基于神经网络的专家系统

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、人工神经元 • 人工神经元是组成人工神经网络的基本 处理单元,简称为神经元。 • 心理学家麦克洛奇 (W . McCulloch) 和数 理逻辑学家皮兹 (W.Pitts) 于 1943 年首先提 出了一个简化的神经元模型,称为M-P模 型。
• M-P模型
• 圆表示神经元的细胞体; • e,i 表示外部输入,对应于生物神经元 的树突。e为兴奋性突触连接,i 为抑制 性突触连接; • θ表示神经元兴奋的阈值; • y 表示输出,它对应于生物神经元的轴 突。
(4) 结构的可塑性:突触传递信息的特性是可变 的,随着神经冲动传递方式的变化,其传递作 用可强可弱。 (5) 突触界面具有脉冲与电位信号的转换功能。 沿轴突传递的电脉冲是等幅、离散的脉冲信号, 而细胞膜电位变化为连续的电位信号,这两种 信号是在突触接口进行变换的。 (6) 突触对信息的传递具有时延和不应期。在相邻 的两次输入之间需要一定的时间间隔,在此期 间不响应激励,不传递信息,这称为不应期。
图4 互连网络
三、 人工神经网络的特征及分类
1、人工神经网络有以下主要特征: (1) 能较好地模拟人的形象思维。 (2) 具有大规模并行协同处理能力。 (3) 具有较强的容错能力和联想能力。
(3)具有较强的学习能力。两种方式学习:
– 有教师的学习:指由环境向网络提供一组样 例,每一个样例部包括输入及标准输出两部 分,如果网络对输入的响应不一致,则通过 调节连接权值使之逐步接近样例的标准输出, 直到它们的误差小于某个预先指定的阈值为 止。 – 无教师的学习:指事先不给出标准样例,直 接将网络置于环境之中。学习阶段与工作阶 段融为一体。
(2) 时空整合处理功能:神经元对于不同时间通过
同一突触传入的信息,具有时间整合功能;对 于同一时间通过不同突触传人的信息,具有空 间整合功能。 (3) 兴奋与抑制工作状态:
– 兴奋状态:指神经元对输入信息经整合后使 细胞膜电位升高,且超过了动作电位的阈值, 此时产生神经冲动,并由轴突输出。 – 抑制状态:指经对输入信息整合后,膜电位 下降至低于动作电位的阈值,此时无神经冲 动输出。
• 神经元的工作过程一般是:
(1) 从各输人端接收输入信号xi; (2) 根据连接权值wi,求出所有输入的加权和σ :
ຫໍສະໝຸດ Baidu
(3) 用某一特性函数 ( 又称作用函数) f 进行转换, 得到输出y:
2、神经元的互连形态 人工神经网络是由神经元广泛互连构成的, 不同的连接方式就构成了网络的不同连 接模型,常用的有以下几种: (1) 前向网络:前向网络又称为前馈网络。 在这种网络中,神经元分层排列,分别 组成输入层、中间层和输出层。每一层 神经元只接收来自前一层神经元的输入。 输入信息经各层变换后,最终在输出层 输出,如图所示。
(3) 树突:这是由细胞体向外伸出的除轴突
外的其它分枝,长度一般均较短,但分 枝很多。它相当于神经元的输人端,用 于接收从四面八方传来的神经冲动。 (4) 突触:是神经元之间相互连接的接口部 分,即一个神经元的神经末梢与另一个 冲经元的树突相接触的交界面,位于神 经元的神经末梢尾端。
生物神经元组成
2、人工神经网络的分类
l 若按网络的拓扑结构划分,则可分为无
反馈网络与有反馈网络; l 若按网络的学习方法划分,则可分为有 教师的学习网络与无教师的学习网络; l 若按网络的性能划分,则既可以分为连 续型与离散型网络,又可分为确定型与 随机型网络; l 若按连接突触的性质划分,则可分为一 阶线性关联网络与高阶非线性关联网络。
二、人工神经元及其互连结构
人工神经网络是由大量处理单元 (人工神经
元、处理元件、电子元件、光电元件等 ) 经广 泛互连而组成的人工网络,用来模拟脑神经系 统的结构和功能。 – 信息的处理是由神经元之间的相互作用来实 现。 – 知识与信息的存储表现为网络元件互连间分 布式的物理联系。 – 网络的学习和识别取决于各神经元连接权值 的动态演化过程。
前向网络
(2)从输出层到输入层有反馈的网络。这
种网络与上一种网络的区别仅仅在于,输出 层上的某些输出信息又作为输入信息送入到 输入层的神经元上。
图2 从输出层到输入层有反馈的网络
(3) 层内有互连的网络。同一层上的神经元 可以互相作用。
图3 层内有互连的网络
(4)互连网络。在这种网络中,任意两个 神经元之间都可以有连接,如图4所示。 在该网络中,信息可以在神经元之间反 复往返地传递,网络一直处在一种改变 状态的动态变化之中。
一、脑神经系统与生物神经元
1. 脑神经系统 : 神经系统是由结构上相对 独立的神经细胞构成的。据估计,人脑 神经系统的神经细胞约为1011个。 2. 生物神经元 生物神经元组成:神经细胞称之为生物 神经元。神经元主要由三个部分组成: 细胞体、轴突、树突。
(1) 细胞体:由细胞核、细胞质与细胞膜等 组成。它是神经元的新陈代谢中心,同 时还用于接收并处理对其它神经元传递 过来的信息。 (2) 轴突:由细胞体向外伸出的最长的一条 分枝,每个神经元一个,其作用相当于 神经元的输出电缆,它通过尾部分出的 许多神经末梢以及梢端的突触向其它神 经元输出神经冲动。
神经元之间的联系:
轴突及突触与其它许多神经元建立联系。 树突接收来自不同神经元的信息。 神经元之间的这种复杂联系就形成了相应的 神经网络。
神经元重要特性:
(1) 动态极化原则:在每一神经元中,信息 都是以预知的确定方向流动的,即从神经元 的接收信息部分 (细胞体、树突)传到轴突的 起始部分,再传到轴突终端的突触,最后再 传递给另一神经元。
• M-P 模型对抑制性输入赋于了“否决 权”,只有当不存在抑制性输入,且兴 奋性输入的总和超过阈值,神经元才会 兴奋,其输入与输出的关系如表所示。
M-P模型输入输出关系表
• 在M-P模型基础上发展起来的常用神经网络模型 如图所示:
神经元的结构模型
• x(i=1,2,…,n) 为该神经元的输入 • Wi 为该神经元分别与各输入间的连接强 度,称为连接权值; • θ为该神经元的阈值, • s 为外部输入的控制信号,它可以用来调 整神经元的连接权值,使神经元保持在 某一状态; • y 为神经元的输出。
相关文档
最新文档