空调群控节能控制系统原理图

合集下载

某标准空调控制原理图_PLC电气控制原理设计CAD图纸

某标准空调控制原理图_PLC电气控制原理设计CAD图纸
比 例批 准 处 数 审 核工 艺设 计标准化绘 图标 记图 样 标 记更改单号签 名日 期重 量共 页第 页件数深圳市宝安任达电器实业有限公司日 期A210-A210-A210-A210-800-1AP322008002200-1AP22200-1AP1800A110-30-11A110-30-11A110-30-11A110-30-11A110-30-11A110-30-11A110-30-11A110-30-11-1AP2冷冻泵动力控制柜-1AP1冷冻泵动力控制柜-1AP3冷冻泵动力控制柜2200PLC800-1AP48002200-1AP580022002200800-1AP6TP27-10335*275--310*248-*78(d73)PLC控制柜-1AP4冷却泵控制柜A50-30-11A50-30-11A50-30-11A50-30-11A110-30-11A110-30-11A110-30-11A110-30-11A110-30-11A110-30-11A110-30-11A110-30-11A110-30-11A110-30-11A110-30-11A110-30-11A50-30-11A50-30-114FR5QF1FR2FR1QF2QF3FRVVVF13QF4QF5FR6FR7QF8QF-1AP67FR9FR8FR10FRVVVF311FR12FR13FR14FRVVVF4-1AP411QF9QF10QF12QF13QF-1AP516QF14QF15QF17QF18QF18FR16FR15FR17FR22QF20QF19QF21QFPLC4KM1KM2KM3KM7KM5KM6KM8KM10KM9KM12KM11KM21KM15KM14KM13KM18KM17KM16KM20KM19KM24KM23KM22KM26KM25KM27KM29KM28KM30KM-1AP627K

中央空调系统原理及原理图

中央空调系统原理及原理图

PPT文档演模板
中央空调系统原理及原理图
中央空调系统的分类(续)
3、空气-水系统 由经过处理的空气和水共同负担室内热湿 负荷 ,典型装置是风机盘管加新风系统。
4、冷剂系统 利用直接蒸发的制冷剂吸热来调节室内温 度、湿度。
PPT文档演模板
中央空调系统原理及原理图
中央空调系统的分类(续)
二、按处理设备的情况分类
PPT文档演模板
中央空调系统原理及原理图
压缩机(续)
4)评价制冷压缩机消耗能量方面先进性的指标: a、制冷压缩机的性能系数 COP即:单位轴功率的 制冷量。
轴功率(压缩机的耗功率)指电动机传至压缩 机机轴上 的功率,主要包括直接用于压缩空气的 所耗功率和克服运动机构的摩擦阻力所耗功率。 b、能效比 EER :单位电动机输入功率的制冷量 大小。
离心式冷水机组单机容量大,制冷性能系数COP值高,但在部分负荷 下运行时容易发生“喘振”现象。螺杆式冷水机组由于在压缩机构造 上的特点,在部分负荷下仍能稳定、高效地运行,常被用于负荷波动 大、需要调节的场合。活塞式冷水机组和涡旋式冷水机组均为小容量 制冷机,其中活塞式冷水机组由于振动大、运行维护复杂,目前运用 较少,而涡旋式冷水机组运行噪声小,调节方便,在小型工程中运用 较多。
PPT文档演模板
中央空调系统原理及原理图
中央空调系统的分类
一、按负担室内热湿负荷所用的介质分类
1、全空气系统 空调房间的室内热湿负荷全部由经过处理 的空气来承担,利用空调装置送出风调节 室内空气的温度、湿度。
PPT文档演模板
中央空调系统原理及原理图
中央空调系统的分类(续)
2、全水系统 全部由经过处理的水负担室内热湿负荷 , 利用冷冻机处理后的冷冻水(或锅炉制出热 水)送往空调房间的风机盘管中对房间的温 度、湿度进行处理的。

空调控制电路原理图

空调控制电路原理图

美的KFR-26/33GW/CBPY型变频空调电路原理分析单元电路原理简析美的变频空调主要包括“数智星”、“数智星S”、“数智星R”挂机系列:“数智星R”、“数智星M”、“数智星F”柜机系列等。

美的KFR-26/33GW/CBPY型变频空调。

属“数智星”变频系列。

其主要机型包括:KFR-26/33GW/CBPY、KFR-26/33GW/I1BPY等。

它们的电路原理基本相似。

结合图1~图6电路原理图,对整机单元电路作简要分析。

1.室内机主电源电路电路见上图,由电源捅头L、N两端输入AC220V交流电压,经保险管FS1、压敏电阻ZNR1、电容C1和C2、T2过流保护和高频滤波后。

一路经接线柱L、N两端送到室外机主电源电路的输入端。

其中N 端与通讯电路的S端组成室内、室外机的通讯传输线路;另一路经A、B两端送到电源变压器T1的初级线圈;第三路送到室内风机控制电路。

2.室内机辅助电源电路电路见中图,由电源变压器T1次级线圈输出的两路低压交流电,一路经捕件CN5(3)、(4)脚送到整流桥堆IC6(1)、(2)脚,经IC6、C8和C35整流、滤波后,输m+13V电压,给换气风机(M2)供电;另一路经插件CN5(1)、(2)脚送到整流桥堆IC7(1)、(2)脚,经整流桥堆IC7、三端稳压块IC4(7812)和IC5(7805)、C9~C11和C32~C34整流、滤波、稳压后。

输出稳定的+12V和+5V 电压,分别给继电器控制、室内风机控制、步进电机控制、蜂鸣器、主控芯片、复位、过零检测、驱动、温度传感器、通讯、存储器、按键和显示等电路供电。

3.室内风机控制电路电路见上图、下图。

在主控芯片IC3(UPD780021)内部程序的控制下,由(1)脚输出室内风机控制信号,并由三极管04和双向可控硅光耦IC11(3526)进行控制,可实现室内风机(FAN)的运转、停转及无级调速等功能。

当IC3(1)脚输出高电平时,Q4导通,IC11内部发光管导通。

空调控制电路原理图

空调控制电路原理图

美的KFR-26/33GW/CBPY型变频空调电路原理分析单元电路原理简析美的变频空调主要包括“数智星”、“数智星S”、“数智星R”挂机:“数智星R”、“数智星M”、“数智星F”柜机系列等。

美的KFR-26/GW/CBPY型变频空调。

属“数智星”变频系列。

其主要机型包括:KFR-26/33GW/CBPY、KFR-26/33GW/I1BPY等。

它们的电路原理基本相似。

结合图1~图6电路原理图,对整机单元电路作简要分析。

1.室内机主电路电路见上图,由电源捅头L、N两端输入AC0V交流电压,经、ZNR1、和C2、T2过流保护和高频后。

一路经L、N两端送到室外机主电源电路的输入端。

其中N端与通讯电路的S端组成室内、室外机的通讯传输线路;另一路经A、B两端送到T1的初级线圈;第三路送到室内风机控制电路。

2.室内机辅助电源电路电路见中图,由电源变压器T1次级线圈输出的两路低压交流电,一路经捕件CN5(3)、(4)脚送到整流桥堆6(1)、(2)脚,经、C8和C35整流、滤波后,输m+13V电压,给换气风机()供电;另一路经插件CN5(1)、(2)脚送到整流桥堆(1)、(2)脚,经整流桥堆IC7、三端块()和IC5()、~C和~C34整流、滤波、稳压后。

输出稳定的+12V和+5V电压,分别给控制、室内风机控制、步进电机控制、、主控芯片、复位、过零检测、驱动、、通讯、存储器、按键和显示等电路供电。

3.室内风机控制电路电路见上图、下图。

在主控芯片IC3(780021)内部程序的控制下,由(1)脚输出室内风机控制信号,并由和双向可控硅光耦IC11()进行控制,可实现室内风机()的运转、停转及无级调速等功能。

当IC3(1)脚输出高电平时,Q4导通,IC11内部发光管导通。

其发光强度控制内部双向可控硅的导通程度。

从而进一步控制室内风机(FAN)的工作状态和运转速度。

同时室内风机(FAN)的转速还受反馈电路控制,当风机转速信号通过R、反馈到IC3(53)脚后,其内部风机转速检测电路则按照风机运转状况来确定风机转速。

空调控制电路原理图

空调控制电路原理图

美的KFR-26/33GW/CBPY型变频空调电路原理分析单元电路原理简析美的变频空调主要包括“数智星”、“数智星S”、“数智星R”挂机系列:“数智星R”、“数智星M”、“数智星F”柜机系列等。

美的KFR-26/33GW/CBPY型变频空调。

属“数智星”变频系列。

其主要机型包括:KFR-26/33GW/CBPY、KFR-26/33GW/I1BPY等。

它们的电路原理基本相似。

结合图1~图6电路原理图,对整机单元电路作简要分析。

1.室内机主电源电路电路见上图,由电源捅头L、N两端输入AC220V交流电压,经保险管FS1、压敏电阻ZNR1、电容C1和C2、T2过流保护和高频滤波后。

一路经接线柱L、N两端送到室外机主电源电路的输入端。

其中N 端与通讯电路的S端组成室内、室外机的通讯传输线路;另一路经A、B两端送到电源变压器T1的初级线圈;第三路送到室内风机控制电路。

2.室内机辅助电源电路电路见中图,由电源变压器T1次级线圈输出的两路低压交流电,一路经捕件CN5(3)、(4)脚送到整流桥堆IC6(1)、(2)脚,经IC6、C8和C35整流、滤波后,输m+13V电压,给换气风机(M2)供电;另一路经插件CN5(1)、(2)脚送到整流桥堆IC7(1)、(2)脚,经整流桥堆IC7、三端稳压块IC4(7812)和IC5(7805)、C9~C11和C32~C34整流、滤波、稳压后。

输出稳定的+12V和+5V 电压,分别给继电器控制、室内风机控制、步进电机控制、蜂鸣器、主控芯片、复位、过零检测、驱动、温度传感器、通讯、存储器、按键和显示等电路供电。

3.室内风机控制电路电路见上图、下图。

在主控芯片IC3(UPD780021)内部程序的控制下,由(1)脚输出室内风机控制信号,并由三极管04和双向可控硅光耦IC11(3526)进行控制,可实现室内风机(FAN)的运转、停转及无级调速等功能。

当IC3(1)脚输出高电平时,Q4导通,IC11内部发光管导通。

空调自动控制原理图

空调自动控制原理图

空调自动控制原理图
以下是空调自动控制的原理图,没有标题的文字。

1. 室内温度传感器:将室内温度转化为电信号。

2. 室外温度传感器:测量室外温度情况。

3. 室内湿度传感器:将室内湿度转化为电信号。

4. 室外湿度传感器:测量室外湿度情况。

5. 温度控制器:接收室内温度传感器的信号并与设定温度进行比较,根据比较结果控制空调开关或调整温度。

6. 湿度控制器:接收室内湿度传感器的信号并与设定湿度进行比较,根据比较结果控制空调开关或调整湿度。

7. 控制面板:提供操作界面,用户可以通过控制面板设置温度和湿度等参数。

8. 冷凝器:通过制冷剂的循环和传热,将室内热量排出去,降低室内温度。

9. 蒸发器:通过制冷剂的循环和传热,从室内吸收热量,提高室内温度。

10. 电风扇:控制室内空气的流动,使冷热空气均匀分布。

11. 压缩机:提供制冷剂的压缩和循环,实现室内空气的冷却。

12. 膨胀阀:控制制冷剂的流量,调节制冷效果。

以上是空调自动控制的原理图。

中央空调智能群控系统节电原理

中央空调智能群控系统节电原理

中央空调智能群控系统综合应用了智能群控技术、数据采集技术、微处理技术、PLC控制技术、变频控制技术、网络通信技术等,形成具有自主知识产权的智能节电控制程序。

它在中央空调运行温度、压力、流量等数据采集基础上,结合建筑物的高度、朝向、材质、热负荷情况及用户使用习惯等一系列参数,利用独有的节电智能控制程序,建立能耗最佳运行模式,自动跟踪楼宇负荷变化,实现动态预测、提前调整、同步优化,最终调节中央空调温度、压力、流量等参数,在保证末端系统对温度、压力、流量等要求的情况下使功率曲线最大限度接近实际负荷需要功率曲线,将空调的节能效果推到极限,达到系统优化节能的目的。

下面是深圳邦德瑞厂家的小编带来的中央空调智能群控系统节电原理。

产品从如下四方面进行节能:1、消除设备选型产生的富余功率;2、消除系统部分负荷运行时的富余功率;3、提高主机的能效比和电动机的工作效率;4、运行能量优化控制和管理节能。

系统节电率:主机10~20%,水系统40~60%,综合节电率20~30%。

产品特点:具有自寻优、自适应的智能化控制传统的中央空调节能系统是将冷冻水和冷却水系统独立开来控制,但是对于中央空调这样多参量相互影响的复杂系统,只有采用智能控制功能知识,实现冷冻水和冷却水系统的统一化管理,使其达到最优的配比才能成功。

因此该系统采用了智能控制技术,使系统具有自寻优和自适应的优化控制功能,实现了中央空调系统各种负荷条件下的最大节能,使空调系统综合节能达到20%以上。

具有可靠的安全保护通过全面的运行参数采集,实现了系统工作状态的全面监控,并设置了冷冻水、冷却水的低限流量保护和低温保护,有效地保障了冷冻水和冷却水系统在变流量工况下空调主机蒸发器和冷凝器的安全稳定运行。

实现动态负荷跟随,保障了末端的服务质量系统突破了传统中央空调冷媒系统的运行方式(定流量模式或冷源侧定流量而负荷侧变流量模式),实现最佳输出能量控制,即空调主机冷媒流量自动跟随末端负荷需求而同步变化(即变流量),因此,在空调系统的任何负荷状况(满负荷或部分负荷)下,都能既保障中央空调系统末端的服务质量(舒适性),又实现最大的节能。

多联机空调系统原理图

多联机空调系统原理图

多联机空调系统原理图多联机空调系统是一种能够同时连接多个室内机和一个室外机的空调系统,其原理图如下所示:1. 室外机部分:室外机是多联机空调系统的核心部件,其主要包括压缩机、冷凝器、膨胀阀和电子控制器。

当空调系统启动时,压缩机开始工作,将低压、低温的制冷剂吸入,经过压缩后变成高压、高温的气体,然后通过冷凝器散热,使制冷剂冷却成为高压、高温的液体。

接着,制冷剂通过膨胀阀减压,成为低压、低温的液体,进入室内机进行制冷循环。

2. 室内机部分:室内机包括蒸发器、风机和控制器。

制冷剂从室外机进入室内机后,经过蒸发器吸热蒸发,吸收室内热量,然后通过风机将冷风送入室内,降低室内温度。

控制器则负责监测室内温度,并根据设定值来控制制冷剂的流动和风机的运行,以保持室内舒适的温度。

3. 多联机连接:多联机空调系统可以连接多个室内机,每个室内机可以独立控制温度,实现不同房间的个性化空调需求。

室外机通过管道将制冷剂分配到各个室内机,同时室内机通过电子控制器与室外机进行通讯,实现整个系统的协调运行。

4. 工作原理:当有一个或多个室内机需要制冷时,室外机会根据室内机的信号进行相应的调节,保证每个室内机都能够得到足够的制冷量。

同时,室内机也可以根据实际需求进行独立控制,实现节能和舒适的空调效果。

5. 优势:多联机空调系统的优势在于能够满足多个房间的空调需求,同时又能够独立控制,节能又舒适。

而且室外机只需要一个,节省了安装空间和维护成本,是一种非常实用的空调系统。

总之,多联机空调系统的原理图清晰地展示了其工作原理和连接方式,通过合理的设计和控制,能够实现多个房间的独立空调控制,满足不同需求,是一种高效、节能、舒适的空调系统。

中央空调智能群控节能系统改造与设计

中央空调智能群控节能系统改造与设计

中央空调智能群控节能系统改造与设计目前,我国社会正处于高速发展阶段,人们的生活质量和生活水平迅速提升,中央空调已经广泛的应用到了现代建筑中。

但老式的中央空调不具备智能控制系统,能耗很高,造成了大量能源的浪费,这与现代人们提倡的环保节约理念不相符。

为了改变这种状况,文章针对老式中央空调能耗高以及非智能调控的缺陷,改造并设计出了中央空调智能群控节能系统。

本系统应用了变频设备,改造了线路,使温度传感器与电动阀能够智能的控制进出水,并且通过对人机交互界面的应用,实现了中央空调的远程智能控制。

通过对该系统的运行研究证明,中央空调智能群控节能系统可以有效的降低中央空调的能耗。

标签:中央空调;智能群控;节能系统;改造与设计现在,中央空调已经在人们的生活和工作中被广泛应用,通常情况下,其能耗大约能够占据建筑总能源消耗的百分之五十五。

但是,因为中央空调系统具有成本高、寿命长、维修费用低等特点,所以除了最新的建筑之外,目前大多数中央空调的控制系统使用的还是老式的系统。

老式中央空调的控制系统应用的是手动控制的,所以它无法根据环境、季节以及用户负荷的变化来进行相应的调整,导致系统中的设备长期处于工频状态,这种状态下浪费了非常多的电能,而且空调运行时会产生非常大的噪音,对周围造成严重的污染。

所以,对老式空调的系统进行智能化节能改造,降低中央空调的能耗,是符合当前可持续发展的理念的。

文章通过对老式中央空调系统的研究,设计出了相应的智能节能系统。

该控制系统内应用了变频变压技术以及人机交互技术,使操作人员能够通过触摸屏进行风机、主机与水泵的开启和关闭操作,并且能够根据用户的负荷来智能调整冷却泵的转速以及主机数量。

通过对该系统实际运行情况的研究,证明该系统可以满足实际需求,并且降低了能量消耗,达到了节约电能的目的。

1 中央空调系统进行变频改造的节能原理中央空调和家用小型空调的温度控制方式是不同的,家用空调是直接把风吹到散热器上面得到热风与冷风,而中央空调主要通过对循环水加热与降温,在循环水经过用户房间时,用户房间内设置的风机会将风吹向散热器,使风被制冷或者加热,从而使用户获得适宜的温度。

详细图解空调器电路(控制功能、CPU单元、电源与驱动电路)

详细图解空调器电路(控制功能、CPU单元、电源与驱动电路)

详细图解空调器电路(控制功能、CPU单元、电源与驱动电路)空调电路控制功能空调在运行过程中,为了确保空调性能的正常和防止事故发生,本身具有完善的检测控制功能。

主要的检测对象是温度、压力、电流。

温度检测用的是温度传感器,压力检测用的是压力开关,电流检测用的是交流互感器。

变频空调还具有室外环境温度传感器、压缩机排气、回气管温度传感器。

2、常见温度传感器的作用(1)室内温度传感器:CPU根据设定工作状态,通过室内环温NTC检测室内环境温度,控制压缩机的通断。

(2)室内管温NTC制冷状态下:室内管温NTC 检测室内盘管温度是否过冷,在一定时间内盘管温度是否下降到一定温度。

若过冷,为防止内机盘管结霜,影响室内热量的交换,CPU压缩机停机保护。

一般-2℃-3℃进行保护。

制热状态下:防冷风吹出检测、过热卸荷、过热保护、制热效果。

空调制热开始内风机的运转手内管盘温度控制,当内管盘温达到28-32℃时,风机才运转,方式制热开始吹出冷风,造成人体不适。

制热过程中,若室内管温达到56℃,说明管温太高,CPU控制外风机停机,减少室外热量的吸收,压缩机不停机,称为制热卸荷。

若风机停机后,内管温度继续上升60℃,压缩机停机,这是空调的过热保护。

若在一定时间内,管盘温度没有上升到一定温度,CPU 控制压缩机停机保护。

(3)室外管温NTC:主要作用是制热化霜温度检测,一般空调制热50分钟后,外机进入第一次化霜,以后的化霜就由室外管温传感器控制,温度降到-9 ℃时,开始化霜,管温回升到11-13 ℃停止化霜。

(4)外环温NTC:控制室外机的转速。

(5)压缩机排气NTC:避免压缩机过热、缺氟检测、使变频压缩机降频,控制制冷剂流量。

(6)压缩机吸气NTC:有电磁膨胀阀的空调制冷系统中,CPU通过检测压缩机回气温度控制制冷剂流量,有进步电机控制膨胀阀。

另外还起到制冷效果检测,判断故障状态工作状态是否正常。

二、压力开关1、压力开关的作用:压力开关有高压和低压两种。

空调机组控制原理ppt课件

空调机组控制原理ppt课件

回风温湿度
水泵运行 初滤报警 中滤报警 高滤报警
KA8
KA1
KA2
KA3
31
33
35
37 38
DI1 DIC DI2 DIC 31 32 33 34
DI3 DIC DI4 DIC 35 36 37 38
MOD1_DI
39 40 41 42 DI5 DIC DI6 DIC
43 44 45 46 DI7 DIC DI8 DIC
去主控制器 XT+ XT-
RT+ RT-
91
91 93

负责
张森

设计
张森

制图
张森

共8 张
最新版整理ppt
13
系统软件设计
• 本系统的软件流程图如图所示。由图可见,系统运行时,先输入设定 的参数值(风压、新风、回风、环境、侧吹风、混风、温度和湿度), 然后对所在车间进行采样。采样结束后,再把采样所得值和设定的参 数值进行比较,然后利用比较之后系统得到的新值,来自动执行所对 应的功能,从而完成一次工作,之后,系统将按照采样开始循环运作。 必要时,也可以通过手动控制与人工干预控制对其进行控制。
最新版整理ppt
23
案例分析4
• 工艺空调表冷阀不能自动打开控制是怎么回 事?
1、确认表冷阀是否打在自动状态。 2、检查露点温度设置值设定是否正确。 3、检查电动阀是否损坏。
最新版整理ppt
24
案例分析5
• 工艺空调新风阀不能打不开是怎么回事? • 1、检查风阀执行器是否卡死,执行器固定螺丝付否松动。
最新版整理ppt
14
系统软件设计
以太网转485控制器

机房空调几种节能技术浅述

机房空调几种节能技术浅述

机房空调几种节能技术浅述1. 利用自然冷源节能1.1 新风节能技术新风节能是利用机房内外空气的温差效应,把机房内的热量迅速转移到外面,来达到降低机房内温度的目的。

通信以及各种数据机房常年温度一般会维持在24度左右,在我国大部分地区,大陆季风性气候居多,所以一年内温度多数低于24度。

在室外温度低于24度时,根据传热学原理,可实现机房内热量向室外的自然迁移。

新风节能技术根据机房设备是否与室外空气有直接接触,可分为直接利用新风系统和间接利用新风系统。

1.1.1 直接利用新风系统直接利用新风系统是将过滤好的室外低温空气直接送入机房内冷却热散热设备,为了防止其过程出现间断,一般需要设置排风口,来使得机房内维持一定的正压,其系统原理如图1所示。

直接新风系统适用于对机房内温湿度要求不精确的小型数据机房,因为其发热量不大,采用直接新风系统即可满足散热需求。

当室外温度较低时,会自动启动新风系统,将过滤好的室外低温空气送入机房内进行散热,在室内外压差的作用下,吸收热量的室外空气会通过排风口自动排出,从而维持机房内在一定的温湿度内。

但在实际生活中,由于室外气象条件变化很大,控制系统通常会使用间歇启停控制和风机变频控制这两种方法,来保持机房内温湿度恒定。

间歇启停控制是指在机房内参数达到设定值时,关闭新风机;当机房内参数达到启动值时,开启新风机,通过这样的设定来维持机房内参数的不变。

间歇启停控制一般适用于对参数要求不高的机房,因为其设置的温湿度控制区间较大,温湿度波动范围大,控制精度较差。

而风机变频系统则是根据室内外温湿度传感器反馈的数据来改变风机风量,通过对风量的控制来维持机房内参数的稳定。

1.1.2 间接利用新风系统间接利用新风系统是利用换热器把室内空气的热量转移到室外去,在换热过程中,室内空气与室外空气没有进行直接的接触,室内空气和室外空调以显热的方式传递热量。

当室外温度比设定值低时,启动间接新风系统,室外空气就会经过风道进入间接新风系统新风换热器,室内空气在室内风机的驱动下经新风换热器循环,从而将机房设备的热量转移到室外。

中央空调系统原理及原理图含末端设备

中央空调系统原理及原理图含末端设备

1
吸收式 制冷机
燃油 和燃 气
电力
江苏双良、远大、三洋、开利、 烟台荏原和LG同和
2
离心机
约克、开利、特灵和麦克维尔 日立、大金、约克、特灵、 开利、顿汉布什、麦克维尔 和吉荣;大连冰山、浙江王 牌、上海富田、重庆嘉陵、 武汉冷冷机厂 开利、约克、麦克维尔和其 他国内品牌如大连冰山、南 京五洲、吉荣和烟台冰轮 只有特灵能提供单台大型的 涡旋机组
冷却水 冷 凝 器
冷 却 塔
13
中央空调系统的分类(续)
电制冷水冷式冷水机组
电制冷水冷式冷水机组属于蒸汽压缩式制冷范畴,一般主要由压缩机、 蒸发器、冷凝器、膨胀阀、自动控制和保护装置组成。顾名思义水冷 式冷水机组的冷凝器利用水冷却,一般利用循环冷却水,随着科技的 发展和节能的需要,也有采用地表水、地下水冷却的。在实际工程中 我们根据压缩机类型一般分为离心式冷水机组、螺杆式冷水机组、活 塞式冷水机组和涡旋式冷水机组。 离心式冷水机组单机容量大,制冷性能系数COP值高,但在部分负荷 下运行时容易发生“喘振”现象。螺杆式冷水机组由于在压缩机构造 上的特点,在部分负荷下仍能稳定、高效地运行,常被用于负荷波动 大、需要调节的场合。活塞式冷水机组和涡旋式冷水机组均为小容量 制冷机,其中活塞式冷水机组由于振动大、运行维护复杂,目前运用 较少,而涡旋式冷水机组运行噪声小,调节方便,在小型工程中运用 较多。
17
中央空调系统工作原理
中央空调系统一般主要由制冷压缩机系统、冷媒(冷冻和冷热)循环水 系统、冷却循环水系统、盘管风机系统、冷却塔风机系统等组成。制 冷压缩机组通过压缩机将空调制冷剂(冷媒介质如R134a、R22等)压 缩成液态后送蒸发器中,冷冻循环水系统通过冷冻水泵将常温水泵入 蒸发器盘管中与冷媒进行间接热交换,这样原来的常温水就变成了低 温冷冻水,冷冻水被送到各风机风口的冷却盘管中吸收盘管周围的空 气热量,产生的低温空气由盘管风机吹送到各个房间,从而达到降温 的目的。冷媒在蒸发器中被充分压缩并伴随热量吸收过程完成后,再 被送到冷凝器中去恢复常压状态,以便冷媒在冷凝器中释放热量,其 释放的热量正是通过循环冷却水系统的冷却水带走。冷却循环水系统 将常温水通过冷却水泵泵入冷凝器热交换盘管后,再将这已变热的冷 却水送到冷却塔上,由冷却塔对其进行自然冷却或通过冷却塔风机对 其进行喷淋式强迫风冷,与大气之间进行充分热交换,使冷却水变回 常温,以便再循环使用。在冬季需要制热时,中央空调系统仅需要通 过冷热水泵(在夏季称为冷冻水泵)将常温水泵入蒸汽热交换器的盘管, 通过与蒸汽的充分热交换后再将热水送到各楼层的风机盘管中,即可 实现向用户提供供暖热风。

中央空调无线末端群控系统的节能分析

中央空调无线末端群控系统的节能分析

风机盘管中央空调系统在商用写字楼、酒店、政府机关、公寓住宅等楼宇建筑中得到了越来越广泛的应用。

空调系统的末端装置直接影响着对室内环境的控制效果,也直接反映了系统的冷热量。

下面是深圳邦德瑞厂家的小编带来的中央空调无线末端群控系统的节能分析一. 空调未端风机盘管的节能分析1. 风机盘管及控制原理风机盘管加新风系统是目前国内各类办公及宾馆建筑中使用最广的空调系统。

风机盘管的控制是为了调节盘管的供冷量。

从风机盘管的原理可知冷量调节可采用风量调节、水量调节和水温调节,其中水温调节属集中调节手段,主要根据负荷情况对整个系统进行调节;水量控制主要是温控电磁阀通断或开度控制;风量调节主要是手动三档风机调速或温控风机三级调速。

风机盘管的末端控制是通过与每个风机盘管对应设置的温控器来完成,自动化程度较高的主要有温控三级风机调速式和三级风机调速加电动水流调节阀控制温控器。

温控三级风机调速方式要通过设置在房间中的温度传感器测得房间的实时温度,根据设定的温度值,判断应采取的动作方式,温度过高相应的降低档位,温度过低则调高档位。

2. 当前系统存在的问题空调未端设备——风机盘管通常是采用室内温度控制器和电动阀进行就地控制,目的也是为了使室内温度恒定和节约能耗,但此种就地控制方式要求不尽人愿,原因就是就地控制的方式往往由于每个空调区域的使用人员对空调控制原理的不了解和节能意识淡薄使控制器达不到预期的节能目的。

目前多数民用建筑的中央空调系统在降低运行能耗、提高运行管理水平方面有明显的挖潜空间,集中在以下几个方面:1. 各个温控器之间没有通讯,各自独立工作,不成系统,无法统一分析、衡量各个末端的工作情况,因而冷源及输配系统无法根据末端的负荷状况进行精确的调节,一些较复杂的优化控制策略无法实施。

2. 各个温控器分散控制,无法进行集中的节能管理(包括室温管控),容易出现使用人员离开或空调主机关机而风机盘管末端仍开启运行的浪费能源的情况。

净化空调系统原理图

净化空调系统原理图
参考仪表和设备: 符 号 名 称 液晶显示多功能控制器
组合式室内温湿度传感器 压差变送器 压差开关
型 号 RWX62.7036 QFA65 QBM65-1 QBM81… VV.. / SK..6… G..B… VV…/SK..3.. VV…/SK..3…
备 注
净化空调系统原理图
排风机 高效过滤器 M
UC-1 THS-1 QP-1 DSP-1 VA-1 DA-1, -2 VA-2
0..50 0C, 10..95 % r.h.
测量范围 0…100 pa
电动调节阀 风阀执行器 电动加热阀 电动加湿阀
防雨白叶窗
VA-3
止回阀 排风口 电动调节风阀
TH火阀
高效送风口
送风管
防火阀 调节阀
QP-1
P
差压变送器
DA-1
加湿 均流段 中效送风段
表冷 新风初效 过滤段 新风中效 过滤段
初效新回风段
M
加热
~
风机段
调节阀
VA-2 VA-3 VA-1 P P DSP-1 DSP-1 DSP-1
过滤器压差开关
L N 220VAC G GO
DSP-1 DSP-1 B3
Q1 Q2
P
Y1
P
过滤器压差开关
Q5
UC-1
E2
Y2 B5 B4 B2 B1 Y3
RWX62.7036 E1
24VAC
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档