lose their physicality?24. When clearing the room, the author .A. realized the influence of books on his past lifeB. thought of the statement his parents once madeC. felt upset to leave his parents' books behindD. found some empty shelves left by his parents25. The underlined word "interiors" in Paragraph 3 refers to .A. pagesB. notesC. coversD. contents26. According to Walter Benjamin,A. it's important to pass books from owner to ownerB. the meaning of books is misunderstood by timeC. the fate of books is related to their collectorsD. the future of books depends on readers' capability27. From the passage we know that .A. the author is attached to physical form of booksB. the author's books are bound to find good homesC. E-books have taken the place of traditional onesD. the author's parents used every room of theirs as a studyCFor those concerned about wrinkly old skin. It might be a creative solution: an elastic(有弹性的) "second skin" that can be smoothed on to make aged tissue look more youthful.The wearable film, developed at the Massachusetts Institute of Technology (MIT) has shown promise in a series of small experiments where it was applied to wrinkles, under-eye bags and areas of dry skin. When applied to the face or body, the thin, transparent layer sticks to the skin and supports the tissue, making it look and behave like younger skin, its producers claim."What we've been able to do is create a cream that you can put on the skin, and then when it's on the skin it can actually form, essentially, an elastic second skin, " said Bob Langer, who led the research. Tests in the lab found that the polymer film(高分子膜), which is only 70 thousandths of a millimeter thick, reduced theappearance of wrinkles and under-eye bags, and helped keep moisture(水分)in areas of dry skin.The layer is designed to be applied in the morning, then peeled off at night. In previous studies, the second skin withstood normal daily wear, and the stresses and strains of exercise and swimming, without falling off or causing irritation. It also survived exposure to rain."It's something you can wear for a whole day or longer, depending on the physical forces that get applied to the area where it is worn, "said Daniel Anderson, who helped develop the product at MIT, "You can't tell you're wearing it."While normal cosmetics can mask imperfections on the skin, the new coating changes the way skin behaves by giving it the elasticity of young skin. It was developed with help from two companies.28. According to the text, the "second skin" .A. was developed by two companiesB. has not been tested by scientistsC. is developed to remove under-eye bagsD. is a transparent covering for the skin29. Compared with normal cosmetics, the new product .A. can make the skin appear youngerB. can fully mask imperfections on the skinC. doesn't cause any problems in the skinD. must be used in a more complicated way30. What can we learn from the Daniel's words?A. You can recognize if people wear the "second skin."B. The "second skin" should be peeled off at nightC. How long people can wear the layer varies.D. The product can provide skin with a lot of water.31. What is the main idea of the text?A. MIT has made a breakthrough in cosmetics.B. The "second skin" helps renew one's youth.C. Masks will soon become a thing of the past.D. How the "second skin" is used to improve skin.DChinese audiences seemed not to have been satisfied with the third season of the highly anticipated food documentary A Bite of China.Even though the series has maintained high viewership ratings since its comeback last week, much higher than other programs aired at the same time, the ranking on Douban, a social networking website featuring films, literature and events, slipped to 4.2 out of 10, as of Tuesday, compared with 9.3 and 8.4, respectively, for the firsttwo seasons.Picky viewers complain that some of the narration is not accurate, while others pinpoint misleading content. At the same time, food blogger barbara questioned whether it is appropriate to give a close-up shot of the poisonous plant Nandina(南天竺)in a food program.A Bite of China, which debuted in 2012, became hugely popular nationwide for its quality introduction of some rarely-known and mouth-watering domestic cuisine. In the new show, however, watchers are not satisfied with "irrelevant" food references, such as lipsticks made of Chinese traditional medicine and martial arts master.The first episode introduced a hand-made iron frying pan from east China's Shandong province, which prompted thousands of Chinese Internet users to buy one from China's leading e-commerce website Tmall in the next few days. Sales of the pan at "Zhensanhuan" surged 6, 000 times compared with a year ago, according to Beijing Youth Daily.In response to overwhelming criticism and questions, A Bite of China production crew responded on Weibo that they seek innovation despite the risks following the first two phenomenal seasons."It is unavoidable to make comparisons with the first two, and some audiences may not accept the changes," the crew said. "We explore the culture and civilization behind food, and give food a historic touch. That's why we feature culinary(烹饪的)tools, feast and rituals, as well as a healthy diet to show Chinese wisdom and philosophy, which has not been shown in any food programs before."32. Why does the passage mention Nandina?A. Because some of the narration is not accurate.B. Because it may be improper to give a close-up shot of a poisonous plant.C. Because it is misleading content.D. Because it is not attractive at all to most picky viewers.33. Which of the following elements leads to viewers' dissatisfaction with the new show?A. some mouth-watering domestic cuisinesB. some rarely-known cuisinesC. food-unrelated itemsD. the increasing sales of the pan at "Zhensanhuan"34. According to its production crew, what is unique to 'A Bite of China III'?A. It makes comparisons with the first two episodes.B. It tells the story of some martial arts related to food.C. It receives overwhelming criticism and questions from audience.D. It focuses on cooking tools, rituals and healthy eating.35. What is the best the title for the passage?A. 'A Bite of China III' Draws Criticism from AudiencesB. 'A Bite of China III' Maintains High Viewership RatingsC. 'A Bite of China III' Changes for the WorseD. 'A Bite of China III' Explains its Purposes第二节根据短文内容,从短文后选项中选出能填入空白处的最佳选项。